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Abstract: Quantum-dot cellular automata (QCA) has been considered as a novel nano-electronic
technology. With the advantages of low power consumption, high speed, and high integration, QCA
has been treated as the potential replacement technology of the CMOS (complementary metal oxide
semiconductor) which is currently used in the industry. This paper presents a QCA-based array
multiplier with an optimized delay. This type of circuit is the basic building block of many arithmetic
logic units and electronic communication systems. Compared to the existing array multipliers, the
proposed multipliers have the smallest cell count and area. The proposed designs used a compact
clock scheme to reduce the carry delay of the signals. The 2 × 2 array multiplier clock delay was
reduced by almost 65% compared to the existing designs. Moreover, since the multiplier exhibits a
good scalability, for further proof, we proposed a 3 × 3 array multiplier. Simulation results asserted
the feasibility of the proposed multipliers. Extensive comparison results demonstrated that when
the design scaling was increased, our proposed designs still displayed an efficient overhead in terms
of the delay, cell count, and area. The QCADesigner tool was employed to validate the proposed
array multipliers. The QCADesigner-E was used to measure the power dissipation of the alternative
compared solutions.

Keywords: QCA; array multiplier; XOR gate; full adder

1. Introduction

Transistor feature sizes of silicon-based CMOS elements are rapidly approaching
their limits. The quantum tunneling effect and the coulomb blockade of devices are also
becoming more and more severe, and together, all of these bring great challenges to the
stability and reliability of the CMOS circuits [1].

Since nano-electronic devices possess the advantages of having a high speed, a low
power dissipation, and a high integration ability, nano-electronic devices have become
the research focus of the next-generation electronic devices. These devices mainly include
organic thin-film transistors, transparent oxide-thin-film transistors, resonant tunneling
diodes, single-electron transistors, carbon nanotubes, quantum dot cellular automata
(QCA), and so on [2,3]. QCA is favored by researchers because of its unique operating
mechanism and advantages. QCA circuits output data based on the cellular automata
principle and the coulomb interaction force. A QCA cell comprises free electronics, quan-
tum dots, and tunnel junctions. A QCA cell can represent binary data by the positions
occupied by the electrons in the cell [4]. The mechanism of operations for the QCA circuits
is quite different from that of the CMOS circuits. The QCA circuit transmits data through
the coulomb force between cells. QCA circuits have very low power consumption, high
integration, fast operation speeds, and stable operations at room temperature [5]. QCA
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technology provides a new solution to break through the performance bottleneck of the
CMOS circuits. Currently, there are three main approaches to the physical implementa-
tion of QCA: molecular QCA, magnetic QCA, and electronic QCA. The advancement of
nanofabrication technology has enabled the production of quantum dots on the nanoscale,
which can be used to manipulate electrons in a controlled manner. This allows for the
physical realization of the QCA cells and their simple circuits, thus validating the correct-
ness of the QCA theory. Currently, there are four physical implementation schemes for
QCA: semiconductor material-based, tunneling junction formation using metal materials,
molecular material-based, and magnetic material-based schemes. Each of these schemes is
supported by a substantial amount of theoretical and experimental research. However, at
the current research level, there are still some challenges that need to be addressed. For the
purposes of this article, the physical implementation of the current technology needs to
be further explored, which will also become our future goal. In turn, QCA technology has
been truly applied.

To the best of our knowledge, there are currently four different QCA models. Nanomagnets-based
fan-out lines, silicon-based QCA lines, and ferrocene molecules-based QCA lines have
all been proven through experimentation [6,7]. Meanwhile, logic circuit blocks, such as
full-adders, XOR gates, multipliers, as well as dividers have already been verified through
pertinent simulations.

Previous studies have assessed the impacts of array multipliers. In 2004, Walus et al.
proposed a novel bit-serial/parallel multiplier based on a bit-serial-adder [8]. One input of
the multiplier is serially loaded into the adder, while the other input is effectively loaded in
parallel. The multiplier calculates the partial product and adds it to the sum immediately.
In 2007, Hanninen et al. proposed a novel QCA-based pipelined array multiplier [9]. This
design used a reasonable clock allocation to operate reliably without suffering from the
effects of noise coupling. The design of the multiplier unit is typically complex, resulting in
a large overall cost. In 2010, Lu et al. designed and analyzed a QCA-based systolic matrix
multiplier [10]. The 2 × 2 systolic matrix multiplier consisted of four processing elements
(PEs), each of them including an advanced 2-bit serial-multiplier as well as a novel 4-bit
accumulator. In 2016, Chudasama et al. used a carry save adder to construct a QCA-based
4 × 4 Vedic multiplier [11]. In 2018, Babaie et al. proposed an efficient multilayer arithmetic
logic unit [12] and Torres et al. proposed a model to explore performance and energy of
QCA [13]. In 2019, Bhoi et al. proposed a novel, accurate method to synthesizing while also
optimizing the Baugh–Wooley-multiplier [14]. In 2019, Yang et al. proposed a 2 × 2 array
multiplier circuit, which uses an efficient full adder structure. Meanwhile, Bahar et al.
proposed a serial Parallel Multiplier [15]. In 2020, Chu et al. proposed BCD adder with
xor gates and majority gates [16] and other researches proposed Decimal full adders with
different devices [17–19]. In 2021, Perri et al. proposed low-energy multi-bit approximate
adders [20] and Khanet al. proposed efficient vedic square calculator [21]. The designs
provided ideas for us to design multipliers. Dividers constructed using unit structures have
also been proposed, including non-restoring dividers [22–27] and restoring dividers [28].

Currently, state-of-the-art works include many modules in traditional digital circuits,
such as adders [29], multipliers [30,31], dividers [32,33] etc. In 2022, K Raja Sekar et al.
proposed an array multiplier with a relatively high latency, and also proposed a high-speed
serial–parallel multiplier. This is an efficient hardware circuit that has been used across
different applications ranging from simple arithmetic circuits, to filters, and complex cryp-
tographic systems. However, it uses a lot of cells and has a large area. In addition, a variety
of QCA circuits have been proposed, such as: full adders [34,35], memory cell [36–38],
multi-bit full comparator [39] and other circuits [40–45]. Sequential logic elements have
also been implemented in these QCA circuits. In large-scale circuits, there are also pro-
grammable logic arrays and field-programable gate array circuits based on QCA technology.
Indeed, QCA also has its unique research areas, such as clock schemes, logic synthesis,
and layout algorithms. From the current level of research, there are still areas where QCA
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circuits need to be improved, but these unique properties of QCAs are still considered by
researchers to implement one of the most promising new nano-devices.

Considering the above existing problems, in this paper, we presented a novel QCA-based
array multiplier. The proposed array multiplier was effectively simulated and verified
through the QCADesigner tool [46]. Compared with existing designs, the proposed novel
designs have the smallest delay, cell count, and area. Moreover, we analyzed the complexity
of the n*n design and made a theoretical comparison between the amount of employed
QCA-based devices and their delay costs. We found that when the design scaling was
increased, the proposed schemes demonstrated an excellent circuit performance.

The organization of the rest of this paper is as follows. In Section 2, the preliminaries
of the QCA technology were introduced. In Section 3, the proposed array multipliers
were described. In Section 4, the simulation results and comparisons were presented. In
Section 5, the conclusions were outlined.

2. Preliminaries

Figure 1 presents the structure as well as two types of QCA cells. Figure 1a presents
the structure of the standard four quantum-dot QCA cell. As shown in Figure 1a, there
is a tunnel junction present between each quantum-dot, and there exists two additional
free-electrons in each QCA cell. Two free electrons can effectively tunnel between these
quantum-dots through the tunnel junctions. Due to the coulomb repulsion between these
electrons, when the cell is in a stable state, the electrons always occupy the diagonal position,
meaning that the cell exhibits double-stable polarization states that can be effectively used
to represent the binary data. Figure 1b shows two important types of QCA cells, i.e., the
normal cells as well as the rotated cells.
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Figure 1. Structure and types of QCA. (a) Structure and (b) two types of QCA cells.

QCA encompasses a unique clock mechanism. A QCA clock can control the direction
of information transmission and provide the energy of the QCA circuit. Figure 2 presents a
QCA clock, which consists of four phases: switch, hold, release, and relax. In the switch
phase, the cell will be polarized by the adjacent cells in the hold phase; in the hold phase,
the polarization of the cell remains unchanged, and in the switch phase it can polarize the
adjacent cells. The polarization of the cell gradually decreases in the release phase; the cell
is in a non-polarization state in the relax phase [4].
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Figure 3 displays several QCA basic gates. Figure 3a shows an inverter, which can flip
its input signal. Meanwhile, Figure 3b presents a novel majority gate, which can realize the
function of Formula (1). The function of an AND gate or an OR gate can be realized through
fixing an input of the majority gate as either 1 or 0 as M(A, B, 1) = A + B and M(A, B, 0) = AB,
respectively. Figure 3c shows a 3-input XOR gate, which can implement the function of
Formula (2). The 3-input XOR gate can realize the function of a 2-input XOR or XNOR gate
by fixing one input as 1 or 0 as X(A, B, 0) = A

⊕
B and X(A, B, 1) = A

⊕
B, respectively.

M(A, B, C) = AB + AC + BC (1)

X(A, B, C) = A
⊕

B
⊕

C (2)

M(A, B, C, D, E) = ABC + ABD + ABE + ACD + ACE
+ADE + BCD + BCE + BDE + CDE

(3)

MUX(A, B, Sel) = SelA + SelB (4)
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Figure 3d displays a 5-input majority gate. Formula (3) shows the boolean expression
of the 5-input majority gates. By setting two inputs of the 5-input majority gate to either
0 or 1, the functions of the AND gate and OR gate can be realized, respectively. Figure 3e
shows a two-to-one multiplexer that was put forward by the authors of [47]. Formula (4)
shows the boolean expression of the two-to-one multiplexer. The multiplexer can output
either signal A or signal B depending on the signal (Sel) of the two-to-one multiplexer. In
Figure 3, the blue cells are the input cells and the yellow cells is the output cells.

Crossovers can cross two signals, which are widely used in QCA circuits. Figure 4
shows two crossovers. Figure 4a shows the multi-layer crossover. A multi-layer crossover
requires at least three layers to cross signals. Figure 4b shows a coplanar crossover im-
plemented using rotated cells. The two signals can correctly flow through the coplanar
crossover. Due to the orthogonal electron configuration of these cells, the coulomb force
between the cells can not interfere with their neighboring cells.
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3. Proposed Array Multipliers
3.1. Full Adder

Figure 5 presents the structure of a QCA-based full adder (FA) [48]. We can see from
Figure 5 how the structure of the FA only requires one 3-input majority gate as well as one
3-input XOR gate. A is the augend, B is the addend, Ci is the low carry input, Ci+1 is the
high carry output, and S represents the sum, respectively. Formulas (5) and (6) display the
boolean functions of the FA.

S = A
⊕

B
⊕

Ci = X(A, B, Ci) (5)

Ci+1 = M(A, B, Ci+1) (6)
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3.2. Array Multiplier

Figure 6 shows the schematic of the multiplier unit [9]. The basic unit of the array
multiplier consists of an AND gate and a FA. The array multiplier can be built with
multiplier units. Figure 7 shows the schematic of the array multiplier [9]. X1/X2/X3/X4 is
the multiplicand, Y1/Y2/Y3/Y4 is the multiplier, and m1/m2/m3/m4/m5/m6/m7/m8
is the product, respectively. Each row of the array multiplier is built with ripple carry
adders (RCAs). The array multiplier needs to check the bits of the multiplier one at a time
and produces the next partial product. A sequence of add and shift micro-operations are
required to obtain the final results. Each bit of the multiplier and each bit of the multiplicand
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are ANDed together. The binary output of each AND gate and the partial product in the
previous level are then added in parallel to produce a new partial product, and the last level
of the array multiplier produces the final product. Although the array multiplier requires
many gate devices, its internal structure is regular and highly standardized, making it
suitable for the implementation of the VLSI circuits.
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Figure 8 shows the proposed QCA-based 2 × 2 array multiplier. The FA implemented
by the authors of [29] was used to design the array multiplier. The multiplier unit is
constructed with a FA and an AND gate. The proposed 2 × 2 array multiplier comprises
439 cells, having an area of 0.49 µm2, as well as a delay of 1.75 clock-cycles. X1/X2
is the multiplicand, Y1/Y2 is the multiplier, and M1/M2/M3/M4 denotes the product,
respectively. Figure 9 shows the proposed QCA-based 3 × 3 array multiplier, which consists
of a three-layer design. The proposed 3 × 3 array multiplier comprises 1041 cells, having an
area of 1.26 µm2 and a delay of 2.50 clock-cycles. X1/X2/X3 is the multiplicand, Y1/Y2/Y3
is the multiplier, and M1/M2/M3/M4/M5/M6 represents the product, respectively. The
used RCAs in each row of the proposed array multiplier adopt compact clock allocation in
order to minimize carry delay. The array multiplier can output the calculation results after
2.50 clock cycles.
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4. Simulations and Comparisons
4.1. Simulations

We simulated and verified the proposed designs with the QCADesigner tool. The
simulation process requires two multipliers, which are placed in the X and Y inputs,
respectively, while the product displays the output. Figure 10 presents the results of the
simulations that were performed using the proposed QCA-based 2 × 2 array multiplier,
and also displays the results of the six consecutive pairs of multipliers that were used. X
was set to {0, 1, 3, 2, 3, 2}, and Y was set to {3, 3, 2, 1, 3, 2}, respectively. The product was
{7, 20, 10, 8, 14, 28} following calculations. The calculation process of the proposed array
multiplier required 1.75 clock cycles. Since there are four clock zones in a clock cycle and
the clock regions are numbered from 0, the product is displayed in clock 2 as a result. For
example, when the first pair has a multiplier of 0 and the other has a multiplier of 3, the
correct result of the multiplier of that pair appears after 1.75 clock cycles. Figure 11 presents
the results of the simulations that were performed for the proposed QCA-based 3 × 3 array
multiplier. Similarly, we set X and Y to the two multipliers, and the product to the output.
X was set to {7, 5, 5, 4, 7, 7}, and Y was set to {1, 4, 2, 2, 2, 4}, respectively. The product
was {7, 20, 10, 8, 14, 28} after calculations. The calculation process of the proposed array
multiplier required 2.50 clock cycles. For example, when one multiplier is 1 and the other
is 7, the product is calculated 7 after 2.5 clock cycles. In this context, this result was deemed
to be correct.
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4.2. Comparisons

Table 1 presents the results of the comparisons between the alternative multipliers.
As multiplication does not require the judging of the most significant bit of each row,
unlike division, but only requires the shift and add micro-operations, the delay of the array
multipliers increases slowly with the increase in the design scaling. Compared with the
work published by the authors of [49], the proposed array multiplier reduced the cell count,
area, and delay by 10.95%, 31.94%, and 65.00%, respectively.

Table 1. Results of the comparisons for the alternative multipliers.

Design Cell Count Area (µm2) Delay Layer Type

2 × 2 matrix multiplier [10] 7102 15.69 20 M
2-bit-serial multiplier [8] 306 0.48 8 C

2-bit multiplier [9] 1598 1.76 7 C
2 × 2 Baugh–Wooley multiplier [14] 688 0.91 3 M

2 × 2 array multiplier [49] 493 0.72 5.00 C
Pro 2 × 2 array multiplier 439 0.49 1.75 M
Pro 3 × 3 array multiplier 1041 1.26 2.50 M

Table 2 presents the results of the comparisons of energy consumption for the proposed
designs. The energy consumption of the proposed designs under different temperatures
was measured using the QCA-Designer-E tool [13], and other parameters present in the
QCA-Designer-E tool were set as the default values. As clearly shown in Table 2, the energy
consumption of the proposed array multiplier was deemed to be lower compared to the
solution outlined by the authors of [49].

Table 2. Results of the comparisons of energy consumption for the proposed designs.

Design
Total Energy

Dissipation (eV)
Average Energy
Dissipation (eV)

Total Energy
Dissipation (eV)

Average Energy
Dissipation (eV)

Temperature 1K Temperature 2K

MUL 2 × 2 [49] 1.78 × 10−1 1.62 × 10−2 1.83 × 10−1 1.66 × 10−2

Pro-MUL 2 × 2 1.56 × 10−1 1.42 × 10−2 1.54 × 10−1 1.40 × 10−2

Pro-MUL 3 × 3 3.79 × 10−1 3.44 × 10−2 3.76 × 10−1 3.41 × 10-2

4.3. Complexity Analysis

The proposed designs were all constructed using separate QCA devices, such as
3-input majority gates, inverters, and 3-input XOR gates. The total amount of used QCA
devices can be employed to effectively measure the area cost of n × n designs. An n × n
multiplier requires 2n2 MGs and n2 XOR gates, and thus form a total of 3n2 QCA devices.

Formula (7) displays the theoretical delay of the n × n multiplier. Formula (5) can
be obtained through analyzing the delay of the red path displayed in Figure 9. Dn_MUL
represents the delay of the n*n multiplier and DMUL denotes the delay of the multiplier
unit, respectively. It is clearly shown that when the design scaling is increased, the delay
from the input to the output of the proposed multiplier also increased linearly.

Dn_MUL = (3n − 2)·DMU (7)

5. Conclusions

In this paper, we have proposed a new QCA-based 2 × 2 array multiplier, and based on
this structure, a higher-digit 3 × 3 array multiplier has also been proposed. The improved
clocking scheme reduces the carry delay, and the clock delay of the 2 × 2 array multiplier
is reduced by almost 65% compared to the existing designs. Furthermore, the number of
cells and the area has also been optimized, resulting in a faster circuit calculation. It is
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beneficial to apply the proposed multiplier to a wider range of arithmetic logic units or
communication system units. Moreover, according to our proposed design summary, as a
complexity analysis method has been obtained, this can prove the rationality of the n*n
design that we proposed and permit calculations of the theoretical delay of the multiplier.
In conclusion, the proposed array multiplier exhibits significant advantages in terms of the
delay, cell counts, and area. Moreover, previous research has indicated that fault tolerance
is also an important issue which remains to be considered [50,51]. Going forward, we will
consider this issue and provide the simulation results.
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