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Abstract— Robotic surgery represents a major 

breakthrough in the evolution of medical technology. 

Accordingly, efficient skill training and assessment 

methods should be developed to meet the surgeon’s need 

of acquiring such robotic skills over a relatively short 

learning curve in a safe manner. Different from 

conventional training and assessment methods, we aim to 

explore the surface electromyography (sEMG) signal 

during the training process in order to obtain semantic 

and interpretable information to help the trainee better 

understand and improve his/her training performance. As 

a preliminary study, motion primitive recognition based 

on sEMG signal is studied in this work. Using machine 

learning (ML) technique, it is shown that the sEMG-based 

motion recognition method is feasible and promising for 

hand motions along 3 Cartesian axes in the virtual reality 

(VR) environment of a commercial robotic surgery 

training platform, which will hence serve as the basis for 

new robotic surgical skill assessment criterion and 

training guidance based on muscle activity information. 

Considering certain motion patterns were less accurately 

recognized than others, more data collection and deep 

learning-based analysis will be carried out to further 

improve the recognition accuracy in future research. 

I. INTRODUCTION 

With the advancement of robot technology, robotic surgery 
has been more and more adopted worldwide in clinical 
practice, with da Vinci surgical robot system as the most well-
known and successful example. Surgical robots show great 
advantages in minimally invasive surgery, especially in 
laparoscopic surgery [1,2], such as improved ergonomics and 
visualization, increased operation dexterity, proper hand-eye 
coordination, eliminating the fulcrum effect and making 
instrument manipulation more intuitive etc [3]. 

Surgical training has been long proven to be important to 
increase operation safety and clinical outcome [4]. Although 
considered an evolution of conventional laparoscopic surgery, 
the skills required for robotic surgeons are console-based and 
maneuvers without haptic feedback. Traditional training 
method like “see one, do one, teach one” is expensive, human 
resource heavy and prone to patient safety concerns [5]. The 
need for formal assessment of competency to ensure safe and 
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sustained growth has led various groups to propose training 
programs in robotic surgery to improve cognitive and 
procedural skills before reaching the operating room. Both 
basic console skills (such as camera, pedal, finger control) and 
advanced console skills (such as excision, suturing and use of 
diathermy) can be developed in a mentored simulation 
environment, either undertaken in a VR simulator, dry lab or 
a wet lab [3]. These training systems possess numerous 
advantages over traditional training method such as less 
involvement of the trainer is requested, the training materials 
are much less costly, reusable, risk-free and thus enable “do 
as many as possible”. Nevertheless, it is noticed that all 
existing surgical training platforms, especially VR-based 
simulators, mainly rely on assessment metrics using directly 
measurable kinematic and temporal data of the operation or 
the simulation (completion time, path length, instrument 
collisions, instrument velocity, acceleration and motion 
smoothness, workspace overlapping, etc.) [6] to evaluate the 
trainee’s skills and generate training scores. Although such 
feedback information is useful for objective evaluation, few 
clues can be obtained informing how to further improve the 
trainee’s skills. 

In order to address this problem and better overcome the 
learning curve, we aim to explore the possibility of 
investigating the trainee’s muscle activities by resorting to 
machine learning and artificial intelligence (AI) to obtain 
semantic and interpretable information (e.g., dominant active 
muscle group sequence during the simulated operation and 
the according activity status, etc.) that hides behind the 
consequential kinematic training results. It is expected that 
such semantic information is easier to perceive and 
understand to the trainee than abstract and numerical 
information used in existing assessment metrics. Towards this 
direction, we carried out the preliminary study on motion 
recognition using sEMG signals with a commercial VR-based 
robotic surgery training platform. By breaking down the 
simulated procedure into segments, the kinematic motion 
primitives are obtained which are usually slow in the context 
of surgical operation and involve relatively lower level of 
muscle activity and sparse information compared to those in 
fast and complex motion trajectories. To address these 
challenges, we used a variant-length sliding windows 
proportional to the overall sEMG signal length to retain 
regional and global muscle activity property. Based on that, a 
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feedforward neural network (FFNN) is employed for the 
motion recognition task. The obtained results are promising 
and show the feasibility of recognizing simple motion 
primitives with sEMG signals in a VR surgical training 
environment, which builds as the first basis towards more 
complex motion recognition with sEMG signals in surgical 
training. 

II. EXPERIMENT 

A. Material and set up 

The robotic surgery simulation platform used in the 
experiment is BBZ console (BBZ s.r.l., Vigasio, Italy). The 
device simulates the da Vinci master console and integrates 
the Xron simulation software which creates the VR training 
environment. Two joysticks (Right, Left) control the tool 
motion in the VR. 

The sEMG data for this work was acquired by using the 
Trigno Research+ system (Delsys, USA).  Six electrodes with 
a sampling rate of 2000 Hz were placed on the right arm’s 
extensor carpi ulnaris (ECU), bicep brachii, tricep brachii, 
anterior deltoid, intermediate deltoid and posterior deltoid [7].  

Three lines of different colors were set in the virtual scene 
to guide the motion (Fig. 1). The red, green and blue guide-
lines correspond to the motions along the X, Y and Z axes of 
the virtual reality Cartesian space respectively. On each 
guide-line, there are 2 white markers indicating the motion 
starting and ending points in the VR. Motions along these 3 
axes were analyzed in this preliminary study as they represent 
3 typical motion primitives and can constitute more complex 
motions that mimic real motions during training based on this 
simulation platform.  

 

Fig. 1. Three guide-lines in the virtual scene of BBZ simulator 

To standardize the starting position of each motion of 
different subjects, 3D-printed frames were designed to 
provide reference points for motion along different axis (Fig. 
2). The BBZ simulator dimensions and the joystick working 
space during the training were taken into consideration in 
order to simulate the natural state of the trainer’s motion 
during the real training. 

B. Experiment protocol 

The experimental procedures involving human subjects 
described in this paper were approved by the Institutional 
Ethics Committee. Seven individuals (ranging from 25 to 28 
years of age) with no surgical operation experience and no 
surgical training experience volunteered to participate in the 

experiment, and all subjects are right-handed (and in this 
preliminary study we only right upper limb motion). 

 

Fig. 2. 3D-printed frame in experiment (for Y-axis motion). The monitor 
shows the position of the Right instrument in the virtual reality. 

Before the real experiment, each subject was given 10 
minutes to try one simple integrated training course to gain 
basic understanding on how to maneuver in the VR 
environment of the BBZ simulator.  During the experiment, 
the subjects were asked to manipulate the Right joystick of 
BBZ simulator to move the Right instrument in virtual reality 
along one guide-line back and forth twice. The movement of 
the instrument in virtual reality needs to be smooth, 
continuous and follow the guide-line with the least deviation 
as possible.  

As there were two directions of motion along each guide-
line in the VR, there were six different motions in the 
experiment in total. In one test along one guide-line, two 
round-trips between two white markers are performed. Event 
trigger was designed to indicate the start/end of each motion 
by closing and opening the joystick gripper to facilitate the 
sEMG data segmentation. Each subject repeated the test along 
each guide-line four times, so there would be twelve tests in 
total. Between each test, subjects were given a pause time of 
about two minutes to avoid muscle fatigue. 

Through the experiment, all data collected from the seven 
subjects would be used for data processing and motion 
classification by using machine learning technique.    

III. DATA ANALYSIS 

A. Data preparation 

The sEMG data were firstly bandpass filtered between 10 
and 450Hz. The notch filter of 50 Hz was also used. The 
sEMG data of one test were segmented based on the 
instrument’s kinematic data in virtual reality and event 
triggers (Fig. 3). For each segment, the first 0.5s and the last 
0.5 seconds of data were discarded to eliminate the effect of 
gripper opening and closing motion on the sEMG data. 

B. Sliding windows and feature extraction 

In reality, the surgical operation and training motions are 
relatively slower than most daily life activities, the 
corresponding muscle activity level is also lower and less 
dynamic. In addition, the inconsistent speed of the subjects’ 
motion resulted in different sEMG signal lengths. A fixed 
length sliding window for all sEMG signals might not be 
suitable, it would be necessary to analyze sEMG data from a 
larger scale and more global perspective. Our strategy is to set 
the sliding window length being proportional to sEMG signal 
and to set the sliding step being proportional to sliding 



 

 

window length. In this work, a sliding window of one-third 
the length of the sEMG signal is used with a sliding step of 
one-third the length of sliding windows. 

 

Fig. 3. sEMG data segmented by event trigger  

For each sliding window, a total of 16 features [6] are 
extracted in time domain (Integrated EMG (IEMG), Root 
Mean Square (RMS), Mean Absolute Value (MAV), 
Waveform Length (WL), Modified Mean Absolute Value 1 
(MMAV1), Zero Crossing (ZC), Modified Mean Absolute 
Value 2 (MMAV2), Slope Sign Change (SSC), Simple 
Square Integral (SSI), Willison Amplitude (WAMP), 
Variance of EMG (VAR)) and in frequency domain  
(Autoregressive Coefficients (AR), Modified Mean 
Frequency (MMNF), Mean Frequency (MNF), Modified 
Median Frequency (MMDF), Median Frequency (MDF)). 

After feature extraction for a sliding window, a feature 
vector of dimension (N,1) is obtained. Then features vectors 
of all the sliding windows in one sEMG signal sample will be 
integrated together into a new feature vector of dimension 
(M*N,1) where M is the number of sliding windows (Fig. 4). 

C. Classification Model 

Many types of classification methods have been used in 
literature to recognize sEMG patterns, such as Support Vector 
Machines (SVM), Linear Discriminant Analysis (LDA), 
Feedforward neural network (FFNN), Convolutional neural 
network (CNN), Recurrent neural network (RNN) and Hybrid 
neural network, etc. [9, 10]. 

In this work, we use a FFNN model for our preliminary 
study to classify the surgical training motion. The dataset size 
in work is not large and hence is not suitable for the data-
demanding deep learning techniques such as CNN and RNN. 
Among the aforementioned machine learning methods, 
FFNN has proven to have good classification accuracy and is 
easy to build in terms of parameter tuning. Moreover, FFNN 
is robust to the individual difference among the subjects, 
which fits perfectly the case of sEMG measurement in our 
experiment. Therefore, FFNN represents an ideal analysis 
tool in this work with good balance between design simplicity 
and classification accuracy. 

 

Fig. 4. Diagram of the data analysis workflow 

IV. RESULTS AND DISCUSSIONS 

For all data collected from the seven subjects, the data 
from five subjects were used as the training dataset and the 
data from the remaining two subjects were used as the test 
dataset. 

Eventually, six motion patterns are classified through the 
FFNN model and are labeled as 0 to 5 (Label 0: left to right 

along X axis (→red), Label 1: right to left along X axis (←
red), Label 2: down to up along Y axis (↑green), Label 3: up 

to down along Y axis (↓green), Label 4: near to far along Z 

axis (×blue), Label 5: far to near along Z axis (·blue)).  

The result of prediction and the performance of the FFNN 
model can be presented by a confusion matrix (Fig. 5) which 
shows the number of samples with their real labels versus 
their predicted labels. A metrics for performance evaluation 
is also given in Tab. I. 

 

Fig. 5 Confusion Matrix of prediction for 6 motions 

  



 

 

TABLE I.  REPORT SHOWING THE MAIN CLASSIFICATION METRICS 

Label Precision Recall F1-score Support 

0 0.76 0.81 0.78 16 

1 0.4 0.5 0.44 16 

2 0.75 0.9375 0.83 16 

3 0.875 0.875 0.875 16 

4 0.45 0.33 0.38 15 

5 0.7 0.46 0.56 15 

* The missing 1 support for Label 4&5 is due to 1 missed trigger event.  
Accuracy   0.66  

From the F1-score, the motion of Label 3 (up to down 
along Y axis (green)) has the best score about 0.875 and both 
of its precision and recall are about 87.5%. The second-best 
recognized motion is Label 2 (down to up along Y axis). Its 
recall is about 94% but the precision is about 75%. From the 
confusion matrix, it shows that the model recognized almost 
all motion Label 2 except 1 sample mislabeled. However, the 
model mislabeled two motion samples of Label 4 and two 
motion samples of Label 5 as motion Label 3 which leads to 
a low precision. The motion Label 2 and the motion Label 3 
are both motions along Y axis. According to feedback from 
the subjects, the motions along Y axis are the most difficult 
among all, which makes them exert more effort and muscle 
control to complete the experiment tasks. From a kinematic 
point of view, the biceps have relatively more muscular 
activity when moving along the Y direction, while the 
deltoids are also involved in the movement, which also made 
the muscle information rich. In the cases where there are more 
mislabels in the confusion matrix, it is found that the 
mislabeled motions are similar to the real motions in terms of 
the muscle groups used and thus causes difficulties to the 
motion recognition. 

A cross-validation has been carried out by randomly 
changing the seven subjects in the training and test datasets. 
The obtained result reached an accuracy of 64.89% with the 
confusion matrix as shown in Fig. 6. 

 

Fig. 6 Confusion Matrix of the cross-validation 

In this preliminary study, we used a sliding window that 

varies its length as the sEMG signal length changes because 

the length of the sEMG signals varies among different 

subjects and in different experiment tests. Future research will 

firstly investigate the Dynamic Time Warping algorithm [11], 

which is widely used to align two time series of different data 

length and thus can align the sEMG signal to eliminate the 

distortion in the time axis. Also, in this work the FFNN model 

with feature extraction has been used since the collected data 

size is not very large. Therefore, another important future 

work is to collect more data with more subjects. With the 

increased size of collected data in our future experiments, 

deep learning methods like CNN, RNN and hybrid neural 

network which are widely applied in motion recognition will 

be explored to see if the motion recognition accuracy can be 

further improved. Moreover, through deep learning methods, 

more spatial and temporal features can be mined to help 

improving the recognition accuracy. Upon achieving single 

hand (Right) motion recognition with high accuracy, the Left 

joystick can be added in for more complex and thus more 

challenging two-hand motion recognition tasks. 

V. CONCLUSION 

In this paper, a preliminary study to recognize slow motion 

primitives through sEMG signal using a commercial robotic 

surgical training simulator was carried out as an initial step 

towards developing new surgical skill training and assessment 

method based on sEMG signal. The obtained results are 

encouraging and verified the feasibility of motion detection 

with sEMG signals on VR-based surgical simulation 

platform. Future works are planned to further improve the 

motion recognition accuracy as explained in the discussion. 
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