
HAL Id: lirmm-04225369
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04225369

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

kNN matrix profile for knowledge discovery from time
series

Tanmoy Mondal, Reza Akbarinia, Florent Masseglia

To cite this version:
Tanmoy Mondal, Reza Akbarinia, Florent Masseglia. kNN matrix profile for knowledge discovery from
time series. Data Mining and Knowledge Discovery, 2023, 37 (3), pp.1055-1089. �10.1007/s10618-022-
00883-8�. �lirmm-04225369�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04225369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

kNN Matrix Profile for Knowledge Discovery
from Time Series

Tanmoy Mondal1,2*, Reza Akbarinia2 and Florent Masseglia2

1*ZENITH Team, INRIA & LIRMM, Montpellier, France.
2Mathematical & Electrical Engineering Department, IMT Atlantique,

Brest, France.

*Corresponding author(s). E-mail(s):
tanmoy.mondal@imt-atlantique.fr;

Contributing authors: reza.akbarinia@inria.fr;
florent.masseglia@inria.fr;

Abstract
Matrix Profile (MP) has been proposed as a powerful technique for knowl-
edge extraction from time series. Several algorithms have been proposed for
computing it, e.g., STAMP and STOMP. Currently, MP is computed based
on 1NN search in all subsequences of the time series. In this paper, we
claim that a kNN MP can be more useful than the 1NN MP for knowl-
edge extraction, and propose an efficient technique to compute such a MP.
We also propose an algorithm for parallel execution of kNN MP by us-
ing multiple cores of an off-the-shelf computer. We evaluated the perfor-
mance of our solution by using multiple real datasets. The results illustrate
the superiority of kNN MP for knowledge discovery compared to 1NN MP.

Keywords: Time series analysis, STAMP, STOMP, All-pairs-similarity search, Motifs
and discord discovery, Outliers detection, Anomaly detection, Joins

1 Introduction
A time series is a series of data points ordered in time. As examples of time series,
we can mention the height of ocean tides level captured every minute, the vibration
of an aircraft engine captured every second, or the number of steps measured by a

1

Springer Nature 2021 LATEX template

2 kNN Matrix Profile

smart watch day after day. Analyzing the time series can give us precious information
about the underlying applications, e.g., the anomalies in an aircraft engine.

Figure 1: The 1NN and 4NN MP are plotted with different colors in which the motifs
and discords are marked (please see the online color version for better visibility).

Matrix Profile (MP) [1] has been proposed as a powerful technique for time series
analysis, e.g., detecting motifs or anomalies. Efficient algorithms have been proposed
for MP computation, e.g., STAMP [2], STOMP [2] and SCRIMP++ [3]. The defini-
tion of MP in the literature is as follows [1]. Given a time series T and a subsequence
length m, the MP returns for each subsequence included in T its distance to the most
similar subsequence (1NN) in the time series. We call this type of MP as 1NN MP. It
is very useful for data analysis, e.g., detecting the motifs (represented by low values),
or anomalies (represented by high values).

Although 1NN MP has been shown useful for knowledge discovery, it has its own
drawbacks and can miss some important motifs and anomalies (also called discords).
Particularly, it does not allow to detect a cluster of discords, e.g., two subsequences
that are similar to each other, but dissimilar to all other subsequences. In addition,
1NN MP does not permit to distinguish a weak motif (i.e., a subsequence that has
only one similar subsequence in the series) from strong motifs (i.e., those that have
several similar subsequences).

We believe that a more powerful MP based on kNN search is of high interest,
where for each subsequence, its kth nearest neighbor is used for generating the MP.
We call it kNN MP. An example is depicted in Fig. 1 where 1NN and kNN (4NN in
this case) MPs are drawn for a time series of protein spectrum, representing protein
rates measured in 10 different products (only certain portion of the complete MP is
shown here). As seen in Fig.1, the strong motifs can be detected in 4NN MP. In the
figure, the distance values in 1NN and 4NN MPs, which are less than a user defined

Springer Nature 2021 LATEX template

kNN Matrix Profile 3

low threshold value (marked as black dotted line at the bottom of the Fig. 1), are
termed as “strong motifs”. This analogy signifies that the subsequence has not only
one close match (i.e., 1NN which may occur due to some noise or outlier elements)
but multiple close matches, i.e., 1NN, 2NN, 3NN and 4NN. This reasoning helps to
increase the certitude of validating a subsequence as motif.

There are also situations where the distance in 1NN MP for an anomaly is quite
low because the subsequence has one close match but the match can simply be an-
other anomaly. An interesting example is shown in Fig. 1 (Inset 1), where based on
the user defined threshold (dotted red line in Fig. 1), the discord can be detected in
4NN MP, while it is not detected in 1NN MP (see more examples in Section 6).

In this paper, we propose the kNN MP and illustrate its utility for knowledge
discovery from time series. Our contributions are as follows:

1. We define the kNN MP, and propose a fast algorithm to calculate it in a time series.
2. We propose a technique for parallel execution of the proposed algorithm by using

multiple cores of an off-the-shelf computer.
3. We evaluate the performance of our technique experimentally by using multi-

ple real datasets, e.g., UCR dataset and Yahoo anomaly detection dataset. The
experimental evaluation illustrates the efficiency of our solution for kNN MP
computation1. The results also show how qualitatively the kNN MP is useful for
knowledge discovery compared to the 1NN MP. For example, the accuracy of
anomaly detection can be improved from 37% with 1NN MP to 99% with 10NN
MP, for one of the benchmarks of the Yahoo dataset.

The rest of the paper is organized as follows. In Section 2, we give the necessary
background and definitions. In Section 3, we discuss the related work. Our solution
for sequential computations of kNN MP is presented in Section 4. The parallel com-
putation of kNN MP is presented in Section 5. In Section 6, an extensive experimental
evaluation is reported. Finally, Section 7 concludes.

2 Problem Definition
In this section, we give the formal definition of kNN MP, and describe the problem
we address. A summary of notations is shown in Table 1.

Definition 1. Time series: A time series T is a sequence of real-valued numbers
T = ⟨t1, . . . , tn⟩ where n is the length of T .

A subsequence of a time series is defined as follows.

Definition 2. Subsequence: Let m be a given integer value such that 1 ≤ m ≤ n. A
subsequence Ti of a time series T is a continuous sequence of values in T of length m
starting from position i. Formally, Ti = ⟨ti, . . . , ti+m−1⟩ where 1 ≤ i ≤ n−m+ 1.
We call i the start position of Ti.

1The source code and the tested datasets are publicly available at: https://sites.google.com/view/knnmatrixprofile/
home

https://sites.google.com/view/knnmatrixprofile/home
https://sites.google.com/view/knnmatrixprofile/home

Springer Nature 2021 LATEX template

4 kNN Matrix Profile

Table 1: Summary of notations
Notation Description

T Time series
Ti Subsequence beginning at index i
n Time series length
m Subsequence length
τ A user given threshold

Dist(T i, T j) or Di,j Euclidean distance of subsequences Ti and Tj
QTi,j Dot product between the subsequence Ti and Tj
µi Mean of subsequence Ti
σi Standard deviation (STD) of subsequence Ti

I or IT The vector or array which contains the indexes of the time series T
PT The vector or array which contains the matrix profile distance of

the time series T
DT A dataset which contains several small time series

One of the primary goals of time series analysis is to perform time series subse-
quence matching. Given a positive real number τ (called threshold) and a time series
T , two subsequences Ti (beginning at index i) and Tj (beginning at index j) of length
m, and a distance function Dist(Ti, Tj) that measures the Euclidean distance be-
tween Ti and Tj . If Dist(Ti, Tj) ≤ τ , then Tj is called a matching subsequence of
Ti.

Definition 3. Distance profile: The distance between a subsequence Ti with all other
subsequences of the time series T gives a vector of distances, called distance profile
of Ti.

The minimum value of this distance profile represents the closest match or 1NN
and the top k minimum values of this vector represent the kNN matches of the
subsequence Ti. The classical MP is defined as a vector of nearest neighbor (1NN)
distances of all the subsequences of time series T .

Definition 4. kNN MP: The kNN MP of a time series T is a vector P =
⟨p1, . . . , pn−m+1⟩ such that pi is the distance of the subsequence Ti to its kth nearest
neighbor among the subsequences of T .

The kNN MP index is a vector I = ⟨s1, . . . , sn−m+1⟩ such that si is the index of
the kth nearest neighbor of the subsequence Ti in the time series T .

Definition 5. Motif: A motif pair is defined as a pair of subsequences ⟨Ti, Tj⟩ whose
distance is less than a user defined threshold τ (i.e., Dist(Ti, Tj) < τ), and their
starting positions are at least w elements apart (|i − j|≥ w), where w is a user
defined threshold which tells that two subsequences in a pair should be w elements
apart. If |i− j|< w, then the motif pair ⟨Ti, Tj⟩ is called a trivial match.

From the definition of 1NN motif, we can define the kNN motif as follows.

Springer Nature 2021 LATEX template

kNN Matrix Profile 5

Definition 6. kNN Motif: A subsequence Ti is a kNN motif if its distance to
its kth nearest neighbor (say T k

j) is less than the user defined threshold τ (i.e.
Dist(Ti, T

k
j) < τ) and their starting positions are at least w elements apart.

Traditionally, a discord is defined as a subsequence (say Ti) whose distance from
all other subsequences of the time series is higher than a given threshold ω. Hence,
the distance between Ti and it’s nearest neighbor is higher than ω. We call this type
of discord as 1NN discord. Let us now define the kNN discord.

Definition 7. kNN Discord: Let T be a time series, and ω a high distance threshold
given by the user. A subsequence Ti ∈ T is a kNN discord, if the distance of Ti to its
kth nearest neighbor is higher than ω.

Let us now define the problem which we address in this paper. Given a number
k, a time series T , and a subsequence length m, our goal is to efficiently compute the
kNN MP.

3 Related Work
MP is an efficient solution to the problem of similarity join, which can be defined as:
given a set of data objects (for our case subsequences), retrieve the nearest neighbors
for each object. The solution to this problem can be useful for motif and anomaly
discovery from time series in many application domains such as bioinformatics [4],
speech processing [5], Seismology [6], etc. Similarity join can be categorized into
two principal categories, 1NN similarity join and kNN similarity join. With kNN sim-
ilarity join, for each given object the k nearest neighbors are returned, where k is a
positive number given by the user. The 1NN similarity join is a special case of kNN
similarity join with k = 1. To the best of our knowledge, the MP algorithms in the
literature only take into account the 1NN category.

The authors in [7] propose an approach to optimize the calculation of Euclidean
distance between all subsequences. The idea is to interleave the early abandoning
calculations of Euclidean distance with the concept of online z-normalization. In [8],
the authors propose an algorithm based on intelligent caching, reusing computations
and the pruning of the search space. By reusing the computations of z-normalized
distances for overlapping subsequences, the solution highly saves the computation
time and reduces the search space.

In [9] [8], Mueen et al. propose MASS, an efficient algorithm for similarity search
in time series. It exploits the consecutive subsequence overlapping property to cal-
culate Z normalized distance by Fast Fourier Transform (FFT) based convolution.
Thanks to the use of FFT, in recent years the MASS algorithm has emerged as a
significant contribution in subsequence similarity search for many similarity based
pattern matching problems such as motif and discord discovery, nearest neighbor
matching, etc. [10], [11], [12], [13].

Yeh et al. [2] proposed MP, an efficient technique for similarity join in time series
[14]. The authors use the convolution property of FFT and Inverse FFT for the fast

Springer Nature 2021 LATEX template

6 kNN Matrix Profile

calculation of MP by an algorithm called STAMP. Furthermore, an incremental algo-
rithm, called STOMP, is adapted for distance computation of overlapping sequential
subsequences in which MASS algorithm is used for time series similarity search by
computing z-normalized euclidean distance between the subsequences. However, the
techniques proposed in [2] are mainly designed for 1NN similarity join.

In [3], the authors introduce an anytime algorithm, named SCRIMP++ by com-
bining the best features of STAMP and STOMP for fast MP computation. But this
technique is also designed for 1NN MP. SCAMP [15, 16] is an efficient GPU-based
extension of STOMP algorithm for computing 1NN matrix profile using GPUs. It is
an improved version of the earlier GPU-STOMP algorithm.

Neighbor profile [17] is a new technique for knowledge discovery from time se-
ries. The idea is to take multiple small samples from the set of subsequences and to
find the anomalies/motifs inside the samples. In this way, if an abnormal subsequence
has some similar anomalies, then probably they will not be in the same sample, and
thus the subsequence may be returned as a discord from the sample. This may par-
ticularly avoid defiant-gravity behavior. However, the neighbor profile may increase
the probability of false anomalies, i.e., those that are not really anomalies but are far
from other subsequences in the small chosen sample.

The state-of-the-art MP techniques (e.g. STAMP and STOMP) compute only
1NN MP. To the best of our knowledge, in the literature there is no efficient solution
for computing kNN MP. As illustrated in Section 1, this type of MP can be very use-
ful for knowledge discovery from time series. In this paper, we propose an efficient
solution for computing it.

4 kNN MP
Here, we discuss our technique for kNN MP computation of a time series T in a
sequential computing environment.

4.1 MP Algorithm
Given a time series T , a subsequence size m, and a number k, the goal is to find the k
closest matches of all the subsequences Ti in T . Our algorithm for computing kNN
MP of the time series T is inspired by the STOMP algorithm [18]. Let us briefly
present the idea behind STOMP.

4.1.1 Brief description of STOMP algorithm

The Scalable Time Series Ordered Search MP (STOMP) algorithm [11] is a variant
of STAMP (see Appendix: IV for more details) in which we perform an ordered
search (from left to right). To calculate the distance, STOMP takes benefit of the
common part between two adjacent subsequences which is the same except the fist
and last elements. The Z-normalized euclidean distance (Di,j) between two time
series subsequences Tj and Ti is calculated by using the following Equation 1. The
dot product between these two subsequences are mentioned as QTi,j .

Springer Nature 2021 LATEX template

kNN Matrix Profile 7

Di,j =

√
2m

(
1− QTi,j −mµiµj

mσiσj

)
(1)

where m is the subsequence length, µi and µj are the mean of Ti and Tj subsequences
respectively, σi is the standard deviation of Ti, σj is the standard deviation of Tj , and
QTi,j is the dot product between two subsequences Ti and Tj . The dot product QTi,j

can be computed in O(1) time when QTi−1,j−1 has already been calculated. The
term QTi−1,j−1 can be decomposed as : QTi−1,j−1 =

∑m−1
k=0 Ti−1+kTj−1+k and the

term QTi,j can be decomposed as : QTi,j =
∑m−1

k=0 Ti+kTj+k Thus by combining
these two terms we can get : QTi,j = QTi−1,j−1−Ti−1Tj−1+Ti+m−1Tj+m−1. The
relationship between QTi,j and QTi−1,j−1 indicates that from the distance profile
of query subsequence Tj−1,m, we can compute the distance profile of Tj,m in O(1)
time.

4.1.2 1NN Matrix Profile algorithm

The pseudocode of the algorithm for computing 1NN MP is shown in Algorithm 1.
Let’s consider T be a big time series, which may be obtained by concatenating several
small individual time series.The goal is to find the closest match of all the subse-
quences T [i] with all the remaining subsequences of T and these matches should be
separated by w elements from the subsequence in question i.e., T [i]. The fast compu-
tation of mean and standard deviation (STD) (see Appendix: II for more details) of
the time series T is performed in Line 3 of Algorithm 1. Then, the MASS algorithm
(see Appendix: III for more details) is applied in Line 5 to compute the dot prod-
uct (QT) (distance Dignore is ignored) between the first subsequence (subSeq1) and
other subsequences of time series T . The arguments of MASS are: 1st subsequence
(subSeq1), mean (µT [1]) and STD (σT [1]) of subSeq1, complete time series T ,
mean (µT) and STD (σT) vector (i.e., mean and STD of all the subsequences) of T .

Then, the algorithm loops through all the subsequences of T (see Line 9) and
takes each subsequence (cutSubSeq) in Line 10. Only for the first subsequence
(when i = 1), it applies MASS algorithm to compute the dot product (QT) and dis-
tance vector (DistcutSubSeq) between first target subsequence (cutSubSeq) and the
remaining subsequences of time series T . For i > 1 on-wards, the distance of target
subsequence (cutSubSeq) with all the remaining subsequences of T is incrementally
calculated by using IndependentSTOMP algorithm (see Appendix: IV.1 for more de-
tails). The following arguments are passed in IndependentSTOMP for the distance
calculation: each subsequences (cutSubSeq), the mean (µT [i]) and STD (σT [i]) of
T , the dot product value (QTinitial[i]) of very first subsequence (subSeq1) and ith

subsequences (T [i to (i+m−1)]), already computed dot product vector (QT), mean
(µT) and STD (σT) of T .

Then the matrix profile array (PT) and index profile array (IT) are updated based
on the distance of each subsequence (cutSubSeq) of T to its nearest neighbor (see
Lines 15 − 16). Finally, these two vectors (PT) and (IT) are returned as the results
of this algorithm.

Springer Nature 2021 LATEX template

8 kNN Matrix Profile

Algorithm 1: 1NN-MP(T , m)
Input: Time series T , and the subsequence length m
Output: Matrix profile (PT) and its associated index (IT)

1 nT ← length(T) // get the length of time series T

2 IdxT ← nT −m+ 1 // get the total number of subsequences in T

3 [µT , σT]← ComputeMeanStd(T)
4 subSeq1 ← T [1 to (1 +m− 1)] // get the 1st subsequence from Q

5 [QT,Dignore]←MASS(subSeq1, µT [1], σT [1], T , µT , σT) // apply MASS

with arguments as 1st subsequence of T i.e. subSeq1 and remaining subsequences of time series T . See

Algorithm 7 in Appendix: III

6 QTinitial ← QT // keeping a copy of the very first dot product

7 PT ← Initialize this 1D vector with inf
8 IT ← Initialize this 1D vector with zeros

9 for i← 1 to IdxT do
10 cutSubSeq ← T [i to (i+m− 1)] // get target subsequence by chopping T from index i

to (i + m − 1)

11 if i == 1 then
12 [QT,DistcutTarget]←MASS(cutSubSeq, µT [i], σT [i], T , µT ,

σT) // apply MASS with arguments as 1st subsequence of T and complete time series T .

13 else
14 [QT,DistcutSubSeq]← IndependentSTOMP (cutSubSeq, µT [i],

σT [i], QTinitial[i], T , QT , µT , σT) // calculate distance between a subsequence

and all the remaining subsequences in T .

15 PT ← computeElementwiseMin(DistcutSubSeq, PT) // perform

element-wise minimum value comparison of PT and DistcutSubSeq , and maintain the minimum

values in PT

16 IT ← i // update IT at the indexes where element-wise minimum operation replaces the previously

stored value in PT with the new value from DistcutSubSeq

17 return PT and IT // return the PT and IT array

4.2 Computing kNN Matrix Profile
The MP algorithms in the literature (e.g., STAMP and STOMP algorithms [2]) are
designed to find the best match (1NN) of each subsequence. For computing a kNN
matrix profile algorithm, the main issue is the management of k nearest neighbors of
each subsequence Ti. In fact, efficient methods are needed to update the kNN matches
of Ti after computing its distance with another subsequence. In this section, we pro-
pose three techniques to find and manage the kNN matches of each subsequence: 1)
Sort based; 2) Maximum based; 3) Heap based.

Springer Nature 2021 LATEX template

kNN Matrix Profile 9

Algorithm 2: SORTING-BASED-KNN-MP (T , m, k)
Input: The time series T , the subsequence length m, user given number k
Output: A MP PT and associated MP index IT
....
....

7 PT ← Initialize a 2D vector of size {(k + 1)× IdxT } with inf
8 IT ← Initialize a 2D vector of size {(k + 1)× IdxT } with zeros
9 for i← 2 to IdxsconCat do

10 cutSubSeq ← ...
....
....

15 if i <= k then
16 for p← 1 to IdxT do
17 PT [i, p]← DistcutTarget[p]
18 IT [i, p]← i

else
19 for p← 1 to IdxT do
20 PT [(k + 1), p]← DistcutTarget[p]
21 IT [(k + 1), p]← i
22 [sortV als, sortIdxs]← Sort(PT [1 to (k + 1), p])
23 for t← 1 to k do
24 PT [t, p]← sortV als[t, p]
25 IT [t, p]← IT [sortIdxs[t], p]

26 P final
T ← PT [1 to k, 1 to IdxT] // perform element-wise minimum of value comparison of

PT and DistcutSubSeq then keep the minimum values in PT

27 IfinalT ← IT [1 to k, 1 to IdxT] // update IT at indexes where element-wise minimum

operation replaces the previously stored value in PT with the new value from DistcutSubSeq

return P final
T and IfinalT // return the P final

T and Ifinal
T array

4.2.1 Sort based kNN search

Given a time series T , we need to keep updated the list of the k nearest neighbors
of each subsequence Ti, when its distance with a subsequence of T is calculated.
The idea of the sort based approach is to create a list containing the distance of the
current kNN matches and the new computed distance, sort the list and take the first
k distances and their corresponding subsequences.

The pseudo-code of the sort based approach is mentioned in Algorithm 2 which
is the same as Algorithm 1 until Line 6 (so we avoid to mention it again). In Lines
7 − 8, two 2D arrays, named as : PT and IT are created for storing kNN . Both of
these arrays are of size {(k+1)×IdxT }. (k+1) number of rows are needed to keep
k nearest neighbors, and the (k+1)th row is needed to temporarily hold newly calcu-
lated distance. In Line 9, we loop through all the subsequences of time series (T) and

Springer Nature 2021 LATEX template

10 kNN Matrix Profile

in Line 10, each subsequence is chopped as usual (same as Algorithm 1)). After that
until Line 14, we perform the same operations as in Line 11−14 of Algorithm 1. The
initial k number of distances and index profiles are simply stored in PT and IT arrays
(see Line 15 − 18). From (k + 1)th subsequence on-wards (the else portion in Line
19− 25), the newly calculated distance profile is saved at k + 1th row (Line 20) and
consequently the target subsequence index i is stored in k+ 1th row (Line 21). Then
the distances stored from index 1 to (k + 1) are sorted in ascending order and from
this sorting operation, we will get the sorted distance values (sortV als) and their
corresponding indexes (sortIdxs) (see Line 22). After that the top k sorted values
are updated in PT matrix (Line 24) and corresponding stored indexes are also up-
dated (Line 25) with the help of sorted indexes (sortIdxs). This process is repeated
iteratively for all the subsequences, and finally the MP PT and the MP index IT from
the index 1 to k are returned (as P final

T and IfinalT) as the output of this algorithm.
The average time complexity of sorting k elements is O(k log k) and we need to

perform this O((n −m)2) times, where n is the length of the time series T , and m
the subsequence length. Hence, the total complexity is O((n − m)2 × k log k). To
improve the computational time, in the next subsection we propose to replace sorting
by finding maximum of top k distance values for each subsequences.

Algorithm 3: MAX-BASED-KNN-MP (T , m, k)

....

....
else

19 for p← 1 to IdxT do
20 PT [(k + 1), p]← DistcutTarget[p]
21 IT [(k + 1), p]← i
22 [maxV al,maxIdx]← FindMax(PT [1 to k, p])
23 if (PT [(k + 1), p] < maxV al) then
24 PT [maxIdx, p]← PT [(k + 1), p]
25 IT [maxIdx, p]← IT [(k + 1), p]

26 P final
T ← PT [1 to k, 1 to IdxT]

27 IfinalT ← IT [1 to k, 1 to IdxT]
....
return PT and IT // return the PT and IT array

4.2.2 Maximum based kNN search

In this method, instead of sorting, we use the maximum distance of the subsequence
Ti to its kNN matches (i.e., the distance to its k nearest neighbor), and then com-
pare this maximum value with the newly computed distance. The time complexity of
finding maximum in a list of k elements is O(k), which is already less than the time
complexity of the sort based algorithm, i.e., O(k log k).

The pseudo code of this approach is mentioned in Algorithm 3. The Else portion
of Algorithm 2 (Line 19−25), needs to be replaced by the pseudo code of Algorithm 3
(Line 19−25). As usual, the newly calculated distance profile and subsequence index

Springer Nature 2021 LATEX template

kNN Matrix Profile 11

are stored at (k + 1)th row of PT and IT matrix (Line 20 − 21). Then, we find the
maximum value of top k elements and corresponding index from PT matrix (Line
22). Now this maximum value is compared with the newly arrived value, which is
temporarily kept at (k + 1)th index (Line 23). If the newly arrived value is less than
the existing maximum value, then the old maximum value is replaced by the new
value (PT [maxIdx, p]) (Line 24) and it’s index is stored in IT matrix (Line 25). This
process is repeated for all the subsequences and finally the results P final

T and IfinalT

are returned as output of the algorithm.

4.2.3 Heap based kNN search

Finding the maximum value in a vector of size k in the classical manner has a time
complexity of O(k). Here, we propose to find the maximum of a vector by using the
heap based priority queue whose time complexity is O log(k). At first, we need to
organize the kNN matches into a heap structure, thus the first element in the heap
will contain the maximum value of the array.

Algorithm 4: HEAPMAX-BASED-KNN-MP (T , m, k)

....

....
else

19 for p← 1 to IdxT do
20 PT [(k + 1), p]← DistcutTarget[p]
21 IT [(k + 1), p]← i

22 if i == (k + 1) then
23 for p← 1 to IdxT do
24 [PT [1 to k, p], heapSortIdxs]← BuildMaxHeap(PT [1 to

k, p], k)
25 IT [1 to k, p] = IT [heapSortIdxs[1 to k], p]

26 for p← 1 to IdxT do
27 if (PT [(k + 1), p] < PT [(1), p]) then
28 PT [1, p]← PT [(k + 1), p]
29 IT [1, p]← IT [(k + 1), p]
30 [PT [1 to k, p], heapSortIdxs]← BuildMaxHeap(PT [1 to

k, p], k)
31 IT [1 to k, p] = IT [heapSortIdxs[1 to k], p]

32 P final
T ← PT [1 to k, 1 to IdxT]

33 IfinalT ← IT [1 to k, 1 to IdxT]
....
return PT and IT // return the PT and IT array

Springer Nature 2021 LATEX template

12 kNN Matrix Profile

The pseudo-code of the heap based approach is shown in Algorithm 4. Until Line
18, the algorithm remains the same as Algorithm 2. The Else portion of Algorithm 2
(Line 19−25), needs to be replaced by the pseudo code of Algorithm 4 (Line 19−33).
In Line 22, we verify whether i == (k + 1), i.e. when we are handling (k + 1)th

subsequence of target, the elements of PT array are organized for the first time in the
structure of heap based priority queue. So in Line 23, we loop through each subse-
quence, and for each of such subsequences we organize the elements (k elements)
of each column in a heap based priority queue. The heap structure is updated in PT

(Line 24). Thanks to this operation, we will have the maximum value at the first row
of PT matrix. We loop through all subsequences (Line 26) and compare the max-
imum value with the newly arrived value at (k + 1)th index. If this newly arrived
value is less than the existing maximum value (stored in first row) then we replace
the value in the first row with the new value. Then, we apply the restructuring opera-
tion on the heap based priority queue to put the maximum value out of top k values
at the first row. This process is repeated for all the subsequences in order to produce
the final k distances and corresponding indexes in P final

T and IfinalT matrices.

5 Multi-core based parallel computing
In this section, we propose an approach to perform the parallel computation of
kNN MP by exploiting multiple cores. We consider the situation where sev-
eral small time series are concatenated to generate one big time series. Let’s say
there are nDT number of individual time series in the time series dataset DT i.e.
{T1, T2, T3,, TnDT

} ∈ DT . By concatenating all these time series, we can obtain
a big time series T . The objective is to compute kNN MP of T , such that we should
be able to identify the matches, coming from which individual time series along with
the index of the match in the time series.

Let ncores be the total number of available cores, then the idea is to divide the
big time series T into g portions (i.e., G1, G2, ...,Gg) and to give each portion to one
individual core to process. The number of groups are determined by the availability of
total number of cores of the processor (say g). An example of kNN MP computation
by using multiple cores is depicted in Fig. 2. As seen, the time series T is equally
divided into 6 groups, and each group is processed by a separate core. The pseudo
code of this technique is shown in Algorithm 5.

The core algorithm for performing parallel computation of kNN MP is presented
in Algorithm 5. The concatenation of nDT number of small time series of different
lengths from the time series database DT is done by using concatenate TimeSeries()
function in Line 1. After concatenating, we obtain a big time series2 T . The fast
computation of mean and standard deviation of all the subsequences in T is computed
in Line 2.

Then in Line 3, we obtain the number of available cores. If the remainder after
division between the total number of individual time series, i.e., nDT and total num-
ber of available cores i.e. ncores is zero then the variable Y (Line 8) will simply hold

2this case is only applicable when we don’t have a single big time series, but several small time series in the database.
Hence, a big time series is formed by concatenating these small time series

Springer Nature 2021 LATEX template

kNN Matrix Profile 13

Function concatenate TimeSeries(DT):
nDT ← length(DT) // count the total number of time series in the data base DT

Len1 ← lenth(DT [1]) // get the length of first time series from database DT

T ← DT [1] // create a new vector T and initialize it by copying the first time series DT [1] in it

InfoconCat ← [1, Len1, ‘file1.csv’] // when an individual time series is merged in T ,

keep the indexes at where it starts and ends in concatenated time series T

for iSeries← 2 to nDT do
T ← [T,DT [iSeries]] // keep concatenating individual time series from DT

InfoconCat ← [startIdx, endIdx, fileName] // store the start, end indexes

and the file name after concatenating an individual time series in T

return nDT ; InfoconCat and T

the indexes of first and last values of T assigned to each group. Otherwise, if the re-
mainder is more than zero then the number of individual time series in each group is
calculated by subtracting r from nDT and then dividing it by ncores (Line 11). The
indexes of first and last values of all the groups except last group are stored in Y
(Line 13). The remaining r number of time series, belongs to the last group are stored
at the last cell of Y in Line 14.

Figure 2: The proposed architecture of multi core based parallel processing.

By using the variable InfoconCat (which keeps the indexes and length of each
individual time series) and the variable Y (which keeps the indexes of first and last

Springer Nature 2021 LATEX template

14 kNN Matrix Profile

Algorithm 5: KNN-PARALLEL(DT , m)

Input: The target time series data base (DT , m)
Output: A MP (PT) and associated MP index (IT)

1 [nDT , InfoconCat, T]← concatenate T imeSeries(DT)
2 [µT , σT]← ComputeMeanStd(T) // see Equation 2 in Appendix: II

3 ncores ← cluster.numWorkers // get the number of workers/cores available

4 Y ← (ncores × 2) array // these are 2D matrix, initialized with zeros

5 if (nDT % ncores == 0) then
6 s← 1; g← nDT /ncores // number of individual time series in each group is calculated in g

7 for iClus← 1 to ncores do
8 Y[iClus][1]← s; Y[iClus][2]← s+ g− 1; s = s+ g // the indexes of

first and last individual time series is stored in Y

9 else
10 if (nDT % ncores > 0) then
11 s← 1; r← nDT /ncores; g← (nDT − r)/ncores

12 for iClus← 1 to ncores − 1 do
13 Y[iClus][1]← s; Y[iClus][2]← s+ g− 1; s = s+ g

14 Y[ncores][1]← s; Y[ncores][2]← nDT ; // the indexes of start and last

individual time series of last group are saved in the last cell of Y

15 PAll
T , IAll

T ← (ncores × 1) array // these are 1D vectors each cell contains

/* // following for loop is run in parallel i.e. the contents inside the

loop are given to each core */
16 for iCore← 1 to ncores do
17 ST = InfoconCat[Y[iCore][1]] // get the starting index of the part/portion of full time

series, handled by this core

18 ED = InfoconCat[Y[iCore][2]] // get the end index of the part/portion of full time

series, handled by this core

19 [P core
T , IcoreT]← knn MP Parallel(T, µT , σT , ST , ED, m)

20 PAll
T [iCore]← P core

T ; IAll
T [iCore]← IcoreT

21 P concat
T ← PAll

T [1]; IconcatT ← IAll
T [1] // initialized with the first matrices i.e. PAll

T [1] and

IAll
T [1]

22 nLen← ncores × kNN
23 for i← 2 to ncores do
24 P concat

T ← [P concat
T , PAll

T [i]]; IconcatT ← [IconcatT , IAll
T [i]] // concatenating

the matrices

25 Psort[1 : nLen][1 : IdxconCat], indxsort[1 : nLen][1 : IdxconCat]←
sortColWise (P concat

T [1 : nLen][1 : IdxconCat]) // sort the concatenated matrix

P concat
T column wise

26 Isort[1 : nLen][1 : IdxconCat]← IconcatT (indxsort[1 : nLen][1 :
IdxconCat]) // using the sorted index i.e. indxsort rearrange Iconcat

T

27 return PFinal
T ← Psort[1 : kNN][1 : IdxconCat] and

IFinal
T ← Isort[1 : kNN][1 : IdxconCat]

Springer Nature 2021 LATEX template

kNN Matrix Profile 15

Function knn MP Parallel(T, µT , σT , st, ed, m):
4 subSeq1 ← T [st to (st+m− 1)] ▷ get the 1st subsequence
5 [QT,Dignore]←MASS(subSeq1, µT [st], σT [st], T , µT , σT)

......
9 for i← st to ed−m+ 1 do

10 cutSubSeq ← T [i to (i+m− 1)] ▷ get target subsequence by chopping
T from index i to (i+m− 1)

.....

17 return PT and IT ▷ return the PT and IT array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

St1 St2 St3 St4 St5 St6 Ed1 Ed2 Ed3 Ed4 Ed5 Ed6

Figure 3: The start and end indexes of each portions/parts of time series T , after
dividing it into g (= 6 here) number of groups (please see the online color version for
better visibility).

individual time series of all the groups), we can obtain start and end indexes of each
parts/portions of time series T , which is divided into g parts (Line 17 − 18). An
example is shown in Fig. 3, where the start (St) and end (Ed) indexes of each part are
visually depicted. In every core, the local kNN matches are calculated in parallel for
all the subsequence of T by using the “knn MP Parallel ()” function (Line 19). The
idea is to calculate kNN matches of all the subsequences of T , where the matches
come from one part/portion of the time series T , handled by an individual core. Then,
the partial kNN MPs from different cores are merged and the global MP is produced.
The MP P core

T and index profile IcoreT , obtained from each core are saved in PAll
T and

IAll
T respectively (Line 20). These matrices are concatenated in P concat

T and IconcatT

respectively (Line 21). The concatenated MP P concat
T is then sorted column wise to

obtain the sorted MP Psort and sorted indexes indxsort. They are then used to obtain
the sorted index profile Isort (Line 26). Finally, the top kNN rows of Psort and Isort
are returned in PFinal

T and IFinal
T respectively in Line 27.

The function “knn MP Parallel ()” is similar to Algorithm 4, except that
“knn MP Parallel ()” takes a portion of T that starts from st and ends to ed, and for
each subsequence of this portion finds the kNN matches among all subsequences of
T .

6 Experimental Evaluation
In this section, we evaluate the performance of our proposed kNN MP technique
and illustrate its utility for motif and anomaly detection from time series.

Springer Nature 2021 LATEX template

16 kNN Matrix Profile

6.1 Setup
In our experiments, we have used several datasets. The first dataset is chemometric
data, representing protein rate measured on 10 different products. The second dataset
is accelerometer data obtained by attaching accelerometer at the neck of 13 sheep.
The third dataset is seismic data and the fourth dataset is a synthetic random walk
dataset. We have also used some datasets from the UCR time series data mining
archive [19] (see the list in Table 2).

The multi-core experiments were performed on a computational server having 36
physical cores. The other experiments were performed on an off-the-shelf computer,
having Intel(R) Core(TM) i7-8850H CPU @ 2.60 GHz processor with 32 GB RAM3.

6.2 Utility Experiments
We illustrate the utility of kNN MP for knowledge discovery in three case studies
including chemometric, accelerometer, UCR archive, and Yahoo anomaly detection
dataset.

6.2.1 Case study: chemometric data

The experiments were performed with the dataset of 4075 spectrum, each having 680
dimensions. These spectrum represents the protein rates, measured on 10 different
products: rapeseed (CLZ), corn gluten (CNG), sun flower seed (SFG), grass silage
(EHH), full fat soya (FFS), wheat (FRG), sun flower seed (SFG), animal feed (ANF),
soyameal (TTS), maı̈s (PEE), milk powder and whey (MPW). The complete data can
be imagined as a matrix of 4075 × 680, where each row represents a time series of
680 elements. To build the kNN MP on a big time series, we concatenated the 4075
individual time series together and applied our kNN MP algorithm on it. We created
the kNN MP by considering the subsequence length m = 40. Fig. 4 shows the 1NN
vs 2NN and 4NN MPs for the chemometric time series. Note that we have only
plotted a small part (i.e., 640 elements) of the whole MP. A low threshold is defined
to obtain the motifs (shown as dotted black line at the bottom of the curve).If we
consider only the curve for 1NN (blue color) then there are several subsequences,
which can be taken as motifs. We consider these motifs as weak motifs. We can detect
the strong motifs by checking their existence in kNN MP. If a subsequence appears
as motif in kNN MP, then it has at least k similar subsequences in the time series.

In Fig. 4, we see some strong motifs (marked as green circles) by considering
k = 2 (top image) and k = 4 (bottom image). The motifs that appear in 4NN MP are
stronger than those detected by using 2NN MP because they are repeated in higher
values of k. There are some weak motifs (encircled by red color) that are shown in
Fig 4 which appear only in 1NN MP but not in either 2NN or in 4NN MPs. Another
nice illustration is also shown in Fig. 5 where we can see the cases of strong motifs
and weak motifs by considering the 1NN vs 2NN MP and 4NN MP.

The discords are the subsequences whose distance with other subsequences is
high. Let’s consider Fig. 6 that shows the sorted distances of the matches of three in-
dividual subsequences. The distances are shown along Y−axis and the subsequences

3We have shared the code, datasets and instructions in : https://github.com/tanmayGIT/kNN Matrix Profile

https://github.com/tanmayGIT/kNN_Matrix_Profile

Springer Nature 2021 LATEX template

kNN Matrix Profile 17

(a)

(b)

Figure 4: The extracted motifs and discords are illustrated in the plot : (a) The 1NN
vs 2NN MP and (b) 1NN vs 4NN MP of a part of the time series is plotted (please
see the online color version for better visibility).

with whom the distances are computed are shown along X − axis. The distance val-
ues plotted in the first curve (shown in green) have high values. The points in the
third curve (shown by pink color in Fig. 6) represent the sorted distance values of a
subsequence. They are mostly below the defined outlier (discord) threshold. So, if we
consider even 4NN (or even more) MP then in no way this particular subsequence

Springer Nature 2021 LATEX template

18 kNN Matrix Profile

(a)

(b)

Figure 5: The extracted motifs and discords are illustrated in the plot : (a) The 1NN
vs 2NN MP and (b) 1NN vs 4NN MP of a part of the time series is plotted (please
see the online color version for better visibility).

will be detected as outlier (this is normal as this subsequence has close matches). But
in the case of third curve, the top two distance values are less than the defined dis-
cord threshold, and the other distance values are more than the threshold. So, from
the nature of the curve it can be depicted that this particular subsequence has two

Springer Nature 2021 LATEX template

kNN Matrix Profile 19

close matches, but it is highly different than all other remaining subsequences. Thus,
if we consider 1NN and 2NN then this particular subsequence will not be detected
as outlier. But, if we consider 3NN , 4NN and more then it will be detected as an
outlier. Logically, this subsequence should be detected as outlier as it has only two
very close neighbors (which can be outliers), and all of it’s other neighbors are very
different.

This scenario is confirmed by kNN MP in Fig. 7 (top). The 1st subsequence has
many matches shown as pink color (Fig. 7 top), this is why 1NN , 2NN , 3NN
MPs (Fig. 7 bottom) show lower value at the index of this subsequence. On the other
hand, the 3rd subsequence (shown in green color) has no matches, hence the 1NN ,
2NN , 3NN MPs show high values for the 3rd subsequence. But, for the case of
2nd subsequence, it has a close match (shown in red color). Hence these two sub-
sequences (which are marked in red color) would closely match with each other.
Accordingly the 1NN MP (shown in Fig. 7 bottom) shows a very low value for these
subsequences (follow the pink colored curve).

Selected

Selected

Distribution of distances between subSeq1 and all other sub-sequences

Distribution of distances between subSeq2 and all other sub-sequences

Distribution of distances between subSeq3 and all other sub-sequences

Figure 6: One special case of outliers detection (please see the online color version
for better visibility)

It can be seen from Fig. 7 (top) that these two red colored subsequences should
be considered as outliers as they are far from all other subsequences. In fact, they
are 3NN discords, and their detection is possible only if we compute kNN MP,
for k ≥ 3. If we calculate 2NN MP then each of these red colored subsequences
would have the blue colored subsequence as their 2nd nearest neighbors (blue colored
subsequence is slightly different than the red ones). Hence to detect them as outliers,
we need to calculate 3NN MP (shown by blue color in Fig. 7 (bottom)).

Now let’s again consider the example of 1NN vs 2NN and 1NN vs 4NN MPs
of chemometric dataset. To find the discords, a relatively high threshold is taken

Springer Nature 2021 LATEX template

20 kNN Matrix Profile

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�QG VXE�VHTXHQFH

�VW VXE�VHTXHQFH �UG VXE�VHTXHQFH

Figure 7: Special case of the outliers presence is depicted by considering a toy time
series (top). The 1NN, 2NN and 3NN MPs are shown for the time series (bottom)
(please see the online color version for better visibility)

(shown as dotted red line in Fig. 4). If we consider this threshold then the discords
which are detected in 1NN , should also be repeated (exactly at the same index) in
2NN as well as in 4NN MP. In Fig. 4 (top) there are several instances shown in
Inset-1, Inset-2 and Inset-3, where we have zoomed over some portions of 1NN and
2NN MPs. It can be seen in these instances that the distance value is low (sometimes
downward) in 1NN MP, but at these locations, the distance value is high in 2NN
MP. Similar characteristics are also observed in Inset-4, Inset-5 for the case of 1NN
vs 4NN MPs in Fig. 4 (bottom image).

Springer Nature 2021 LATEX template

kNN Matrix Profile 21

6.2.2 kNN similarity search : case study on accelerometer data

This real world dataset corresponds to more than 8000 time series which have been
measured by attaching accelerometer at the neck of 13 sheep. Acelerometers captured
3-axial acceleration at a constant rate of 100Hz. Each of the three axial acceleration
gives a different information for the zoologist, but for the simplicity and to show
the interest of proposed method, here we only consider X axis data. The accelerom-
eter data are manually labeled into one of six activities: STANDING-GRAZING,
STANDING-EATING BRUSH, STANDING-RUMINATING, WALKING, RUN-
NING, STANDING IMMOBILE. The sensor signals were pre-processed and for
each activity of interest, a time series of 5 seconds (500 elements per time series)
were constituted. By this manner, a dataset with 8532 time series is obtained where
each of these time series is manually labeled.

7KUHVKROG WR

GHILQH GLVFRUGV

7KUHVKROG WR

GHILQH PRWLIV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

7KUHVKROG WR

GHILQH PRWLIV

7KUHVKROG WR

GHILQH GLVFRUGV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

(a)

7KUHVKROG WR

GHILQH GLVFRUGV

7KUHVKROG WR

GHILQH PRWLIV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

7KUHVKROG WR

GHILQH PRWLIV

7KUHVKROG WR

GHILQH GLVFRUGV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

(b)

7KUHVKROG WR

GHILQH PRWLIV

7KUHVKROG WR

GHILQH GLVFRUGV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH 7KUHVKROG WR

GHILQH GLVFRUGV

7KUHVKROG WR

GHILQH PRWLIV

(c)

7KUHVKROG WR

GHILQH PRWLIV

7KUHVKROG WR

GHILQH GLVFRUGV

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH

�11 0DWUL[3URILOH 7KUHVKROG WR

GHILQH GLVFRUGV

7KUHVKROG WR

GHILQH PRWLIV

(d)

Figure 8: (a) The 1NN and 2NN MPs are plotted for a specific portion of the time
series, having the label as: WALKING. (b) The 1NN and 4NN MPs are plotted of
the same portion of the time series. (c) The 1NN and 4NN MPs (which follow very
similar trajectories) are plotted for another portion of the time series, having labeled
as WALKING. (d) The 1NN and 4NN MPs are plotted for a randomly chosen portion
of the time series, having labeled as: RUNNING. (please see the online color version
for better visibility)

Springer Nature 2021 LATEX template

22 kNN Matrix Profile

Figure 9: The results of UCR dataset : (a) FacesUCR dataset: the motifs and discords
are shown by green and red circles respectively; (b) Beef dataset: presence of motifs
in 4NN MP are not supported by 1NN MP; (c) CinCECGTorso dataset: the high-
lighted zone shows the contrary nature of 1NN vs 2NN MPs; (d) BME dataset: the
highlighted zone shows the contrary nature of 1NN vs 2NN MPs; (e) BME dataset
: some (weak) motifs in 1NN MP are not present in 4NN MPs; (f) Adiac dataset:
the highlighted zones show the contrast between 1NN vs 2NN MPs where the weak
motifs detected in 1NN MP are not present in 2NN MP and the discords detected
in 2NN MP are not present in 1NN MP.

Here we create a big time series by concatenating all the 8532 time series and the
subsequence length (m) is taken as 50. The total number of subsequences obtained
from the concatenated long time series is (500 × 8531) − 50 + 1 = 42, 65, 451. An
interesting part of the kNN MP for the case of 1NN vs 2NN MP and 1NN vs
4NN MP is shown in Fig. 8a and Fig. 8b. It can be seen from these figures that at
several locations the distance values in 1NN MP are less than the defined threshold
for motif, but not in the 2NN MP (see the green circles). So these low points can not
be considered as strong motifs. For the case of detecting outliers, several points are
marked in Fig. 8a and Fig. 8b, where some outliers can be detected only in 2NN or
4NN (see the red circled points in Fig. 8a and Fig. 8b).

In many cases, the 1NN and 4NN MPs follow almost the same trajectory and
such an example is shown in Fig. 8c. Another portion of the complete MP is shown
in Fig. 8d in which we illustrate the 1NN and 4NN MPs, and several interesting
cases (by green and violet encircles). The points marked by green circles are strong
motifs where both of the 1NN and 4NN MPs satisfy the defined threshold, whereas
the points marked by violet circles are weak motifs. The region marked by dotted
red rectangle shows an interesting situation where the 4NN MP shows a completely
different trajectory (upward) than 1NN MP (downward). This can mainly happen

Springer Nature 2021 LATEX template

kNN Matrix Profile 23

when a particular subsequence has the 1st nearest neighbor with whom it has small
distance, but its distance with other neighbors is high (see Fig. 6). Such subsequences
are usually anomalies.

6.2.3 Case study: UCR repository

Here we show some interesting results for kNN MP by using datasets from the UCR
time series archive [19] (see the list of datasets in Table 2). To create a single big time
series from each dataset, we have sequentially concatenated the individual time series
from training and testing set. Fig. 9 shows a portion of the generated MP for different
datasets. As seen in Fig. 9 (a), (b), (d), (e), (f), at some places the 1NN MP shows
different trajectory than kNN (i.e., 2NN and 4NN) MPs where the detected weak
motifs (shown in dotted green circle) in 1NN MP are absent in kNN MP. There are
also discords (shown in dotted red circle) detected in kNN MPs, but absent in 1NN
MP.

From these plots, we can visualize that the curves for 1NN MP and 2NN or
4NN MPs don’t follow the same trajectory. Hence, the detection of motifs and dis-
cords from 1NN MP could be wrongly validated if we don’t verify their presence
in kNN (i.e., 2NN...kNN) MPs. From Fig. 9 (c) also, we observe that there are
detected motifs present in only 1NN MP, but not in the other MPs. Probably these
motifs are resulted due to the presence of noise and should be considered with precau-
tion. Hence, from these experiments with UCR datasets, we can clearly visualize the
usefulness of kNN MP over 1NN MP for the detection followed by confirmation
of motifs and discords.

Table 2: Dataset details from UCR archive
Dataset Name Size of

training set
Size of

testing set
Time series

length
FacesUCR 200 2050 131

Beef 30 30 471
CinCECGTorso 40 1380 1639

BME 30 150 128
Adiac 390 391 176

6.2.4 Case study: Yahoo anomaly detection dataset

In this section, we show some interesting illustrations to depict the usefulness of kNN
MP, using the Yahoo time series dataset that includes labeled anomalies[20]. This
dataset contains several files (around 370), among them one part is based on real data
(around 95), based on production traffic in some Yahoo services, whereas the other
part contains synthetic (i.e., simulated) data. The anomalies in the simulated data
were algorithmically generated, and those in the real-traffic data were manually la-
beled by Yahoo experts. The dataset is divided in 4 benchmarks, which are named as:
“A1Benchmark-Real”, “A2Benchmark-Synthetic”, “A3Benchmark-Synthetic” and
“A4Benchmark-Synthetic”.

Springer Nature 2021 LATEX template

24 kNN Matrix Profile

(a) (b)

(c) (d)

Figure 10: The usefulness of the kNN MP technique is shown using Yahoo dataset.
In each figure, the time series is plotted at the top followed by 1NN , 2NN , 3NN ,
4NN , and 5NN MPs, plotted subsequently (the subsequence length (m) is taken
as 32). The outlier elements/points, obtained from the available ground truth of the
dataset are marked by the red star at the topmost plot of each figure (please see the
online color version for better visibility).

In Fig. 10a to Fig. 10d, we depicted some interesting examples of anomaly de-
tection by kNN MPs. In each figure, the time series is plotted at the top, followed
by 1NN , 2NN , 3NN , 4NN , and 5NN MPs. We see that the kNN MPs find more
relevant anomalies than 1NN MP. In Fig. 10a, for instance, the 1NN MP (see the
second plot) is not able to detect the second and third anomalies which are marked
by red-colored star on the time series plot, wheeras the 2NN, 3NN, 4NN and 5NN
MPs (see the third until sixth plots in Fig. 10a) are able to detect them. The plausible
reason is that these anomalies which are not detected in 1NN MP have similar sub-
sequences (anomalies) in the time series, thus the distance values of these anomalies
to their 1NN are not high enough (see Fig. 6, Fig. 7 and it’s corresponding dis-
cussions for further explanation). Whereas, the 2NN, 3NN, 4NN and 5NN have high

Springer Nature 2021 LATEX template

kNN Matrix Profile 25

distance values with these specific subsequences (i.e. subsequences where the out-
liers are present in the time series), hence they can be detected by kNN MPs. A very
similar characteristic is also visible in Fig. 10b.

Some more nice examples can be seen in Fig. 10c and Fig. 10d. There are three
outlier elements in the time series (shown in the topmost plot of Fig. 10c) which have
appeared as unusual spikes. If we observe carefully, then we can see that these three
spikes (or their corresponding subsequences) look very similar to each other. Hence,
the 1NN of these anomalies is a close match among two other similar anomalies.
Even the 2NN of these anomalies will be a close match corresponding to other similar
anomalies. Hence, it is not possible to detect them in 1NN (see the second plot in
Fig. 10c) and 2NN MPs (see the third plot in Fig. 10c). But, if we compute 3NN,
4NN, and 5NN (see the fourth, fifth and sixth plots respectively in Fig. 10c) MPs, then
these outliers can be detected because their corresponding subsequences will have a
high distance value to their third, fourth and fifth nearest neighbors. A very similar
characteristic is also visible in Fig. 10d.

Table 3: The outlier detection accuracy of various kNN MP based on 3 high thresh-
olds on the Yahoo dataset (“A1Benchmark-Real”)

Accuracies
kNN MP Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

1NN 0.317 0.413 0.469
2NN 0.349 0.485 0.556
3NN 0.386 0.509 0.584
4NN 0.439 0.522 0.630
5NN 0.458 0.553 0.653
6NN 0.490 0.566 0.673
7NN 0.500 0.610 0.686
8NN 0.509 0.622 0.698
9NN 0.522 0.629 0.704
10NN 0.542 0.643 0.720

We have also performed experiments to evaluate the accuracy of kNN MPs in
comparison with 1NN MP for anomaly detection by using all the labeled benchmarks
from the Yahoo dataset. In our experiments, we generate the kNN matrix profiles for
1 ≤ k ≤ 10. We consider a subsequence as a discord if its value in the matrix profile
is higher than a predefined threshold. To automatically calculate the threshold for the
detection of discords, we adopt a simple way by taking 95%, 90% and 85% of the
maximum value of 1NN MP. In this manner, for each time series, we can obtain 3
individual thresholds and based on these 3 threshold values, we have detected the
discords of 1NN, 2NN, 3NN,, 10NN MP.

For each labeled outlier, we look within a horizontal window of size 2m to
find any occurrence of the outlier among the detected discords in each of the
1NN, 2NN, 3NN,, 10NN MP, where m (= 32) represents the subsequence

Springer Nature 2021 LATEX template

26 kNN Matrix Profile

Table 4: The outlier detection accuracy of various kNN MP based on 3 high thresh-
olds on the Yahoo dataset (“A2Benchmark-Synthetic”)

Accuracies
kNN MP Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

1NN 0.374 0.512 0.648
2NN 0.606 0.794 0.835
3NN 0.711 0.850 0.913
4NN 0.803 0.863 0.934
5NN 0.857 0.948 0.991
6NN 0.876 0.963 0.992
7NN 0.944 0.988 0.997
8NN 0.978 0.993 0.997
9NN 0.989 0.992 0.997
10NN 0.991 0.993 0.997

length, used for MP computation. For example, let’s say in any particular time se-
ries T , there is a labeled outlier in the ground truth at the lth location. Now, we look
within the range of [(l−m) to (l+m)] positions in 1NN, 2NN, 3NN,, 10NN
MP to find the existence of any detected (based on the chosen threshold) discords.
If we find a discord within this range, then we consider it as a success, otherwise it
is considered as failure in detection. Simply speaking, for each labeled anomaly, we
consider it as detected, if its subsequence overlaps with one of the detected discords
in the matrix profile. Thus, the accuracy of anomaly detection by a matrix profile is
measured as the fraction of detected anomalies over the total number of anomalies.
In this manner, we have computed the average accuracies of outlier detection over
Yahoo time series.

Tables 3 and 4 show the accuracy of 1NN and kNN matrix profiles (for k =
1, 2, ..., 10), for A1Benchmark-Real and A2Benchmark-Synthetic benchmarks from
the Yahoo dataset. The results show that the accuracy can significantly be improved
by using kNN MP. As seen in Table 3, for the A1Benchmark-Real benchmark, the
accuracy increases from 41% with 1NN MP to 64% with 10NN MP (when the
threshold is taken as 90%) and 46% with 1NN MP to 72% with 10NN MP (when
the threshold is taken as 85%).

The accuracy gain is even more impressive for the A2Benchmark-Synthetic
benchmark. As seen in Table 4, the accuracy increases from 37% with 1NN MP to
99% with 10NN MP (when the threshold is taken as 85%). The accuracy also in-
creases from 51% with 1NN MP to 99% with 10NN MP (when the threshold is
taken as 90%) and 64% with 1NN MP to 99% with 10NN MP (when the thresh-
old is taken as 85%). The reason for this significant accuracy gain is that some of
the (ground truth) anomalies have similar subsequences in the dataset (which can be
other anomalies). This is why these anomalies do not appear as discords in the 1NN
MP, as the distance value to their nearest neighbor is low. However, their distance
value to other subsequences may be high (e.g., to 2NN, 3NN, etc), this is why they
can be detected by kNN MPs.

Springer Nature 2021 LATEX template

kNN Matrix Profile 27

6.3 Scalability of kNN similarity search
In this section, we study the scalability of our solution for building the kNN MP, by
varying several parameters such as k, number of cores, length of time series (n) and
subsequence length (m). In our experiments, we used several datasets. The first one is

5 10 15 20 25 30 35 40 45 50 55 60

k Nearest Neighbors
0

100

200

300

400

500

600

700

800

T
im

e
 N

e
e
d
e
d
 (

s
e
c
.)

kNN Heap-Max-Based on RandomWalk Data(50000 * 256)

kNN Sorting-Based on RandomWalk Data(50000 * 256)

kNN Max-Based on RandomWalk Data(50000 * 256)

kNN Heap-Max-Based on Seismic Data(50000 * 200)

kNN Sorting-Based on Seismic Data(50000 * 200)

kNN Max-Based on Seismic Data(50000 * 200)

Figure 11: The execution time for computing kNN MP, with increasing the number
k. The time is shown for three different proposed approaches, i.e., sort based (refer
to Section 4.2.1), max based (refer to Section 4.2.2), and heap-max based (refer to
Section 4.2.3) (please see the online color version for better visibility).

called as seismic dataset, obtained from the domain of seismology, containing 50000
individual time series. The length of each time series is 200. By concatenating all time
series, we obtained a big time series of 1 million values. The second dataset is called
random walk dataset, having 50000 individual time series. The length of each time
series is 256. We also concatenated the time series of this database to create a big time
series. The initial three experiments (Fig. 12a, Fig. 12b, Fig.13a) were performed by
using these two datasets. For the experiments on the number of cores in (Fig. 13b),
we have used the Hyper-spectral data of protein levels and accelerometer datasets
(which are are used in other experiments, mentioned in Section 6.2.1 and 6.2.2). The
main reason of choosing these datasets is the higher length of their time series (680
and 500 respectively). As like the previous datasets, here also we have concatenated
all the time series to build a big time series. In our experiments the default value for
k is taken as 10.

For the first experiment, we incremented the value of k to study its effect on
the time required for computing kNN MP. As seen in Fig. 12a, with increasing k,
the required computational time increases linearly for both datasets. But, the com-
putational time doesn’t increase drastically for higher values of k, and the proposed

Springer Nature 2021 LATEX template

28 kNN Matrix Profile

10 30 50 70 90

k Nearest Neighbors
0

2000

4000

6000

8000

10000

12000

14000

T
im

e
 N

e
e
d
e
d
 (

s
e
c
.)

 Proposed kNN MP on RandomWalk Data (1000 * 256 = 256,000)

 Adapted STOMP for kNN MP on RandomWalk Data (1000 * 256 = 256,000)

 Proposed kNN MP on Seismic Data (1000 * 200 = 200,000)

 Adapted STOMP for kNN MP on Seismic Data (1000 * 200 = 200,000)

(a)

100 300 500 700 900

No. of Time Series
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 N

e
e
d
e
d
 (

s
e
c
.)

 Proposed kNN MP on RandomWalk Data (no. of time series * 256)

 Adapted STOMP for kNN MP on RandomWalk Data (no. of time series * 256)

 Proposed kNN MP on Seismic Data (no. of time series * 200)

 Adapted STOMP for kNN MP on Seismic Data (no. of time series * 200)

(b)

Figure 12: The execution time of our proposed algorithm and that of STOMP on
random-walk, seismic, protein and sheep datasets: (a) The variation of execution time
with increasing k for generating kNN MP. The colors red and blue represent the plot
for random-walk and seismic datasets respectively. (b) The variation of execution
time with increasing the length of time series (x-axis is representing the number of
individual time series, which are concatenated to generate a single big time series)
(please see the online color version for better visibility).

algorithm is able to give output of high kNN values with small change in computa-
tional time. From the second experiment shown in Fig. 12b, it can be seen that the

Springer Nature 2021 LATEX template

kNN Matrix Profile 29

256 356 456 556 656 756 856 956

Sub-sequence length

2000

4000

6000

8000

10000

12000

14000

T
im

e
 N

e
e
d
e
d
 (

s
e
c
.)

 Proposed kNN MP on Protien Data (200 * 680 = 2.77 M)

 Adapted STOMP for kNN MP on Protien Data (200 * 680 = 2.77 M)

 Proposed kNN MP on Sheep Data (200 * 500 = 8.44 M)

 Adapted STOMP for kNN MP on Sheep Data (200 * 500 = 8.44 M)

(a)

2 7 12 17 22 27 32

No. of Cores
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 N

e
e

d
e

d
 (

s
e

c
.)

 Proposed kNN MP on RandomWalk Data (no. of time series * 256)

 Adapted STOMP for kNN MP on RandomWalk Data (no. of time series * 256)

 Proposed kNN MP on Seismic Data (no. of time series * 200)

 Adapted STOMP for kNN MP on Seismic Data (no. of time series * 200)

(b)

Figure 13: The comparative performance of our proposed algorithm and the tech-
nique by Yeh et.al [2] on random-walk, seismic, protein and sheep datasets: (a) The
variation of computational time with increasing the length of subsequence (m) for the
protein and sheep datasets respectively. (b) The computational time with increasing
the number of cores for the random-walk and seismic datasets respectively (please
see the online color version for better visibility).

computational time increases with increasing time series length. In Fig. 13a, it can be
seen that computational time is almost linear with increasing the subsequence length.

Springer Nature 2021 LATEX template

30 kNN Matrix Profile

Fig. 13b shows the evolution of the computational time with increasing the num-
ber of cores. As seen, the computational time firstly decreases significantly with the
increase of number of cores for both datasets, but after a certain number of cores, it
gets constant (after 17 cores).

6.3.1 Comparison with adapted STOMP

We have compared the computational time of STOMP algorithm by Yeh et.al [2] with
our proposed technique for kNN MP. In general, the STOMP algorithm is designed
to compute 1NN MP. We adapted it for kNN MP by applying it in k iterations, such
that the best matches obtained in each iteration are excluded before the next iteration.
Fig. 12 and 13 show the computational time of our proposed algorithm and STOMP
algorithm by using the previously mentioned seismic and random walk datasets. The
variation of computational time is depicted by increasing k by using 1000 individual
time series from each dataset (seismic and random walk datasets, shown in Fig. 12a).
It can be seen that our algorithm outperforms significantly the STOMP technique for
computing kNN MP.

The second experiment, shown in Fig. 12b is performed to compare the computa-
tional time with increasing the time series length. The x-axis in the plot represents the
number of individual time series which are concatenated to generate the single big
time series to calculate kNN MP. In this experiment, our proposed technique has out-
performed the STOMP algorithm. In the third experiment (shown in Fig. 13a), where
the comparison is performed by increasing the subsequence length, our proposed
technique has also better execution time than the STOMP algorithm, for computing
kNN matrix profile.

7 Conclusion
In this paper, we proposed an efficient technique for computing kNN MP. Our tech-
nique is fast, simple and parallelizable on multiple cores of an off-the-shelf computer.
Using several real and synthetic datasets, we illustrated the effectiveness of generat-
ing kNN MP by our technique. Our results show how qualitatively the kNN MP is
useful for knowledge discovery compared to the 1NN MP. For example, they show
that the accuracy of anomaly detection can be improved significantly, e.g., from 37%
with 1NN MP to 99% with 10NN MP for A2Benchmark-Synthetic of the Yahoo
dataset.

As a future work, we plan to extend our parallel technique for GPUs. Moreover,
we would like to extend the kNN MP for the case of multi-dimensional data. Another
possible research direction is to develop automatic methods for choosing the best
values for kNN matrix profile parameters (such as the subsequence length or k) for
anomaly/motif detection from a given dataset. Actually, these parameters should be
mainly chosen by the experts of the domain.

Springer Nature 2021 LATEX template

kNN Matrix Profile 31

Acknowledgment
We greatly acknowledge the funding from Safran Data Analytics Lab. The authors
are grateful to Inria Sophia Antipolis - Méditerranée ”Nef” computation cluster for
providing resources and support.

References
[1] Yeh, C.-C.M., Herle, H.V., Keogh, E.J.: Matrix Profile {III:} The Matrix Profile

Allows Visualization of Salient Subsequences in Massive Time Series. In: Pro-
ceedings of the International Conference on Data Mining (ICDM), pp. 579–588
(2016)

[2] Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Zimmer-
man, Z., Silva, D.F., Mueen, A., Keogh, E.: Time series joins, motifs, discords
and shapelets: a unifying view that exploits the matrix profile 32(1), 83–123
(2018)

[3] Zhu, Y., Yeh, C.-C.M., Zimmerman, Z., Kamgar, K., Keogh, E.: Matrix Profile
XI: SCRIMP++: Time Series Motif Discovery at Interactive Speeds. In: Pro-
ceedings of the International Conference on Data Mining (ICDM), pp. 837–846
(2018)

[4] Sinha, S.: Discriminative motifs. In: Proceedings of the Sixth Annual Interna-
tional Conference on Computational Biology, pp. 291–298 (2002)

[5] Balasubramanian, A., Wang, J., Prabhakaran, B.: Discovering Multidimen-
sional Motifs in Physiological Signals for Personalized Healthcare. J. Sel.
Topics Signal Processing 10(5), 832–841 (2016)

[6] Yagoubi, D.E., Akbarinia, R., Kolev, B., Levchenko, O., Masseglia, F., Val-
duriez, P., Shasha, D.E.: ParCorr: efficient parallel methods to identify similar
time series pairs across sliding windows. Data Mining and Knowledge Discov-
ery 32(5), 1481–1507 (2018)

[7] Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover,
M.B., Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time
series subsequences under dynamic time warping. In: Yang, Q., Agarwal, D.,
Pei, J. (eds.) ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 262–270 (2012)

[8] Mueen, A., Keogh, E.J., Young, N.E.: Logical-shapelets: an expressive primi-
tive for time series classification. In: Apté, C., Ghosh, J., Smyth, P. (eds.) ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, pp. 1154–1162 (2011)

Springer Nature 2021 LATEX template

32 kNN Matrix Profile

[9] Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence cor-
relation. In: Kumar, R., Toivonen, H., Pei, J., Huang, J.Z., Wu, X. (eds.)
IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China,
December 14-17, 2014, pp. 450–459 (2014)

[10] Yeh, C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F.,
Mueen, A., Keogh, E.J.: Matrix profile I: all pairs similarity joins for time se-
ries: A unifying view that includes motifs, discords and shapelets. In: Bonchi,
F., Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X. (eds.) IEEE 16th In-
ternational Conference on Data Mining, ICDM 2016, December 12-15, 2016,
Barcelona, Spain, pp. 1317–1322 (2016)

[11] Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.M., Funning, G.J., Mueen, A.,
Brisk, P., Keogh, E.J.: Matrix profile II: exploiting a novel algorithm and gpus
to break the one hundred million barrier for time series motifs and joins. In:
Bonchi, F., Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X. (eds.) IEEE
16th International Conference on Data Mining, ICDM 2016, December 12-15,
2016, Barcelona, Spain, pp. 739–748 (2016)

[12] Zhu, Y., Yeh, C.-C.C.M., Zimmerman, Z., Keogh, E.J.: Matrix Profile {XVII:}
Indexing the Matrix Profile to Allow Arbitrary Range Queries. In: International
Conference on Data Engineering (ICDE), pp. 1846–1849 (2020)

[13] Nakamura, T., Imamura, M., Mercer, R., Keogh, E.J.: MERLIN: parameter-
free discovery of arbitrary length anomalies in massive time series archives. In:
Plant, C., Wang, H., Cuzzocrea, A., Zaniolo, C., Wu, X. (eds.) 20th IEEE Inter-
national Conference on Data Mining, ICDM 2020, Sorrento, Italy, November
17-20, 2020, pp. 1190–1195 (2020)

[14] Mercer, R., Alaee, S., Abdoli, A., Singh, S., Murillo, A.C., Keogh, E.J.: Matrix
profile XXIII: contrast profile: A novel time series primitive that allows real
world classification. In: Bailey, J., Miettinen, P., Koh, Y.S., Tao, D., Wu, X.
(eds.) IEEE International Conference on Data Mining, ICDM 2021, Auckland,
New Zealand, December 7-10, 2021, pp. 1240–1245 (2021)

[15] Zimmerman, Z., Kamgar, K., Senobari, N.S., Crites, B., Funning, G.J., Brisk, P.,
Keogh, E.J.: Matrix profile XIV: scaling time series motif discovery with gpus
to break a quintillion pairwise comparisons a day and beyond. In: Proceedings
of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA,
USA, November 20-23, 2019, pp. 74–86 (2019)

[16] Zimmerman, Z.P.: Breaking computational barriers to perform time series pat-
tern mining at scale and at the edge. PhD thesis, University of California,
Riverside, https://escholarship.org/content/qt51z7d647/qt51z7d647.pdf (2019)

[17] He, Y., Chu, X., Wang, Y.: Neighbor profile: Bagging nearest neighbors for
unsupervised time series mining. In: 36th IEEE International Conference on

Springer Nature 2021 LATEX template

kNN Matrix Profile 33

Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pp. 373–
384 (2020)

[18] Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.-C.M., Funning, G., Mueen,
A., Brisk, P., Keogh, E.J.: Matrix Profile {II:} Exploiting a Novel Algorithm
and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and
Joins. In: Proceedings of the International Conference on Data Mining (ICDM),
pp. 739–748 (2016)

[19] Dau, Hoang Anh and Keogh, Eamonn and Kamgar, Kaveh and Yeh, Chin-Chia
Michael and Zhu, Yan and Gharghabi, Shaghayegh and Ratanamahatana, Choti-
rat Ann and Yanping and Hu, Bing and Begum, Nurjahan and Bagnall, Anthony
and Mueen, Abdullah and Batista, Gustavo: The UCR Time Series Classifica-
tion Archive. https://www.cs.ucr.edu/∼eamonn/time series data 2018/ (2018)

[20] Laptev Nikolay and Amizadeh Saeed and Billawala Youssef: A Benchmark
Dataset for Time Series Anomaly Detection. https://yahooresearch.tumblr.com/
post/114590420346/a-benchmark-dataset-for-time-series-anomaly

Appendix: I Fast Calculation of Distance
Mueen et. al proposed a technique, known as Mueen’s Algorithm for Similarity
Search (MASS) [9] [8] for the fast calculation of z-normalized Euclidean Distance
between query subsequence and the subsequence of target time series, by exploiting
Fast Fourier Transform (FFT). Let us first explain Algorithm 6 that generates the dot
product of a subsequence (q), and the subsequences of a target time series (T).

Algorithm 6: SLIDINGDOTPRODUCT

Input: A query subsequence (q), A target time series (T)
Output: The dot product (qT) between single query subsequence and all the

target subsequences
1 n← no. of elements in T ; s← no. of elements in q
2 Ta ← double the length of T by appending n number of zeros at the end
3 qa ← reverse the elements in q so that the last

element become first and vice versa
4 qra ← append (2n−m) zeros at the end of qr
5 qraf ← do FFT (qra); Taf ← do FFT (Ta)
6 M ← elementwise multiplication of qraf and Taf // as both qraf and Taf are of the

same size, so we can easily multiply element to elements

7 qT ← InverseFFT (M)
8 return PT

In Line 4, both vectors q and T are made to be of the same length (see
Section Appendix: I.1) by appending the required amount of zeros (2n −m) to the

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

Springer Nature 2021 LATEX template

34 kNN Matrix Profile

reversed query so that like Ta, qra will have 2n elements. This is done to facilitate
element wise multiplication in frequency domain. In Line 5, the Fourier transform
of qra and Ta is performed to transform time domain signals into frequency domain
signals. Then in Line 6, an element wise multiplication is performed between two
complex valued vectors, followed by inverse FFT on the resultant product.

Appendix: I.1 Relation between convolution in time domain with
frequency domain

The time domain convolution of two signals T = [t1, t2,, tn] and q =
[q1, q2,, qm];m << n can be calculated by sliding q upon T . For implementation,
we would need

m

2
number of zeros padding at the beginning and at the end of orig-

inal T vector. The convolution between these two vectors is represented by (T ∗ q)
which is a vector c = [c1, c2,, cn+m−1] denoted as : Cp =

∑
u Tu qp−u+1 where

u = [max (1, p− u+ 1)].....[min (n,m)] and u ranges over all the sub-scripts for
Tu and qp−u+1.

The convolution in time domain can be quickly calculated by element-wise
multiplication in frequency domain by taking Fourier Transform of two signals, mul-
tiplying them element-wise and then applying inverse Fourier transform. Performing
full convolution (in both time and frequency domains) between two 1D (same for 2D
also) signals of size n and m results in an output of size (n+m− 1) elements. Usu-
ally, the two signals are made of same size by padding zeros at the end to facilitate
the multiplication operation.

Appendix: II Fast Calculation of Mean and Standard
Deviation :

The fast calculation of mean (µ) and standard deviation (σ) of a vector of ele-
ments (x) is proposed by Rakthanmanon et.al [7]. The technique needs only one
scan through the sample to compute the mean and standard deviation of all the sub-
sequences. The mean of the subsequences can be calculated by keeping two running
sums of the long time series which have a lag of exactly m values.

µ = 1
m

(∑k
i=1 xi −

∑k−m
i=1 xi

)
σ2 = 1

m

(∑k
i=1 x

2
i −

∑k−m
i=1 x2

i

)
− µ2 (2)

In the same manner, the sum of squares of the subsequences can also be calculated
which are used to compute the standard deviation of all the subsequences by using
Equations 2.

Appendix: III Brief description of MASS algorithm :
The MASS algorithm is mentioned in Algorithm 7. In Line 1 of this algorithm, the
sliding dot product is calculated by using Algorithm 6.

The z-normalized Euclidean distance (Di) is calculated between two time series
subsequences q and Ti by using the dot product between them (qTi). The formula to

Springer Nature 2021 LATEX template

kNN Matrix Profile 35

Algorithm 7: MASS (q, µq , σq , T , µT , σT)

Input: A query subsequence (q), mean of q (µq), standard deviation of q
(σq), Target time series (T), mean of T (µT), standard deviation of
T (σT)

Output: Distance profile (D), Dot product (qT)
1 qT ← SlidingDotProducts(q, T) //see Algorithm 6

2 D ← CalculateDistanceProfile(qT, µq, σq, µT , σT) // see Equation 3

3 return qT,D

calculate the distance (Di) is shown below.

D[i] =

√
2m

(
1− qTi −mµq µTi

mσq σTi

)
(3)

In this Equation 3, m is the subsequence length, µq is the mean of query sequence
q, µTi

is the mean of Ti, σq is the standard deviation of q and σTi
is the standard

deviation of Ti.

Appendix: IV Brief description of STAMP algorithm :
The Scalable Time Series Anytime MP (STAMP) algorithm, proposed by Yeh et.al [2]
(outlined in Algorithm 8) calculates the closest match (1NN) of every subsequence in
a time series T , based on the calculated distance (called as distance profile) between
any particular subsequence with all the remaining subsequence in T .

The pseudo-code is mentioned in Algorithm 8. A for loop is used in Line 6 to
chop each subsequence (consider as query for better understanding). Then, a distance
vector (DistcutQuery) is computed by calculating the distances between all other
subsequences in T and the query. In each iteration, the smallest distance and its
corresponding index are kept in PT and IT vectors.

Appendix: IV.1 Two independent time series matching using
STOMP

In Section 4.1.1, we have explained the general principal of STOMP algorithm for
the computation of MP for a single time series. In case of two independent time
series, the basic STOMP algorithm needs to be marginally modified. The pseudo-
code of modified STOMP algorithm, named as IndependentSTOMP is mentioned in
Algorithm 9.

While called, this algorithm calculates the distances from 2 query subsequence
until the last query subsequences i.e., (Idxs) (see Line 2) because before calling this
algorithm, we have already computed the distances between 1st query subsequence
and target subsequence t. Now let’s concentrate on the principal part of STOMP. Re-
mind that the dot product profile (QT) of any particular subsequence, can be derived
from the dot product profile of it’s previous subsequence (see Section 4.1.1). So, in

Springer Nature 2021 LATEX template

36 kNN Matrix Profile

Algorithm 8: STAMP(T , m)
Input: The user given time series T , subsequence length m
Output: The MP PT and associated matrix profile index IT

1 nT ← length(T) // get the no. of elements in T

2 PT ← Initialize this 1D vector with inf
3 IT ← Initialize this 1D vector with zeros
4 Idxs← (nT −m+ 1) // total number of possible subsequences

5 µT , σT ← ComputeMeanStd(T) // see Equation 2

6 for i← 1 to Idxs do
7 cutQuery ← T [i to (i+m− 1)] // get query subsequence by chopping T from index i to

(i + m − 1)

8 DistcutQuery ←MASS(cutQuery, µT [i], σT [i], T , µT , σT) // calculate

the distance between query subsequence and the other subsequences in T

9 PT ← computeElementwiseMin(DistcutQuery, PT) // perform

element-wise minimum of values from PT and DistcutQuery and store the minimum value in PT

10 IT ← i //update IT at the indexes where element-wise minimum operation replaces the previously

stored value in PT with the new value from DistcutQuery

11 return PT and IT // return the PT and IT array

Algorithm 9: INDEPENDENTSTOMP(t, µt, σt, tqSingleV al, Q, QT ,
µQ, σQ)

Input: One target subsequence (t), Mean of t (µt), Standard deviation of t
(σt), Dot product value between first query subsequence and t
(tqSingleV al), Query time series (Q), Existing dot product between
all query subsequences and the previous target subsequence (QT),
Mean of whole query time series Q (µQ), Standard deviation of Q
(σQ)

Output: A MP PQ and associated MP index IQ
1 Idxs← (nQ −m+ 1) // total number of possible subsequences

2 for j ← 2 to Idxs do
3 QT [j]← QT [j− 1]− (Q[j− 1]× t[1])+ (Q[j+m− 1]× t[1+m− 1])

4 QT [1]← tqSingleV al
5 DistcutQuery ← CalculateDistanceProfile(QT, µt, σt, µQ, σQ) // calculate

the distance profile

6 return DistcutQuery and QT // return the DistcutQuery and QT array

Line 3 we repetitively calculate the dot product profile between each query subse-
quence (from 2nd subsequence onward) and the target subsequence (t). The 1st term
i.e. (QT [j − 1]) at the right hand side of Line 3 holds the dot product profile of the
previous target subsequence (in comparison with t) and jth query subsequence. The
Q[j − 1] in 2nd term represents the 1st element of the previous query subsequence

Springer Nature 2021 LATEX template

kNN Matrix Profile 37

and t[1] represents the 1st element of the target subsequence (t). In the same man-
ner, Q[j + m − 1] and t[1 + m − 1] terms represent the last element of jth query
subsequence (current one) and the last element of the subsequences t. In Line 4, the
dot product value between the first query subsequence (j = 1) and the specific target
subsequence (t) is copied in QT [1]. This value is taken as input in this algorithm (i.e.,
tqSingleV al) The distance profile is calculated in Line 5 by using the dot product
profile (QT), mean (µt) and STD (σt) value of target subsequence t, mean (µQ) and
STD (σQ) vector of query time series. Finally the distance vector (DistcutQuery)
and the dot product vector (QT) are returned as the output from the algorithm.

The time complexity of classical STOMP is O(n)2 which is O(log n) improve-
ment over STAMP algorithm. This improvement is highly useful for computing MP
over big time series.

	Introduction
	Problem Definition

	Related Work
	kNN MP
	MP Algorithm
	Brief description of STOMP algorithm
	1NN Matrix Profile algorithm

	Computing kNN Matrix Profile
	Sort based kNN search
	Maximum based kNN search
	Heap based kNN search

	Multi-core based parallel computing

	Experimental Evaluation
	Setup
	Utility Experiments
	Case study: chemometric data
	kNN similarity search : case study on accelerometer data
	Case study: UCR repository
	Case study: Yahoo anomaly detection dataset

	Scalability of kNN similarity search
	Comparison with adapted STOMP

	Conclusion
	Fast Calculation of Distance
	Relation between convolution in time domain with frequency domain

	Fast Calculation of Mean and Standard Deviation :
	Brief description of MASS algorithm :
	Brief description of STAMP algorithm :
	Two independent time series matching using STOMP

