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Abstract. Practical side-channel attacks on recent devices may be challenging due
to the poor quality of acquired signals. It can originate from different factors, such
as the growing architecture complexity, especially in System-on-Chips, creating
unpredictable and concurrent operation of multiple signal sources on the device.
This work makes use of mixture distributions to formalize this complexity, allowing
us to explain the benefit of using a technique like Scatter, where different samples
of the traces are aggregated into the same distribution. Some observations of the
conditional mixture distributions are made in order to model the leakage in such
context. From this, we infer local coherency of information held in the distribution
as a general property of side-channel leakage in mixture distributions. This leads
us to introduce how spatial analysis tools, such as Moran’s Index, can be used
to significantly improve non-profiled attacks compared to other techniques from
the state-of-the-art. Exploitation of this technique is experimentally shown very
promising, as demonstrated on two AES implementations including masking and
shuffling countermeasures.
Keywords: Side-channel Analysis · System-on-Chips · Mixture distribution · Interac-
tion Information · Spatial Analysis · Moran’s Index · ASCAD

1 Introduction
Side-channel attack is a threat to any system implementing cryptographic operations and
exposing unintentional leakages related to its internal processing. The development of
embedded electronics and IoT translates into a growing number of systems deployed on
the field subject to this risk. It concerns different products with various Integrated Circuit
technologies, such as secure controllers, ASICs, System-on-Chips or FPGAs. Successful
attacks have been demonstrated on different products, such as IoT [RSWO18], smart-
phones [GPP+16, LMPT15, AKD+18, VMC19] or laptops [GPT15].

Depending on the device, the practical realization significantly differs and may raise
several technical challenges. This results in different levels of difficulty to make a successful
attack. The first point concerns the source of leakage. Traditionally, attacks leverage
physical measurements capturing the internal activity of the chip. Currently, the most
efficient technique is often the one using near-field electromagnetic probes, since it is
possible to capture a local activity related to a specific part of the circuit, like described
in [LMPT15, VMC19]. Indeed, with devices growing in complexity, the whole activity
can quickly overwhelm the leakages which are by essence of low amplitude. More recent
works has made use of cross channel techniques, and more specifically exploit internal chip
sensors. The work of [GDTL20] sketches a potential for remote attack leveraging delay
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lines available on different SoC devices.

Once the signal is available, the complexity of the devices may significantly affect the
quality of the information. This is due to the nature of the device itself, where concurrent
and predictive execution creates uncertainties about the exact time of a target operation.
In addition, the rest of the circuit generates an activity whose signal can be overwhelming
compared to the useful signal. This is even more challenging with fast clocks, where a
hardware execution of an algorithm lasts a few nanoseconds only. To these considerations,
we shall mention internal protections that can be added by the designer or developers to
make side-channel exploitation more tedious.

As a result, it is reasonable to assume that practical side-channel attacks deal with
signals of poor quality, due to a lack of alignment or to an overwhelming noise. To
cope with this trend, the analysis techniques should evolve. Some propositions have
been developed to overcome this. Automatic alignment does not turn out to be very
efficient [vWWB11], for the simple reason that it targets the shape of the signal and not the
information itself. Some other techniques demonstrated that they can tackle the alignment
problem by removing the time factor, at least partially. This is the case of frequency based
analyses [BBB+16], distribution based analyses [TGWC18] or deep learning techniques
using Convolutional Neural Networks [PSB+18]. They all have their pros and cons, and
should certainly all be considered.

In this paper, we aim to better set the problem of attacks dealing with complex
signals. We come with a formalization of this complexity, by expressing it into statistical
mixtures. This helped us to better characterize the problem and introduce an extension
of scatter attacks leveraging spatial analyses. The benefit is demonstrated with practical
implementations of second-order multidimensional attacks.

2 Problematic of Mixture Distributions
The acquisition of data from a side-channel results in a collection of traces, associated
with the metadata used for each experiment (e.g. plaintext and/or ciphertext). The trace
set can be statistically represented by a random process (i.e. stochastic process), that is a
collection of random variables X, defined over a common probability space Ω, indexed by
the time dimension T :

{ X(t, ω) : t ∈ T } (1)
With t fixed, X(t, ·) is a random variable that can be denoted Xt for any instant t ∈ T .
With ω fixed, X(·, ω) is a single trace, also called a realization of the random process.

For most practical attacks, the data is digitized in both dimensions by an oscilloscope.
As a result, the random process usually has a discrete-state (e.g. 8-bit values) and discrete-
time (defined by the sampling rate and the number of time-samples) that approximate the
physical and continuous nature of the measurements.

Sometimes, a trace realization does not perfectly correspond to other measurements.
For instance, an internal or external signal source may create noise, or a cache miss
may delay the valuable information. The environment also plays a role, because a shift
in temperature or the stability of power supply are known to significantly reduce the
repeatability of side-channel measurements. It mainly causes changes in voltage and
frequency of operation, resulting in jitter in horizontal direction and noise in vertical
direction. This is especially true when acquiring side-channel data on complex devices
such as those embedded in our smartphones.
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With eventual side-channel countermeasures on top of this; it appears very unlikely
that classical side-channel analyses can be applied without trouble on these complex use
cases.

In fact, the distribution of a side-channel variable Xt is rather expected to be a mix-
ture of multiple signals varying from one measurement to the other. In such a case,
classical techniques analyzing a single time-sample, and assuming all realizations of Xt

originate from the same source, end up poorly operating, because Xt incorporates either
non-informative samples, or leakage samples with different characteristics. Consequently,
univariate analyses are sub-optimal, because valuable information is often missed, or mixed
with uninformative data.

In the following of this paper, we develop a descriptive model of such composite mixture
of signals, and show that most distinguishers are not well suited to extract information
from them. Then we propose to investigate two alternative approaches to analyze them
efficiently. First, as jitter spreads the information over multiple time-samples, we applied
the Scatter technique [TGWC18], which gathers several sources (i.e. Xt) into the same
statistical distribution to counteract jitter. Second, as an innovative approach in side-
channel, we introduce spatial dependency analysis, which was found efficient to extract
information hidden in statistical mixtures. As a benefit, this method allows to counteract
the vertical spread of information in the measured distributions.

3 Side-channel Mixture Model
In statistics, latent random variables are not directly observable, but can eventually be
inferred from other observable variables via a mathematical or statistical model. When Z
is a continuous latent variable, the mixture (or compound) distribution takes the form of:

P (X = x) =
∫
P (Z = z) · P (X = x|Z = z) dz (2)

P (Z) is referred to as the mixing distribution, and P (X|Z = z) as a mixture component
for source z.

The latent variable of a mixture distribution can help modeling the initial state of
side-channel experiments. Two different aspects are taken in consideration.

First, Z can encompass the device micro-architectural state. For instance, it can be
associated to the core voltage of the target CPU. P (X = x|Z = z) therefore represents
the distribution of the side-channel obtained at a given voltage z. The same can be
said about clock frequency, cache and branch prediction status, etc. Besides, external
and environmental parameters can influence the observed traces, thus Z can also model
temperature or supply voltage variations, etc.

More generally, the mixing variable will be the Cartesian product of each individual
effect. Analyzing signals from a device with complex features is equivalent to handling a
side-channel mixture of sub-datasets, captured with different initial conditions, scrambled
together. Actually, the number of initial states, i.e. outcomes of Z, is such that the number
of observable configurations of X(·, ω) can quickly surpass the number of acquired traces,
meaning that traces are all different. Yet, in any case, the components of the mixture
distribution can either be:

• Noise or non-informative signal components, independent of the leaking data,

• Leakage components, having possibly different distributions, including different
noise.
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Most often, leakage components are relatively close to each other, in both time and leakage
model, which explains why classical techniques may work, given sufficiently large datasets.
But our goal is to show they are sub-optimal in the context of mixture distributions.

4 Mitigating Mixing
Usually, separation of individual components of a mixture is managed manually, with
techniques such as signal alignment and sometimes outlier exclusion. These operations
often turn out to be tedious, and require human expertise and time, spent for each ac-
quisition. Moreover, this may lead to discard part of the traces, with many false-positive
and false-negative. Indeed, the discarded data may contain valuable information, and the
remaining dataset may still include non-informative components if the alignment is not
perfect.

A particular effort can be made to model horizontal jitter in the measurements as an
operation on mixture distribution. The main difference is that jitter shifts samples in time
and therefore mixes different neighbor instants of the acquisitions.

Assuming a static misalignment, represented by the random variable J . Each measured
trace is shifted by a random offset, drawn from J . This generates a different mixture
component for each possible outcome of jitter j. In that case, the random variable Xt

associated to the measurement of traces at time t is a mixture of points taken from the
aligned traces T (ground truth) in the neighborhood of t.
More precisely, the measured mixture probability density function (pdf) is a convolution
of the jitter pdf pJ and the random process pdf, analyzed in the time dimension T (t, ·):

∀t ∈ R, P (Xt = x) =
∫
P (J = j) · P (Xt = x|J = j) dj (3)

=
∫
P (J = j) · P (Tt−j = x) dj

pXt = (pJ ∗ pT )(t) (4)

When the measurements are subject to two independent static jitter sources, the
resulting mixing variable is the sum Z = J1 + J2. Its probability density function is the
convolution of both pdfs:

P (Z = z) = P (J1 + J2 = z) =
∫ ∞
−∞

P (J1 = t, J2 = z − t) dt (5)

=
∫ ∞
−∞

P (J1 = t) · P (J2 = z − t) dt

= (pJ1 ∗ pJ2)(z)

4.1 Scatter Approach
To avoid separation of leakage components and enable the analysis of the whole leakage
usually spanned over several consecutive samples, Scatter technique [TGWC18] offers
an interesting alternative leveraging mixtures. Its main rationale comes from the obser-
vation that measured side-channel traces can be too complex to be finely aligned and
efficiently analyzed with statistical tools manipulating only unidimensional variables, like
the correlation coefficient. An information spread over time-samples cannot always be
identified precisely. Therefore, univariate analyses are losing exploitable information when
not considering several time-samples in the attack. This means that the adversary needs
to make an educated guess to find out where the main part of the information stands, and
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incorporates multiple samples of each trace into a mixture distribution estimate, based on
its selection of points of interest.

In the mixture model, the integration of points boils down to crafting a mixture of
hand-selected components. To that end, let S be the latent variable representing the index
within the dataset from which the sample is drawn when selected.

A simple Scatter selection can for example be a window of consecutive points around
the presupposed leakage area, having a width approximately equal to the observed jitter
span. This results in incorporating leakage samples together with non-informative samples.
It can be valuable to analyze the effect of such a selection on the resulting mixture.

It can be observed on a simple case with a static misalignment, i.e. a simple trace
shifting. The jitter J and point selection S are independent. The resulting mixing variable
is Z = J + S. Leveraging Equations (4) and (5), the random process yields:

∀t ∈ R, P (Xt = x) = (pZ ∗ pT )(t, x) = (pS ∗ pJ ∗ pT )(t, x) (6)

and the mixing distribution after Scatter transform is:

P (Z = z) =
∫
P (S = t) · P (J = z − t) dt (7)

In other words, Scatter can be seen as an augmentation of measurement realizations
by adding jitter to the traces. In that case, knowing the jitter profile, it is possible to
compute the probability that a point ends up in the selection, and thus the influence it
has on the transformed distribution at time t.

Figure 1 illustrates this relationship with a jitter profile composed of two Normal
distributions, associated with a continuous Scatter window selection of width 12. The
resulting probability estimate has a flatter mixing distribution, meaning that samples are
more equally represented. Moreover, the estimate is done with 12 times more samples. The
main drawback is the number of different components, increasing slightly due to border
effects of the integration. This is especially visible for components 6 to 10 that have a high
probability to be incorporated in the scatter sample selection.

Intuitively, if there were 10 leakage samples in this example, the transformation would
bring a lot of information to the expense of a little bit of noise components in the mixture.
The benefits of this technique in practice are later discussed in Section 7.

Figure 1: Effect of a Scatter window on a mixture subject to arbitrary jitter. (left) Proba-
bility distributions of jitter and Scatter selection. (right) Resulting mixing distribution,
i.e. distribution of mixing variable Z.

Overall, when facing mixture distributions with complex jitter, alignment quickly
becomes tedious and time consuming, if not impossible. In that case, Scatter is a valu-
able tool to transform the mixing proportions, and increase the number of samples available.
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Nevertheless, with or without this preliminary transformation, extracting information
from mixture distributions with classical side-channel distinguishers can be troublesome.
In the next section, we show that most distinguishers are not suited to mixture analyses,
and propose an enhanced processing specifically designed for this context.

5 Classical Distinguishers’ Limitations
Once enough traces are acquired and processed, one has to apply a distinguisher, assigning
a score to each key candidate. In order to discriminate the secret key among all possible
candidates, the distinguisher should be chosen to reach maximum score for the right key
guess to the detriment of the wrong guesses.

In practice, the mixtures are sometimes comprised of samples close to each other,
usually having strong linear relationships that can be exposed through cross-correlation.
In that scenario, classical side-channel distinguishers such as Pearson’s Correlation are
supposed to continue operating correctly while withstanding a small amount of jitter.

In the following, we illustrate that even assuming there are only leakages components,
looking a lot alike, the mixture of their distributions might not be easily exploitable with
such distinguisher. To that aim, let us consider a mixture of two distinct linear Hamming
weight leakages:

P (X) = λ · P (T0) + (1− λ) · P (T1) (8)
∀i Ti = αi ·HW(L) + βi + σi with (α0, β0, σ0) 6= (α1, β1, σ1) (9)

with two random variables associated to a leaking data L, and arbitrary noise σi, where
αi, βi are the coefficients of the linear relationships and λ the mixing coefficient.

Using this example, it appears that cases such as α0 = −α1, if equally represented in
the mixture (i.e. λ = 0.5), completely annihilates, by symmetry, the information carried by
the first statistical moment. As depicted in orange in Figure 2a, the observed conditional
average value will be equal for any HW, resulting in failure of classical distinguishers,
including: correlation (CPA [BCO04]), as well as F -test variants (ANOVA [SGV08],
NICV [BDGN13], SNR), and the linear regression (LRA [DPRS11]).

This can occur as soon as positively correlating leakages are followed by negatively
correlating ones, and jitter creates a mixture of both.

(a) α0 = −α1 (b) β0 = β1 + 25

Figure 2: Two mixtures of noiseless leakages, linear in Hamming weight, difficult to exploit
with classical distinguishers.

A more subtle issue can be encountered with an offset between leakage components.
This happens when the device spontaneously changes its operating voltage due to a
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DVFS mechanism [SIH, YWV+05], or equivalently with leakages located on the jitting
slope of a carrier signal. Figure 2b depicts a mixture model with two perfect linear
leakages (α0 = α1 = 1), without noise (σ0 = σ1 = 0) but with an offset between the two
(β0 = β1 + 25). The offset being high enough, the two components are clusterable and
there is no overlap between observations.

Figure 3: Comparison of distinguishers: average Guessing Entropy of 20 simulated attacks
on a mixture of linear noiseless leakages with an offset.

In that case, the performance of the previously listed distinguishers also drops signifi-
cantly. Figure 3 shows the average Guessing Entropy after 20 trial of simulated attacks
based on correlation, F -test and linear regression, compared to Mutual Information. One
can observe that our simulated mixture distribution induces a high bias in the statistics
of the first three methods, which turns out to have a significant impact on the attack
performance. In term of number of traces required, the CPA, ANOVA and LRA are two
order of magnitude worsen, dropping from 10 traces when there is a single component
to more than 3000 when analyzing this simple mixture. Indeed, these three methods are
based on comparisons to the average as a reference, which is biased by the presence of
multiple component in the mixture distribution. See Appendix A for an analysis of the
limitations, detailed on CPA as an example.

On the other hand, MIA performance remains unchanged by the mixture effects. The
main difference with Mutual Information is that it identifies the most remarkable set of
conditional distributions, corresponding to the secret key, by independently analyzing each
possible outcome of the probability space X × Y. To evaluate dependence of observed
traces with respect to the estimated leakage, it compares the conditional and marginal
distributions together. As it does not use global properties of the distribution, Mutual
Information is said a model agnostic distinguisher.

Yet, the MIA quickly becomes impractical with increasing noise, requiring a lot more
traces. For instance, on the same simulation, adding a Gaussian noise, of only σ = 3.5,
the MIA and CPA both require approximately 2200 traces to succeed, showing that MIA
is less resilient to noise.1

As a result, on practical use-cases, classical distinguishers are all struggling to retrieve
information from noisy mixture distributions. To better capture the leakage in such
context, we first need to analyze in details what causes spreading of the leakage in the
probability space. The main goal is to infer general properties of mixture distribution
leakages that could be exploited by a distinguisher.

1At this noise level, the two mixture components remain non-overlapping, excluding bias due to complex
mixing.
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6 Understanding Leakage Spatialization
A first degree of leakage spatialization takes origins in the use of Boolean masking to
split the secret into shares. In the following, we are going to have a look at second-order
leakages to avoid missing this unavoidable point. For sake of clarity, this analysis starts
with unidimensional leakages, and progressively move towards mixture leakages in Section
6.2

Assuming that two univariate shares of the secret intermediate value Y are observed
without noise in X, that is X1 = X(t1, ·) and X2 = X(t2, ·) = X1 ⊕ Y respectively, the
resulting theoretical conditional joint distributions show unique leakage patterns for each
Hamming weight, as depicted in Figure 4. While in first-order the leakage takes form of a
single point per Hamming weight in the probability space, Boolean masking spreads it
over multiple values. Indeed, all possible ways to mask a given data of Hamming weight h
lead to (9− h) · (1 + h) different outcomes. This spatialization grows exponentially with
the number of shares used for masking.

Figure 4: Theoretical conditional joint-probability distributions P ((X1, X2) = (x1, x2)|Y =
h) under linear Hamming weight leakage model.

One can also notice that neighboring representations are totally disjoint from each
other. This observation is no longer valid as soon as Gaussian noise is added to the shares.
Figure 5 shows that instead of checkerboard, ellipsoidal shapes are emerging from the
correct partitioning when the trace set is subject to Gaussian noise. More precisely, the
theoretical conditional joint probability distributions are convoluted with a Gaussian kernel
corresponding to the noise characteristics.

Figure 5: Conditional joint probability distributions under linear Hamming weight leakage
model with Gaussian noise σ = 1.

The probability distributions for HW<4 and HW>4 are respectively leaning towards
the left and right. It reveals a covariance and surely explains why techniques leveraging
the centered product work.2

6.1 Differential Form Representation
A more interesting view can be obtained when using a differential form of usual distinguish-
ers. The score of the attack targeting intermediate value Y for key candidate k, resulting
from the application of distinguisher D on samples of X can be written:3

ScoreD(X; k) =
∑
h∈Y

∑
x∈X

∆D(X = x, Yk = h) (10)

2The second-order CPA identifies a linear growth of the covariance from -1 to 1.
3for second-order, X = (X1, X2)
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where ∆D is called the differential form of distinguisher D. It consists in the inner part of
the sum leading to the final score, and is thus defined over the probability space X × Y.

In the following, while the approach can be extended to several distinguishers such as L1
or χ2, we will mainly use the differential form of Interaction Information [McG54, BGP+11]
to represent the information contained locally in conditional joint-probability distributions.
This distinguisher, extending the Mutual Information to more than 1 variable, turned
out to be the most efficient in a lot of practical second-order scenarios we explored (a
comparison can also be found in [GBPV10]). It is defined as follows:4

−I(X1;X2;Yk) = I(X1;X2|Yk)− I(X1;X2)

=
∑

h

P (Yk = h) · (I(X1;X2|Yk = h)− I(X1;X2)) (11)

=
∑

h

∑
x1

∑
x2

∆I(X1 = x1, X2 = x2, Yk = h)

and its differential form is therefore:

∆I(X1, X2, Yk) = P (Yk) ·
[
P (X1, X2|Yk) log

(
P (X1, X2|Yk)

P (X1|Yk)P (X2|Yk)

)
−P (X1, X2) log

(
P (X1, X2)
P (X1)P (X2)

) ]
(12)

As shown in Equation (12), Interaction Information as a distinguisher is mainly based
on the comparison of each conditional joint distribution to the average joint distribution
over all Hamming weights, i.e. the marginal joint distribution. As this comparison is
achieved by a difference, the differential form can take positive and negative values.

Figure 6: Conditional distributions of ∆I computed from the joint probability distribution
shown Figure 5.

In Figure 6, this representation reveals clear patterns, with areas in yellow (resp. dark
blue) corresponding to outcomes more likely (resp. less likely) to be observed for a given
Hamming weight. Notice the large similarities between consecutive Hamming weights.
They are even more emphasized for a growing Gaussian noise, as it can be seen on the
Figure 7. We can notice that the median Hamming weight does no longer seem to bring
any valuable information, even though it is the most frequent observation. At this noise
level, its leakage pattern is too close to the marginal average to be clearly identified. It
is worth noting that a Gaussian of σ = 3 is still considered low noise in the context of
side-channel measurements.

Most importantly, ∆I mainly shows two clusters where the samples are more likely to
be observed (yellow), as well as two clusters unlikely to be observed (blue). These clusters
are similar for all Hamming weights strictly below the median 4, and symmetric strictly
above the median HW value. However, the leaning effect is not obvious anymore. Indeed,
the center of each conditional distribution brings very little information, i.e. it is hard to

4As the secret key minimize Interaction Information, a sign inversion is applied to reverse the candidates
ranking.
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Figure 7: (top) Conditional joint probability distributions under linear HW leakage model
with Gaussian noise σ = 3 (bottom) Conditional joint distributions of ∆I .

decide if centers are yellow/blue in the differential form representation.

6.2 Mixture Spatialization
The previous results were obtained for a single pair of samples. Extending this to many
leakage pairs with different characteristics should lead, for the right key guess, to a mixture
composed of several patterns similar to those Figure 7, placed at different locations of the
probability space. Indeed, mean value of each component determines the pattern location,
and leakage amplitude its scale. Non-leakage components are not creating noticeable
patterns but can add significant noise. The final pattern shape is intricate and hard to
predict, still, a coherency should be observed for the right key guess, unlike for other guesses.

Besides, estimating probability distribution of a mixture with histograms requires
additional care in the choice of bins. Modern data-based approaches were designed to
choose the optimal number of bins for arbitrary distributions: Knuth’s rule [Knu06] for
equal-width bins and Scargle’s Bayesian Blocks [SNJC13] for adaptive widths, which
can help from a memory and performance standpoint, at the expense of implementation
complexity. A simplified rule is to follow the pigeonhole principle by choosing bin edges
ranging between minimum and maximum of measured samples, with a single bin per
possible observation.

To illustrate spatialization of the leakage in probability mixtures, a reference trace
set widely used by the side-channel community was considered: the so-called ASCAD
dataset [PSB+18]. It concerns an AES algorithm with second-order leakage of the SubBytes
output. Interestingly, the public repository provides two data sets: one with traces being
properly aligned (ASCAD.h5), and a second being misaligned (ASCAD_desync100.h5),
with a uniformly random shift of less than 100 Samples to the left. With the knowledge of
both shares, Figure 8 shows that leakages are present and significant.

Scatter was applied, following its extension to second-order [TVW19], on two frames of
100 points selected as depicted in Figure 8. They encompass approximately 4 clock cycles.
Figure 9 depicts the mixture leakage in the probability space, obtained with the 50 000
traces provided. Each row displays the differential form of interaction information, ∆I , for
three key guesses and over the nine Hamming weights. Among them, 0xE0 is the correct
key value, while 0x2B and 0x80 were chosen randomly.

A zoom on Hamming weight 6 is given Figure 10 for the key and a wrong candidate.
Looking at the bottom right corner, a clear pattern appears on the correct key guess, and
this pattern is found in every image of the correct row in Figure 9. They are coherent
over the different Hamming weight representations: it is highly similar for the first half
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Figure 8: (top) Some traces from ASCAD aligned dataset. (Bottom) Correlation between
traces, the mask X1 and the masked SubBytes output X2.

Figure 9: Conditional distributions of ∆I for ASCAD traces after selection of two time
windows of length l1 = l2 = 100 for X1 and X2, over 95× 95 bins.

(a) Secret key 0xE0 (b) Wrong candiate 0x2B

Figure 10: Zoom on ∆I Hamming weight 6.

values and the second half values respectively. There is no clear pattern for the Hamming
weight 4 either. For the wrong key guess, there is no similar observation, indicating these
patterns constitute an exploitable leakage.
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The pattern shape is complex due to the aggregation of many leakage samples of
different characteristics in the probability mixture. Indeed, Figure 8 shows that there is a
high number of leakages over multiple clock cycles. All have different means and variance,
and also correlate distinctively. In fact, for both shares, samples leaking the most are
located on top of signal peaks, thus their pairwise combinations creates an intricate leakage
pattern in the bottom-right corner of the joint-distribution.5

Now the evidence is made that an exploitable information is present, as the secret key
is found with the naked eye. Yet, efficiently extracting the information from the mixture
distribution using a distinguisher remains a challenge.

At this stage, it is important to mention a drawback of Mutual Information (or Inter-
action Information) as a distinguisher. Indeed, these distinguishers, as described in the
literature so far, implies a sum over the probability space as in Equations (11) and (12).
When computing the score, both positive values (in yellow) and negative values (in blue)
are summed together. It results that a significant amount of useful information is lost
since the clear pattern is summarized into its too simplistic expression of a greater sum of
positive values. The presence of negative information is also an indication of leakage, and
could be exploited to find the key as well. In our opinion, this partially explains why MIA
did not perform as expected, even if its fundamental benefits remain.

This led us to consider a more optimal way to exploit the available information. The
problematic can be expressed as follows: when a coherency can be found across the
conditional joint distributions, it is necessarily related to the secret key. Since the mixture
leakage model is not predictable, the criterion must assume that there is a pattern, but its
shape cannot be anticipated. This statement is particularly important when the selection
of points incorporates many leakage samples. The next section introduces the notion of
spatial analysis as a way to measure this coherency.

7 Spatial Dependency Analysis
Instead of scoring individually ∆I over the entire probability space, spatial dependency
analysis aims at considering the whole information held by a key guess, and find a way to
extract any coherency in a subpart of the probability space.

As seen beforehand, the main properties identified from the analysis of spatialized
leakages are the following:

1. Boolean masking creates spatialization of the leakage in the probability space.

2. Noise transforms the checkerboard patterns into imprecise clusters of information.

3. Existence of several non-informative and leaking components creates numerous
leakage areas, placed at unknown locations of the probability space.

4. Areas of leakage are coherent for low and high Hamming weights, with a sign inversion
with respect to the median.

5. Incoherent patterns can appear in wrong guesses distributions.6

6. Some distinguishers, such as Mutual Information, do not leverage negative differential
to their advantage.

5The images origin is located in the top-left corner.
6Appendix B gives a finer example of such incoherence.
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As depicted on Figure 11, we are only interested in finding a remarkable subpart of
the probability space. To achieve this, we suggest to exploit a spatial auto-correlation
measure, for instance by using Moran’s Index, which can be used to efficiently extract
information from side-channel mixtures.

Figure 11: Definition of a vicinity kernel in the probability space, and visualization of local
and global Moran’s Index.

Moran’s Index has been recently used to analyze the behaviour of Physically Unclonable
Functions (PUFs) [VDTH16, WGP18]. This index was initially suggested [Mor50], and
later refined in [Get95], to study the spatial correlation of measures such as the distribution
of soil fertility over a field, or meteorological phenomena. The goal is to quantify if there
are cold and hot spots in a map, i.e. several regions of lesser/greater intensity in the
measurement, that are located close to each other. In this regard, Moran’s formula gives a
scalar index, that is:

• close to 1 in case of large and coherent hot/cold spots.

• close to 0 for random values.

• close to -1 for spatially incoherent measurements (interspersed).

It is defined as follows:

IMoran(x) = N

W

∑
i

∑
j wij(xi − x)(xj − x)∑

i (xi − x)2 (13)

with N the number of spatial sites of x, wij the expected interactions between sites i and j,
and W the sum of all weights wij . It can also be conveniently expressed with standardized
values, using µ and σ respectively the sample average and standard deviation of x:

let z = x− µ
σ

, IMoran(x) = 1
W

∑
i

∑
j

wij · zi · zj

By definition, applying Moran’s Index requires setting the interaction wij between each sites.
In geographical analysis, this operation can be quite complex, as there are various kinds of
spatial sites, with different areas, borders and content. But in general, the probability space
studied during side-channel analyses, usually estimated via histograms, is regular (constant
bandwidth), which greatly simplifies the process of defining the interaction between sites.

Following the numerous observations we did and the modeling of the spatial expression
of the leakage in Section 6, but also in order to reduce the number of parameters to
be defined, it appears that a vicinity of interaction, which is a rectangular cuboid of
size (k1, k2, d), is sufficient to efficiently extract the leakage. Indeed, the area of spatial
spreading of the information induced by masking and noise is counterbalanced by a kernel
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of size (k1, k2), while coherency between neighbor Hamming partitions can similarly be
taken into account by extending the kernel with a third dimension by setting d. The
simplest interaction model is to choose wij = 1 in the cuboid, except in its center where it
should be 0. This cuboid is then slided through the differential form in order to analyze
local dependencies and find hot/cold spots of interest. Doing so, Moran’s Index can be
computed as a stencil operator [RMKB97], which is easy to implement, and efficiently
parallel:

IMoran(∆I) =
∑

(i,j,k)

∑
0≤ i′<k1
0≤ j′<k2
0≤ k′<d

∆∗I(i, j, k) ·∆∗I(i+ i′ − k1 − 1
2 , j + j′ − k2 − 1

2 , k+ k′ − d− 1
2 )

(14)
where ∆∗I is the standardized differential form of Interaction Information. Values outside
the definition range are considered equal to zero.

In order to illustrate the discriminating power of Moran’s Index applied to the differ-
ential form of Interaction Information, we drew Figure 12, using 4000 traces of ASCAD
dataset and time-windows of length l1 = l2 = 100. On the left part, the leakage pattern is
very subtle, especially when compared to Figure 10a with 50 000 traces. Yet, local Moran’s
Index obtained with (k1, k2, d) = (7, 7, 5) strongly highlights a pattern in the interesting
area of the probability space, while anywhere else the noise has been suppressed because
of its incoherence. Moreover, notice the differential form is transformed to leverage neg-
ative information as a benefit, with mostly yellow regions after application of Moran’s Index.

Figure 12: Local Moran’s indexes after the processing of 4000 traces of the ASCAD dataset
with (k1, k2, d) = (7, 7, 5).

To sustain this result and the ability of the proposal to efficiently process complex
mixtures, Figure 13 displays some comparative results for different time-window length
(l1 = l2) on ASCAD data set with and without jitter. To see when the key emerges with
higher clarity, results without Moran’s Index were standardized.

These results all confirm a strong benefit expressed both in terms of number of traces
required to retrieve the secret and of distinguishability of the secret key compared to all
other candidates. One can observe that only the correct key leads to a positive Moran’s
Index, meaning that a coherency is found, and that wrong guesses are perceived as
incoherent, as they show a negative index. This confirms that incoherent leakage patterns
can only be found in the distribution of wrong key guesses.

In the cases without jitter, the MIA is not able to recover the key given 6000 traces,
while leveraging 10 leaking samples using Scatter allows to find it within 2500 traces.
Moreover, the use of Moran’s Index significantly reduces the number of traces required, to
approximately 600 with a single leakage sample, and 200 with a mixture of 10.
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Finally, with a jitter of 100 time-samples, the use of Scatter in conjunction with Moran’s
Index allows to recover the key in 1000 traces.

(a) Interaction Information, for l = 1 and
jitter = 0, i.e. standard MIA

(b) IMoran(∆I) for l = 1 and jitter = 0

(c) Interaction Information, for l = 10 and
jitter = 0, i.e. Scatter MIA

(d) IMoran(∆I) for l = 10 and jitter = 0

(e) Interaction Information, for l = 200 and
jitter = 100, i.e. Scatter MIA

(f) IMoran(∆I) for l = 200 and jitter = 100

Figure 13: Comparison of attacks on ASCAD using Interaction Information distinguisher,
with and without Scatter (left column) and Moran’s Index (right column). Targeting the
strongest point of leakage on aligned traces (1st row), 10 points around it on aligned traces
(2nd row), and a window of 200 points when facing 100 points of jitter (3rd row). All
results are the best of 10 tries with random traces order (kept identical between attacks).

For all these experiments, we looked for an optimum set of hyper parameters and more
particularly an optimal kernel size (k1, k2, d); the computation effort remaining reasonable.
We observed during this experimentation that the impact of kernel dimensions remains
fairly limited: the number of traces required to retrieve the key varies only from 250 to 1600.
Some results are displayed on Figure 14 showing the influence of the hyper-parameters
choice on the distinguishability and the number of traces required to get the key. Notice
that after 250 traces, all configurations rank the key among the 10 firsts, but setting the
right parameters brings a significant margin of distinguishability to the correct key.

There are some rationales in the choice of these parameters:

• Figure 14b depicts the same attack than Figure 14a but with d = 1. This change
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implies completely ignoring coherency between conditional distributions of neighbor
Hamming weights. It appears that the depth parameters d, plays an important role
in the performance of the technique. Without this aspect, even if the key rank is
low, the resolving power is significantly lessen.

• Figure 14c and Figure 14d give an appreciation of the influence of parameter k =
k1 = k2. This should represent the feature size of leakages. A k = 3, chosen minimal,
will not counterbalance noise spreading properly, and in the opposite, if chosen too
large, it tends to incorporate positive and negative differential information in the
same vicinity, annihilating information. In this example, the sweet-spot seems around
7× 7 for 64× 64 bins histograms. Note these values should be chosen relatively to
the number of bins used to estimate the distributions of X1 and X2.

(a) IMoran(∆I) with Nbins1 = Nbins2 = 64, l = 100, (k1, k2, d) = (7, 7, 5), jitter = 0

(b) Same than (a) but with (k1, k2, d) = (7, 7, 1)

(c) Same than (a) but with (k1, k2, d) = (3, 3, 5)

(d) Same than (a) but with (k1, k2, d) = (17, 17, 5)

Figure 14: Effect of kernel choice hyper-parameter on IMoran(∆I) distinguisher. Scores are
standardized for comparison purposes.
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8 Application to a Masked and Shuffled AES
To further sustain the technique, it was applied on a second practical use-case. The
aim was to clearly exhibit a use case where the new technique has a strong interest. It
concerned a software implementation of an AES-128 encryption. The code implemented a
classical Boolean masking algorithm. We checked that there was no remaining first-order
leakage. An additional protection was added and could be enabled: the random shuffling
of SubByte operations.

The corresponding binary was loaded on a microcontroller based on Cortex-M4. More
specifically, we used a STM32F446 32-bit MCU, with a clock setup at 30 MHz. This
frequency was chosen as the highest leading to negligible clock jitter in the measurement.
A near field EM acquisition was made using a Langer probe RF-B 0.3-3. The DUT package
was not removed.

Figure 15: Overview of SubBytes leakages. (top) Trace portions with areas highlighted.
(middle) Correlation between traces and intermediate values of mask and masked SubBytes
output, obtained with knowledge of random mask values, and shuffling disabled. (bottom)
Correlation of masked SubBytes with shuffling enabled.

With knowledge of the random numbers used for masking, and without shuffling
enabled, it was possible to identify all shares location. We then built a traceset, visible
in Figure 15, with the concatenation only of the mask area (orange), the average of 16
SubBytes operations (light green), followed by the 16 non-averaged SubBytes operations
(light red).

When facing a shuffling protection, the attacker may have no choice than using tech-
niques such as averaging all 16 occurrences together and apply the analysis on this average
signal. Performing this operation transforms the mixture of 16 leakages components into a
single averaged component. Note that SubBytes pattern averaging was performed using
the leakage patterns, which required knowledge of the key and the mask to characterize
properly the signal. Without this knowledge, SubBytes pattern averaging would have been
tedious or arguably impossible.

Figure 15 showing correlation values with known mask, confirms that enabling the
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shuffling reduces the first-order leakage by a factor 16. However, when averaging the
SubBytes patterns together, some leakage remains although it is significantly lowered.
Only the shuffled traces will be considered in the following of this section.

After this preliminary analysis of the trace characteristics, we analyzed how the
leakage expresses in the conditional distributions, using the differential form of Interaction
Information. In Figure 16, a pattern is clearly visible for the right key guess 0x07 and
it is coherent over the different Hamming weight values. Looking at other guesses, no
discriminating characteristic appears, confirming without any doubt which key guess is
the correct one. Notice that guess 0x15, on the top row, shows false positive patterns with
incoherence between HW 4 to 6.6

Figure 16: Conditional distributions of ∆I for 3 keys guesses (0x07 is the correct key
byte).

The best results when applying classical attacks were obtained, as shown Figure 17a,
with a univariate CPA on the averaged SubBytes signal, after CenteredProduct recombi-
nation. This attack was able to recover the secret key with 47 000 traces. In our testing,
no time integration technique [CCD00, WW04, BBB+16] was able to improve this result.

On the other hand, with a Scatter approach, the process is much simpler: the analyst
can select the whole signal area containing the 16 SubBytes computation and perform a
single attack on the resulting complex mixture. Attacking the averaged leakage pattern
makes less sense, but results are also given for comparison purpose. The performance of
Scatter with Interaction Information distinguisher is already a bit better than the best
CPA, finding the key with 42 000 traces. Yet, the use of spatial dependency analysis, and
in particular Moran’s Index applied to the differential form of the Interaction Information,
further enhances the results. The Guessing Entropy, as shown on Figure 17b, drops be-
low a bruteforceable threshold within 5000 traces, and the key is recovered with only 15 000.

Table 1 summarizes all results. It gives the Guessing Entropy and the related number of
traces for each attack variant. The first column reports results obtained when considering
the area enclosing all SubBytes. The second one gives results obtained when averaging
all SubBytes. This clearly demonstrates the soundness of the scatter approach, as well as
Moran’s Index described in the present paper, and their efficiency to extract the leakage
from complex mixtures of signals. On the last row of the table, averaging the SubBytes
seems to reduce the leakage exploited by both Scatter attacks.
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(a) CPA after Centered Product, on averaged SubBytes pattern [PRB09]

(b) IMoran(∆I) on the whole SubBytes area (this paper)

Figure 17: Guessing Entropy of the best attacks against masked and shuffled AES
implementation.

Table 1: Comparative summary of Guessing Entropies after application of different attack
techniques targeting a STM32F4 running a masked and shuffled AES.

No Averaging Averaging

Centered Product CPA [PRB09] > 290 at 50 000 232 at 18 000
1 at 47 000

Centered Product CPA + Integration [CCD00] > 290 at 50 000 232 at 34 000
220 at 50 000

Cross-correlation (x-corr) [WW04, BBB+16] > 2100 at 50 000 243 at 50 000
concatFFT [BBB+16] > 2100 at 50 000 264 at 50 000
concatFHT [BBB+16] > 2100 at 50 000 270 at 50 000
windowFFT [BBB+16] > 2100 at 50 000 > 2100 at 50 000
windowFHT [BBB+16] > 2100 at 50 000 260 at 50 000

Scatter with Interaction Information [TVW19] 232 at 14 000
1 at 42 000

232 at 28 000
< 210 at 50 000

Scatter and Moran’s Index on ∆I (this paper) 232 at 4000
1 at 15 000

232 at 6000
1 at 18 000



20 Spatial Dependency Analysis to Extract Information from Side-Channel Mixtures

9 Conclusion
This work attempted to highlight the benefits of using probability mixtures to model the
different issues encountered when performing practical side-channel analyses. This model
becomes unavoidable when dealing with datasets from complex devices or countermeasures
such as shuffling. The aim is to provide new tools to understand and characterize the
signal captured on these devices, especially when the initial state of the experiment is
not properly controlled. Doing so, the benefit of incorporating many points of selection
and working with mixture distributions appears more clearly. We then provided a better
formalization of Scatter technique by expressing it in the context of mixture distributions.

Subsequently, this paper develops a spatialized leakage model, by exploring useful
information present in the differential form of the Interaction Information. Indeed, a
coherent information is only associated to the correct key guess. This led us to demonstrate
why techniques, such as MIA, could be greatly improved.

An improvement is elaborated by introducing spatial dependency analysis to capture
remarkable information related to the correct key guess. By leveraging Moran’s index as
a way to measure the spatial auto-correlation, the practical results highlighted that the
technique can be very beneficial for running complex side-channel attacks with a significant
factor of improvement, both in number of traces and distinguishability. We believe that
the new technique is powerful enough to be part of the toolbox for anyone taking into
consideration the non-profiled side-channel threat.

Finally, we strongly believe that the proposed spatial dependency analysis could be
further enhanced, possibly by using tools developed in other scientific areas dealing with
spatialized data and/or mixture distributions.
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A Details About CPA Limitations on a Simple Mixture
This annex details why a CPA attack requires much more traces to succeed when facing
a simple mixture distribution. Let X be a mixture of two positive and linear Hamming
weight leakages without noise:

P (X) = λ · P (T0) + (1− λ) · P (T1) with T0 = T1 + β = HW(L) (15)

Using an intermediate value estimate Yk for a given key guess k, the CPA ranks keys
according to Pearson’s correlation:

∀k, ρ(X,Yk) = cov(X,Yk)
σXσYk

(16)

First, the normalization term at denominator is identical for all key guesses, and does not
affect the key ranking. Looking at the numerator, it follows for this mixture distribution
that:

∀k, cov(X,Yk) = E[XYk]− E[X]E[Yk] (17)
= λ E[T0Yk] + (1− λ) E[T1Yk]− λ E[T0]E[Yk]− (1− λ) E[T1]E[Yk]
= λ cov(T0, Yk) + (1− λ) cov(T1, Yk) (18)
= cov(HW(L), Yk) (19)

Regardless of the key, the covariance computed with the mixture is thus equal to that with
a simple leakage component.

To isolate each effect, the attack was attempted with a correlation using the theoretical
population expectations and variances E[X], E[Yk], σX , σYk

and the results are similar,
requiring more than 3000 traces for a noiseless leakage. As a result, the difference of
behavior must originate from larger errors in the estimate of sample covariance:

∀k, c̃ov(X,Yk) =
∑

x

∑
y

(x− E[X])(y − E[Yk]) · P̃ (X = x, Yk = y) (20)

For a given amount of traces, the contribution a single observable value (x, y) brings to the
covariance can sometimes be greater for an incorrect guess. In that case, the score of this
guess challenges that of the secret key, which means more samples (traces) are required
to differentiate the correct key. It turns out that the probability of being challenged is
much higher in the mixture scenario, as depicted in Figure 18. The green dots are points
of leakage obtained for the secret key, blue dots represent the outcomes obtained with
incorrect key guesses, and red dots are all cases where the secret key is challenged for a
given observation.
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(a) Single leakage component (b) Mixture of two offset components

Figure 18: Representation of the probability that an observation contributes more to the
sample covariance for an incorrect guess than for the key.

To give an order of magnitude of the difference, we assume independence of the incor-
rectly estimated data and observation.7 For a single leakage component, the probability of
an observation being challenged by another key is 4.0%, while for our mixture scenario, it
is 44.4%. As a result, with a given number of traces, the CPA in the mixture scenario is
much less likely to succeed. Or in other words, retrieving the secret key from this mixture
requires significantly more traces, which concurs with the simulation Figure 3.

B Evidences of Incoherent Patterns in Wrong Key Guesses
Distributions

Even when targeting a highly non-linear intermediate data (SubBytes output) and pro-
cessing more traces than necessary to find the secret key, incoherent leakage patterns are
still found in the conditional joint-distribution of wrong key guesses. Figure 19 shows
the conditional distribution of ∆I for 3 wrong key guesses. The residual patterns are less
potent than for the correct key, therefore the colormap was adjusted to highlight smaller
variations.

Figure 19: Example of incoherent patterns found in ∆I for wrong key guesses on the
STM32 AES implementation.

The patterns look exactly like the ones found in Figure 16. However, they are incoherent
with previous observations. First, by construction, the HW 4 should not exhibit the strong
leakages. Second, there are adjacent partitions showing sign opposition instead of a
coherency between low and high HW.

7This hypothesis is false, even after non-linear transformations such as AES SBox, but allows to easily
compute an approximate result.


	Introduction
	Problematic of Mixture Distributions
	Side-channel Mixture Model
	Mitigating Mixing
	Scatter Approach

	Classical Distinguishers' Limitations
	Understanding Leakage Spatialization
	Differential Form Representation
	Mixture Spatialization

	Spatial Dependency Analysis
	Application to a Masked and Shuffled AES
	Conclusion
	Details About CPA Limitations on a Simple Mixture
	Evidences of Incoherent Patterns in Wrong Key Guesses Distributions

