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ABSTRACT
Unsupervised side-channel attacks allow extracting secret keys

manipulated by cryptographic primitives through leakages of their

physical implementations. As opposed to supervised attacks, they

do not require a preliminary profiling of the target, constituting

a broader threat since they imply weaker assumptions on the ad-

versary model. Their downside is their requirement for some a
priori knowledge on the leakage model of the device. On one hand,

stochastic attacks such as the Linear Regression Analysis (LRA)

allow for a flexible a priori, but are mostly limited to a univariate

treatment of the traces. On the other hand, model-based attacks re-

quire an explicit formulation of the leakage model but have recently

been extended to multidimensional versions allowing to benefit

from the potential of Deep Learning (DL) techniques. The EVIL

Machine Attack (EMA), introduced in this paper, aims at taking the

best of both worlds. Inspired by generative adversarial networks, its

architecture is able to recover a representation of the leakage model,

which is then turned into a key distinguisher allowing flexible a pri-
ori. In addition, state-of-the-art DL techniques require 256 network

trainings to conduct the attack. EMA requires only one, scaling

down the time complexity of such attacks by a considerable factor.

Simulations and real experiments show that EMA is applicable in

cases where the adversary has very low knowledge on the leakage

model, while significantly reducing the required number of traces

compared to a classical LRA. Eventually, a generalization of EMA,

able to deal with masked implementation is introduced.

1 INTRODUCTION
1.1 Context
Side-Channel Analysis (SCA) is defined as the process of gaining in-

formation on a device holding a secret through its physical leakage

such as power consumption [17] or Electromagnetic (EM) emana-

tions [20]. This leakage allows an adversary to extract sensitive

information such as cryptographic keys by carefully exploiting

the dependencies between the secret and the side-channel data.

Strategies are mainly divided into two categories: supervised and

unsupervised SCA and their utilization depends on the considered

threat model. In the first one, the adversary is supposed to be able to

conduct a profiling step of the target, most likely on a clone device,

in which she learns the leakage model of the intermediate vari-

ables and then adopts a maximum likelihood approach to recover

the secret key. This includes strategies such as Gaussian template

attacks [5] or deep learning profiled attacks [18]. If the model is

perfectly learned during the characterization phase, these attacks

are known to be optimal from an information theory point of view.

However, being able to conduct a sound profiling step is not

always possible and refers to a strong threat model for the adversary.

Indeed, the latter one may not be able to obtain a clone with full

control on the device and even in cases where she could, template

portability issues [12] may still stand in the way. In this case, the

adversary can “replace” the profiling of the target by its a priori on
the leakage model to mount what is called unsupervised SCA. Such

an a priori usually comes from physical assumptions and is central

to unsupervised SCA. Indeed, as shown in [23], there does not exist

a generic unsupervised strategy that would work without requiring

such an a priori. However, a priori is a very vague term that only

captures the fact that the adversary has to have some knowledge

about the leakage model for the attack to work. This knowledge

can take many different forms.

In a first type of unsupervised SCA, known under the stochastic

attacks, the a priori takes the form of a parametric model. For

example, the well-known Linear Regression Analysis (LRA) [11]

falls into this category. The advantage of such attacks is their ability

to work with weak a priori such as the only assumption that the

bits of the sensitive variable leak independently. This makes them

robust and applicable in a wide range of cases.

Another type of strategy, denoted the model-based attacks in this

paper, requires the a priori on the model to be expressed as an ex-

plicit function (a.k.a. the partition function in [9]). A famous exam-

ple would be the classical Mutual Information Analysis (MIA) [14].

Some attacks of this category have recently been extended in order

to use deep learning techniques [9, 22, 24] allowing to take advan-

tage of the multidimensional treatment of the traces. It reduces at

the same time the need for preprocessing with for example filter-

ing or realignment techniques. It has been shown in [9] that such

attacks can exploit a larger part of the information contained in

the traces and may outperform state-of-the-art stochastic attacks.

However, they suffer from two major drawbacks:

• The choice of the partition function which is closely

related to the leakage model a priori. Indeed, each bit of

the intermediate variable can have very different leakage

behavior (especially when it comes to Electro-Magnetic (EM)

measurements) and even sign inversions of their coefficients

as shown in [6]. In these cases, a classical Hamming weight a
priori may lead to unsuccessful attacks where an LRA would

work.
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• The time complexity of the attack which requires as

many network trainings as there are key hypotheses (which

means 256 trainings when attacking a key byte). If the ad-

versary wants to test multiple a priori, this issue is then

amplified which leads to complex or even unpractical at-

tacks for highly noisy target requiring a lot of traces and

therefore long trainings.

1.2 Contributions
This paper presents a new unsupervised strategy, denoted the EVIL

Machine Attack (EMA), which allows to use a flexible a priori (as in
the stochastic attack) while still being able to exploit the power of

deep learning. We show that it only requires one network training

whatever the number of key hypotheses. Therefore, EMA over-

comes the two main issues of unsupervised deep learning attacks.

The architecture of the EVIL machine is presented in section 2.

It is a Generative Adversarial Network (GAN) like structure whose

goal is to derive the leakage model of the target under a key assump-

tion. The actual attack and how the number of network training is

reduced to only one is described in section 3. Results on synthetic

and real traces are also presented in this section. Eventually, sec-

tion 4 gives an introduction to a higher-order version of the attack,

when dealing with masked implementation.

2 LEARNING A LEAKAGE MODEL
REPRESENTATION

One of the main difficulties of the model-based SCA is to have a

sound representation of the leakage model to use it as a partition

function [9]. The original idea of this work is to transfer the task of

finding such a representation to a neural network without having

to use any a priori. This representation is conditioned by a key

assumption otherwise it would provide an a priori free strategy
contradicting [23]. So to ease the reading of the paper, the correct

key is first assumed to be known in this section. However, section 3

shows how such a tool can be turned into an actual unsupervised

attack.

2.1 Notations and SCA framework
Random variables are represented as upper-case letters such as 𝑋 .

They take their values in the corresponding set X depicted with a

calligraphic letter. Lower-case letters as 𝑥 stand for elements of X.
In order to gain information on the secret key the adversary

targets the manipulation of a sensitive variable 𝑍 ∈ Z = F𝑛
2
, for

a given 𝑛 ∈ N. This variable is supposed to functionally depends

on a public variable 𝑋 ∈ X = F𝑚
2
, for a given 𝑚 ∈ N, and a

secret key 𝑘∗ ∈ K = F𝑚
2
through the relation: 𝑍 = 𝑔(𝑋, 𝑘∗) where

𝑔 : X ×K → Z is a known function depending on the underlying

cryptographic algorithm. If an hypothesis 𝑘 is made on the secret

key, one can define 𝑍𝑘 = 𝑔(𝑋, 𝑘) such that 𝑍 = 𝑍𝑘∗ .

For a fixed 𝑘 we denote by 𝑔𝑘 the 𝑔(·, 𝑘) function. All the 𝑔𝑘
are supposed to be bijective in this paper of reciprocal 𝑔−1

𝑘
(for

example, in the classical first round AES case one would have

𝑔𝑘 (𝑋 ) = SBOX[𝑋 ⊕ 𝑘] of reciprocal 𝑔−1

𝑘
(𝑍 ) = SBOX−1 [𝑍 ⊕ 𝑘].

Eventually, traces 𝐿 leaking information about 𝑍 through a leakage

model 𝜑 can be expressed as 𝐿 = 𝜑 (𝑍 ) + E where E represent an

independent noise variable.

2.2 Building the Network’s Architecture
Classical Mutual Information (MI) attacks rank the key hypotheses

with the following distinguisher:

D(𝑘) = I
(
𝑓 (𝑍𝑘 ), 𝐿

)
(1)

where I(𝑋,𝑌 ) stands for the MI between 𝑋 and 𝑌 and 𝑓 is the

partition function transforming the guessed intermediate variable.

The starting point of the reasoning behind the EVIL machine is

the main theorem of [9] which states that the leakage model 𝜑

belong to the set of the optimal partition functions for the following

distinguishability criteria:

Theorem. (Cristiani et al.)

𝜑 ∈ F𝑜𝑝𝑡 = arg max

𝑓 : Z→R𝑝

{
I
(
𝑓 (𝑍𝑘∗ ), 𝐿

)
−max

𝑘≠𝑘∗

[
I
(
𝑓 (𝑍𝑘 ), 𝐿

) ]}
(2)

Note that traces can be multidimensional. Therefore the output

domain of 𝜑 is R𝑝 where 𝑝 can be any positive integer.

Our goal is to derive from this theorem a neural network archi-

tecture able to produce an encoding function E : Z → R of the

leakage model 𝜑 . The main challenge is to define the network’s ob-

jective function. Optimally, E should carry the same information as

𝜑 and therefore be a bijection of 𝜑 encoding it into one dimension
1
.

Combined with Equation 2, this property could be derived as an

objective for E. Indeed, since bijective transformations do not affect

the MI:

E ∈ B(𝜑) =⇒ E ∈ F𝑜𝑝𝑡 (3)

where B(𝜑) stands for the set of all bijections of 𝜑 . The reciprocal
of Equation 3 is not formally proven even though we conjecture so.

Thus, we make the hypothesis here that a function belonging to

F𝑜𝑝𝑡 would give a valuable representation of the leakage model and

try to find such a function thanks to deep learning tools. A naive

idea would be to use the difference of the MI term in Equation 2

as an objective function for E. However, such an expression can

hardly be used in a deep learning framework.

The first problem is the presence of the max function which is

not differentiable. This problem can be solved using remark 1 of [9]

which states that the theorem is still valid if one fixes
¯𝑘 ∈ K \ 𝑘∗.

So ∀¯𝑘 ∈ K \ 𝑘∗:

𝜑 ∈ F𝑜𝑝𝑡 = arg max

𝑓 : Z→R𝑝

{
I
(
𝑓 (𝑍𝑘∗ ), 𝐿

)
− I

(
𝑓 (𝑍 ¯𝑘 ), 𝐿

)}
(4)

The second problem is the computation of the MI terms which are

known to be hard, especially for high-dimensional traces. How-

ever, [8] recently showed that these MI terms could be estimated

using deep learning tool and more precisely a Mutual Information

Neural Estimator (MINE) [1]. Therefore such a tools could be in-

corporated into the EVIL machine architecture in order to compute

the objective function of the encoder E. In this paper it is enough

to see MINE as a black-box deep learning method that defines a

network, taking as input the traces and label variable, with an

objective function converging toward the MI between these two

1
One could design an encoding function encoding the leakage model in more

than one dimension. However, preliminary analyses did not show any real value

of increasing the output dimension. In addition, since one-dimensional data are

easier to interpret and better suited for the attack phase presented in section 3,

we only focus on functions with a one-dimensional output in this paper.
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Figure 1: The EVIL Machine Architecture

variables. Further details on the theory and implementation in an

SCA context can be found in [8].

Architecture. The architecture of the EVIL Machine is depicted

in Figure 1. It is composed of three neural networks interacting

with each other:

• An encoder E which takes as input a label (for instance, the

value of 𝑍𝑘∗ or 𝑍 ¯𝑘 ) and outputs a value in R (its final layer

is a single neuron).

• MINE A which objective function produces an estimation

ˆI(𝐸 (𝑍𝑘∗ ), 𝐿) of I(E(𝑍𝑘∗ ), 𝐿).
• MINE B which objective function produces an estimation

ˆI(𝐸 (𝑍 ¯𝑘 ), 𝐿) of I(E(𝑍 ¯𝑘 ), 𝐿), where ¯𝑘 is fixed to any value in

K \ 𝑘∗.
The encoder E is applied on both 𝑍𝑘∗ and 𝑍 ¯𝑘 where

¯𝑘 can be fixed

to any value except 𝑘∗. Then E(𝑍𝑘∗ ) and E(𝑍 ¯𝑘 ) are both concate-

nated with the traces (each trace is concatenated with its associated

encoded label) and provided to the MINE networks which estimate

both MI terms of Equation 4. Their difference is used as an objective

function for the encoder. If all the objective functions are correctly

optimized (with usual deep learning techniques), E should converge

toward an element of F𝑜𝑝𝑡 , potentially close to a bijection of 𝜑 . In

theory, on entire execution of MINE A and B should be run after

each epoch of E which would be very long. So we decided to mimic

the idea found in the field of GANs [15] and run successively one

epoch of E and one epoch of A and B (in parallel) hoping that this

strategy accelerates the convergence without worsening the results.

2.3 Simulation Experiments
We have implemented the generic architecture described in the

previous section using the TensorFlow library [13]. The precise

architecture of each network is depicted in Appendix A. In order

to validate the methodology and gain intuition about the network

behavior, this section provides simulation experiments on synthetic

traces generated with different leakage models. The idea is to ob-

serve the evolution of the output of E over the training epochs and

to compare it to the known underlying leakage model to assess if

that is converging toward a bijection of 𝜑 .

Hamming Weight Leakage Model. For the first experiment,

we have generated the most basic side-channel traces composed

of one sample leaking a noised version of the Hamming weight of

𝑍𝑘∗ = 𝑆𝐵𝑂𝑋 [𝑃 ⊕ 𝑘∗], with P and 𝑘∗ respectively representing a

plaintext and a key byte. The leakage traces can then be expressed

as:

𝐿 = HW(𝑍𝑘∗ ) + N (0, 1) (5)

with N(0, 1) representing the standard normal distribution. The

evolution of the output of E is depicted in Figure 2. For each epoch,

we plot E(𝑧) for all 𝑧 ∈ Z. Each of these 256 values are colored

according to their Hamming weight. The first observation is that

the encoder is learning to cluster the different values of 𝑍 according

to their Hamming weight. It thus correctly learns a bijection of the

true leakage model. It should be noted that E clusters the Hamming

weight classes in order which was not guaranteed by themathemati-

cal analysis. The latter result being robust over multiple simulations,

we conjectured that such a representation is “simpler” in a way and

naturally emerges from the gradient descent algorithm.

Figure 2: Evolution of the encoder’s output: E(𝑧),∀𝑧 ∈ Z
versus epochs (Hamming weight leakage model).

Linear Leakage Model. To assess the EVIL machine capabil-

ities on a more generic leakage model, we repeated the previous

experiment emulating a linear leakage with respect to the bits of

the sensitive variable. In this case, the leakage traces can then be

expressed as:

𝐿 = 𝜑0 (𝑍𝑘∗ ) + N (0, 1) (6)

with 𝜑0 =
∑

8

1
𝛼𝑖𝑏𝑖 where 𝑏𝑖 represents the projection on the 𝑖𝑡ℎ bit

and 𝛼𝑖 a random coefficient uniformly drawn from [−1, 1]. Results
are depicted in Figure 3. Each point is colored according to the value

of 𝜑0 (𝑧). The encoder is again converging towards a meaningful

representation of the leakage model. Indeed, the figure looks like a

uniform rainbowwhich highlights the fact that the relation between

E(𝑍𝑘∗ ) and 𝜑0 (𝑍𝑘∗ ) is quasi-linear.

Multidimensional Leakage Model. One of the main advan-

tages of the EVIL machine is its ability to take large parts of the

trace as input and to compress into one neuron multiple leakage

sources. To highlight this multidimensional capability we design

a simple example where the leakage is split on two samples. Each

sample leaks respectively the Hamming weight of 𝑍+
𝑘∗

and 𝑍−
𝑘∗

which represent the four most and least significant bits of 𝑍𝑘∗ . The

leakage traces can then be expressed as:

𝐿 = [HW(𝑍+
𝑘∗ ) + N (0, 1), HW(𝑍−

𝑘∗ ) + N (0, 1)] (7)
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Figure 3: Evolution of the encoder’s output: E(𝑧),∀𝑧 ∈ Z
versus epochs (linear leakage model).

Results are presented in Figure 4. The two plots are the same but

colored differently. Figure 4a is colored according to HW(𝑍+
𝑘∗
)

while Figure 4b is colored according to HW(𝑍−
𝑘∗
). It appears that

the encoder uses the macro structure (the five big branches) to

encode the information on 𝑍+
𝑘∗

and the micro structure (the po-

sition in the branch) to encode the information on 𝑍−
𝑘∗
. There-

fore, the encoder successfully learned a compressed version of a

multidimensional leakage model. In this case it could almost be

expressed as linear combination of both leakage sources: E(𝑧) ≈
𝛼HW(𝑍+

𝑘∗
) + 𝛽HW(𝑍−

𝑘∗
), for some 𝛼, 𝛽 ∈ R.

(a) Colored according to
𝐻𝑊 (𝑍+

𝑘∗ )
(b) Colored according to

𝐻𝑊 (𝑍 −
𝑘∗ )

Figure 4: Evolution of the encoder’s output: E(𝑧),∀𝑧 ∈ Z
versus epochs (multidimensional leakage model).

Non-Linear Leakage Model. Finally, to show that the EVIL

machine is not limited to linear leakage models, we present an

experiment with a non-linear model 𝜑𝑁𝐿 . We used a linear leakage

model 𝜑0 on the 7 MSBs of 𝑍𝑘∗ where the sign of the leakage

is determined by the value of the LSB: 𝜑𝑁𝐿 = (−1)𝑏8 ∗ 𝜑0 with

𝜑0 =
∑

7

1
𝛼𝑖𝑏𝑖 , where 𝛼𝑖 are random coefficient uniformly drawn

from [0, 1]. The leakage traces can then be expressed as:

𝐿 = 𝜑𝑁𝐿 (𝑍𝑘∗ ) + N (0, 1) (8)

Results are depicted in Figure 5. Each point is colored according to

the value of 𝜑0 (𝑧). In this case, it appears that the encoder learned

a representation of the leakage model 𝜑𝑁𝐿 composed of two sym-

metric branches, each one encoding the linear part of the model 𝜑0

but in the opposite direction due to the sign inversion related to the

value of the LSB of 𝑍𝑘∗ . This confirms that the EVIL machine can

still learn sound representations of the leakage even if the latter is

non-linear.

Figure 5: Evolution of the encoder’s output: E(𝑧),∀𝑧 ∈ Z
versus epochs (non-linear leakage model).

This section has shown that the EVIL machine could learn a

sound representation of the leakage model. Such a tool can be

useful in itself, for example, for designers to gain intuition on the

leakage of their devices. It does require the knowledge of the key to

work, however, it is possible to use key guesses as explained in the

next section which aims at turning this tool into an unsupervised

attack.

3 THE EVIL MACHINE ATTACK
The EVIL machine presented in the previous section produces a

representation of the leakage model assuming that the correct key is

known. However, making hypotheses on the key allows to convert

this tool into a key recovery strategy, denoted the EVIL Machine

Attack (EMA). For any 𝑘 ∈ K one can run an iteration of the EVIL

machine producing a representation E𝑘 of the leakage model 𝜑𝑘
representing the leakage model under the assumption that the cor-

rect key is 𝑘 . All of these models 𝜑𝑘 mathematically exist. They are

functions representing a hypothetical leakage model that would

be the real one if the processed variable was the wrongly guessed

𝑍𝑘 = 𝑔(𝑋, 𝑘) instead of 𝑍𝑘∗ . Thus, they satisfy the following prop-

erty:

𝜑𝑘 (𝑍𝑘 ) = 𝜑𝑘∗ (𝑍𝑘∗ ) (9)

They are therefore, very likely, complicated functions (with

a high algebraic degree) due to cryptographic properties of the

𝑔𝑘 functions
2
linking 𝑍𝑘 and 𝑍𝑘∗ together by the relation: 𝑍𝑘 =

𝑔𝑘 (𝑔−1

𝑘∗
(𝑍𝑘∗ )). The main idea of EMA is then to choose among all

the possible representations of the leakage model E𝑘 , the simplest

one, implementing a form of Occam’s razor principle. This choosing

step involves physical knowledge on what a leakage model should

look like and this is where the adversary’s a priori knowledge comes

into play.

To illustrate the point, we repeated the Hamming weight leakage

model experiment of section 2 but with a wrong key guess 𝑘0. The

evolution of E𝑘0
and E𝑘∗ , the one obtained with the correct key

guess, are plotted in Figure 6 in order to compare them. One can

visually note the difference: E𝑘∗ is related to the Hamming weight

function while E¯𝑘 seems unstructured and close to a random output.

Such property can be used to define a distinguisher between key

guesses as explained in subsection 3.2.

2
Cryptographic algorithms should embed highly non-linear transformations to

avoid algebraic attacks and we assume here that the targeted sensitive variable

has undergone this non-linear transformation, for example, 𝑍 = SBOX(𝑋 ⊕ 𝑘∗ ) .
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(a) Correct key (b) Wrong key

Figure 6: Evolution of the encoders’ output for the correct
and a wrong key guess.

3.1 One Training to Rule them All
Obtaining all the E𝑘 can be done by running |K | times the EVIL

machine with different key assumptions. However, this may be

very long, especially for low-information scenarios requiring a lot

of traces which are precisely the use cases considered in this paper.

This section shows that the adversary can in fact make a first guess

𝑘0, which may be wrong, compute E𝑘0
, and mathematically derive

E𝑘 for any 𝑘 ∈ K from E𝑘0
. This method allows running only once

the EVIL machine to rule all cases.

As explained in the previous section E𝑘0
gives a representation

of 𝜑𝑘0
, the leakage model if the correct key was 𝑘0. For any 𝑘 ∈ K

Equation 9 gives:

𝜑𝑘 (𝑍𝑘 ) = 𝜑𝑘∗ (𝑍𝑘∗ ) (10)

which is also true for 𝑘0:

𝜑𝑘0
(𝑍𝑘0
) = 𝜑𝑘∗ (𝑍𝑘∗ ) (11)

So one can deduce from Equations 10 and 11 that:

𝜑𝑘 (𝑍𝑘 ) = 𝜑𝑘0
(𝑍𝑘0
)

𝜑𝑘
(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍𝑘 ))

)
= 𝜑𝑘0

(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍𝑘0
))
)

𝜑𝑘 (𝑍𝑘0
) = 𝜑𝑘0

(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍𝑘0
))
) (12)

which completely define 𝜑𝑘 from 𝜑𝑘0
. Since E𝑘 stands for a repre-

sentation of 𝜑𝑘 , one has by analogy:

E𝑘 (𝑍𝑘0
) = E𝑘0

(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍𝑘0
))
)

(13)

And since 𝑍𝑘0
and 𝑍 live in the same setZ, one can simplify the

previous equation:

E𝑘 (𝑍 ) = E𝑘0

(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍 ))

)
(14)

So one can quickly and easily deduce any E𝑘 including E𝑘∗ from the

only knowledge of E𝑘0
with 𝑘0 arbitrary chosen by the adversary.

This reduces by a factor |K | (when targeting a key byte, |K | = 256)

the time complexity of the attack.

Example. In the AES case with 𝑔𝑘 (𝑃) = SBOX[𝑃 ⊕ 𝑘] where 𝑃
represents a plaintext byte, one can deduce E𝑘 from E𝑘0

with the
following formula:

E𝑘 (𝑍 ) = E𝑘0

(
SBOX

[
SBOX−1 [𝑍 ⊕ 𝑘] ⊕ 𝑘0

] )
(15)

3.2 About the Distinguisher
In a real attack scenario, one does not know the true leakage model

so it is impossible to use the visualization technique used in the

previous section (where each sample is colored according to the

true leakage model) to discriminate between the key candidates.

Therefore, one would need a distinguisher D scoring each leakage

model representation E𝑘 to rank the key hypotheses. The intuition

behind EMA is thatD should give a score reflecting the plausibility

of the leakage representation E𝑘 according to physical a priori on
the leakage model and on which properties the latter should follow.

Assumption on the Degree of E𝑘∗ . We herein give a proposal

of distinguisher for the common a priori stating that the leakage

model 𝜑𝑘∗ should be a function from Z = F2
𝑛 → R𝑝 such that

the 𝑝 coordinate functions have a low algebraic degree (bonded

by a degree 𝑑). This is the multivariate version of assumption 3

(Leakage Interpolation Degree) followed in [11] for the setup of

the well-known LRA. For example, a degree 𝑑 = 1 traduces the fact

that, for each time sample, all the bits of the processed variable leak

independently. We propose to extend the assumption on the degree

of 𝜑𝑘∗ (precisely of its coordinate functions) to the degree of its

representation E𝑘∗ , produced by the EVIL machine.

Distinguisher. If this assumption is true, then one can perform

a polynomial regression of order 𝑑 to find the polynomial 𝑝𝑘 of

degree 𝑑 minimizing the quadratic error | |E𝑘 (𝑍𝑘 ) − 𝑝𝑘 (𝑍𝑘 ) | |2 for
all 𝑘 . As explained in [11], such a regression can be seen as a linear

regression by choosing an appropriate basis and is easily solvable

using the least square method. A measure of fitness such as the

coefficient of determination 𝑅2
is then used as a score for each key:

D(𝑘) = 1 − ||E𝑘 (𝑍𝑘 ) − 𝑝𝑘 (𝑍𝑘 ) | |
2

var

(
E𝑘 (𝑍𝑘 )

) (16)

Since the assumption on the degree of E𝑘 is true only for 𝑘 = 𝑘∗,
the correct key should have the highest score leading to a successful

attack.

Intuition Behind the Assumption. The justification of the

assumption on the degree of E𝑘∗ is empirical. Indeed two func-

tions in bijection do not necessarily have the same algebraic degree.

However, we observed in the experiments of section 2 that the

encoder naturally converges towards a “smooth” representation

of the leakage model. Our intuition is that since neural networks

are composed of a succession of continuous functions it is easier

for it to map two values 𝑧1 and 𝑧2 that have a close leakage model

(𝜑𝑘∗ (𝑧1) close to 𝜑𝑘∗ (𝑧2)), to close encoding values E𝑘∗ (𝑧1) and
E𝑘∗ (𝑧2). Such continuous representation has more chance of pre-

serving the degree. In addition, in Figure 4, it seems that when

dealing with multidimensional leakages, the encoder produces a

linear combination of the representation of univariate leakages.

Such additive behavior would also preserve the degree since by

hypothesis all the coordinate functions are of degree less or equal

than 𝑑 .

Experiments Supporting the Assumption. One may argue

that the intuitions shared in the previous paragraph come from

simple experiments and may not scale with high dimensional traces

containing much more leaking samples as well as uninformative
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samples. Therefore we designed two experiments to assess the as-

sumption in these harder cases. We have generated 10000 synthetic

traces of dimension 1000 for both experiments. They contains 100

informative samples randomly distributed in the traces leaking in-

formation about 𝑍 = Sbox[𝑃 ⊕ 𝑘∗] where 𝑃 represents a plaintext

byte uniformly drawn from ⟦0, 255⟧. In the first experiments, a

linear leakage model is assigned to each sample, thus, the leakage

𝐿 of each sample can be expressed as:

𝐿 = 𝛼0 +
8∑︁

𝑖=1

𝛼𝑖 · 𝑏𝑖𝑡𝑖 (𝑍 ) + N (0, 1) (17)

where 𝑏𝑖𝑡𝑖 (𝑍 ) stands for the 𝑖𝑡ℎ bit of 𝑍 . The 𝛼𝑖 are random coeffi-

cient uniformly drawn from [−1, 1]. These coefficients are redrawn

for each leaking sample. The second experiment emulates quadratic

leakages (with no linear coefficients) such that for each sample:

𝐿 = 𝛼0 +
8∑︁

𝑖=1

8∑︁
𝑗=𝑖+1

𝛼𝑖, 𝑗 · 𝑏𝑖𝑡𝑖 (𝑍 ) · 𝑏𝑖𝑡 𝑗 (𝑍 ) + N (0, 1) (18)

In both experiments, the 900 non-informative samples follow a

normal distribution N(0, 1). We ran the EVIL machine assuming

𝑘0 ≠ 𝑘∗ and derived all the E𝑘 as explained in subsection 3.1. Fig-

ure 7 reports the evolution ofD(𝑘) for each 𝑘 computed with linear

and quadratic regression respectively for the first and second ex-

periments. In both cases, the coefficient of determination converges

toward 1 for the correct key. This means that after some epochs, E𝑘∗
can be perfectly regressed by a linear/quadratic model. These two

results support the assumption on the degree of E𝑘∗ regarding the

maximum degree of the coordinate function of the leakage model

𝜑𝑘∗ . In addition, this is not at all the case of E𝑘 for 𝑘 ≠ 𝑘∗ leading to
a high distinguishability between the correct and the wrong keys.

(a) Linear leakages (b) Quadratic leakages

Figure 7: Evolution of the distinguisher D(𝑘) versus epochs
for all the key candidates.

3.3 Attack Description
The steps required to perform the EMA are summarized hereafter.

(1) Choose any 𝑘0 and run the EVIL machine for 𝑛𝑒 epochs with

𝑘0 as a key assumption. This gives a representation E(𝑒 )
𝑘0

for

each epoch 𝑒 .

(2) Derive E(𝑒 )
𝑘

for all 𝑒 and 𝑘 using the formula:

E(𝑒 )
𝑘
(𝑍𝑘0
) = E(𝑒 )

𝑘0

(
𝑔𝑘0
(𝑔−1

𝑘
(𝑍𝑘0
))
)

(19)

(3) Compute for all 𝑒 and 𝑘 the distinguishing score:

D (𝑒 ) (𝑘) = 1 −
||E(𝑒 )

𝑘
(𝑍𝑘 ) − 𝑝𝑘 (𝑍𝑘 ) | |2

var

(
E(𝑒 )
𝑘
(𝑍𝑘 )

) (20)

(4) Derive a single score for each key:

D(𝑘) = max

𝑛𝑠≤𝑒≤𝑛𝑒
D (𝑒 ) (𝑘) (21)

(5) Rank the keys according to their distinguishing score.

The 𝑛𝑠 and 𝑛𝑒 parameters are hyper-parameters set by the adver-

sary. The purpose of 𝑛𝑠 is to not take into account potential early

fluctuation where the networks might be not stable yet. This turned

out to be useful for very noisy situations (for our experiments, we

used 𝑛𝑠 = 50 and 𝑛𝑒 = 100).

3.4 Experimental Results
EMA uses the classical LRA distinguisher on the encoder’s output

whose purpose is to encapsulate all the informative components of

the traces. The classical LRA computes the regression directly on

the traces in a univariate way (selecting the maximum score along

all samples as a distinguisher). This section provides simulations

and real case experiments aiming at comparing both attacks in order

to assess to what extent the deep learning step is valuable. Both

attacks are unsupervised and require very limited knowledge on the

leakage model of the target. The main advantage of EMA over LRA

is the multidimensional treatment of the traces. The latter offers

the capability to potentially exploit multiple leakage sources at the

same time while reducing the need of preprocessing techniques

thanks to the power of DL techniques. For example, convolutional

layers may handle desynchronized traces [3]. To confirm that these

advantages translate into objective improvements in terms of noise

resilience or number of traces required, we present hereafter two

experiments.

Experiments on Synthetic traces. For the first experiment,

we generated multidimensional synthetic traces subject to desyn-

chronization. These traces contains 20 informative samples, leaking

information about 𝑍 = Sbox[𝑃 ⊕ 𝑘∗] trough linear leakage models,

with randomly chosen coefficients, to which we added Gaussian

noise with a standard 𝜎 . Traces contains also 80 uninformative sam-

ples and are artificially desynchronized. Each trace is shifted by a

random number 𝑠ℎ uniformly drawn from ⟦0, 50⟧. The precise gen-
eration procedure is depicted in Algorithm 1. We ran the classical

LRA and the EMA following the procedure explained in subsec-

tion 3.3 for each value of 0 ≤ 𝜎 ≤ 25. Results are presented in

Figure 8a. Each point represents the average rank of the correct

key computed over 100 independent experiments realized with a

given value of 𝜎 . It appears that the EMA is way more resilient to

the noise added to the traces resulting in successful attacks where

the LRA fails. We highlight the fact that with such leakage models,

(linear model with random coefficient from [−1, 1]) it would be

hard to run an effective model-based attack since it would require

an explicit model assumption.

Experiments on Real Traces. In order to validate our method-

ology on a real case scenario, we have acquired one million AES

traces from a cortex A7-based System-on-Chip (SoC) running a
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Algorithm 1 Generate Traces

Input: 𝜎
Output: 𝐿, a (10𝑘, 100) array
𝑃 ← Draw 10k plaintext uniformly from ⟦0, 255⟧
𝑍 ← Sbox[𝑃 ⊕ 𝑘∗]
𝐿 ← Draw a (10k, 100) array from a Gaussian N(0, 𝜎2)
𝑅 ← Draw a (20, 8) array of random coefficients fromU[−1, 1]

for 1 ≤ 𝑖 ≤ 10k do
for 1 ≤ 𝑗 ≤ 20 do ⊲ Add leakage one every 5 samples

𝐿[𝑖, 5 ∗ 𝑗] ← 𝐿[𝑖, 5 ∗ 𝑗] +∑8

𝑙=1
𝑅 [ 𝑗, 𝑙] · 𝑏𝑖𝑡𝑙 (𝑍 [𝑖])

end for
end for
for 1 ≤ 𝑖 ≤ 10k do

𝑠ℎ ← Draw a random integer uniformly from ⟦0, 50⟧
𝐿[𝑖] ← Roll(𝐿[𝑖], 𝑠ℎ) ⊲ Apply the jitter (Roll is a function

shifting the array by 𝑠ℎ, in a looping way)

end for
return L

Linux OS. The AES implementation comes from the OpenSSL li-

brary [21]. We chose to run the analysis on a very noisy SoC subject

to desynchronization, thus, offering an interesting case. Traces
3
are

composed of 1500 samples corresponding to the execution of the

first round Sbox. Guessing entropies of LRA and EMA are presented

in Figure 8b. Each point represents the average rank of the correct

key computed over 100 experiments in which traces are chosen

randomly from the dataset. It appears that the EMA converges

toward the correct key faster than the LRA ranking it always at

the first position with 40k traces where the LRA does not with

150k traces. This confirms that the EMA may be worth considering

in very noisy scenarios, offering an unsupervised deep learning-

based attack requiring only one network training and very little

knowledge on the device leakage model.
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(a) Synthetic traces
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(b) Real traces (A7 based SoC)

Figure 8: Guessing entropies of EMA and LRA.

4 INTRODUCTION TO HIGHER-ORDER
GENERALIZATION

One of the most widely used countermeasures to prevent instanta-

neous leakages and mitigate first-order SCA is to mask the sensitive

data using secret sharing techniques [4]. The idea is to split each

sensitive intermediate value 𝑧, into 𝑑 shares: (𝑧𝑖 )1≤𝑖≤𝑑 . The 𝑑 − 1

3
For reproducibility reasons and potential use in the SCA community, the dataset

with the associated labels is accessible on this link: removed for blind reviews.

shares 𝑧2, ..., 𝑧𝑑 are randomly chosen and the last one, 𝑧1 is pro-

cessed such that:

𝑧1 = 𝑧 ∗ 𝑧2 ∗ · · · ∗ 𝑧𝑑 (22)

for a group operation ∗ ofZ. This led to the emergence of the so

called higher-order attacks which combine multiple samples from

the same traces leaking information from each share to deduce in-

formation on 𝑍 . The EVIL machine is, by nature, multidimensional

and may therefore be extended to masked implementations. Indeed,

it has been shown in [8] that MINE can automatically recombine

samples to find information in masked cases. It would therefore

be possible to run straightforwardly the EVIL machine on masked

implementations. However, the main theoretical problem is that

in masked case the leakage model can not be expressed as a de-

terministic function 𝐿 = 𝜑 (𝑍 ) with some noise. Thus, there is no

equivalent of Equation 2 for masked cases. A natural question is

then to ask towards what kind of representation should the encoder

typically converge.

4.1 Encoder’s Output and Joint Moments
When dealing with masked implementations, the leakage variable

is not separable into a deterministic and a noise part anymore.

Instead, traces correspond to realizations of a leakage variable 𝐿

coming from a stochastic process S, 𝑍 S−→ 𝐿 which encapsulates

the random choice of the masks and the leakage model of each

share. 𝐿 follows a multivariate probability distribution which, as

any distribution, is completely determined by the list of all its joint

moments. First-order SCA exploit information in the first-order

moment: the leakage model being the mean per class:

𝜑 (𝑧) = E[𝐿 | 𝑍 = 𝑧] (23)

For a masked implementation the discriminating information, if it

exists, is necessarily hidden in higher-order joint moments since

lower-order leakages are prevented by masking. Therefore, the idea

of higher-order attacks [7, 10, 19] is to exploit the lowest-order
4

centered joint moment containing information, thus replacing Equa-

tion 23 by the joint moment per class. For a 𝑑-order masked im-

plementation and (𝐿1, . . . , 𝐿𝑑 ) representing one leakage sample for

each share, such a joint moment can be expressed as:

𝑗𝑚𝐿 (𝑧) = E
[ 𝑑∏
𝑖=1

(𝐿𝑖 − 𝜇𝐿𝑖 | 𝑍 = 𝑧)
]

(24)

where 𝜇𝐿𝑖 stands for the expectation of 𝐿𝑖 . For example, the classical

second-order CPA [19] combines samples with the centered product

function which happens to be the covariance, a.k.a. the second order
joint moment.

Hypothesis on the Encoder’s Output. By analogy with the

unmasked case where the encoder of the EVIL machine converged

towards a representation of 𝜑 (Equation 23) our hypothesis is that,

for masked implementations, the encoders will converge towards a

representation of 𝑗𝑚𝐿 (Equation 24). Our intuition is that 𝑗𝑚𝐿 (𝑍 ) is
a sound way to encode 𝑍 to keep information between 𝑗𝑚𝐿 (𝑍 ) and
𝐿 while limiting the information I

(
𝑗𝑚𝐿 (𝑍 ¯𝑘 ), 𝐿

)
computed with a

wrong key candidate
¯𝑘 .

4
Higher-order moments being harder to estimate due to noise amplification.
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Experiment Supporting the Hypothesis. To validate this hy-

pothesis, we present experiments on masked synthetic traces for

three different second-order masking schemes: Boolean, arithmetic

and multiplicative. The group operations are respectively the xor ⊕,
the addition over Z/𝑛Z +[𝑛] and the multiplication over the Ga-

lois field ⊗. The multiplication by 𝑚 being reversible for 𝑚 ≠ 0

the multiplicative mask has to be chosen in F∗
2
𝑛 . In addition, the

multiplicative scheme is biased since 𝑍 = 0 implies 𝑍 ⊗ 𝑚 = 0

which induces a first-order leakage. For each masking scheme, we

have generated 50k traces containing two samples representing

the leakage of each share, 𝑍1 and 𝑍2, through a linear model. The

leakage 𝐿 can be expressed as:

𝐿 =

[
8∑︁

𝑖=1

𝛼𝑖𝑏𝑖𝑡𝑖 (𝑍1) + N (0, 1),
8∑︁

𝑖=1

𝛽𝑖𝑏𝑖𝑡𝑖 (𝑍2) + N (0, 1)
]

(25)

where the 𝛼𝑖 and 𝛽𝑖 coefficients are uniformly drawn from [−1, 1].
We have run the EVIL machine as explained in section 2 and present

the result in Figure 9. For the Boolean and arithmetic schemes, each

point is colored according to the theoretical covariance per class:

cov(𝐿 | 𝑍 = 𝑧) which is computable knowing the 𝛼𝑖 and 𝛽𝑖 . It

appears that the encoder is converging towards a smooth repre-

sentation of covariance per class (the second-order joint moment),

thus, supporting the hypothesis. For the multiplicative scheme, it

seems that the encoder learned to distinguish the class 𝑍 = 0 from

the others, confirming that it is focusing on lower-order leakages,

if it exists, in priority.

(a) Boolean (b) Arithmetic

(c) Multiplicative

Figure 9: Evolution of the encoder’s output: E(𝑧),∀𝑧 ∈ Z on
masked synthetic traces (linear leakage model of the shares).

About the Distinguisher. Attacks with flexible a priori have
been extended tomasked implementationmainly from twoworks: [7,

10]. In [10], authors presents a higher-order version of the LRA, the

HO-LRA, by proposing to perform the LRA on the estimated joint

moment per class instead of the raw traces. In [7], authors highlight

some limitations of the previous works and propose to directly

regress the leakage model of each share with the Joint Moment Re-

gression (JMR) strategy. Both attacks use an estimation of the 𝑗𝑚𝐿

function calculated under a key assumption as input to the method.

Therefore we argue that these attacks could be conducted on the

output of the encoders of the EVIL machine. Indeed, as suggested

(a) Evolution of the distinguisher
D(𝑘 ) versus epochs for all the

key candidates.

(b) Evolution of the encoder’s
output: E(𝑧 ), ∀𝑧 ∈ Z colored
according to the LSB of 𝑧.

Figure 10: Attack results on ASCAD with 10k traces.

in the previous section, E𝑘∗ (𝑍 ) could be seen as a representation

of the 𝑗𝑚𝐿 function under the correct key assumption. The trick

introduced in subsection 3.1 still apply and all the E𝑘 can be derived

from only one network training.

Again, the main advantage of the EMA is that these representa-

tions benefit from all the deep learning techniques. In addition, in

classical 𝑑-variate attacks, the adversary should select the 𝑑 sam-

ples from the traces to combine and perform the joint moment

estimation. In a complete black-box setting, with no information

on the point of interests, the latter has to enumerate all the possible

𝑑-(upplet) samples and select the best one which can be very long

and scale exponentially with 𝑑 . The EMA does not suffer from the

same problem since the whole (or at least a big part of) traces can

be fed to the network.

4.2 A Practical Case on ASCAD
As a proof of concept of the higher-order version of the EMA,

this section presents an attack on the public ASCAD dataset [2].

It is a common set of side-channel traces, introduced for research

purposes on deep learning-based side-channel attacks. The targeted

implementation is a software AES, protected with a first-order

Boolean masking, running on an 8-bit ATMega8515 board. Since

JMR and the HO-LRA are equivalent for the second-order Boolean

case, as shown in [7], we adopt the HO-LRA strategy which is

simpler. It just consists in conducting an LRA on the estimated

covariance or on E𝑘 for the EMA case. It is therefore the exact same

attack as for the first-order case described in subsection 3.3. We ran

the EMA on 10k of the training traces which consist of 700 samples

targeting the first Sbox. Results are presented in Figure 10a. The

attack is successful with a clear distinguishability for the correct

key.

In order to identify which features of the traces has been ex-

ploited by the EVIL machine (with the correct key assumption) we

plotted the evolution of the encoder’s output in Figure 10b and

colored each point of according to the value of the LSB. Indeed, [9]

showed that the higher-order leakage of ASCAD traces is mostly

related to the value of the LSB of 𝑍 . It appears that after 200 epochs

(when the attack begins to work) the encoder actually learned to

split the two classes related to the LSB illustrating the interpretabil-

ity of the encoder’s output.

To give an order of magnitude, running the full attack (with

the 500 epochs) took approximately 5 minutes on a workstation

embedding a Tesla V100.
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5 CONCLUSION
This paper presents a new unsupervised side-channel key recovery

strategy denoted the EVIL Machine Attack (EMA). It is built on a

GAN-like structure that aims at converging towards a representa-

tion of the leakage model of the device under a key assumption.

Occam’s razor’s principle allows to derive from this tool an actual

attack enabling the utilization of deep learning’s potential while

requiring very few knowledge on the leakage model. For exam-

ple, a simple linear leakage assumption is enough as in a classical

LRA. It requires only one network training where classical un-

supervised deep learning strategies require as many trainings as

key guesses (256 when targeting a key byte). Thus EMA reduces

significantly the time complexity while being more flexible in the

leakage model a priori than unsupervised DL based attack. This may

lower the barrier for conducting such kind of attacks in practice.

Simulations and real cases experiments suggest that the additional

information brought by the multidimensional treatment of traces

is beneficial and translates into more data-efficient attacks than

the classical LRA. For example, it lower by more than 400% the

number of required traces in the real case scenario targeting the

openSLL implementation of the AES running on a SoC. Eventually,

the last part of the paper is dedicated to an introduction of higher-

order generalizations of the strategy, replacing the leakage model

estimation with the joint moment estimation.
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A NETWORKS ARCHITECTURE
Figure 11 and Figure 12 show the network architectures used for all

the the experiments of this paper. The optimizer used is Adam [16]

with default parameters. The convolutional and fully connected

layers use the exponential linear unit (ELU) as activation function.
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