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Abstract. Data driven science requires manipulating large datasets com-
ing from various data sources through complex workflows based on a va-
riety of models and languages. With the increasing number of big data
sources and models developed by different groups, it is hard to relate
models and data and use them in unanticipated ways for specific data
analysis. Current solutions are typically ad-hoc, specialized for particu-
lar data, models and workflow systems. In this paper, we focus on data
driven life science and propose an open service-based architecture, Life
Science Workflow Services (LifeSWS), which provides data analysis work-
flow services for life sciences. We illustrate our motivations and rationale
for the architecture with real use cases from life science.

Keywords: Data driven science · Life science · Data science · Workflows
· Model life cycle · Service-based architecture.

1 Introduction

Data driven science such as agronomy, astronomy, environmental, and life science
must deal with overwhelming amounts of complex data, e.g., coming from sensors
and scientific instruments, or produced by simulation. Increasingly, scientific
breakthroughs will be enabled by advanced techniques from data science [23]
that help researchers manipulate and explore these massive datasets [14].

Life science is the study of living organisms (plants, humans, micro-organisms,
. . . ) and their association with internal or external conditions. It is an interdisci-
plinary domain including agronomy, biology, and botany. The data in life science
comes from many different data sources produced by modern platforms, e.g.,
high-throughput phenotyping, next-generation sequencing, remote sensing, etc.,
or readily available as international databases, such as Data.World, GenomeHub,
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AgMIP, EMPHASIS, etc. Such data is used to help producing/training models
(statistical models, machine learning (ML) models, etc.) to derive information
and knowledge or to make predictions using complex workflows. Since models are
tailored to specific research questions, they are typically produced by different
research groups and take various forms that reflect the researchers’ approaches
with their data.

Data processing with models typically involves complex data analysis work-
flows (workflows, for short hereafter). Unlike business workflow systems, e.g.,
new order processing, these workflows are compute- and data-intensive, may take
hours or even days, but are often deterministic, and do not involve fine-grained
transactions. They allow domain scientists (specialized in a science domain, e.g.,
plant biology), to express multi-step computational activities, such as loading
input data files, processing the data, running analyses, and aggregating the re-
sults. Workflows have been implemented on top of scientific workflow systems
such as Galaxy [1] and OpenAlea [30]. They frequently make use of data an-
alytics engines such as Spark [36] and Flink [6], as well as Machine Learning
(ML) libraries such as PyTorch [25] and Scikit-learn [26]. In order to scale to
massive datasets, they make increasing use of distributed and parallel execution
environments in the cloud.

While this paper (and project) focuses on data-driven life science, we believe
the project can provide a framework for other application domains with similar
requirements.

1.1 Use Cases

Let us illustrate the requirements for managing such data and models with real
application examples from life science. In the context of climate change, agro-
ecosystems face multiple challenges, including adaptation, resilience, epidemics,
land-use conflicts, and the need for biodiversity conservation. Examples of prac-
tical questions that end-users might ask are:

– How to select or breed new plant varieties that are adapted to my local en-
vironmental conditions (e.g., drought, flooding, high temperature, disease)?

– Which treatments should be deployed on my farm depending on climatic
conditions and geographical proximity to disease hot spots?

Addressing these questions requires multiscale modeling, e.g., modeling plants
at different scales (e.g., organ, plant, crop, land surface, region) to predict the
impact from heterogeneous data, e.g., data on plants, environment (weather,
soil), and remote sensing. These models are the outcome of workflows, whose
activities typically involve data extraction, data cleaning, machine learning, and
visualization. Often the output of one workflow is the input to another.

With One Health, an approach that recognizes that the health of people is
closely connected to the health of animals and our shared environment, under-
standing epidemic propagation at various levels (local, regional, national, global)
has become critical for health authorities. The major problem is how to select
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the best prediction model for a given region by combining propagation models
from different regions as well as integrating various data sources (epidemic, cli-
mate, socio-economic, etc.) along some common dimensions, e.g., time, location,
etc.

The practical difficulty to achieve such integration is that it is hard to relate
models and data, which are typically produced by different people with differ-
ent methods, formats and tools. International repositories for scientific data and
models are useful but they tend to be specialized for specific purposes and re-
search communities, e.g., genomics, phenotyping, and epidemiology. Similarly,
the workflow systems to manipulate data and models are specialized for a re-
search domain, e.g., OpenAlea for plant phenotyping, Galaxy for genomics. Thus,
there is a pressing need for integrated data and model management in order to
achieve consistency and ease of use through generic workflow services with the
ultimate goal of improving model accuracy and predictions.

1.2 The Centrality of Workflows

In this paper, we propose an open service-based architecture, called Life Sci-
ence Workflow Services (LifeSWS). The main objective of LifeSWS is to help
managing complex workflows by organizing massive and heterogeneous data, in
connection with models and making workflow artifacts (datasets, models, meta-
data, workflow components, etc.) easy to search, debug, and parallelize.

In many ways, workflows are to scientific data processing what queries are to
business data processing. In business data processing, queries must be written
(with some reuse of other queries), debugged and optimized (sometimes through
parallelization), and should work across distributed servers, hardware, and op-
erating systems. Scientific data processing is much more complex so workflows
replace queries. The issues however are much the same. Workflows in scientific
data processing must be written (with some reuse of other workflow compo-
nents), debugged (often benefiting from provenance), optimized (often through
parallelization and caching), and should work across distributed servers and op-
erating systems. In addition, workflows should be fault tolerant and workflow
component versions should be kept up-to-date. Thus, a technical goal of this
project is to make workflows work as seamlessly with data as queries do in busi-
ness processing.

LifeSWS capitalizes on our previous experience in developing major systems
for scientific applications such as: polystores with CloudMdSQL [17], workflows
with OpenAlea [30], model management with Gypscie [35] [38], querying data
across distributed services with DfAnalyzer [32] and Provlake [33], monitoring
and debugging applications implemented in big data frameworks such as Apache
Spark [12], and debugging workflows with BugDoc [18] and VersionClimber [29].

1.3 Paper Outline

The paper is organized as follows. Section 2 develops our motivating examples
from real life science applications. Section 3 presents our open, service-based
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architecture for LifeSWS. Section 4 discusses platforms and infrastructures that
can implement LifeSWS. Section 5 shows the use of LifeSWS with use cases from
our motivating examples. Section 6 discusses related work. Section 7 concludes
and discusses open research issues.

2 Motivating Examples

In this section, we introduce examples from real-life science applications that will
serve as motivation for our work and as the basis for use cases with LifeSWS.
These examples are in agro-ecosystems in the context of climate change and epi-
demic modeling. These examples share common requirements but have specific
features that will show different uses of LifeSWS.

2.1 High-Throughput Phenotyping in the Context of Climate
Change

As observed above, agro-ecosystems face multiple challenges, including climate
change, epidemics, land-use conflicts, and the need to conserve biodiversity. To
enhance the resilience of agro-ecosystems, interdisciplinary efforts are required,
ranging from a detailed biological understanding of the physiology of plants with
multiple stresses (e.g., drought, temperature, decease), agronomy to adapt agro-
ecosystems to future challenges, as well as sociology, economy and politics to
understand the impacts of changing public policy.

This challenge requires mobilizing all possible levers of plant adaptation, in-
cluding the genotype, phenotype, and their interactions with the environment.
The genetic/genomic revolution has allowed us to sequence and manipulate genes
at a low cost and to generate an avalanche of information. But understanding
genome-to-phenotype relationships is crucial. While national and international
phenotyping platforms allow the capture of phenotypes at high-throughput,
most of the traits that contribute to the performance of agro-ecosystems are
environment-dependent. The performance of a variety that thrives in a partic-
ular environment may perform poorly in a different one. Thus, it is important
to capture phenotypes in various environments using various sensors at different
scales (IoT, images from drones, 3D point clouds from Lidars and remote sensing
images from satellites).

Major efforts have been invested in crop breeding to improve crop yield for
food security. However, profiling the crop phenome by considering the structure
and function of plants associated with genetics and environments remains a
technical challenge [34].

In the past decade, high-throughput phenotyping platforms have emerged,
enabling the collection of quantitative data on thousands of plants under con-
trolled environmental conditions. A good example is the French Phenome project,
with seven facilities producing 200 Terabytes of diverse, multiscale data annually,
including images, environmental conditions, and sensor outputs from different
sites [13].
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To support high throughput phenotyping, many workflows have been de-
veloped using OpenAlea to analyze, reconstruct, and visualize the spatial and
temporal development of the geometry and topology of thousands of plants in
various environmental conditions. For instance, the Phenomenal workflow sup-
ports the reconstruction in 3D and the segmentation of plant organs [2]. The
PhenoTrack workflow, which is based on Phenomenal, allows the 3D reconstruc-
tion of plants with the temporal tracking of the growth of each organ for the
entire developmental cycle [9]. Finally, RootSystemTracker provides a workflow
for the automatic structural and developmental 2D root phenotyping of Ara-
bidopsis plants in Petri dishes [10].

Figure 1 shows a) the Phenomenal workflow implemented in OpenAlea; b) 3D
organ tracking of a maize plant with PhenoTrack3D [9]; and c) a reconstructed
root system architecture through time using RootSystemTracker [10].

Fig. 1. Spatial and Temporal Workflows of Maize Shoot and Arabidopsis Root System
Architecture

These workflows need to process large volumes of data on distributed in-
frastructures. To execute these workflows, we need to: 1) transfer large image
datasets from a data center close to the phenotyping platforms to computing
servers in the cloud; 2) distribute the execution on a cloud or grid infrastruc-
ture; 3) capture the provenance of the execution and cache intermediate results
for later use; 4) rerun workflows with new processes and parameters; 5) provide
execution results using dashboards to check the execution.

Furthermore, to understand the genotype-to-phenotype relationships, we need
to be able to relate plant traits computed by phenotyping workflows (e.g., with
OpenAlea) with genetic information using genotyping workflows such as genome-
wide association studies (e.g., with Galaxy). Thus, we need to integrate hetero-
geneous workflows and be able to schedule their execution.
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Finally, through time, phenotyping workflows evolve with new processes im-
plemented in various libraries whose versions and dependencies change quickly.
Parameters need to be calibrated on new phenotyping platforms which have
new sensors, different light conditions, or new plant species. Furthermore, it
is important to identify problems in the workflow specification (e.g., that may
lead to deadlocks) before executing them in HPC environments to avoid spar-
ing resources. Finally, the workflows need to be debugged to identify problems
occurring in new settings.

2.2 Epidemic Modeling

Each year, dengue, zika, chikungunya, and other arboviruses disseminated by the
Aedes Aegypti vector exert an extreme burden on populations' health, especially
in low-income countries.

General statistical models that try to explain or predict dengue in large
areas usually do not consider the diversity of the territory and the different
or even contradictory relations that predictors can preserve with the outcome.
Conversely, creating individual models for every possible geographic location is
impractical and unfeasible. In addition, there are regions for which we don’t have
enough data to create prediction models.

Therefore, a more effective approach is to develop Machine Learning mod-
els tailored to the unique characteristics of each region, considering the specific
meteorological, socio-economic, and sanitary conditions that affect the epidemic
transmission in that area. Then, these models can be used for predicting the
transmission in similar regions for which constructing specific models is not
possible (due to lack of data). For efficient modeling of dengue and other ar-
boviruses, we need tools that can facilitate the selection of ML models that are
most suitable for predicting these viruses. By utilizing these tools, more accurate
predictive models can be selected and used to better understand and prepare for
the transmission of viruses in the given region.

However, providing these tools is challenging. The reason is that we need to
gather different datasets and models, and develop novel algorithms to enhance
the accuracy and reliability of the prediction models. The required datasets and
models are as follows: 1) propagation datasets that contain information about
the spread of disease; 2) climate datasets that provide crucial insights into en-
vironmental factors like temperature and precipitation that may impact disease
transmission; 3) socio-economic datasets that help us to understand the social
and economic factors that could influence disease spread; 4) prediction models
generated for some regions. By utilizing these diverse datasets and models, we
should be able to select more accurate and reliable models for query regions,
which can ultimately contribute to better disease control and prevention strate-
gies.

Figure 2 shows the Dengue cases in Brazil spanning from 2000 to 2019 (a),
along with the geographical distribution of cases across various regions (b and c)
[5]. For predicting the Epidemy in each region, we need to select a model (or set of
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models ) that takes into account the specific meteorological and socio-economic
characteristics of the region.

Fig. 2. Dengue Epidemy in Brazil

3 Architecture of LifeSWS

In this section, we introduce the service-based architecture of LifeSWS, with its
functional architecture and three layers of services (presentation and directory,
workflow and data management services).

3.1 Functional Architecture

Our design choices are guided by the requirements of our users. The main po-
tential users of LifeSWS are: the domain scientists who wish to analyze the
data using different models and workflows; the workflow providers who create,
maintain or enhance workflows for domain scientists using their workflow tools;
the model providers who build models; and the data providers who supply data
sources to the workflows.

Our architecture capitalizes on the latest advances in web-oriented architec-
tures, microservices, containers and distributed and parallel data management
[24]. We adopt the main following design choices and principles:

– Ease of use through web interfaces, which are easy to develop and specialize
for different kinds of users;

– Open architecture with open source services and tools, and well-defined APIs
to foster services interoperability (like cloud web services);
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– Distributed architecture to provide performance, scalability and ease of use
in the cloud using distributed database principles;

– Support for various databases (SQL, NoSQL, SciDB, etc.) and scientific file
types (e.g., HDF and NetCDF);

– Integrated services on top of various databases, which can be local (in the
same data center) or remote (in remote data centers) and access to various
tools and execution environments.

LifeSWS’s functional architecture is shown in Figure 3. It has three main
layers of services: (1) presentation and directory, (2) workflow and (3) data
management. Each layer can use the services of the same layer or the layers
below. To interface with different systems, services can also use three kinds of
APIs: Worflow Access APIs, Data Source APIs and Data Store APIs.

Fig. 3. LifeSWS Architecture

3.2 Presentation and Directory Services

Presentation and directory services provide users and applications with secure
ways of accessing LifeSWS services. Presentation services include a Web dash-
board service, a Web API and a directory service.

The Web dashboard service allows LifeSWS developers to build specific dash-
boards for different types of users (domain scientists, workflow providers, model
providers and data providers). These dashboards allow users to analyze and dis-
play real-time data as charts and reports. They offer the following capabilities
to developers: (1) a directory to publish and/or find data sources and workflow
components; (2) tools for assembling workflows easily; (3) tools for debugging;
and (4) scheduling workflows using workflow systems.
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The directory stores data about LifeSWS users, access rights, dashboards and
services. As a user directory, it helps register users, find out about them as well
as authenticate them when accessing LifeSWS services. As a service directory,
it provides a single place to publish, discover, and connect LifeSWS services as
well as external services that can be distributed over the network. Additional
network security, e.g., firewall, can be provided at this layer.

As an alternative to Web dashboards, the Web API is a server-side API that
allows LifeSWS developers to access LifeSWS services from more general Web
applications. This API consists of one or more publicly exposed endpoints that
specify where and how to access the services with a request–response protocol,
typically in JSON.

Finally, LifeSWS offers an external data view to ease the development of
dashboards and workflows, which integrates observational and predictive data.
This external view can be represented by a knowledge graph [15] extended to
support the representation of observation time-series and predictive information
metadata, such as: error estimate, multi-class prediction probabilities and etc..

3.3 Workflow Services

Workflow services make it easy for scientists to develop, debug and optimize their
workflows for doing their scientific experiments and data analyses. The services
should also support the of sharing data, models and workflow components. Be-
cause the users want to be able to use their familiar tools (e.g., workflow systems
such as Galaxy or OpenAlea) and data sources (e.g., Data World), this layer pro-
vides efficient services to register and manage data and models, and allow model
execution using different tools and data sources. The primary services provided
at this layer are: catalog (including version management), provenance and cache,
data analytics, and data management.

Catalog. The catalog is the central place to find out about all artifacts and
tools of interest for LifeSWS users: data sources, datasets, models, workflows
and code libraries. Artifacts can be found outside LifeSWS and thus accessed
through some API, or stored within LifeSWS for efficient reuse. Each artifact has
associated metadata that describes it and allows access to it, either locally if it is
stored in LifeSWS, or through its URI if it is an external resource (tool or data
source). With the catalog, one may register artifacts, change them or provide a
new version. The catalog also knows about tools (e.g., OpenAlea, Spark) and
code libraries that implement models (e.g., Phenomenal workflow). Finally, the
catalog comes with a search capability that allows users to navigate through the
hierarchy of artifacts.

Model Management. Various types of models are used in life sciences. Data-
driven machine learning models adopt a learning strategy that updates a set of
weights that approximates a function to the behavior of the learned phenomenon
given by the patterns extracted from the input data. Typical tasks executed by
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machine learning models include solving classification and numerical regression
problems, which one may generalize as prediction tasks. Another relevant type of
model extensively used in life science are mechanistic models, which refer to com-
putational artifacts derived from the mathematical modeling of a phenomenon.
The product of running mechanistic models for a certain number of time steps
is referred to as a phenomenon simulation. For instance, crop simulation models
reproduce the main functions of plants such as the evolution of plant architec-
ture, light interception, photosynthesis, and water/nitrogen balance in the crop
and soil [21].

The management of such life science model artifacts requires model life cycle
management and model deployment, using specific tools that can be accessed
through LifeSWS. Through a unified view of different model artifacts (produced
with different tools), LifeSWS can improve model selection and allow for model
integration.

Model selection allows the user to easily search for model artifacts of interest
so they can be used for reproduction or integration. Searching can be done based
on different criteria such as scientific domain or subdomain, metadata, format,
tools and keywords. This capability uses the catalog of artifacts.

The performance monitoring of models in operation by the model manage-
ment service is important to assess prediction quality and point to model up-
dates. In particular, if the input data distribution changes, models built on past
historical data must be flagged so they can be updated. For machine learning
models, a concept-drift component must detect variations in input data patterns
and launch alerts for downstream model updates. The latter are processed ac-
cording to application requirements. LifeSWS supports complete and automatic
model retraining, using ML tools, or it can delegate the model update process to
components that implement a more sophisticated update procedure, involving
for instance a fast training of a simple surrogate model, while the main model
is updated.

Model integration allows combining different models, possibly produced using
different tools. It can take different forms, depending on the model types and the
integration objective. In machine learning, model integration may take the form
of an ensemble of models [37]. An ensemble considers a set of models aiming at
the prediction of the same target. The integration process is modeled as a pipeline
that runs each individual participant model, possibly across different tools, over
the same input and combines the individual results into an integrated one, often
using a linear combination of the results. Using the DJEnsemble method [27], en-
sembles can be computed automatically by a LifeSWS platform such as Gypscie
(see Section 4), so that the selection of participant models follows a cost-based
selection approach. Model integration takes a different form in mechanistic mod-
els as they typically use scientific workflows for simulating the phenomenon. For
example, to visualize a 3D model of plant growth in a local environment, the 3D
plant structure and biophysical models such as light interception, carbon allo-
cation and water and mineral uptake can be simulated by a workflow modeled
in OpenAlea.
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Workflow Integration. This service provides support for integrating and ef-
ficiently executing workflows on different workflow systems using the Workflow
Access APIs. It shares some similar goals and functions found in data integra-
tion. The main functions provided by this service are workflow definition and
execution, provenance and cache.

For workflow definition and execution, we plan to rely on the Common Work-
flow Language (CWL) [8], an open standard aiming to enable scientists to share
complex data analysis and machine learning workflows. CWL supports connect-
ing command line tools to create workflows that are portable across a variety
of CWL-compliant platforms, from a single developer’s laptop up to a mas-
sively parallel cluster in the cloud. The CWL project produces free and open
standards for describing command-line tool based workflows. These standards
are implemented in many popular workflow systems such as Galaxy, Pegasus,
Streamflow, and CWL-Airflow. To enable portability and reusability, CWL is
explicit about inputs/outputs to form the workflow, data locations and execu-
tion models, which can be deployed using software container technologies, such
as Docker and Singularity.

Within the CWL project, we can contribute to the definition of integrated
workflows that span multiple workflows and workflow systems. Once an inte-
grated workflow has been defined and its mappings registered using CWL, it
can be executed using a LifeSWS scheduler that orchestrates execution across
different workflow systems, in connection with these systems’ schedulers.

Provenance (also referred to as lineage) management helps to reproduce,
trace, assess, understand, and explain how datasets have been produced. This
is a useful underlying functionality for several strategic capabilities, including
experimental reproducibility, user steering (i.e., runtime monitoring, interactive
data analysis, runtime fine-tuning) and data analysis. These capabilities are
essential building blocks towards the goal of storing and sharing results of exe-
cutions that can be useful later (by the same or different users perhaps on very
different platforms).

In addition to provenance management, this service includes cache manage-
ment, using information about cache data, as well as the location of the cache
data (e.g., files, Spark RDDs, . . . ). Caching datasets improves performance when
they are produced at multiple times by different users or distributed at various
sites. The decision whether to cache an intermediate result can be explicit (i.e.,
decided by the user) or made automatic based on workflow fragment analysis
[13].

All information for this service is stored in a database that is relatively small.
In particular, the cache itself is small (only references) and the cached data can
be managed using the underlying execution environments accessed through the
Workflow Access APIs. Using a database for this service provides the traditional
advantages of data sharing, integrity and querying using an SQL-like language.

Analytics. This service allows scientists, through their specific dashboards,
to perform analytics on the data produced by their workflows using the other



12 R. Akbarinia et al.

workflow services. Using the Catalog and Model Management services, the user is
able to select models and datasets of interest, execute the selected models using
various workflow execution environments (using the Workflow Access APIs), and
analyze the results. It also allows the user to cache and explain the results, and
reproduce executions using the Provenance and Cache services.

This service also facilitates the analysis of different types of data such as
time series and spatial data, by incorporating advanced analytical techniques
like anomaly detection, similarity search and clustering.

3.4 Data Management Services

These services make it easy for LifeSWS users to manage their artifacts (datasets,
models, metadata, etc.) and session data (logs, intermediate datasets, etc.) with
high-level capabilities using the Data Source, Model/Workflow and Data Store
APIs. An important capability is moving data between different data sources,
databases and execution environments using simple import-export functions.
Another useful capability, using the Data Source APIs, is subscribing to some
data sources that provide a publish API, to get warned of the new versions.

More advanced capabilities, similar to distributed databases [24] and poly-
stores [3], could be provided at this level for integrating data from different data
sources. In particular, the CloudMdsQL polystore [17] is efficient for querying
multiple heterogeneous data sources (e.g. files, relational and NoSQL) in the
cloud. A CloudMdsQL query may contain nested subqueries, and each subquery
addresses directly a particular data store and may contain embedded invoca-
tions to the data store native query interface. Thus, the major innovation is
that a CloudMdsQL query can exploit the full power of local data stores, by
simply allowing some local data store native queries to be called as functions,
and at the same time be optimized based on a simple cost model, CloudMd-
sQL can also access address distributed processing frameworks such as Apache
Spark by enabling the ad-hoc usage of user defined map/filter/reduce operators
as subqueries.

Data Store APIs. These APIs allow storing and accessing data in different
data stores (SQL, NoSQL, Savime, files, . . . ), to support specific requirements.
For instance, the catalog, provenance, and cache databases are typically in an
SQL database such as PostgreSQL. By contrast, external data could be stored in
the original format, e.g., JSON in a NoSQL document database, and extracted
using data-specific APIs. Datasets produced using tools or cache data could be
stored in files, e.g., Parquet, etc., or in a scientific database like Savime. The
data store APIs should be based on standard APIs, such as JDBC, file system
APIs, . . . ).

Data Source APIs. These APIs allow connecting to various web data sources,
such as Data World, AgMIP, etc., and performing various tasks (search for
datasets, extract a dataset’s metadata, import a dataset, get changes, etc.).
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They can be used to build user-friendly dashboards for domain scientists with
semantic-based search capabilities, as for instance in the ontology-driven Phe-
notyping Hybrid Information System (PHIS [22]).

Workflow Access APIs. These APIs allow accessing and manipulating models
and workflows as structured objects with their own semantics, execute them in
their own execution environments, such as Pytorch (ML models), OpenAlea
(workflows) and Spark (e.g., SparkSQL queries). These APIs make it possible
to simply perform various tasks using models and workflows, such as import or
export of models, executing them using a dataset, saving the result data (using
the Data Store API, . . . ).

4 LifeSWS Platforms

LifeSWS services can be implemented and deployed in various platforms (using
different software and hardware infrastructures) to address the specific require-
ments of vertical applications. Examples of platforms would be some LifeSWS
services deployed in the cloud (public, private or hybrid) or on-premise clusters
of servers, reusing existing software components that (partially) implement the
services.

A good example of a LifeSWS platform is Gypscie [38], which provides ser-
vices to develop, share, improve and publish scientific artifacts (datasets, models,
etc.). Gypscie’s services are available through two different interfaces. Figure 4
shows the interface that enables interactive access to services, including artifacts
registration and service requests. The same functionality is available through a
REST API based on the HTTP protocol.

These services make it easy for model providers and scientists to:

– Collect, curate and integrate heterogeneous data;
– Support the complete ML model life cycle, from model building to deploy-

ment, monitoring and policy enforcement;
– Find ready-to-use models that best fit a particular prediction problem;
– Compare and ensemble models;
– Execute models with various tools: ML engines, workflow systems, . . .
– Use specific hardware infrastructures and corresponding algorithms accord-

ing to a desired task, e.g., use a distributed training algorithm for a particular
GPU-based server for training a large deep neural network.

Let us illustrate how LifeSWS services would be supported by Gypscie ser-
vices for presentation & directory, model management, and data management.

4.1 Presentation & Directory

Gypscie offers a web interface that eases ML model management. It also offers
a notebook interface for direct python scripts integration with the Flask frame-
work. Furthermore, Gypscie enables other tools to access its services through a
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Fig. 4. Gypscie Web Interface

RESTful-based API. Users can build dataflows graphically to model data prepro-
cessing tasks. Registered dataflows can be scheduled for execution and, during
runtime, have their activities and involved data recorded for provenance. User
dataflows typically include data pre-processing transformations in preparation
for model training and model inference.

4.2 Model Management

The core functionalities of Gypscie cover the services needed to support the full
ML life cycle. Regarding model management, the Gypscie data model fosters
the reuse of all artifacts involved during the model’s life cycle. As such, the user
can publish the scripts involving the data preparation and model fitting for a
particular learning algorithm (hereafter, denoted learner). For ease of browsing,
learners are aggregated into learner family. We use the learning artifact to build
models by providing the necessary training dataset. In addition, Gypscie allows
models built in other external systems to be imported and registered into it.
Thus, models can be automatically registered when built using a known learner
and the Gypscie training functionality, or they can be manually imported. In
both cases, once registered they are ready to be called for inference. The func-
tionalities involving model training and inferencing are both implemented using
MLFlow. The latter enables Gypscie to communicate with the most frequently
used ML engines, such as Pytorch and Scikit-learn. Gypscie instruments the run-
ning scripts to register in MLFlow the values of performance metrics, which the
system collects and stores into its catalog, once the job has finished its execution.

A particular feature of Gypscie is its ability to deal with spatio-temporal
data, which are extremely common in scientific applications. Gypscie implements
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the DJEnsemble [27] inference approach. The idea is to automatically select
trained spatio-temporal models with performance guarantees for the scientific
predictions. The approach considers a set of registered models for the execution
of a certain task, for instance, rainfall prediction. The algorithm uses a cost-
based strategy that strikes a balance between prediction precision and execution
cost to select the best set of models that infer the rainfall prediction in a region of
the space. Additionally, it specifies how to spatially allocate the selected models
to cover the query region. Gypscie runs the optimization process, executes the
selected models, and composes the final result. This is a very complex task that
is completely abstracted from the final user, showing the potential of LifeSWS
to create an easy ML environment.

4.3 Data Management

Data management involves the following services: (1) accessing registered data;
(2) gathering provenance information, and (3) exploring the content of datasets.
Gypscie registers metadata in its catalog for accessing data stored in an external
data source, such as Databricks Delta Lake or Lustre file system. When a sched-
uled workflow requires a dataset, the dataset is automatically transferred from its
stored location to a file system supporting the workflow execution environment.

As a workflow applies transformations on a dataset, Gypscie stores the prove-
nance information regarding the operation. Thus, within Gypscie a user can
always review the lineage of transformation that led to the dataset’s current
version.

Finally, Gypscie integrates the SAVIME in-memory multi-dimensional array
database system [20]. SAVIME supports the expression of SQL-like queries over
raw datasets. The query language enables the registration of prebuilt ML models
that can be invoked over the results of a query expression.

Gypscie has been deployed on a server at LNCC, and interfaced with two
execution environments (see Section 5 : the Santos Dumont HPC system at
LNCC which could be used in large model training (e.g., using PyTorch) and a
Spark shared-nothing cluster to perform large-scale data transformation.

5 Use Cases with LifeSWS

In this section, we show how the LifeSWS services could be used to support the
requirements of the two motivating examples, referring to the services of the
previous section.

5.1 High-Throughput Phenotyping

In this use case, LifeSWS is used by domain scientists in order to analyze, pro-
cess and visualise High Throughput Phenotyping (HTP) experiments, with the
following workflows, models and datasets:
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Fig. 5. LifeSWS platform with Gypscie

– OpenAlea workflows that implement a specific phenotyping processing such
as 3D maize segmentation, organ tracking, or root system reconstruction;

– A Galaxy workflow for a Genome-Wide Association Study (GWAS);
– Image analysis algorithms to segment the background, to reconstruct the

plant in 3D using space carving, semantic segmentation and tracking of the
organs;

– Functional-structural plant models that are used either to compute non-
observed information like light interception by leaves [2] or water fluxes inside
the root system [4], or to generate synthetic data for training or validating
methods of plant reconstruction;

– Raw image datasets obtained from the phenotyping platform, which contain
timeseries of several images per plant;

– Outputs of plant traits (e.g., leaf angle, light use efficiency, or biomass accu-
mulation) for each genotype are saved in the Phenotyping Hybrid Informa-
tion System (PHIS) [22].

A domain scientist, often a plant biologist, searches for a specific OpenAlea
phenotyping workflow based on its metadata. Then, she edits, visualizes, and
executes the workflow on a small dataset. For instance she can reconstruct in 3D
the growth and development of a maize plant during a growing season. Finally,
she selects a full dataset from an existing phenotyping experiment and executes
the workflow to obtain a set of plants traits specific to each genotype and to envi-
ronmental conditions such as drought or temperature. Finally, to breed varieties
tolerant to drought, some outputs of the workflow will be associated with genetic
markers using a Galaxy workflow that implements a Genome-Wide Association
Study (GWAS). GWAS allows to correlate favorable traits (e.g., responsible for
drought tolerance) with a genomic region and thus to breed new varieties.
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For instance, the Phenomenal workflow (Figure 1.a) is composed of differ-
ent fragments, i.e. reusable sub-workflows: binarization, images calibration, 3D
volume reconstruction, and organ segmentation. The intermediate datasets are
also shown in the Figure. The raw data is produced by the Phenoarch platform,
which has a capacity of managing 2500 plants within a controlled environment
(e.g., temperature, humidity, irrigation) and automatic imaging through time.
The total size of the raw image dataset for one experiment is 15 Terabytes.
The raw data is stored on a server close to the experimental platform, but also
referenced to the PHIS with all metadata.

To execute the Phenomenal workflow, the OpenAlea scheduler checks, using
provenance data, whether some fragments have already been executed and are
present in the cache. OpenAlea then schedules the execution of the workflow on
a distributed infrastructure. After execution, the user can visualize the results
either as classical plots or as 3D plots to inspect the reconstructed plants. The
results are automatically stored in the PHIS, to associate each plant of each
genotype with environmental data and the computed traits. These results are
used as input of the Galaxy workflow to make a complete GWAS study.

Let us now explain how this use case can be realized using the services pro-
vided by LifeSWS. Required workflows of the use case can be searched and
found using the Catalog service. This allows to navigate among OpenAlea and
Galaxy workflows and to select the Phenomenal and GWAS workflows. Both
workflows are composed of versioned tools, models, and workflow fragments that
are retrieved from the Model Management service. Workflows are visualized and
parameters are set via workflow dashboards of the Presentation and Directory
services. After edition, new versions are stored using the Model Management
service. Datasets of the Phenomenal experiment can be retrieved and accessed
using the Data Source APIs with a connection to the PHIS.

LifeSWS looks up the provenance and cache, and triggers OpenAlea’s dis-
tributed execution. Provenance supports the determination of whether a work-
flow fragment has been already computed with the same parameters and datasets.
The cache enables the retrieval of previous intermediate results rather than
recomputing them again. The cache and provenance information are updated
during the execution of OpenAlea workflows using the Workflow Access API.
LifeSWS provides Data Services to feed the Galaxy workflow with the output of
OpenAlea workflow when execution has been done. Then, it triggers the execu-
tion of Galaxy on distributed resources.

The visualization of the intermediate and final results is done in a workflow
dashboard and some specific outputs (e.g., plant traits) are updated in the PHIS
using the Data Source APIs.

Moreover, OpenAlea models and workflows can be upgraded automatically
using VersionClimber[29] from the Workflow Integration services to find the lat-
est compatible versions of all the modela and libraries the workflows depend
on.
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5.2 Epidemic Modeling

In this use case, LifeSWS is used by scientists in order to select ML models
that would perform best to predict the transmission of the Dengue virus in a
particular region.

In this scenario, the following inputs may be used by LifeSWS:

– Propagation datasets obtained from public health institutions, which are
likely to contain information on the spread of disease.

– Publicly available climate datasets, which could be used to identify envi-
ronmental factors, such as temperature and precipitation, that may impact
disease transmission.

– Socio-economic datasets publicly available for specific countries and regions,
which may provide insight into social and economic factors that could influ-
ence the spread of disease.

– Prediction models provided by the system’s users for different regions.

Let r be a region in a country given by a user, the objective is to find the
best models that can predict the dengue transmission for r. If there are available
models for the given region, then they are returned to the user.

Otherwise, the system should execute the following workflow activities to an-
alyze the characteristics of region r, and find the appropriate prediction models.
In this case, the system performs a similarity search between the variables repre-
senting r (e.g., meteorological and socio-economical variables) and those of the
regions for which it has predictive models in its database. Using this similarity
search, LifeSWS identifies the most similar region to r. Finally, it retrieves the
predictive models associated with the most similar region and returns them as
the best models for predicting Dengue transmission in r.

Let us now explain how this use case can be realized using the services pro-
vided by LifeSWS. The required datasets of the use case, mainly propagation,
climate and socio-economic datasets can be accessed using the Data Source APIs.
The prediction models are given to LifeSWS via the dashboards of the Presenta-
tion and Directory services. Then, they are stored using the Model Management
service. The Catalog is used to index the metadata of the given datasets and
models.

The whole workflow for finding the prediction models of the given region is
executed by the scheduler of the Workflow Integration services. The users send
their region r to LifeSWS via their dashboard. Then, the system checks the Cat-
alog to determine whether there are any predicting models for the given region.
If the answer is positive, the models are retrieved from the Model Management
service. Otherwise, LifeSWS needs to find the similar regions to r and return
their predicting models. For this, LifeSWS first uses the Data Store service, to
find the metadata of the query r and other regions. Then, the Data Analytics
service is used to perform a similarity search in order to find the most similar
regions to r, which we denote as R. LifeSWS uses its Catalog to select the best
models for predicting the transmission of the Dengue virus in the regions similar
to r. Then, it calls the Cache management service to retrieve the selected models
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if they are available in the cache. Otherwise, the Model Management service is
used to access the selected models, which are then returned to the user using
the dashboards.

6 Related Work

To address our objectives, many different approaches and solutions could be used
with different trade-offs between development and maintenance cost, generality
and efficiency. In this section, we discuss the main practical approaches and
related technologies in a wide spectrum from generic to specific: cloud services,
scientific workflow systems, heterogeneous data management systems, model life-
cycle frameworks, and science platforms.

At one end of the spectrum (the most generic approaches), we have cloud
services from major vendors (Amazon, Google, Microsoft, IBM, Oracle, . . . ).
They provide many ready-to-use services within a Platform-as-a-Service (PaaS)
to build applications that deal with Web data and enterprise data. They fo-
cus on ease-of-use, elasticity and interoperability through well-defined APIs that
allow to use proprietary as well as open-source software. For instance, Amazon
Web Services (AWS) is a large cloud computing platform, offering 200+ services,
from basic services (storage, computing, database, containers, security, . . . ) to
more advanced services (machine learning, data warehouse, data lake, search,
. . . ). However, a first reason that prevents the use of such cloud platforms for
LifeSWS is the lack of services directly available for scientific applications (work-
flows, provenance, numerical simulation, interface to HPC systems, . . . ). Another
important reason for scientific organizations is that they prefer to rely on open
vendor-neutral vendors.

At the other end of the spectrum (the most specific approaches), we have
scientific workflows systems, such as Galaxy [1], Kepler [19] and OpenAlea [30],
which are designed to help scientists developing complex applications. They typ-
ically include tools to model, design, debug, share and execute workflows, with
interactive visualization of the results. To support result analysis and explain-
ing and experiment reproducibility, workflow systems often support provenance,
which captures the derivation history of a dataset, including the original data
sources, intermediate datasets, and the computational steps that were applied
to produce this dataset. Workflows are also often data-intensive, i.e., process,
manage or produce huge amounts of data. Thus, in order to be executed in rea-
sonable time, they require deployment in High Performance Computing (HPC)
environments such as supercomputers, computer clusters or grids. For instance,
DfAnalyzer [32] is a tool that enables monitoring, debugging, steering, and anal-
ysis of dataflows while the data is being generated by scientific applications. Most
workflow systems are also open-source, providing access to community shared
resources such as models, code libraries, and datasets. Thus, they tend to be
specialized for some scientific domains. For instance, Galaxy is quite popular in
bioinformatics, while OpenAlea is specialized in plant phenotyping. Kepler [19]
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addresses other scientific domains such as chemistry, ecology, geology, molecular
biology and oceanography.

More generic, we have the popular big data analytics engines such as Spark
[36] and Flink [6] which allow for batch or realtime data processing, and ML li-
braries such as PyTorch[25] and Scikit-learn [26] with workflows to collect train-
ing data, preprocess data (cleaning, formatting, . . . ), build datasets, train and
refine models and evaluate.

As workflows are getting used a lot in practice, the problem of debugging has
become important. It is difficult since there are many potential sources of errors
including: bugs in the code, input data, software updates, and improper param-
eter settings. To address this problem, BugDoc[18] automatically infers the root
causes and derive succinct explanations of failures for black-box pipelines using
the results from previous runs. VersionClimber [29] is another automated system
that deals with the problem of the pipelines that apply multiple packages, each
of which evolves independently, to one or several data sources. VersionClimber
automatically discovers newer versions of these packages that are compatible.

For the applications envisioned in LifeSWS, these systems will help, because
we may want to combine different workflows (e.g., Galaxy, OpenAlea and Spark),
debug them with a tool like BugDoc with some other data analytics services
(e.g., time series analysis) and keep versions up-to-date. To integrate and execute
heterogeneous workflows, we plan to rely on the Common Workflow Language
(CWL) standard [8], which helps creating portable workflows.

Heterogeneous data management systems provide capabilities to access het-
erogeneous different data sources, which are important for our objectives. The
problem of querying heterogeneous data sources, i.e., managed by different data
management systems such as relational or XML database systems, has long been
studied in the context of multidatabase systems [24]. However, multidatabase
systems have not been designed for the cloud, with a large variety of data stores
such as SQL, NoSQL, NewSQL and HDFS. Furthermore, operating in a cloud
infrastructure provides more control over where the system components can be
installed, which makes it possible to design more efficient architectures. These
differences have motivated the design of polystores (or multistore systems) that
provide integrated access to a number of cloud data stores. For instance, Cloud-
MdsQL [17] supports a functional SQL-like language, capable of querying multi-
ple heterogeneous data stores within a single query that may contain embedded
invocations to each data store’s native query interface.

Spurred by the growing use of machine learning in all kinds of applications,
many new model lifecycle systems have been proposed. Different from traditional
software engineering, the development of ML applications is more iterative and
explorative, yielding a variety of artifacts, such as datasets, models, features, hy-
perparameters, metrics, software code and pipelines. The objective of these new
systems is to enable explainability, reproducibility, and traceability of ML exe-
cutions by supporting the storage, management and reuse of these artifacts. The
systematic literature review of more than 60 ML lifecycle management systems
[31] shows that there is no precise functional scope, thus making comparison be-
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tween systems difficult. Some systems focus on the management of ML artifacts
only while some others add capabilities for the development of ML applications.
The most complete systems come from cloud providers, e.g., Microsoft Azure
ML, Amazon SageMaker and Google Vertex AI, as ML as a service (MLaaS)
platforms. In contrast, open-source systems tend to be more focused. For in-
stance, MLflow [7] focuses on capturing, storing, managing, and deploying ML
artifacts using a standard format to store models and project code. It provides
APIs to access ML development tools, such as PyTorch, Scikit-learn and Ten-
sorflow. Also motivated by the objective of providing a holistic view to support
the lifecycle of scientific ML, ProvLake [33] is a provenance data management
system capable of capturing, integrating, and querying data across multiple dis-
tributed services, programs, databases, stores, and computational workflows by
leveraging provenance data.

Science platforms are facilities that provide services and resources for re-
search communities to perform collaborative research, observation and experi-
mentation. They may include major scientific equipment, sometimes HPC ma-
chines, scientific datasets, data and research papers, code libraries and models.
A common particular case is the science gateway (or science portal), which is
a community-developed set of tools, applications, and data that are integrated
through a web-based portal or a suite of applications. Science platforms are
more or less specialized for some particular science, e.g., InfraPhenoGrid, PHIS,
Plntnet and CyVerse.

InfraPhenoGrid [28] is a grid-based platform to efficiently manage datasets
produced by the PhenoArch plant phenomics platform in Montpellier and deploy
scientific workflows using a middleware that hides complexity.

PHIS [22] is a rich Phenotyping Hybrid Information System complementary
to InfraPhenoGrid designed for plant phenomics. It allows storing and managing
heterogeneous data (e.g., images, spectra, growth curves) and multi-spatial and
temporal scale data (leaf to canopy level) coming from multiple sources (field,
greenhouse). Its ontology-driven architecture is a powerful tool for integrating
and managing data from multiple experiments and platforms including field
and greenhouse. PHIS allows to enrich datasets with knowledge and metadata
enabling the reuse of data and meta-analyses. In contrast, LifeSWS addresses a
wider spectrum of applications in life sciences and provides key services such as
user-specific Web dashboards, model management, provenance and cache, and
workflow integration.

Pl@ntNet [16] is a participatory platform and information system dedicated
to the production and sharing of botanical data in order to study biodiversity.
The main application performs deep learning-based plant identification on a
smartphone and returns, given a plant image, the ranked list of the most likely
species and asks for interactive validation by the users.

CyVerse [11] is a platform for life sciences with services and resources to deal
with huge datasets and complex data analyses. It includes a Web-based platform
with data management services (storage, analysis, visualization, exploration),
shared data and science APIs to access supercomputing resources. CyVerse is the
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closest to LifeSWS, but lacks key services such as user-specific Web dashboards,
model management, provenance and cache, and Model/Workflow APIs.

7 Conclusion

In this paper, we proposed LifeSWS, an open service-based architecture that
implements data analysis workflow services for life sciences. The main objective
of LifeSWS is to support the construction and maintenance of high quality,
scalable and efficient workflows by organizing and making workflow artifacts
(datasets, models, metadata, workflow components, etc.) easy to search and
manipulate using various workflow systems.

Our architecture capitalizes on the latest advances in web-oriented archi-
tectures, microservices and distributed and parallel data management. It relies
on open source services and tools, and well-defined APIs to foster services in-
teroperability (like cloud web services). LifeSWS provides three main layers of
services (presentation and directory, workflow and data management) and APIs
to interface with different workflow systems, data sources and data stores.

LifeSWS services can be implemented and deployed in various platforms
to address the specific requirements of vertical applications. We illustrated a
LifeSWS platform with Gypscie, which provides services to develop, share, im-
prove and publish scientific artifacts (datasets, models, etc.).

We also illustrated our proposed architecture with real use cases from life
science. These examples are in agro-ecosystems in the context of climate change
and epidemic modeling. These examples share common requirements but have
specific features that show different uses of LifeSWS.

LifeSWS capitalizes on our previous experience in developing major systems
for scientific applications. However, there are still major issues. To understand
the research issues, let us consider two important scenarios in which LifeSDS
should be able to help: (1) domain scientists build one or more datasets which
may be in a variety of formats (relational database, csv files, etc.); (2) they
also build workflows that make use of these datasets. LifeSDS comes to play
a role in two major ways: (1) improve the maintenance and performance of
existing workflows; (2) allow authenticated and efficient access and management
of multiple workflows and datasets.

Based on our experience and application use cases, the main issues we plan
to work on involve:

– Making it easy to integrate and run heterogeneous workflows defined using
the Common Workflow Language (CWL), while providing reuse and repro-
ducibility;

– Providing efficient execution of heterogeneous workflows by caching inter-
mediate results and performing cache-aware scheduling;

– Making it easy for domain scientists to manage the model life cycle, perform
model selection and model integration for different types of models managed
using different tools;
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– Assisting scientists in analyzing diverse data types, such as time series,
through the integration of advanced analytical methods for different ana-
lytical requirements such as clustering, anomaly detection, kNN search, etc;

– Keeping track of the provenance of both data sources and software com-
ponents, both to aid in debugging using tools such as BugDoc[18] and to
enhance the reproducibility of these computational experiments.
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