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Abstract. Data driven science requires manipulating large datasets com-
ing from various data sources through complex workflows based on a va-
riety of models and languages. With the increasing number of big data
sources and models developed by different groups, it is hard to relate
models and data and use them in unanticipated ways for specific data
analysis. Current solutions are typically ad-hoc, specialized for particu-
lar data, models and workflow systems. In this paper, we focus on data
driven life science and propose an open service-based architecture, Life
Science Workflow Services (LifeSWS), which provides data analysis work-
flow services for life sciences. We illustrate our motivations and rationale
for the architecture with real use cases from life science.
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1 Introduction

Data driven science such as agronomy, astronomy, environmental, and life science
must deal with overwhelming amounts of complex data, e.g., coming from sensors
and scientific instruments, or produced by simulation. Increasingly, scientific
breakthroughs will be enabled by advanced techniques from data science [23]
that help researchers manipulate and explore these massive datasets [14].

Life science is the study of living organisms (plants, humans, micro-organisms,
. . . ) and their association with internal or external conditions. It is an interdisci-
plinary domain including agronomy, biology, and botany. The data in life science
comes from many different data sources produced by modern platforms, e.g.,
high-throughput phenotyping, next-generation sequencing, remote sensing, etc.,
or readily available as international databases, such as Data.World, GenomeHub,
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AgMIP, EMPHASIS, etc. Such data is used to help producing/training models
(statistical models, machine learning (ML) models, etc.) to derive information
and knowledge or to make predictions using complex workflows. Since models are
tailored to specific research questions, they are typically produced by different
research groups and take various forms that reflect the researchers’ approaches
with their data.

Data processing with models typically involves complex data analysis work-
flows (workflows, for short hereafter). Unlike business workflow systems, e.g.,
new order processing, these workflows are compute- and data-intensive, may take
hours or even days, but are often deterministic, and do not involve fine-grained
transactions. They allow domain scientists (specialized in a science domain, e.g.,
plant biology), to express multi-step computational activities, such as loading
input data files, processing the data, running analyses, and aggregating the re-
sults. Workflows have been implemented on top of scientific workflow systems
such as Galaxy [1] and OpenAlea [30]. They frequently make use of data an-
alytics engines such as Spark [36] and Flink [6], as well as Machine Learning
(ML) libraries such as PyTorch [25] and Scikit-learn [26]. In order to scale to
massive datasets, they make increasing use of distributed and parallel execution
environments in the cloud.

While this paper (and project) focuses on data-driven life science, we believe
the project can provide a framework for other application domains with similar
requirements.

1.1 Use Cases

Let us illustrate the requirements for managing such data and models with real
application examples from life science. In the context of climate change, agro-
ecosystems face multiple challenges, including adaptation, resilience, epidemics,
land-use conflicts, and the need for biodiversity conservation. Examples of prac-
tical questions that end-users might ask are:

– How to select or breed new plant varieties that are adapted to my local en-
vironmental conditions (e.g., drought, flooding, high temperature, disease)?

– Which treatments should be deployed on my farm depending on climatic
conditions and geographical proximity to disease hot spots?

Addressing these questions requires multiscale modeling, e.g., modeling plants
at different scales (e.g., organ, plant, crop, land surface, region) to predict the
impact from heterogeneous data, e.g., data on plants, environment (weather,
soil), and remote sensing. These models are the outcome of workflows, whose
activities typically involve data extraction, data cleaning, machine learning, and
visualization. Often the output of one workflow is the input to another.

With One Health, an approach that recognizes that the health of people is
closely connected to the health of animals and our shared environment, under-
standing epidemic propagation at various levels (local, regional, national, global)
has become critical for health authorities. The major problem is how to select
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the best prediction model for a given region by combining propagation models
from different regions as well as integrating various data sources (epidemic, cli-
mate, socio-economic, etc.) along some common dimensions, e.g., time, location,
etc.

The practical difficulty to achieve such integration is that it is hard to relate
models and data, which are typically produced by different people with differ-
ent methods, formats and tools. International repositories for scientific data and
models are useful but they tend to be specialized for specific purposes and re-
search communities, e.g., genomics, phenotyping, and epidemiology. Similarly,
the workflow systems to manipulate data and models are specialized for a re-
search domain, e.g., OpenAlea for plant phenotyping, Galaxy for genomics. Thus,
there is a pressing need for integrated data and model management in order to
achieve consistency and ease of use through generic workflow services with the
ultimate goal of improving model accuracy and predictions.

1.2 The Centrality of Workflows

In this paper, we propose an open service-based architecture, called Life Sci-
ence Workflow Services (LifeSWS). The main objective of LifeSWS is to help
managing complex workflows by organizing massive and heterogeneous data, in
connection with models and making workflow artifacts (datasets, models, meta-
data, workflow components, etc.) easy to search, debug, and parallelize.

In many ways, workflows are to scientific data processing what queries are to
business data processing. In business data processing, queries must be written
(with some reuse of other queries), debugged and optimized (sometimes through
parallelization), and should work across distributed servers, hardware, and op-
erating systems. Scientific data processing is much more complex so workflows
replace queries. The issues however are much the same. Workflows in scientific
data processing must be written (with some reuse of other workflow compo-
nents), debugged (often benefiting from provenance), optimized (often through
parallelization and caching), and should work across distributed servers and op-
erating systems. In addition, workflows should be fault tolerant and workflow
component versions should be kept up-to-date. Thus, a technical goal of this
project is to make workflows work as seamlessly with data as queries do in busi-
ness processing.

LifeSWS capitalizes on our previous experience in developing major systems
for scientific applications such as: polystores with CloudMdSQL [17], workflows
with OpenAlea [30], model management with Gypscie [35] [38], querying data
across distributed services with DfAnalyzer [32] and Provlake [33], monitoring
and debugging applications implemented in big data frameworks such as Apache
Spark [12], and debugging workflows with BugDoc [18] and VersionClimber [29].

1.3 Paper Outline

The paper is organized as follows. Section 2 develops our motivating examples
from real life science applications. Section 3 presents our open, service-based
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architecture for LifeSWS. Section 4 discusses platforms and infrastructures that
can implement LifeSWS. Section 5 shows the use of LifeSWS with use cases from
our motivating examples. Section 6 discusses related work. Section 7 concludes
and discusses open research issues.

2 Motivating Examples

In this section, we introduce examples from real-life science applications that will
serve as motivation for our work and as the basis for use cases with LifeSWS.
These examples are in agro-ecosystems in the context of climate change and epi-
demic modeling. These examples share common requirements but have specific
features that will show different uses of LifeSWS.

2.1 High-Throughput Phenotyping in the Context of Climate
Change

As observed above, agro-ecosystems face multiple challenges, including climate
change, epidemics, land-use conflicts, and the need to conserve biodiversity. To
enhance the resilience of agro-ecosystems, interdisciplinary efforts are required,
ranging from a detailed biological understanding of the physiology of plants with
multiple stresses (e.g., drought, temperature, decease), agronomy to adapt agro-
ecosystems to future challenges, as well as sociology, economy and politics to
understand the impacts of changing public policy.

This challenge requires mobilizing all possible levers of plant adaptation, in-
cluding the genotype, phenotype, and their interactions with the environment.
The genetic/genomic revolution has allowed us to sequence and manipulate genes
at a low cost and to generate an avalanche of information. But understanding
genome-to-phenotype relationships is crucial. While national and international
phenotyping platforms allow the capture of phenotypes at high-throughput,
most of the traits that contribute to the performance of agro-ecosystems are
environment-dependent. The performance of a variety that thrives in a partic-
ular environment may perform poorly in a different one. Thus, it is important
to capture phenotypes in various environments using various sensors at different
scales (IoT, images from drones, 3D point clouds from Lidars and remote sensing
images from satellites).

Major efforts have been invested in crop breeding to improve crop yield for
food security. However, profiling the crop phenome by considering the structure
and function of plants associated with genetics and environments remains a
technical challenge [34].

In the past decade, high-throughput phenotyping platforms have emerged,
enabling the collection of quantitative data on thousands of plants under con-
trolled environmental conditions. A good example is the French Phenome project,
with seven facilities producing 200 Terabytes of diverse, multiscale data annually,
including images, environmental conditions, and sensor outputs from different
sites [13].




