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Abstract. Current side-channel evaluation methodologies exhibit a gap between
inefficient tools offering strong theoretical guarantees and efficient tools only offering
heuristic (sometimes case-specific) guarantees. Profiled attacks based on the empirical
leakage distribution correspond to the first category. Bronchain et al. showed at
Crypto 2019 that they allow bounding the worst-case security level of an imple-
mentation, but the bounds become loose as the leakage dimensionality increases.
Template attacks and machine learning models are examples of the second category.
In view of the increasing popularity of such parametric tools in the literature, a
natural question is whether the information they can extract can be bounded.
In this paper, we first show that a metric conjectured to be useful for this purpose,
the hypothetical information, does not offer such a general bound. It only does
when the assumptions exploited by a parametric model match the true leakage
distribution. We therefore introduce a new metric, the training information, that
provides the guarantees that were conjectured for the hypothetical information for
practically-relevant models. We next initiate a study of the convergence rates of
profiled side-channel distinguishers which clarifies, to the best of our knowledge for
the first time, the parameters that influence the complexity of a profiling. On the
one hand, the latter has practical consequences for evaluators as it can guide them
in choosing the appropriate modeling tool depending on the implementation (e.g.,
protected or not) and contexts (e.g., granting them access to the countermeasures’
randomness or not). It also allows anticipating the amount of measurements needed
to guarantee a sufficient model quality. On the other hand, our results connect and
exhibit differences between side-channel analysis and statistical learning theory.
Keywords: Profiled Attacks · Perceived Information · Training Information

1 Introduction
Evaluating the security of a cryptographic implementation against side-channel attacks is
a complex problem. Since their introduction by Kocher et al. in the late nineties [KJJ99],
a broad literature has focused on analyzing physical leakage in order to perform concrete
attacks efficiently and to assess physical security on theoretically sound bases.

A first step towards such sound bases is the separation between non-profiled and profiled
attacks. While Kocher’s seminal work and early variants like Brier et al.’s Correlation
Power Analysis (CPA) exploit an a-priori leakage model [BCO04], it has been shown that
profiling the target device (i.e., leveraging an open sample to estimate a leakage model)
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can significantly improve the attacks’ efficiency. Chari et al. introduced profiled attacks,
and stated that such attacks are “the strongest form of side-channel attack possible in an
information theoretic sense” [CRR02]. This statement seeded a line of works on worst-case
side-channel security, i.e., the security level reached when universally quantifying over the
adversary. Standaert et al. observed that profiled attacks are critical to estimate the worst-
case security of an implementation [SMY09]. Whitnall et al. extended this observation and
proved that profiling is in general necessary for this purpose (i.e., there is no generic attack
strategy enabling us to recover secret information from a physically observable device’s
leakage without any a priori knowledge about the device’s leakage distribution) [WOS14].
Heuser et al. finally proved that a generalized version of Chari et al.’s strategy, namely
distinguishing thanks to the probability distribution of the leakage conditioned on the
targeted secret, is indeed optimal in an information theoretic sense [HRG14].

A second step towards sound side-channel security evaluations is the acknowledgment
that even in the profiled evaluation setting, performing an optimal attack in the sense
of Heuser et al. is a highly non-trivial task. The main reason is that the true leakage
distribution of a device is in general unknown and can be quite complex to estimate,
especially in the presence of countermeasures like masking [CJRR99].
As a result, one can summarize the evaluation problem in two questions:

1. What is the data complexity of the attack using an optimal profiled model?
2. What is the profiling data complexity to estimate this optimal model?

Here, both data complexities are defined in terms of number of measured traces.
The first question is standard in the cryptographic setting. It aims at determining the

level of security that can be guaranteed against an informed adversary. Since running an
attack to evaluate its complexity for highly secure cryptographic implementations can be
prohibitively expensive, an increasingly standard evaluation approach consists in using
information theoretic metrics for this purpose. In particular, the Mutual Information
(MI) can be used to bound the data complexity of worst-case attacks [DFS15, dCGRP19,
MRS22, BCG+23]. The difficulty of estimating the MI [Pan03], which we elaborate later
in this paper, has led Renauld et al. to identify the Perceived Information (PI) as a metric
capturing the amount of information that can be extracted from physical leakage thanks to
the adversary/evaluator’s (parametric) model, possibly biased by estimation or assumption
errors [RSV+11]. Durvaux et al. therefore formalized leakage certification as the problem
of assessing the distance between the PI and the MI [DSV14].

Bronchain et al. showed that the PI is in general (i.e., for any leakage distribution,
including for masked implementations) a lower bound for the MI and that an upper bound
is obtained by estimating the empirical Hypothetical Information (eHI), which is the
amount of information that would be extractable from a device if the true distribution
was identical to the one of a measured evaluation dataset [BHM+19]. They additionally
showed that, when increasing the dataset size, the expected value of the eHI asymptotically
converges towards the MI. Unfortunately, the practical impact of these results is limited
since the required dataset size grows with the number of points in the leakage traces,
becoming very quickly impractical. The informal workaround proposed by Bronchain et
al. is to use the HI estimated with a parametric model in such cases. Informally, and while
the non-empirical HI loosens the formal link with the MI, the goal is to use the parametric
HI as an upper bound for the complexity of the evaluator’s best attack. They conjectured
that this HI is an upper bound of the PI estimated with the same model.

The second question is less standard in the cryptographic setting. It rather aims at
determining whether a worst-case attack is somewhat “practical”. In other words, despite
the profiling of a leakage model is a one-time effort, could it be so complex that estimating
an accurate model becomes unrealistic. To the best of our knowledge, investigations in this
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direction have been less formal so far. Numerous profiling techniques have been introduced
and evaluated based on specific case studies. These include extensions of Chari et al..’s
Template Attacks (TA) [CRR02, SLP05, GLP06, APSQ06, SA08, SKS09, CK13, CK14]
and a steadily increasing (and not exhaustive) list of works leveraging machine (and
deep) learning [HGM+11, HZ12, LMBM13, LBM14, LPB+15, MPP16, CDP17, CCC+19,
ZBHV20, WAGP20, ZBD+21]. Recently, Masure et al. showed that these profiling
strategies are not disconnected: by optimizing the appropriate loss function, evaluation
approaches based on machine learning and deep learning actually target the same goal
as TA, namely maximizing the PI [MDP20]. However, a systematic characterization of
the parameters that influence the profiling phase of a side-channel attack, which would
answer the practicality question, is still missing. For example, how does the convergence
of a machine learning model depend on the physical leakage characteristics (noise level,
number of dimensions, security order), number of classes and number of profiling traces?
And are some statistical tools better suited depending on the contexts?
Our contributions regarding these two main questions are twofold:

Regarding the first question, we falsify and fix the conjecture of Bronchain et al.
Precisely, we show that the parametric HI is not always an upper bound of the parametric
PI. Since our counterexample corresponds to realistic leakage distributions (namely,
mixture distributions that happen with masked implementations), we then propose a new
metric, the Training Information (TIN ), that eliminates this limitation. While the HI can
be viewed as a measure of a parametric model tested against itself, the TIN is a measure
of a parametric model tested against (the empirical distribution of) its training samples.
We show that for parametric leakage models that optimize the appropriate loss function,
the TIN upper bounds the “learnable information” (LI) defined as the supremum of the PI
over a parametric class of models, and that for N →∞, the PI and TIN converge towards
the LI. Like the HI, the TIN does not offer guarantees against assumption errors when
it is computed for parametric models: the LI may be smaller than the MI. But it offers
an easy way to bound estimation errors (i.e., LI − PI) for practically relevant classes of
distinguishers. Besides, it can be used for both generative and discriminative models (while
the HI was limited to the first ones). This allows evaluators to gauge how much their
attacks can be improved by collecting more profiling traces, and to stop their measurement
campaigns when the gain becomes small. In other words, this new metric answers the
question: how much information can be learned with my leakage model?

Regarding the second question, we initiate a study of the convergence rate of the TIN
and PI metrics for practically-relevant profiling techniques. Namely, we consider simple
representatives of two widely-used profiled attack families. For the Gaussian templates,
we consider the original attack of Chari et al. [CRR02], denoted in this paper as gTA, and
its variant with pooled covariance matrix estimation [CK13], denoted as p-gTA. For the
deep learning attacks, we analyze a Multi-Layer Perceptron (MLP) with L layers and W
weights to fit, trained with a negative log-likelihood loss function. Although less common
in side-channel attacks, we also consider the kth-order logistic regression, denoted as LRk,
which is interesting since this model is similar to Gaussian templates but its training
process is closer to the one of the MLP. Our results are synthesized in Table 1.

On the one hand, this table positively answers our question regarding the practicality
of the profiling phase in a security evaluation. It shows that there are profiling tools
for which the estimation error is inversely proportional to

√
N (N being the number of

profiling traces) for any (even protected) implementation (e.g., MLP and LRk). It also
shows that the convergence rate of the models depends on their hyperparameters but not
on the physical leakage characteristics (i.e., the true leakage distribution), and consolidates
the general intuition that side-channel security evaluations are a trade-off between the
genericity and the efficiency of the profiling. On the other hand, the table shows that
there are statistical tools that are better suited depending on the evaluation contexts. For
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Table 1: Convergence of the PI of different profiling tools (the Õ(·) notation ignores log
terms). The “Fast regime” column assumes that, for some ideally chosen values of the
parameters, the model can perfectly match the true leakage distribution.

Model Fast Regime General Bound

MLP Õ
(
QWL
N

)
Õ
(√

QWL
N

)
kth-order logistic regression (LRk) Õ

(
QDk

N

)
Õ
(√

Q·Dk
N

)
Gaussian templates (gTA) O

(
QD2

N

)
Pooled Gaussian templates (p-gTA) O

(
QD
N

)
for Q = 2

Q denotes the number of profiled classes, D the dimensionality of the traces, and N the
number of traces acquired for profiling, i.e., quantify the sample complexity of profiling.

)

example, the convergence rate of LRk for a security order k leads the modeling error to
scale in O(Dk). By contrast, for a circuit of complexity k (e.g., the masking of a sensitive
variable that would leak D = k samples corresponding to the shares), it is always possible
to build an MLP whose complexity W · L scales as poly(D = k) [SB14, Thm. 20.3]. So if
an evaluator has to profile higher-order leakages, leveraging MLPs leads to a more efficient
profiling than trying to profile moments of the leakage distribution with LRk.

As discussed in Section 7, we hope these theoretical results can help evaluators operating
within a limited time frame towards finding the best trade-off in their model selection, by
anticipating and optimizing the models’ profiling complexity.

1.1 Related Works

The use of information theoretic metrics to guide/compare profiled attacks dates back
to [SKS09]. In a work from Cosade 2021 [PBP21], Picek et al. show that this intuition
does not only hold for the number of profiling traces but also for the number of epochs
used in the training phase of a machine learning model. Ito et al. show that the direct
optimization of security metrics such as the Success Rate (SR) or Guessing Entropy
(GE) [SMY09] can slightly improve an optimization guided by information theoretic
metrics in some contexts, at the cost of some computational overheads [IUH22]. It
follows previous observations that security metrics and information theoretic metrics can
sometimes lead to comparatively different outcomes (e.g., for low noise levels or small
number of attack traces) [SPAQ06, PHJ+19]. Yet, since information theoretic metrics
are inversely proportional to the asymptotic complexity of a side-channel attack phase,
the concrete impact of such an observation is also limited. For example, the experiments
performed in [IUH22] show some gains for attacks that succeed in 400 traces, but these
gains already vanish for attacks succeeding in more than 1,000 traces. So while such results
are interesting to push the optimization of concrete attacks in specific contexts, they do not
contradict the general relevance of information theoretic metrics for side-channel security
evaluations. Finally, Cristiani et al. investigate the so-called Neural-based MI estimation
(MINE) [CLM20]. They leverage the variational formulation of the MI allowing to train
an MLP to maximize a lower bound of the MI, similarly to the PI [CT12, Eq. (8.93)].
This research follows the observation of Mather et al. [MOBW13] that an evaluator may
estimate the complexity of her best attack without having to mount it. Analyzing whether
this complementary approach could be used to upper bound the information leakage like
the TIN and assessing its convergence rate are interesting scopes for further investigation.
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2 Background
Notations. In the following, we denote random variables (resp., random vectors) by upper-
case (resp., bold upper-case) letters X (resp., X). We denote by the same calligraphic
letter X the observation domain of the corresponding random variable (resp., random
vector). We denote observations of a random variable (resp., random vector) by the
corresponding lower-case roman letter x (resp., x). If a random variable X is discrete,
we denote by Pr(X = x) its probability mass function (pmf), for which we will use the
shortcut notation p(x). We note P(V) the set of probability distributions over a random
variable of domain V. If p and m denote two distributions over the same support, the
Kullback - Leibler (KL) divergence is denoted by DKL(p ‖ m) = E

X∼p

[
p(X)
m(X)

]
. We use the

notation O(f(n)) to hide constant factors in n, and the notation Õ(f(n)) to additionally
hide log factors in n. For a square matrix A, we denote by ‖A‖∗ its spectral norm (i.e.,
the greatest of its eigenvalues in absolute value) and by ‖A‖F its Frobenius norm.

2.1 Information Theoretic Metrics
Let Y be a discrete uniform random variable over a domain Y, denoting the sensitive
intermediate computation targeted by the attacker/evaluator, and L be a discrete random
vector over a domain L, denoting the corresponding physical measurement of the leakage of
Y . During its attack, the adversary/evaluator, who knows the distribution of Y , acquires
a profiling set SN made of N observations (y, l) of the joint probability distribution of
(Y,L). We consider the problem of estimating a discriminative model m(y | l) for the true
conditional Probability Mass Function (PMF) Pr(Y = y | L = l), for which we will use the
shortcut notation p(y | l). In some cases, we also care about a generative model m(l | y)
for the true PMF Pr(L = l | Y = y), denoted for short as p(l | y). We note that, since the
distribution of Y is known, a generative model naturally induces a discriminative model
(using Bayes’ rule). We further define a distance metric ∆ between a generative model m
and a discriminative model m′ (a probability distribution p may also be used in place of
one (or two) of the models):

∆m′
m = H(Y ) +

∑
y∈Y,l∈L

m(y, l) · log2
(

m′(y | l)
)
, (1)

where H(Y ) is the entropy of Y . Thanks to this notation, we can express the Mutual
Information (MI) between the random variables Y and L as

MI(Y ;L) = ∆p
p .

The MI is a relevant evaluation metric for side-channel attacks since the (measurement)
complexity of a worst-case side-channel attack targeting a secret key, e.g., y = S(x⊕k) where
x denotes a plain text, k denotes a secret key chunk, and S denotes an S-box, is inversely
proportional to MI(Y ;L) [DFS19, dCGRP19]. However, this metric cannot be computed
directly since the true leakage distribution (i.e., p(l | y)) is in general unknown. One
solution is to estimate it, which is known to be a difficult problem [Pan03]. Alternatively,
the amount of information that can be extracted from the leakages thanks to a model can
be quantified by the Perceived Information (PI) given by

PI(Y ;L; m) = ∆m
p .

The authors in [BHM+19] additionally considered the Hypothetical Information (HI):

HI(Y ;L; m) = ∆m
m ,
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and the empirical Hypothetical Information (eHI) defined as

eHIN (Y ;L) = ∆ẽSN
ẽSN

,

where ẽ denotes the operator that maps a profiling set SN to the corresponding empirical
distribution, i.e., ẽSN (y, l) = 1

N

∑N
i=1 1(y,l)=(yi,li). Whenever there is no ambiguity, we will

replace the notation ẽSN by ẽN . Based on these quantities, their main result is twofold.
First, the PI is always upper bounded by the MI regardless of the tested model m, with
equality if and only if m coincides with the true leakage distribution p. Second, the eHI
may be used to bound the MI as follows:

E
ẽN−1

[eHIN−1(Y ;L)] ≥ Ẽ
eN

[eHIN (Y ;L)] ≥ MI(Y ;L) . (2)

Note that the bound is for the expectation of the HI over the model estimations. It only
holds for the empirical distribution ẽN and the authors also show that

Ẽ
eN

[eHIN (Y ;L)] −→
N→∞

MI(Y ;L) . (3)

By contrast, the PI bound is true for any model.

3 Limitations of the HI
One important question left open by Bronchain et al. is whether the properties of
the HI generalize to parametric leakage models. This question is important since, as
experimentally observed in [BHM+19], assessing the security of an implementation with
an empirical model (and the corresponding bounds) rapidly becomes too expensive. In this
section, we consolidate this HI proposal in two directions. First, we give a counter-example
contradicting that the HI is in general (i.e., for any model) an upper bound for the PI.
In our example, it appears that this conjecture only holds when the parametric model
used in the bound corresponds to the true leakage function to a sufficient extent. This will
lead us to introduce a new metric to fix this issue in Section 4. Second, we formalize the
observation that empirical models converge too slowly for being a practical alternative
in (multivariate) side-channel security evaluations. For this purpose, we reconsider the
convergence of the eHI towards the MI. Bronchain et al. proved a monotone convergence of
the expectation. However, in practice the profiling dataset acquisition is usually performed
a single time by the evaluators. Accordingly, stronger notions of convergence (e.g., in
probability) are better suited to argue about the profiling phase of a side-channel attack.
We give such a stronger result in Section 3.2, while also showing that an evaluation based
on the eHI suffers from very slow convergence rates. In particular, it suffers from a bias
that grows exponentially with the trace dimensionality.

3.1 Inconsistency with Non-Empirical Models
In [BHM+19], the authors proposed the gHI (i.e. the HI computed for a Gaussian model)
as a surrogate of the eHI enabling a faster convergence. We next show empirically that
we can actually observe all three possible cases for the convergence of the PI and HI in a
quite realistic context: either they both converge to the same asymptotic value, or the HI
converges strictly above the PI, or the HI converges strictly below the PI.

We illustrate the three cases by measuring the gHI against true distributions that are
not Gaussian. In particular, we use discretized univariate Gaussian mixture models which
are relevant in the context of masked implementations. Concretely, the leakage is the sum
of a Gaussian noise and the Hamming weight of the sharing (x⊕ r, r) for the n-bit word
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(a) SNR = 0.02 (b) SNR = 2 (c) SNR = 200

Figure 1: True distributions (continuous lines) and models (dashed lines) trained with 20
samples for each of the 4 classes (i.e. n = 2 bits). The X axis is the value of the leakage
and the Y axis axis is its probability density.
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Figure 2: gPI, gHI and MI (Y axis, in bits) for 2-bit masked variable as a function of the
number of traces used to train the Gaussian model (X axis).

x, masked with a uniformly random n-bit word r. The model, for each leakage class (i.e.
x = 0 and x = 1) is a Gaussian fitted using maximum likelihood estimators. In Figure 1,
we show the leakage (continuous lines) and the models (dashed lines) for two distinct
values of the SNR, computed as the ratio between the variance of the Hamming weight of
an n-bit uniformly random variable, and the variance of the Gaussian noise [Man04].

In Figure 2, we show the corresponding gPI, gHI and MI. In addition to the observation
of the aforementioned three cases, we can look at the relationship between the gPI/gHI
and the MI. When the true distribution is close to Gaussian (Figure 1a), both gPI and gHI
converge to the MI, as conjectured. However, in the other cases, the gPI and gHI are below
the MI. This is explained by the inability of the Gaussian model to accurately represent the
distinctive features of the classes, and thus to exhibit good class discrimination. Visually,
the more dissimilarity between the true leakage and the model (i.e., from left to right in
Figure 1), the wider the gap between HI and MI (from left to right in Figure 2).

3.2 Slow Convergence of the Empirical Model
We now formalize the observation that empirical models converge too slowly for being a
practical alternative in side-channel security evaluations.

3.2.1 Convergence of the Expectation.

We first state that the bias of eHI scales exponentially in the dimensionality of the traces
D and linearly in Q

N , with Q the number of classes and N the number of profiling traces.

Theorem 1. Consider an evaluator sampling N traces from a D-dimensional leakage
with an ω-bit resolution, related to a sensitive intermediate computation over Q classes,
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10−2
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100

Figure 3: eHI−MI (y-axis) with respect to the number of profiling traces N (x-axis) for
D = 1 (blue), 2 (orange), 3 (green), and 4 (red). Here, ω = 4 and Q = 16.

assumed to be uniformly distributed. Then, the eHI satisfies the following inequalities:

MI(Y ;L) ≤ E [eHIN ] ≤ MI(Y ;L) + BQ

N
, (4)

where B denotes the number of bins in the empirical distribution. In particular, here
B = 2ωD. Moreover, (

E [eHIN ]−MI(Y ;L)
)
· N
BQ

−→
N→∞

1/2 . (5)

The proof of this statement is directly inspired from Paninski’s work [Pan03], and is
detailed in Appendix A. Note that as a consequence of Equation 5, the upper bound of
Equation 4 is asymptotically tight, thereby meaning that the lower bound is asymptotically
loose. Since there is no unbiased estimator of the MI [Pan03, Prop. 8], this is unavoidable
(otherwise removing the right term of Equation 4 would have given an unbiased estimator
of the MI). We illustrate this result with the auxiliary source code released by Bronchain et
al. with the paper [BHM+19].1 Figure 3 depicts the absolute difference between eHIN and
MI with respect to the number N of profiling traces, simulated according to a “Hamming
weight + Gaussian noise” leakage model, with a trace dimensionality ranging from 1 to
4.We can see that every curve has the same slope of roughly −1 with a constant offset
between each other, which confirms the theoretical expectations of Theorem 1.

3.2.2 Convergence in Probability.

So far we provided a speed of convergence of the expectation of the eHI towards the MI.
As already mentioned, such a result is not directly representative of an evaluation context
where the profiling phase is (ideally) performed once. For example, the results shown in
Figure 3 depict the convergence of eHI for one simulation, whereas Theorem 1 only ensures
that the shape of the curves observed in Figure 3 are the ones that are expected on average,
i.e. over several simulations. It might however be possible that by (lack of) chance, one
could observe different results for one particular eHI computation. We next eliminate this

1 https://github.com/obronchain/Leakage_Certification_Revisited

https://github.com/obronchain/Leakage_Certification_Revisited
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limitation by discussing/proving a stronger notion of convergence, namely the convergence
in probability. Incidentally, Bronchain et al. already proved the convergence in probability,
in the proof of [BHM+19, Lemma 2, p. 10], although not claimed as a theoretical result
in their paper. In this section, we additionally provide upper bounds on the rate of
convergence in probability. We state hereafter that the deviation between the eHI and its
expected value converges towards 0 at a speed O

(
log(N)√

N

)
.

Theorem 2. For all δ > 0, the inequality

∣∣∣eHIN − E [eHIN ]
∣∣∣ ≤ log2(N)

√
8 log(4/δ)

N
(6)

holds with probability at least 1− δ, and furthermore

E
[∣∣∣eHIN − E [eHIN ]

∣∣∣] ∈ Θ
(

1√
N

)
.

The proof of Theorem 2 is provided in Appendix A and is also directly inspired by
Paninski’s work [Pan03]. Interestingly, the convergence rate of Equation 6 does not depend
on D, while the bias increases exponentially with D. When the number of dimensions is
large, the bias will therefore dominate for practical N , despite the faster convergence rate
of the bias with respect to N . In that case, the eHI is thus an upper-bound of the MI with
high probability, although so loose that it is of little interest. Overall we conclude that
the eHI converges too slowly for many practical use-cases, which calls for a better solution
(which is not provided by the non-empirical HI, as discussed in Section 3.1).

4 Introducing the Training Information
The previous section showed the HI metric limitations both in terms of its ability to
bound the information that can be extracted with parametric models and in terms of the
convergence rate that its instantiation with the empirical function leads to. In this section,
we introduce a new metric to circumvent these limitations, which we call the Training
Information (TIN ). Like the eHI, it upper-bounds the PI while also having much better
quantitative convergence properties. To explain the intuition behind the TIN , we recall
that the eHI is the quantity ∆ẽN

ẽN , where ∆ is the operator defined in Equation 1, whereas
the HI, in its general form (i.e., defined for an arbitrary model m), is given by ∆m

m, and the
PI is given by ∆m

p , where p denotes the true (unknown) leakage distribution. The main
goal of the TIN is to base the metric on a parametric model (enabling faster convergence),
while keeping an upper bound for the PI. For this purpose, the eHI upper-bounds the MI by
overfitting: it builds an ideal discriminative model ẽN (in the superscript) based on some
samples, then evaluates it on the same samples (in the subscript). We define the TIN as
∆m

ẽN , where m is trained on the same sample set as the one used to compute ẽN . Since the
TIN is based on a model instead of the empirical distribution, it carries the possible biases
induced by the choice of possible models (e.g., Gaussian distributions). Hence it cannot
upper-bound the MI in general (e.g., if the true distribution is not Gaussian). However, we
can still relate the TIN and the PI to a meaningful quantity that we name the Learnable
Information (LI for short). The LI is the maximum amount of information that can be
extracted from a given leakage distribution using a family of models, and the gap between
the LI and the MI corresponds to the “assumption error” of the evaluator/attacker’s
model [DSV14]. Informally, we have the following inequalities: PI ≤ LI ≤ TI. We next
formalize the concepts of LI and TIN in Section 4.1, then prove the above inequalities and
prove that the expectation of the TIN converges in Equation 4.2.
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4.1 Definition and Rationale
We first formalize the notion of “family of models” as follows.
Definition 1 (Hypothesis class). A hypothesis class H is a – possibly infinite – collection
of discriminative models m : L → P(Y), where L denotes the input space of the random
vector L of the side-channel trace, and Y denotes the finite set of all hypothetical values
of the target discrete random variable Y .

The output of m can be seen as a possible discrete probability distribution of the target
random variable Y , while an hypothesis class can be understood as “a model where the
parameters are not yet fixed” (e.g. the set of MLPs with a given structure is an hypothesis
class). Using this notion of hypothesis class, we next define the LI.
Definition 2 (Learnable Information). Let H be a hypothesis class. The learnable
information on Y from leakage L using a model from H is defined as the quantity:

LI(Y ;L;H) = sup
m∈H

PI(Y ;L; m) . (7)

In order to introduce the training information, we need two more definitions.
Definition 3 (Learning Algorithm). A learning algorithm A for a hypothesis class H is a
function

A :
∞⋃
N=1

(Y × L)N → H, (8)

taking as an input a set SN of N acquisitions drawn from the (unknown) joint probability
distribution of (Y,L) and returning a model m = A(SN ) from the hypothesis class H.

It is worth noticing that in a profiled attack scenario, the adversary can be defined
by its underlying learning algorithm. Hence, in this paper, we denote interchangeably by
A either an adversary, or its corresponding learning algorithm. The following definition
states how we compare different learning attackers, i.e., learning algorithms.
Definition 4 (Regret). Let A be an attacker, i.e., a learning algorithm. The regret of A
is the following quantity:

R (A) = MI(Y ;L)− PI(Y ;L;A(SN )) . (9)

By definition, the regret is always non-negative, and equals 0 if and only if the learning
algorithm outputs the exact leakage model, i.e. A(SN ) = p. We can now give the formal
definition of TIN , based on the ∆ operator.
Definition 5 (Training Information). Let SN be a set of N samples drawn from a
distribution over (Y,L). The training information by A with N traces is defined as the
following quantity:

TIN (Y ;L;A) = ∆A(SN )
ẽSN

. (10)

Since TIN is defined for any learning algorithm, regardless of their performances, there
is no prior reason why TIN could be an upper bound of MI nor PI. Nevertheless, this
is possible by adding a few more assumptions, in particular assuming that the learning
algorithm is a TIN maximizer as we next formalize.
Definition 6 (TIN maximizer). Let H a hypothesis class and let SN be the dataset of N
traces. The TIN maximizer for the hypothesis class H is the learning algorithm AH such
that AH(SN ) = m̂N , where m̂N is defined as

m̂SN = argmax
m∈H

∆m
ẽSN

. (11)

For conciseness, we will replace the notation m̂SN by m̂N in the remaining of this paper.
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4.2 Bound and Convergence of the TIN
Provided with the TIN maximizer of a hypothesis class, it is possible to derive properties
similar to the ones conjectured for the gHI by Bronchain et al. [BHM+19]. The first one
that we give hereafter tells that the maximum TIN over a hypothesis class is an upper
bound in expectation of the LI for the same hypothesis class. The second one tells that,
for a TIN maximizer, the expectation of the TIN is monotonically decreasing. These two
results imply that the expectation of the TIN converges to an upper bound of the LI.
Proposition 1. Let H be a hypothesis class, and N be a positive integer. Then

LI(Y ;L;H) ≤ E [TIN (Y ;L;AH)] , (12)

where the expectation is taken over the profiling set SN of size N .
Proof. According to Definition 5 and Definition 6, for any model m ∈ H, if m̂N denotes
the maximum likelihood for H, it holds that

∆m̂N
ẽN ≥ ∆m

ẽN . (13)
Since the expectation is monotone, non-decreasing, it follows that

E [TIN (Y ;L; m̂N )] = E
[
∆m̂N

ẽN

]
≥ E

[
∆m

ẽN
]

(14)

Since the ∆b
a operator is linear with respect to a, it follows that

E
[
∆m

ẽN
]

= ∆m
p = PI(Y ;L; m) . (15)

Since the latter holds regardless the choice for m we may arbitrarily take the model that
maximizes the PI, which gives Equation 12.

Proposition 2. Let H be a hypothesis class, and N be a positive integer. Then

E [TIN−1(Y ;L;AH)] ≥ E [TIN (Y ;L;AH)] , (16)

where the expectation is taken over the profiling set SN of size N .
Proof. We first remark that we can extend the definition of the TIN -maximizer to learn
from an empirical distribution: let e ∈ P(Y,L), we define

m̂e = argmax
m∈H

∆m
e .

We shall show that the function γ : ẽN 7→ ∆m̂ẽN
ẽN is convex. The theorem then follows

from Lemma 2 of Bronchain et al. [BHM+19]. For any e, e′ ∈ P(Y,L), α ∈ [0, 1], let
e′′ = αe + (1− α)e′. We show that γ(e′′) ≤ αγ(e) + (1− α)γ(e′). First, using the linearity
of ∆m

e with respect to e, we have

γ(e′′) = ∆m̂e′′
e′′ = α∆m̂e′′

e +(1− α) ∆m̂e′′
e′ .

Since m̂e and m̂e′ are TIN -maximizers, ∆m̂e′′
e ≤ ∆m̂e

e and ∆m̂e′′
e′ ≤ ∆m̂e′

e′ , which gives

γ(e′′) ≤ α∆m̂e
e +(1− α) ∆m̂e′

e′ = αγ(e) + (1− α)γ(e′) .

Proposition 1 and Proposition 2 together show that the TIN satisfies the same monotone
convergence of its expectation as the one satisfied by the eHI, previously shown by Bronchain
et al. [BHM+19]. Moreover, Proposition 1 tells us that the asymptotic TIN is an upper
bound of LI. It is therefore interesting to discuss whether, like in Bronchain et al.’s works,
it is possible to get stronger notions of convergence, with the hope to get faster convergence
rates than the one satisfied by eHI. Section 5 will be devoted to this question.
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5 Convergence Rate of TI-Maximizing Distinguishers
So far, the metrics for a TIN -maximizer operating on a hypothesis class H follow

PI(Y ;L;AH) ≤ LI(Y ;L;H) ≤
E

TIN (Y ;L;AH) ≤
E

TIN−1(Y ;L;AH) ,

where the first inequality is unconditionally true [BHM+19], whereas the last two inequali-
ties hold in expectation only (see Equations (12), (16)). In this section, we are interested
in whether both the TIN and the PI converge towards the quantity of interest, namely
the LI. And if so, what convergence rate could we expect for the gaps between those
metrics? At a very high level, the answer to both questions depends on the combination
of three factors: the richness of the hypothesis class H, how it is likely to depict well the
true leakage model, and how smooth the metric we aim to optimize (i.e. the TIN here) is.
Depending on those factors, we may observe a fast convergence (i.e., at a rate Õ(1/N)),
a slow rate (i.e., at a rate Õ

(
1/
√
N
)
), or no convergence at all. Which case fits to our

problem? This section aims at addressing this question. To this end, we need first to
formally introduce in Section 5.1 the hypothesis classes that we will consider in this paper.
Then, we will have the necessary material to state in Section 5.2 the convergence rates.

5.1 Definition of our Problem
For the remaining of Section 5, we consider a hypothesis class H that is the family of
concatenations of real-valued functions belonging to a given set F (that we will describe
thereafter), composed with a softmax function

σ(x) = 1∑Q
i=1 e

xi

e
x1

...
exQ

 ,x ∈ RQ . (17)

We assume that each real-valued function f ∈ F can be fully described by a parameter
vector θ. In other words, each function m ∈ H can be written as

mΘ(l) = σ

f(l;θ1)
...

f(l;θQ)

 , (18)

where Θ is the concatenation of θ1, . . . ,θQ. We denote by Hᵀ the space Θ belongs to.
Remark 1. The softmax function σ remains invariant by applying the same shift to all its
entries. It follows that if the elementary class F is a group, one may fix one of the f(l;θi)
to the constant function 1, without changing the resulting hypothesis class H.

This definition covers a broad family of models, such as Logistic Regression models
with polynomial basis of degree k (LRk for short) and deep neural networks, among which
we particularly focus on MLP s (without loss of generality).

In the case of an LRk-attacker, the elementary class F is the set of all polynomial
transformations of degree at most k over the leakage space L ⊂ RD. As an example, in
the case of LR1, the mapping

l,θi 7→ f(l;θi) = Bᵀ
i l
′ (19)

is an affine form, where Bi ∈ RD+1 and l′ = (l, 1). Here, θi corresponds to Bi. In the case
of LR2, the mapping

l,θi 7→ f(l;θi) = l′ᵀAil
′, (20)
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where Ai ∈ R(D+1)2 is a quadratic form. Here, θi = Ai.
Finally, in the case of MLP s, the mapping

l,θi 7→ f(l;θi) = φL

(
·; Θ(L)

i

)
◦ . . . ◦ φ1

(
·; Θ(1)

i

)
(l) (21)

is a composition of L layers φi, each being the composition of a linear mapping, defined
by the weight matrix Θ(j)

i , with an element-wise non-linear function (a.k.a. activation) –
except the L-th layer which is not composed with any activation function, since this role
will be played by the whole softmax function. Here, θi = (Θ(1)

i , . . . ,Θ(L)
i ). In the rest of

the paper, we assume that the total number of entries in the weight matrices equals W .
Whereas MLPs are now widely used for profiled side-channel analysis, LR models have

not been considered so far in the literature to the best of our knowledge.2 However,
LR models may be of great interest thanks to their connection to Gaussian templates.
Indeed, we claim that the hypothesis class of Gaussian templates (resp., pooled Gaussian
templates [CK13]) is included in LR2 (resp., LR1). This will be shown in Section 6. A
similar correspondence could be investigated for the inclusion of so-called side-channel
attacks of order k [SM16, MS16] in LRk. We discuss in Section 6 the main difference
between LR and Gaussian templates approaches, which is the nature of the underlying
learning algorithm A used to find the right model from H = LRk (for k = 1, 2).

5.2 Convergence Rates for TIN -Maximizers
As briefly stated in introduction of Section 5, the convergence rate of the TIN and the PI
towards the LI depends on three factors, namely the richness of H, how it depicts well the
true leakage distribution, and the smoothness of the metrics to optimize. When considering
only the first and the last criteria, it is possible to prove the convergence in probability
of the PI and the TIN to the LI, with rate Õ

(√
P
N

)
, where P is a constant depicting the

richness of H. However, formalizing the concept of richness in this case requires some
involved discussion, that the interested reader may find in Appendix B.

Instead, we propose to introduce some assumption about the second criterion, as it
will allow us to derive much more intuitive, and much more efficient results. Indeed,
some recent advances in statistical learning theory have seen the emergence of proofs of
convergence under the so-called central condition [vEGM+15], a rather general requirement
that allows us to derive fast convergence rates. Here as well, we will not elaborate much
about the exact meaning of this assumption. Instead, and for readability purpose, we
provide hereafter a stronger assumption which is significantly easier to grasp.

Lemma 1 ([vEGM+15, Example 2.2]). Let H be a hypothesis class and let p be the true
leakage model to be estimated. If p ∈ H, then the central condition holds.

Van Erven et al. argue that even if p /∈ H, this condition is often verified [vEGM+15,
Example 2.2], up to some (possibly high [MG22]) constant factors in the bounds. That is
why we will assume in this section that the hypothesis of Lemma 1 holds true.

5.2.1 Fast convergence of PI towards LI

We now state the fast convergence rates for the different hypothesis classes that we consider
in this section. The following corollaries 1 and 2, are proven in Appendix C.

Corollary 1. Let LRk for k = 1, 2 be a TIN -maximizer attack using logistic regression for
profiling. Suppose that

2 Logistic Regression models without polynomial transformation can actually be seen as the simplest
MLP model, i.e., without any hidden layer, nor activation layer, excepted the output softmax.
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• For all l ∈ L ⊂ RD, ‖l‖2 ≤ R, for some R ∈ R.
• For all 1 ≤ i ≤ Q, ‖θi‖2 ≤ S, for some S ∈ R.

If LRk verifies the assumption of Lemma 1, and N ≥ 5, the gap LI− PI is bounded by

8
N

(
2(R2 + 1)k/2S + log(Q)

)(
(D + 1)kQh+ log

(
1
δ

))
+ 1
N

. (22)

with h = log
(
32QSN(R2 + 1)k/2

)
.

If p ∈ LRk (for k = 1 or k = 2), then LI(Y ;L; LRk) = MI(Y ;L). In other words, the
regret of an LRk attacker is bounded by Õ

(
DkQ
N

)
if we assume that every real parameter

and every leakage value is bounded by a constant.

Corollary 2. Let A be a TIN -maximizer attacker using MLP as defined in Equation 21
with ReLU activation function for profiling. Suppose that

• For all l ∈ L ⊂ RD, ‖l‖2 ≤ R, for some R ∈ R.
• For all 1 ≤ i ≤ L and for all 1 ≤ j ≤ Q,

∥∥∥Θ(j)
i

∥∥∥
F
≤ S, for some S ∈ R≥1.

If MLP verifies the assumption of Lemma 1, and N ≥ 5,

LI(Y ;L; MLP)− PI(Y ;L;AMLP) ≤ 8B
N

(
WQ log(16BN) + log

(
1
δ

))
+ 1
N

, (23)

where B = 2Q3/2RLSL+1.

If p ∈ MLP, then LI(Y ;L; MLP) = MI(Y ;L). In other words, the regret of an MLP
attacker is bounded by Õ

(
LW 2L+3DQ5/2

N

)
if we assume that every real parameter and

every leakage value is bounded by a constant.

5.2.2 Fast convergence of TIN towards LI

So far we have shown that under the central condition (Lemma 1) — in other words under
the assumption that LI = MI — the regret of a TIN -maximizer, i.e. the gap between
the MI and the PI enjoys a fast convergence rate with high probability towards 0. Since
we have shown in Section 4 that for this learning algorithm, the TIN is monotonically
decreasing and converges to the LI, we may wonder what is its convergence rate. We show
in Appendix B that the TIN converges in probability towards the LI at a rate Õ

(
1√
N

)
, and

a faster convergence rate cannot hold in general. To see why, let us take a counter-example
in which the hypothesis class H contains only the true leakage model p, so we trivially
have the equality PI = LI = MI. Yet, since H is a singleton, the TIN -maximizer is constant,
so the TIN can be expressed as an empirical mean. According to the well-known central
limit theorem, the rate of convergence in probability cannot be faster than O

(
1√
N

)
.

Nevertheless, the latter theoretical counter-example does not reflect what an evaluator
can observe in practice. Indeed, the slow convergence rate comes from the variance in
the TIN : its deviation converges slowly (as a consequence of the central limit theorem),
regardless of whether the TIN -maximizer is good or not. On the other hand, similarly
to the conclusion of Section 3, the gap between the TIN and the LI is dominated by its
statistical bias, which converges towards 0 at a fast rate. More precisely, Proposition 3
(Appendix C) analyzes the training gap

TGN (Y ;L;AH) = TIN (Y ;L;AH)− PI(Y ;L;AH)
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and shows that
E
SN

[TGN (Y ;L;AH)] ∈ O
(
h

N

)
where h depends on the richness of the hypothesis class H. Proposition 3 also bounds the
deviation of the training gap:

E
SN

[∣∣∣∣TGN (Y ;L;AH)− E
SN

[TGN (Y ;L;AH)]
∣∣∣∣] ∈ O( h

N
+ 1√

N

)
.

In most practical cases, similarly to Section 3, we observe that h� N , hence the dominant
term in the deviation is proportional to the bias.

The overall picture. To summarize, combining the results of Section 4.2, Equation 4.2,
and this section, we come to the following picture for the TIN -maximizer regarding the
convergence w.r.t N :

LI(Y ;L;H)− Õ
(

1
N

)
≤

h.p.
PI(Y ;L;AH) ≤ LI(Y ;L;H)

LI(Y ;L;H) ≤
E

TIN (Y ;L;AH) ≤
E

LI(Y ;L;H) + Õ
(

1
N

)
,

where ≤
h.p.

denotes an inequality that holds with high probability, and ≤
E

denotes an
inequality verified by the expectations of both hand-sides.

6 Gaussian Templates
The assumption p ∈ H, which is key to obtain the fast convergence rate of the previous
section, is actually a fairly common assumption made in side-channel security evaluations.
One of the most popular models is the Gaussian template where H is the set of multivariate
Gaussian distributions.3 The Gaussian template attack (gTA for short), however, is not a
TIN maximizer, since the parameters (mean and covariance) of the templates are chosen
as the empirical average and covariance, raising the question whether we can still derive
similar bounds to what has been done in Section 5? In this section, we compute the
convergence rates of gTA, first for the original and most generic template attack [CRR02],
then in the particular case where the covariance matrix is known to be diagonal — a.k.a.
the so-called naive Bayes classifier [PHG17, PSK+18] — and finally for the pooled gTA
(i.e. the covariance is the same for all values of y) [CK13]. Formally, we assume that the
leakage distribution fy(·) for each of the Q different classes y has a Gaussian distribution
of mean µy and covariance Σy. For each class y, the adversary estimates a D-dimensional
Gaussian generative model f̂y(·) (the template) according to the empirical mean vector µ̂y
and the empirical covariance matrix Σ̂y. Without loss of generality, we assume that for
each class, the adversary has acquired N/Q traces during the profiling phase in order to
build each template f̂y(·). The discriminative model derived from this Gaussian model —
computed thanks to the Bayes rule — is used to mount a key recovery attack.

One may then remark that LR2 covers the set of discriminative models derived from gTA.
To see this, define each elementary function f(l;θi) = − 1

2 (l−µi)ᵀΣ−1
i (l−µi) = l′ᵀAil

′ for
some Ai ∈ R(D+1)2 . Thus, the corresponding LR2 model mΘ coincides with the Gaussian
template. Likewise, if we further assume that the covariance matrix is the same for all

3 Other popular generative models used in the side-channel literature are restricted classes of Gaussian
templates (e.g., Schindler’s stochastic model [SLP05]), Gaussian templates after pre-processing (e.g.,
Linear discriminant analysis [APSQ06]) or generalizations (e.g., Gaussian mixtures [LP07]).
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classes, the quadratic term − 1
2 l

ᵀΣ−1
i l is common to all functions f(l;θi) and can be

subtracted without change to the model mΘ. We deduce that the set of pooled Gaussian
templates is equal to the hypothesis class of LR1.4 In other words, despite a gTA (resp.,
p-gTA) adversary differs from an LR2 (resp., LR1) adversary, since they do not use the
same learning algorithm, the hypothesis class of the former one lies in the hypothesis class
of the latter one. It is therefore interesting to compare their convergence rates, e.g. by
comparing their respective regrets (i.e., the gap between the LI and the PI since it follows
from the Gaussian assumption that LI = MI). This is the aim of this section.
Remark 2. The Gaussian TA (resp., pooled TA) is identical to the quadratic (resp.,
linear) discriminant analysis (QDA/LDA), which are well-known machine learning models.
However, most of the literature focuses on the success rate metric (e.g. [Efr75, HTF09]),
and is not directly adaptable to information theoretic metrics. To the best of our knowledge,
there is no existing bound on the convergence of the LDA/QDA that applie to the PI.

6.1 gTA convergence
Let us start with a convergence bound for the gTA, which is the most general Gaussian
templates model. The proof of the following corollary is given in Section D.1.

Corollary 3. For any δ > 0, the regret R (gTA) of an attacker instantiating a Gaussian
template attack is upper-bounded by O

(
QD2

N log
( 1
δ

))
with probability at least 1− δ.

In other words, to be able to control the estimation error of the MI when profiling with
a gTA, the attacker/evaluator must ensure that the number of profiling traces scales with
the squared dimensionality of the traces times the number of classes.

6.2 On the tightness of the bound
So far, we have emphasized an upper bound of the regret of a gTA attacker. It is then
interesting to assess whether this upper bound is tight or not. Namely, can we derive
tighter bounds of our regret, for any actual multivariate Gaussian leakage? We argue that
without further assumption regarding the knowledge of the attacker, we cannot get better
bounds. The convergence rate emphasized in Corollary 3 essentially comes from the error
terms due to the estimation of the empirical covariance matrix, namely log

(
det
(

Σ̂
))

and

Tr
(

Σ̂−1
)
−D. However, the sum of both error terms scale with Θ

(
QD2

N

)
in expectation

(the proof is given in Section D.1.1). Despite this negative argument, it is still possible to
obtain faster convergence, provided that the attacker has more prior knowledge concerning
the leakage, and more particularly concerning the shape of the covariance matrix. We
next emphasize two particular cases that are often considered in side-channel analysis.

6.2.1 The Covariance Matrix is Diagonal: Naive Bayes

The Naive Bayes model has sometimes been used in SCA [PHG17, PSK+18]. It assumes a
Gaussian multivariate distribution with diagonal covariance matrix for the leakage function.
This reduces the covariance estimation to the estimation of the variance in each dimension,
leading to a faster convergence, as stated by the next corollary, proven in Section D.2.

Corollary 4. The regret of an attacker instantiating a Gaussian template attack knowing
that the covariance matrices are all diagonal is upper-bounded by O

(
QD
N log

( 1
δ

))
.

4 Even though the hypothesis classes of p-gTA and LR1 are the same, the LR1 model is more general
(due to its different training). Indeed, Efron argues that the model LR1 could coincide with the template
attacks with exponential family distribution sets, with common nuisance parameter [Efr75].



538 Information Bounds and Convergence Rates for Side-Channel Security Evaluators

6.2.2 Choudary and Kuhn’s Pooled Template Attacks.

For gTA-based side-channel attacks, the bottleneck task is the estimation of the covariance
matrices. Choudary and Kuhn considered this problem at Cardis’13 and emphasized
that if N/Q ≤ D, the empirical covariance matrices admit some zero singular values,
so they are not invertible [CK13]. To circumvent this numerical issue, they proposed to
pool all the covariance matrices into one common matrix for all the classes, leading to
the pooled Gaussian templates attack (p-gTA). This assumption is also known under the
name of homoscedasticity and it leads to mounting a Linear Discriminant Analysis (LDA)
classification under the statistical learning terminology. Despite its popular success in
SCA [SA08, LPB+15, CDP15, CDP16, BS20], less has been done regarding the analysis of
this approach since Choudary and Kuhn’s paper. Yet, using a p-gTA addresses the necessary
condition emphasized by Choudary and Kuhn so that the attack works, but does not ensure
any sufficient condition. Can we find another explanation to the success of p-gTA? At first
glance, using Q times more traces to estimate the pooled covariance matrix would induce
a O

(
D2/N

)
convergence for the estimation of the covariance, while keeping O(QD/N)

convergence for the means estimation. This would result in a O
(
max

{
D2/N,QD/N

})
bound in Corollary 3 for the ultimate regret of pooled template attacks. However, we
conjecture that the latter upper bound can even be tightened to O(QD/N), becoming
fully linear in the trace dimensionality, despite the D2 matrix coefficients to estimate.
Our conjecture is grounded on the similarity with the LR1 model and on a proof in the
particular case where Q = 2, stated next and proven in Section D.3.

Corollary 5. The regret of an attacker instantiating p-gTA for Q = 2, is upper bounded by
O
((

∆2 + 1
)
D+1
N

)
where ∆2 = (µ1 − µ0)ᵀ Σ−1 (µ1 − µ0) denotes the Mahalanobis distance

between the two centroids.

7 Case Study and Practical Use
So far, we have studied the PI and TIN for different classes of models. We finally discuss the
impact of these results for the SCA practitioner. First, we briefly explain in Section 7.1 how
the theoretical bounds could be used by an evaluator. Then, we illustrate in Section 7.2
our bounds and their use on simulated and experimental data.

7.1 Discussion on the practical use
Let us illustrate the properties of the TIN and discuss its practical usage in a side-channel
evaluation context. Suppose that an evaluator has a target security level claim to verify,
e.g., expressed in bits leaked per trace.5 If an evaluator wants to verify this claim, she
can run a profiling with a TI maximizer as a learning algorithm. Figure 4 sketches the
different situations that an evaluator may face after acquiring a profiling dataset (with a
given amount of traces) and a validation dataset, then running the attack.

In the first case (left of the figure), the PI is higher than the target security level.
Therefore, the evaluator can conclude that the device under evaluation does not satisfy
the security requirement. Furthermore, the gap between the PI and the TI captures the
potential improvement of the attack that beats the target security level.

In the third case (right of the figure), the opposite situation holds. The TI is below
the target and measures the guaranteed security level. Furthermore, the gap between the
PI and the TI captures the potential improvement of the guaranteed security level. It is
remarkable that this conclusion holds even if the PI of the model trained by the evaluator
is negative, that is, independently of whether this model is useful to mount an attack.

5 Which can be converted into a success rate using bounds like [DFS15, dCGRP19].
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Figure 4: Illustration of security evaluations results.

In the remaining case (middle plot), the target security level lies between the PI and
the TI, for the given amount of profiling traces. While it is in general less conclusive,
our tools also allow interesting statements in this case. Indeed, we know that the actual
security level is also between the PI and the TI. Let us denote the target security level
by T and let ε = TIN − PI. We then know that the actual security level belongs to the
interval [PI,TIN ] ⊂ [T − ε, T + ε]. Let us moreover assume that ε ≤ αT for some α chosen
by the evaluator. We can then claim that the security level of the implementation belongs
to [(1− α)T, (1 + α)T ], i.e., T with an error margin of (α/100)%. This brings us to the
relevance of knowing the convergence rate of the PI and the TIN . Indeed, this approach is
practical only if the evaluator can easily make ε small. Thanks to the bounds given in
Section 5 and Section 6, this requirement is satisfied: ε converges at a fast O

( 1
N

)
rate,

where N is the number of profiling traces. Moreover, our quantitative bounds in these
sections (see, e.g., Corollary 2) show that the constants behind the O(·) notation are
reasonably small. Therefore, a practical use for the convergence rates is to extrapolate the
guarantees that can be obtained with a number of profiling traces: from a given target
security level T and an uncertainty α, the evaluator can have a bound on the number of
profiling traces she will need to conclude her experiments with confidence.

7.2 Illustration on simulated & experimental data
It now remains to illustrate our bounds with concrete data. For this purpose, we consider
both simulated leakages and a public dataset of real measurements.

7.2.1 Setup & Models

Simulation setup. For our simulated experiments, we consider the Hamming weight
leakage of an 8-bit secret in two settings. The first one (denoted as “hardware”) corresponds
to a typical hardware implementation: no masking and low SNR. The second one (denoted
as “software”) corresponds to a protected software implementation: 2-shares Boolean
masking and high SNR (each share independently leaking its Hamming weight). These
simulations have 1 and 2 points in the leakage traces and the noise is Gaussian.

Public dataset. For the experimental validation, we take Bhasin et al.’s AES-HD dataset
in its extended version [BJP20], which is an unprotected AES implemented on FPGA. The
dataset is made of 500, 000 traces of 1250 time samples, of which 450, 000 traces are used
for the training, i.e., maximizing the TI, whereas the remaining is used for validation, i.e.,
estimating the PI. The target intermediate value is the first byte of the AES state before
the AddRoundkey operation of the last round, for which the full dataset exhibits an SNR
peak up to 0.016 [ZBHV20, Fig. 18]. Since the last AES round is clearly identifiable on
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Figure 5: Convergence of information metrics. In the upper part of the figure, the dotted
lines represent the TI while the solid lines represent the PI.

the raw traces, we assume the evaluator/adversary to be able to restrict its target window
over 100 Points of Interest (PoIs) around the SNR peak.

Models. In the “hardware” setting, we evaluate the linear models: LR1 and p-gTA,
as well as an MLP (single hidden layer with 100 neurons in the simulations, and 10
neurons in the experiments). The p-gTA is done using the LDA from SCALib6, and we
also consider (for the experimental dataset) a variant of the p-gTA with reduction to a
10-dimensional linear subspace (also known as LDA [SA08]). The logistic regression is
done with the implementation in scikit-learn7, and for the experimental dataset, we apply
a Principal Component Analysis (PCA) to reduce it to 20 dimensions, which simplifies the
optimization [APSQ06]. The TI maximization of the MLP is done thanks to the Adam
optimizer [KB15] implemented on the Pytorch framework [PGM+19] with a 10−4 learning
rate, without weight decay and a full batch, for 10, 000 epochs (i.e., a high number, in order
to best maximize the TI). In the “software” setting, the leakage function is non-linear, we
evaluate the LR2, gTA and MLP models (with the same hyper-parameters).

7.2.2 Results

The TIN and PI of these models for varying number of training traces are shown in Figure 5
for the simulations (the training is repeated for 5 different training sets) and on Figure 6 for
the experiments on AES-HD. Additionally for the simulations, since the true distribution
is known, the MI is also shown. These figures lead to the following observations.

6 scalib.readthedocs.io/.
7 https://scikit-learn.org/.

scalib.readthedocs.io/
https://scikit-learn.org/
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Figure 6: Experiments on AES-HD.

In the upper part of Figure 5, we see that the variance of the TIN is quite small compared
to its bias (w.r.t. the LI). This is a consequence of the log( 1

δ ) terms in Corollaries 1, 2
and 3.8 Next, considering the lower part of Figure 5 which depicts the gap between the TI
and the PI, we see that the slope in the logarithmic plots is close to −1, which means that
the gap is inversely proportional to N , as proven Section 5 and Section 6.9 Interestingly,
this holds true even when the PI and the TI are not yet close to their limit, and over a
wide range of training set sizes (more than two orders of magnitudes), which confirms the
practical interest of the extrapolation proposed in Section 7.1.

The same observation can be made on Figure 6b, depicting the gap between the TI and
the PI on the AES-HD dataset. So concretely, an evaluator could estimate how many traces
are needed for her profiling from the beginning of a learning curve (i.e.., when reaching
the linear regime), which we illustrate with a concrete example. If the evaluator (who does
not know the MI) wants to assess whether the target leaks less than 0.1 bit/trace when
profiled with a linear model such as the p-gTA or the LR1, Figure 6a tells us that the she
can stop the acquisition campaign and conclude after 100, 000 traces. Furthermore, she
can estimate this number with a much smaller dataset of ≈ 10, 000 traces, by extrapolating
the gap ε = TIN − PI, knowing that it is inversely proportional to N .

We finally remark that for the software simulation, the MLP model has a higher LI
than the LR2 and gTA models, meaning that it better models the true distribution. This
increased versatility comes at a cost: training it requires at least two orders of magnitude
more traces than the simpler models (roughly matching the bounds given in Table 1).

8 Concluding Remarks
This paper provides new information theoretic metrics and bounds together with a study
of the convergence rates for practically-relevant profiled attacks. Besides their interest for
helping side-channel security evaluators in selecting the profiling tools that best match
their target device and time constraints, our results also show connections and differences
between statistical learning theory and side-channel analysis. For example, in order to

8 The hypothesis p ∈ H is not satisfied for the gTA applied to a Gaussian mixture. Hence Corollary 3
does not apply, but its conclusion seems to hold here. The p-gTA results are in line with our conjecture.

9 For the gTA and LR2, p ∈ H does not hold, but convergence is still in 1/N , as discussed in Section 5.
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obtain convergence rates, we observed that the evaluator’s goal, namely maximizing the
PI to estimate the highest lower bound on MI, could be rephrased as a machine learning
problem, using information theoretic metrics as loss functions. Accordingly, the TIN metric
is nothing but the empirical risk studied in learning theory, and the TIN -maximizer in the
profiling SCA view coincides with the Empirical Risk Minimizer (ERM), one of the most
studied algorithms in machine learning. Yet, and somewhat surprisingly, the IT metrics that
are most relevant for side-channel security evaluations are less investigated optimization
goals than security metrics (like the accuracy) in the machine learning literature. So our
study puts forward both the interest of leveraging the broad scope of theoretical results
established in statistical learning theory over the past few years, and the need to adapt
them to needs that are somewhat specific to security evaluations. Eventually, an interesting
meta-conclusion of our results is that the profiling data complexity to estimate a model
does not fundamentally differ from the attack data complexity using this model, since
the profiling error we need to reach is proportional to the security level. This motivates
shortcut approaches to profiling as proposed in [ABB+20], and suggests that making
security claims based on the profiling complexity of an implementation (i.e., contradicting
the relevance of such shortcuts) could only be sound if showing that the model estimation
problem is computationally hard, which is an interesting open problem.
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A Proofs of Section 3
Proof of Theorem 1. It is worth reminding that the left inequality of Equation 4 has
already been shown by Bronchain et al. [BHM+19, Thm. 5]. Nevertheless, we provide
here a simpler alternative proof, by taking inspiration from the work of Paninski [Pan03,
Prop. 1] with slight modifications adapted to our context, thereby showing the right
inequality. First, we note that the eHI can be restated as follows:

eHIN (Y ;L) = MI(Y ;L) (24)
+

∑
y,l

(ẽN (y, l)− p(y, l)) log2(p(y | l)) (25)

+
∑
l

ẽN (l)DKL(ẽN (·|l) ‖ p(· | l)) , (26)

where DKL(· ‖ ·) denotes the KL divergence. This re-statement is of great interest, since
the first sum is unbiased – since ẽN (y, l) admits p(y, l) as expected value – whereas the
second sum is positively biased – because each of its term are positive thanks to the KL
divergence. Hence the first inequality of Equation 4.

It now remains to upper bound the second sum in expectation in order to get the upper
bound on the bias of eHI. To this end, as suggested by Paninski [Pan03, Proposition 1],
we use the fact that

0 ≤ Ẽ
eN

[DKL(ẽN (·|l) ‖ p(· | l))] ≤ log
(

1 + Q− 1
N

)
. (27)
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Finally, we have

E [eHIN −MI] =
∑
l

Ẽ
eN

[ẽN (l) · DKL(ẽN (·|l) ‖ p(· | l))]

≤
∑
l

Ẽ
eN

[DKL(ẽN (·|l) ‖ p(· | l))]

≤ |L| log
(

1 + Q− 1
N

)
≤ |L| Q− 1

N
.

We conclude the proof by observing that |L| is the number of bins. In addition, Equation 5
is a direct consequence of [Pan03, Thm. 5].

Proof of Theorem 2. Notice that

eHIN = H(Y ) + Ĥ(L)− Ĥ(Y,L) , (28)

where Ĥ(L) = −
∑
l∈L ẽN (l) log(ẽN (l)), and likewise for Ĥ(Y,L). Subtracting the expected

value of the eHI, we get∣∣∣eHIN − E [eHIN ]
∣∣∣ ≤ ∣∣∣Ĥ(L)− E

[
Ĥ(L)

]∣∣∣+
∣∣∣Ĥ(Y,L)− E

[
Ĥ(Y,L)

]∣∣∣ . (29)

Now, using McDiarmid’s inequality [AK01, Thm. 1], we have that for all ε > 0

Pr
(∣∣∣Ĥ(L)− E

[
Ĥ(L)

]∣∣∣ > ε

2

)
≤ 2 exp

(
− ε2N

8 log2(N)2

)
. (30)

Likewise, the very same inequality holds to upper bound
∣∣∣Ĥ(Y,L)− E

[
Ĥ(Y,L)

]∣∣∣. Hence,
for all ε > 0

Pr
(∣∣∣eHIN − E [eHIN ]

∣∣∣ > ε
)
≤ 4 exp

(
− ε2N

8 log2(N)2

)
. (31)

Denoting by δ the right hand-side of Equation 31, we get the main result.
Finally, the property ∣∣∣eHIN − E [eHIN ]

∣∣∣ ∈ Θ
(

1√
N

)
is proven in [AK01] (Section 4.1).

A.0.1 On the Effect of Discretization.

It is worth emphasizing that the latter analysis has been done assuming discrete probability
distributions for the leakage. Thereby, one may wonder whether those results extend to
the case where the leakage is modeled by continuous probability distributions. At first
sight, the latter result would become useless, as it would imply the oscilloscope resolution
ω to tend towards infinity. Unfortunately, it is hardly likely to obtain tight convergence
bounds in this case, because of the so-called curse of dimensionality, which – informally –
states that the convergence rate of non-parametric density estimation methods would slow
down at least exponentially with D [Sto82, Sto83]. Moreover, with nonparametric density
estimation methods, there is a risk that, depending on the choice of the kernel, the HI no
longer upper-bound the MI.
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B Proofs of Section B.2
B.1 Characterizing the Complexity of H: the Pseudo-Dimension
In the next section, we will present several upper bounds on the TIN towards the LI. It
is expected that those bounds will depend on the complexity – or the richness – of the
underlying hypothesis class H. Intuitively, the more parameters in Θ to fit, the slower
the convergence. It turns out that it is possible to characterize this complexity. This
characterization, named Pseudo-Dimension, is defined in this section, and we provide
some examples of pseudo-dimensions for several classes of interest for this study. We will
therefore be able to provide some convergence rates in the next sections that depend on
the pseudo-dimension.

We first need an intermediate definition of a pseudo-shattering.

Definition 7 (Pseudo-shattering [AB02, Def. 11.1]). Let F be a set of functions mapping
from a domain L to R and suppose that SN = {l1, . . . , lN} ⊂ L for some positive integer
N . Then, SN is pseudo-shattered by F if there are real numbers r1, . . . , rN such that for
all b ∈ {0, 1}N there is a function fb ∈ F such that for all 1 ≤ i ≤ N ,

fb(li)
{
≤ ri if bi = 0
> ri if bi = 1

. (32)

We say that r = (r1, . . . , rN ) witnesses the shattering.

An example of pseudo-shattering is depicted in Figure 7. We consider F as the set of
affine functions in R. When SN = {l1, l2}, we can exhibit a function from F satisfying
Equation 32 for any 2-bit vector b ∈ {0, 1}2. However, we can notice that when adding
l3 to SN , the new profiling set cannot be shattered anymore, since the binary vector
b = (0, 0, 1) provides a counter-example where Equation 32 is not satisfied. It can be
verified that no matter the choice of r3, one will always find such a binary vector b breaking
the condition of Equation 32. Intuitively, this states that F is not rich enough to shatter
any set of 3 leakages or more. Hence the choice of quantifying the richness of F by the
maximum amount of leakages that can be shattered by F , as formalized hereafter.

l

y

l1

r1 = r2

l3

r3

l2

•

•

•

(0, 0) (1, 0)

(0, 1)

(1, 1)

Figure 7: Illustration of the pseudo-shattering by the set F of affine functions of L = R.
The tuples denote the different values of b. {l1, l2} is pseudo-shattered by F , while
{l1, l2, l3} is not.
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Definition 8 (Pseudo-dimension [AB02, Def. 11.2]). Suppose that F is a set of functions
from a domain L to R. Then, F has pseudo-dimension N if N is the largest integer such
that any subset SN of L of cardinality N is pseudo-shattered by F . If no such maximum
exists, we say that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted
Pdim(F).

As an example, it is known that if F is a finite dimensionality vector space of functions
from an input space L onto R, then Pdim(F) is the dimensionality of F [AB02, Thm. 11.4].
We give hereafter the pseudo-dimension of the two classes considered in this work, namely
the Logistic regression and the MLP.

Theorem 3 (Pseudo-dimension of LRk [AB02, Thm. 11.8]). Let F be the class of all
polynomial transformations on RD of degree at most k. Then

Pdim(F) =
(
D + k

k

)
. (33)

Theorem 4 (Pseudo-dimension of MLP [BHLM19]). Let F be the class of MLP with
real-valued output with piece-wise linear activation function, W parameters and L layers.
Then, there exists two constants c > 0, C > 0 such that

cWL log(W/L) ≤ Pdim(F) ≤ CWL log(W ) . (34)

Put in another way, this means that the pseudo-dimension of parametric models is
roughly proportional to the number of real-valued parameters to fit.10

B.2 Convergence Rate for TI Maximizers
We are now ready to present our main result for TIN maximizers.

Theorem 5. Let H be a hypothesis class to model the leakage of an intermediate computa-
tion of Q hypothetical values, such that the corresponding elementary class F of functions
L → [−V, V ] (with V ≥ 1

2) has pseudo-dimension Pdim. Define the following quantities:

h = log
(
e (2V + log(Q))Q3/2

)
+ log(ePdim +1)

Pdim
+ log(2)

Pdim Q

η = log
(

64 (2V + log(Q))2

N

)
+ log

(
Pdim Qh+ log

(
1
δ

))

where N denotes the number of profiling traces. Define also the following quantity

εPdim,Q,V,N,δ = 8 (2V + log(Q))

√
log
( 1
δ

)
+ Pdim Q

(
h+ η

2
)

N
.

Then, for all 0 < δ ≤ 1, the inequality

sup
m∈H

∣∣∆m
ẽN −PI(Y ;L; m)

∣∣ ≤ εPdim,Q,V,N,δ (35)

holds with probability at least 1− δ.

We prove Theorem 5 in Appendix B. Corollary 6 follows from this result.
10This rule of thumb is not always true for other classes of models beyond the scope of this study. The

interested reader may find counter-examples in [Vap98, pp. 159-160].
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Corollary 6. Let AH be a TIN -maximizer adversary that profiles with N traces and
considers a hypothesis class H such that the corresponding elementary class F has pseudo-
dimension Pdim. The following inequalities

0 ≤ LI(Y ;L;H)− PI(Y ;L; m̂N ) ≤ 2εPdim,Q,V,N,δ

−3εPdim,Q,V,N,δ ≤TIN (Y ;L;AH)− LI(Y ;L;H) ≤ εPdim,Q,V,N,δ

hold with probability 1−δ (except the first one that always holds), and the slack εPdim,Q,V,N,δ

belongs to Õ
(
V
√

Pdim Q
N

)
.

Proof. The first inequality is a direct consequence of the definition of the LI. The second
one is a direct consequence of Theorem 5 and Theorem 6 (proven in Appendix), while the
two last ones follow from Corollary 7.

Putting the pseudo-dimensions of our models of interest in this Corollary gives our
generic convergence results (∀ p in Table 1).

B.3 Proof of Theorem 5
In this section, we prove Theorem 5. The proof is done in several steps that we briefly
describe hereafter before diving into the details.

1. We bound the gap between TIN (Y ;L; m̂N ) and PI(Y ;L; m̂N ) with a uniform bound,
i.e., not specific to any m ∈ H. We are now reduced to show that the gap uniformly
converges towards 0.

2. We invoke a theorem stating that the uniform convergence rate is upper bounded by
a quantity depending on the so-called covering numbers that we will define.

3. We will then introduce some properties of covering numbers in order to reduce the
problem to bounding the covering number of the different Fi.

4. The covering numbers can actually be bounded by the pseudo-dimension introduced
in Section B.1.

5. We now have all the ingredients to state the theorem and its corollary.

B.4 Uniform Convergence
Definition 9 (Uniform Convergence). Let H be a hypothesis class. We say that H has
the uniform convergence property if for any probability distribution over (Y,L), and for
any ε, δ > 0, the following inequality is satisfied:

Pr
(

sup
m∈H

∣∣∆m
ẽN −PI(Y ;L; m)

∣∣ ≥ ε) ≤ δ . (36)

Theorem 6 (Uniform Convergence implies Learnability). With the same notations as in
Definition 9, the inequality

LI(Y ;L;H)− PI(Y ;L; m̂N ) ≤ 2 sup
m∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣ (37)

is satisfied.
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Proof. Let m ∈ H be fixed, and let us denote m̂N = AH(ẽN ). By Definition 5, we have
TIN (Y ;L;AH) = ∆m̂N

ẽN ≥ ∆m
ẽN , therefore

∆m
p −∆m̂N

p =
(

∆m
p −∆m̂N

ẽN

)
+
(

∆m̂N
ẽN −∆m̂N

p

)
≤
(
∆m

p −∆m
ẽN
)

+
(

∆m̂N
ẽN −∆m̂N

p

)
≤
∣∣∆m

p −∆m
ẽN
∣∣+
∣∣∣∆m̂N

p −∆m̂N
ẽN

∣∣∣
≤ 2 sup

m′∈H

∣∣∣∆m′
p −∆m′

ẽN

∣∣∣ .
Since the right hand-side does not depend on the fixed m, taking the supremum of the left
hand side with respect to m, concludes the proof.

In other words, it suffices to prove the uniform convergence for our hypothesis class H to
show that the PI converges towards its supremum. Interestingly, the uniform convergence
of H is also a necessary condition [ABCH97, Thm. 4.2].11

Corollary 7. Let ε = supm∈H
∣∣PI(Y ;L; m)−∆m

ẽN
∣∣, the following inequalities hold

− 3ε ≤ TIN (Y ;L;AH)− LI(Y ;L;H) ≤ ε (38)

Proof. We first prove the first inequality:

LI(Y ;L;H)− TIN (Y ;L;AH) = LI(Y ;L;H)− PI(Y ;L; m̂N )
+PI(Y ;L; m̂N )− TIN (Y ;L;AH)

≤ 2 sup
m∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣

+ sup
m∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣

where the bound on the first term comes from Theorem 6 and the bound on the second
term follows from the definition of TIN (Y ;L;AH).

Next, we prove the second inequality

TIN (Y ;L;AH)− LI(Y ;L;H) = (TIN (Y ;L;AH)− PI(Y ;L; m̂N ))
− (LI(Y ;L;H)− PI(Y ;L; m̂N ))
≤ sup

m∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣− 0

where the bound on the second term follows from the definition of the LI.

B.5 Bounding Uniform Convergence with Covering Numbers
We now turn to emphasize uniform bounds, which, thanks to Corollary 7, will enable us
to draw bounds on the gap between TIN and LI. The main idea of the results that we will
present in this section is to reduce the uniform convergence for infinite hypothesis classes
to the uniform convergence for finite hypothesis classes, provided further assumptions. To
this end, we need to introduce the concept of covering numbers.

Definition 10 (Covering of a set [SB14, Def. 27.1]). Let A be a normed vector space with
respect to the ‖·‖1 norm, and ε > 0. We say that A is ε-covered by a set A′, with respect
to the ‖·‖1 norm, if for all a ∈ A, there exists a vector a′ ∈ A′ such that ‖a− a′‖1 ≤ ε.
We define by N1(ε,A) the cardinality of the smallest A′ that ε-covers A.

11For more general learning problem, the uniform convergence may be not necessary (see counter-example
in [Vap98, Sec. 3.12]). Nevertheless, a relaxed form of uniform convergence, called one-sided convergence,
becomes the necessary and sufficient condition for a learning algorithm to be consistent [Vap98, Thm. 3.2].
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In a nutshell, an ε-covering of a set A can be seen as a representative finite sample
of A, in the sense that any point from A is ε-close from at least one element from the
covering. Therefore, any analysis that is done over the covering is likely to still hold (up
to an error margin depending on at most ε) over the whole set A.

Beyond metric spaces, covering numbers can also be defined for functional spaces, such
as the ones we consider here. The following definition formally states this idea.
Definition 11 (Covering number of a hypothesis class [AB02, Sec. 10.4]). Let H be a set
of functions from an input space L to a subset of RQ. Given a sequence SN = (l1, . . . , lN ) ∈
LN of input data, we let HSN be the following set:

HSN =
{

(f(l1), . . . , f(lN )) ∈ RN×Q : f ∈ H
}

For a positive number ε, we define the covering number of H for accuracy ε and number
of data N as the quantity

N1(ε,H, N) = max
SN∈LN

N1(ε,HSN ) . (39)

Covering numbers are crucial in statistical learning theory. This is formally stated by
Theorem 7 hereafter.
Theorem 7 ([Hau92, Thm. 3]). Let H be a permissible12 hypothesis class of functions
from L to P(Y), such that for all m ∈ H, and y, l ∈ Y ×L, 0 ≤ − log(m[y]) ≤ B. Assume
N ≥ 1. Suppose that SN is generated by N independent random draws according to any
joint probability distribution on Y × L. Then

Pr
(

sup
m∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣ > ε

)
≤ 2N1(ε, log ◦H, 2N) e−

ε2N
64B2 , (40)

where log ◦H denotes the set of functions {y, l 7→ − log(m[y]) : m ∈ H}.
It now remains to see when Theorem 7 provides non-trivial bounds. Indeed, assum-

ing that (log ◦H)SN is a subset of [0, B]N , for some B > 0, then the covering number
N1(ε, log ◦H, N) can itself be trivially bounded by

(
BN
ε

)N . Unfortunately, in that case,
the right hand-side of Equation 40 tends to infinity with N →∞, if ε is small enough. In
other words, without further assumption, Theorem 7 is a rather tautological result, and
further conditions on H must be set for sound bounds.

Hopefully, we will see in Section B.7 that for some classes of functions, we can get tighter
bounds for covering numbers, yielding non-trivial worst-case of uniform convergence rates.
Before going further through our reasoning, we need a few technical lemmas concerning
covering numbers. Those technical results will be helpful to derive the aimed bounds.

B.6 A Few Properties about Covering Numbers
In this section, we introduce some technical lemmas that will be helpful for bounding
the covering numbers. We start with the contraction lemma that leverages the Lipschitz
property of a function.
Lemma 2 (Contraction). Let A,B be two sets, and φ : A → B be a ρ-Lipschitz function
for a given norm ‖·‖ respectively induced on A,B. That is, for a, b ∈ A, the following
inequality holds:

‖φ(a)− φ(b)‖B ≤ ρ‖a− b‖A . (41)
Then, if N denotes the covering number with respect to the considered norm, the inequality

N1(ρε, φ ◦ A) ≤ N1(ε,A) (42)

is valid.
12A very loose condition, see [Hau92, Footnote 11].
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Lemma 2 is inspired by the proof given by Shalev-Shwartz and Ben-David [SB14,
Lemma 27.2] who showed the result for the ‖·‖2 norm. We observe however that the result
can be generalized to any norm.

Proof. By definition, there exists a minimal ε-covering of A of size N1(ε,A). Then, for
any a ∈ A, there exists a′ from the covering A′ such that the following inequality holds:

‖a− a′‖ ≤ ε . (43)

Define B = φ ◦ A and B′ = φ ◦ A′. It follows from the Lipschitz property of φ that:

‖φ(a)− φ(a′)‖ ≤ ρ‖a− a′‖ ≤ ρε . (44)

Hence, B′ is a (ρε)-cover of B.

Corollary 8 (Contraction). Using the same notations as in Lemma 2, if φ is a ρ-Lipschitz
function (with respect to a given norm), then for any set of functions F , one can bound
the covering numbers of φ ◦ F as follows:

N1(ρε, φ ◦ F , N) ≤ N1(ε,F , N) . (45)

Proof. Recalling that N1(ε,F , N) is by definition the maximum value of N1(ε,A) over
all the sets A of size N in the image set of F , the result straightforwardly follows from
Lemma 2.

Informally, Corollary 8 tells us that the smoother the function φ – in the sense that the
lower its Lipschitz constant ρ – the less are needed to get an ε-cover of the image set by
considering the image of the ε-cover of the input space. Therefore, it is useful to reduce the
covering numbers computation of an hypothesis class if the latter one is a set of composed
smooth functions. The direct application of Corollary 8 is to bound the covering number
of log ◦H with the covering number of FQ defined as the set {h : L → RQ : σ ◦h ∈ H}, i.e.,
such that σ ◦FQ = H. Let us first observe that the Lipschitz constant of the composed
function log ◦σ is bounded by the square root of the number of its entries, as stated by
Lemma 3.

Lemma 3. For all 1 ≤ i ≤ Q, the function x ∈ RQ 7→ log(σ(x)i) is
√
Q-Lipschitz in the

‖·‖1 and ‖·‖2 norms.

Proof. Denote by φ the considered function. Since ‖x‖2 ≤ ‖x‖1, it suffices to show that φ
is
√
Q-Lipschitz in the ‖·‖2 norm. Moreover, it is known that the Lipschitz constant in

the latter norm is bounded by the supremum over the range of x of the ‖·‖2 norm of the
gradient of φ. For 1 ≤ j ≤ Q, the partial derivative of φ with respect to xj is δi,j − σ(x)j ,
where δi,j denotes the Kronecker symbol. Since both δi,j and σ(x)j are bounded in [0, 1],
it implies that the Lipschitz constant is bounded by

√
Q.

Corollary 9. For all ε > 0, and for all N ≥ 1, the following inequality holds:13

N1(ε, log ◦H, N) ≤ N1

(
ε√
Q
,FQ, N

)
. (46)

Thanks to Corollary 9, we are now reduced to bound the covering number of the set FQ,
which we now address. We start by defining the set of functions FQ previously introduced
as a free product of Q elementary sets of functions.

13A similar result can be found in [AB02, Lemma 17.6]



550 Information Bounds and Convergence Rates for Side-Channel Security Evaluators

Definition 12 (Free product). Let A = A1 × . . . × AQ be the Cartesian product of Q
metric spaces (for the L1 distance). Let Fi be a family of functions from L into Ai. The
free product of the Fi is the class of functions

FQ = {f = (f1, . . . , fQ) : fi ∈ F} ,

where f = (f1, . . . , fQ) : L → A is the function defined by

(f1, . . . , fQ)(l) =

f1(l)
...

fQ(l)

 .

We may now properly bound the covering number of FQ in terms of covering numbers
of the Fi, thanks to Lemma 4.

Lemma 4 ([Hau92, Lemma 7]). If F1, . . . ,FQ are defined as above, then

N1
(
ε,FQ, N

)
≤

k∏
i=1
N1

(
ε

Q
,Fi, N

)
. (47)

Proof. For each 1 ≤ i ≤ Q, let Ui be an ε
Q -cover for Fi. Let

U = {(f1, . . . , fQ) : fi ∈ Ui, 1 ≤ i ≤ Q} . (48)

Let us show that U is an ε-cover for F . That is, let g = (g1, . . . , gQ) ∈ H, and let us show
that there exists f ∈ U such that ‖g − f‖1 ≤ ε. For all 1 ≤ i ≤ Q, since Ui is an ε

Q -cover
of Fi, we know that there exists fi ∈ Ui such that ‖gi − fi‖1 ≤ ε

Q . Let us consider then
h = (h1, . . . , hk). Notice that

‖g − f‖1 =
Q∑
i=1
‖gi − fi‖1 ≤ Q ·

ε

Q
≤ ε . (49)

Hence, U is an ε-cover for FQ. It now remains to notice that the cardinality of U is the
product of cardinalities for Ui, 1 ≤ i ≤ Q.

B.7 Bounding the Covering Numbers of F with Pdim(F)
We finally come to the link between covering numbers and pseudo-dimensions, thanks to
the following results.

Theorem 8 ([Hau95, Thm. 1]). Let F be a non-empty set of real functions mapping from
a domain L to the real interval [0, 1] and suppose that F has finite pseudo-dimension
Pdim(F). Then

N1(ε,F , N) ≤ e(Pdim(F) + 1)
(

2e
ε

)Pdim(F)
(50)

for all ε > 0.

Corollary 10. Let F be a non-empty set of real functions mapping from a domain L to
the real interval [0, B] and suppose that F has finite pseudo-dimension Pdim(F). Then

N1(ε,F , N) ≤ e(Pdim(F) + 1)
(

2eB
ε

)Pdim(F)
(51)

for all ε > 0.
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Proof. Straightforward, by applying Corollary 8 to F and φ ◦ F , where φ(x) = 1
Bx.

Comparing with the trivial bound
(
BN
ε

)N discussed before, Corollary 10 provides a
much tighter bound since it no longer depends on the amount N of profiling data. This
noticeable property is the cornerstone of statistical learning theory, in the sense that it
makes the results from Theorem 7 much more useful now.

B.8 Putting all Together
Now we have characterized every element in the upper bound of Theorem 7 in terms of
pseudo-dimension of F , we may gather all those results to come back to a concrete bound.
Let us denote P = Pr

(
supm∈H

∣∣PI(Y ;L; m)−∆m
ẽN
∣∣ > ε

)
. Applying Theorem 7, it comes

that

P · e
ε2N
64B2

(40)
≤ 2N1(2ε, log ◦H, 2N)

(46)
≤ 2N1

(
2 ε√

Q
,FQ, 2N

)
(47)
≤ 2N1

(
2 ε

Q3/2 ,F , 2N
)Q

(51)
≤ 2

(
(ePdim(F) + 1)

(
eBQ3/2

ε

)Pdim(F))Q
.

Let

α = N

64B2

β = 1
2 Pdim(F)Q

γ = Pdim(F)Q log
(
eBQ3/2

)
+Q log(ePdim(F) + 1) + log(2) ,

the latter inequality can be rephrased as

P ≤ exp
(
−αε2 − β log

(
ε2
)

+ γ
)
. (52)

Let δ > 0. We would like to find a sufficient condition such that P ≤ δ. It suffices to find
a sufficient condition such that

αε2 + β log
(
ε2
)
≥ γ + log

(
1
δ

)
. (53)

Let

ε20 = max
(
γ + log

( 1
δ

)
α

, 0
)

ε2 = ε20 + max
(
−β
α

log
(
ε20
)
, 0
)

,

we shall show that Equation 53 is satisfied. Using the above definitions, we have

ε2 ≥ ε20 −
β

α
log
(
ε20
)
≥
γ + log

( 1
δ

)
α

− β

α
log
(
ε20
)
.

Moreover, since ε2 ≥ ε20, it holds that β
α log

(
ε2
)
≥ β

α log
(
ε20
)
. Finally, summing the two

above equations gives Equation 53.
It now remains to replace the bound B of the loss function by a more practical bound

on the output range of each elementary class F . This is stated by the following lemma.
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Lemma 5. Let x ∈ RQ such that for all i, |xi| ≤ V . Then,

0 ≤ − log(σ(x)) ≤ 2V + log(Q) . (54)

Proof.

− log(σ(x)) = log

1 +
∑
j 6=i

exj−xi

 ≤ log
(
1 + (Q− 1) e2V )

≤ log
(
Qe2V ) = 2V + log(Q) .

This result allows us to replace B with 2V +log(Q) in the definitions of α and β, which,
along with the hypothesis V ≥ 1

2 , allows us to observe that γ ≥ 1, hence we can remove
the max in the definition of ε0: ε20 =

(
γ + log

( 1
δ

))
/α.

Finally, taking the complement probability in Equation 52, and expliciting the expression
of ε gives Theorem 5.

C Proofs of fast rate
C.1 Convergence of the PI
Theorem 9 ([Meh17, Thm. 1], restated). Let H = {mθ : θ ∈ Hᵀ} such that θ ∈ Hᵀ ⊂ RPis
a convex set satisfying supθ′,θ ‖θ′ − θ‖2 ≤ T . Suppose, for all y, l ∈ Y×L, that the mapping
θ 7→ log(m(y | l)) is U -Lipschitz. Suppose that the true leakage model p belongs to H and
that for all y ∈ Y, l ∈ L,m ∈ H

∣∣∣log
(

m(y|l)
p(y|l)

)∣∣∣ ≤ B. Then, if N ≥ 5, with probability at
least 1− δ, the TIN -maximizer returns a model m̂N such that

MI(Y ;L)− PI(Y ;L; m̂N ) ≤ 1
N

8B
(

P log(16UTN) + log
(

1
δ

))
+ 1
N

. (55)

Remark 3. In Theorem 9, we assumed that the true leakage model belongs to the hypoth-
esis class. Such a requirement can often be relaxed [vEGM+15, Example 2.2], up to a
multiplicative constant in the convergence rates.

We introduce hereafter a few technical lemmas that will be useful to derive the proofs.
Lemma 6. Let l ∈ L be such that ‖l‖2 ≤ R. Let Θ be a parameter vector such that
mΘ ∈ H, where H denotes the hypothesis class of an LR2 attacker. Then, for all y ∈ Y
and for all l ∈ L, the mapping Θ 7→ log

(
σ(mΘ(l))y

)
is ρ-Lipschitz for the norm ‖·‖2 with

ρ ≤
√
Q(R2 + 1).

Proof. Using Lemma 3, we get that for all (y, l),

∣∣∣log
(
σ(mΘ(l))y

)
− log

(
σ(mΘ′(l))y

)∣∣∣ ≤√Q
√√√√ Q∑

i=1
(mΘ(l)i −mΘ′(l)i)2

. (56)

Since m is an LR2 model, mΘ(l)i = l′ᵀAil
′ where l′ = (l, 1). Therefore, using Cauchy-

Schwartz’ inequality, we get

|mΘ(l)i −mΘ′(l)i| = |l′ᵀ(Ai −A′i)l′|
≤ ‖l′‖22 ‖Ai −A

′
i‖∗

≤ (R2 + 1) ‖Ai −A′i‖F
= (R2 + 1) ‖θi − θ′i‖2

Injecting this bound into Equation 56 gives the desired result.
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Lemma 7. With the same notations has before, if now we are considering an LR1 attacker,
then the resulting mapping becomes ρ-Lipschitz with

ρ ≤
√
Q(R2 + 1) .

Proof. We now have mΘ(l)i = Bil
′ (still with l′ = (l, 1)), and thus

|mΘ(l)i −mΘ′(l)i| ≤ ‖l′‖2 ‖Bi −B
′
i‖2 ≤

√
R2 + 1 ‖θi − θ′i‖2 .

Injecting this bound into Equation 56 concludes the proof.

Restatement of Theorem 9. The original version of Mehta’s theorem [Meh17, Thm. 1]
required the loss function to be exp-concave,14 instead of the true leakage model p
belonging to H. Nevertheless, Mehta’s proof relies on another more general assumption,
the so-called η-central condition. This central condition is implied either by assuming
the loss function to be η-exp-concave, or in the particular case where the loss function is
the log-loss, by assuming that the true leakage distribution p belongs to H [vEGM+15,
Example 2.2]. In the latter case, the parameter η is set to 1. Beside, the supremum of PI
can be replaced by MI, since we assume p ∈ H. The remaining of Mehta’s proof remains
unchanged.

Proof of Corollary 1 for LR1. This is a direct application of Theorem 9, by properly setting
the parameters of the theorem. First, observe that Hᵀ ⊂ R(D+1)×Q so P = (D + 1)Q, and
taking T = 2S

√
Q satisfies supΘ′,Θ ‖Θ′ −Θ‖2 ≤ T .

Next, the condition
∣∣∣log

(
m(y|l)
p(y|l)

)∣∣∣ ≤ B is satisfied if both log(m(y | l))−log(p(y | l)) ≤ B
and log(p(y | l)) − log(m(y | l)) ≤ B. Since p(y | l) ≤ 1 and m(y | l) ≤ 1 the condition
reduces to − log(p(y | l)) ≤ B and − log(m(y | l)) ≤ B. Furthermore, p ∈ H, it only
remains to find B such that − log(m(y | l)) ≤ B for all m ∈ H. Using Lemma 5 and the
observation that |Bil′| ≤

√
R2 + 1S (where l′ = (l, 1)), we get that B = 2

√
R2 + 1S +

log(Q) satisfies the condition.
Finally, using Lemma 7, we get that the Lipschitz constant L is upper bounded by√
Q(R2 + 1). Putting all together into Equation 55 gives the desired result.

Proof of Corollary 1 for LR2. This is a direct application of Theorem 9, by properly setting
the parameters of the theorem. As previously, we have P = (D + 1)Q and T = 2S

√
Q.

Furthermore, using the same reasoning as before, but using the bound |Bil′| ≤ (R2 + 1)S,
we get B = 2(R2 + 1)S + log(Q). Finally, using Lemma 6, we get that L ≤

√
Q(R2 + 1).

Putting all together into Equation 55 gives the desired result.

Proof of Corollary 2. This is a direct application of Theorem 9, by properly setting the
parameters of the theorem to fit the different assumptions.

First, recall from Section 5.1 that our class of models is composed of Q MLPs, each
being made of W real parameters by assumption. Hence, Hᵀ ⊂ RW×Q so P = WQ.

Second, we bound supθ,θ′ ‖θ′ − θ‖. Notice that for each MLP φy plugged to the entries
of the softmax, ‖θi‖ ≤ LS (we use l2 norms in this proof), so using the triangle inequality,
we get that for all θ,θ′,

‖θ′ − θ‖ ≤ T = 2SQL . (57)

Third, we show the Lipschitzness of MLPs. Using Lemma 3, we get that for all (y, l),

∣∣∣log
(
σ(mθ(l))y

)
− log

(
σ(mθ′(l))y

)∣∣∣ ≤√Q
√√√√ Q∑

i=1
(mθ(l)i −mθ′(l)i)2

. (58)

14A function ϕ is said to be η-exp-concave if the mapping z 7→ e−ηf(z) is concave.
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We are now reduced to bound the Lipschitz constant of each entry model mθ(l)i of the
softmax. Then, we may notice that since the ReLU activation function is 1-Lipschitz, each
layer φ

(
x(j),Θ(j)

i

)
is
∥∥x(j)

∥∥-Lipschitz (resp.
∥∥∥Θ(j)

i

∥∥∥-Lipschitz) in its input Θ(j)
i (resp.∥∥x(j)

∥∥), hence∥∥∥φ(x(j),Θ(j)
i

)
− φ

(
x′(j),Θ′(j)i

)∥∥∥ ≤ ∥∥∥Θ′(j)i

∥∥∥∥∥∥x(j) − x′(j)
∥∥∥+

∥∥∥x(j)
∥∥∥∥∥∥Θ(j)

i −Θ′(j)i

∥∥∥ .
(59)

Let us now prove by induction that

∥∥∥x(j) − x′(j)
∥∥∥ ≤ RSj j∑

k=0

∥∥∥Θ(k)
i −Θ′(k)

i

∥∥∥ , (60)

where x(j+1) = φ
(
x(j),Θ(j)

i

)
, x′(j+1) = φ

(
x′(j),Θ′(j)i

)
and x(0) = x′(0) = l. The base

case j = 1 is a direct consequence of Equation 59, since ‖l‖ ≤ R and S ≥ 1. For j 6= 1, we
observe that

∥∥x(j+1)
∥∥ ≤ ∥∥∥Θ(j)

i

∥∥∥∥∥x(j)
∥∥ ≤ Sj ‖l‖ ≤ SjR. Then, injecting this observation

in the second term of Equation 59 and using the induction hypothesis in the first term
gives the desired result. Finally, we apply Equation 60 to the full MLP, giving

|mθ(l)i −mθ′(l)i| ≤ R · SL ‖θ′i − θi‖ . (61)

Injecting the right hand-side of Equation 61 into the one of Equation 58, we get that
the Lipschitz constant is upper bounded by U =

√
QRSL. Finally, since p ∈ Hᵀ, we

may combine Equation 57, Equation 58, Equation 61 to get that
∣∣∣log

(
m(y|l)
p(y|l)

)∣∣∣ ≤ B =
2Q3/2RLSL+1. Putting all together into Equation 55 gives the desired result.

C.2 Convergence of the TIN
Proposition 3. Let H be a finite hypothesis class such that any model m ∈ H returns
a probability distribution such that for any secret hypothesis y, − log m[y] ≤ B, for some
positive B. Assume that the true model p belongs to H. Then

E
SN

[TGN (Y ;L;AH)] ≤ 2B · (log |H|+ 1)
N

and
E
SN

[∣∣∣∣TGN (Y ;L;AH)− E
SN

[TGN (Y ;L;AH)]
∣∣∣∣] ∈ O(B log |H|

N
+ 1√

N

)
.

Proof. Let Γ = TGN (Y ;L;AH)−
(
∆p
SN −LI(Y ;L;H)

)
. Notice that by definition, E

SN

[
∆p
SN

]
=

MI(Y ;L) and since by assumption p ∈ H, we have MI(Y ;L) = LI(Y ;L;H). As a result,

E
SN

[Γ] = E
SN

[TGN (Y ;L;AH)] .

Moreover, since TIN (Y ;L;AH) ≥ ∆p
SN and PI(Y ;L;AH) ≤ LI(Y ;L;H), Γ ≥ 0. We are

then reduced to bound the expected value of Γ. To this end, as recalled in Lemma 1, the
assumption p ∈ H implies that the central condition is verified. Van Erven et al. show
that this implies that the so-called Bernstein’s condition is verified [vEGM+15, p. 1829].
Bernstein’s condition in turn implies that

Γ ≤ 2 ·B · log(|H| /δ)
N

(62)
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with probability at least 1 − δ [Ler, p. 16]. We then use the well-known identity for
positive random variables E

SN
[Γ] =

∫∞
0 Pr(Γ ≥ ε) dε. Using Equation 62, we have that

Pr(Γ ≥ ε) ≤ |H| · e−ε N2B . This inequality is non-trivial for ε ≥ 2B·log|H|
N , otherwise we can

anyway bound the probability by one. Hence,

E
SN

[Γ] =
∫ ∞

0
Pr(Γ ≥ ε) dε ≤

∫ 2B·log|H|
N

0
dε+

∫ ∞
2B·log|H|

N

|H| · e−ε N2B dε = 2B · (log |H|+ 1)
N

.

Next, we analyze the variance. We bound V [Γ] ≤ E
[
Γ2] as

V
SN

[Γ] =
∫ ∞

0
Pr
(
Γ2 ≥ ε

)
dε ≤

∫ ( 2B·log|H|
N

)2

0
dε+

∫ ∞(
2B·log|H|

N

)2
|H| · e−

√
ε N2B dε ,

=
(

2B · (log |H|+ 1)
N

)2
.

Then, from the definition of Γ, can bound the following standard deviation:√
V
SN

[TGN (Y ;L;AH)] ≤
√

V
SN

[Γ] +
√

V
SN

[
∆p
SN −LI(Y ;L;H)

]
≤ 2B · (log |H|+ 1)

N
+
√

V
SN

[
∆p
SN

]
,

and, by Jensen’s inequality, we can bound the average absolute deviation(
E
SN

[∣∣∣∣TGN (Y ;L;AH)− E
SN

[TGN (Y ;L;AH)]
∣∣∣∣])2

≤ V
SN

[TGN (Y ;L;AH)] .

Finally, by the central limit theorem, the standard deviation of ∆p
SN belongs toO

(
1√
N

)
.

Strictly speaking, Proposition 3 only holds for finite hypothesis classes. Nevertheless,
we argue that the result extends to the TIN -maximizers considered in this paper. Indeed, it
is possible to make a reduction from infinite to finite hypothesis classes, similarly to what
is stated in Theorem 7 in Appendix B. The log-cardinal of the finite hypothesis class would
eventually be replaced by the pseudo-dimension introduced by Definition 8 in Appendix B,
and that scales similarly to the constants in Corollaries 1 and 2 (see Theorems 3 and 4 in
Appendix B).

D Proofs of Section 6

D.1 Proofs for the gTA bound
The first theorem presented hereafter uniformly bounds the regret of gTA with the regret
induced by an imperfect characterization of the true distribution.

Theorem 10. Let TA be an adversary with templates, i.e. with generative models f̂y(·) , y ∈
Y of the distribution. Then, the following inequalities hold true.

0 ≤ R (TA) ≤ 1
Q

∑
y

DKL

(
fy(·)

∥∥∥ f̂y(·)
)
≤ max

y
DKL

(
fy(·)

∥∥∥ f̂y(·)
)

(63)
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Proof. Using the successively the definitons of the PI and the MI, and the linearity of the
expectation, we get

R (gTA) = MI(Y ;L)− PI(Y ;L; gTA)

= 1
Q

∑
y

E
L∼fy

[
log
(

fy(L)∑
y′ fy′(L)

)
− log

(
f̂y(L)∑
y′ f̂y′(L)

)]

= 1
Q

∑
y

E
L∼fy

[
log
(

fy(L)
f̂y(L)

)]
− E
L∼ 1

Q

∑
y

fy

[
log
(∑

y′ fy′(L)∑
y′ f̂y′(L)

)]

= 1
Q

∑
y

DKL

(
fy(·)

∥∥∥ f̂y(·)
)
− DKL

(∑
y fy(·)
Q

∥∥∥∥∥
∑
y f̂y(·)
Q

)
.

Since the KL divergence is always non-negative, we get the desired result.

Note that Theorem 10 is not particular to Gaussian templates, and may be applied
to any generative model. Next, we remark that the KL divergence remains invariant by
affine transformation, as stated hereafter.

Lemma 8. Let A ∈ RD×D be invertible, let b ∈ RD, and X,Y ∈ RD be two random
vectors, of pdf respectively fX(·) , fY (·). Then,

DKL(fX(·) ‖ fY (·)) = DKL(fA·X+b(·) ‖ fA·Y +b(·)) . (64)

Proof. Let X′ = AX + b, then the pdf of X′ is

fX′(x) = |A|−1 fX
(
A−1x− b

)
.

By applying the change of variable x′ = Ax + b in the definition of KL divergence, it
follows that

DKL(fX(·) ‖ fY (·)) = E
X∼|A|−1 fX(A−1(·−b))

[
log
(
|A|−1 fX

(
A−1(X − b)

)
|A|−1 fY (A−1(X − b))

)]

= E
X′∼fX′

[
log
(

fX′(X′)
fY ′(X′)

)]
Hence, we identify the right hand-side of Equation 64.

For Gaussian templates, we can therefore reduce the study of the KL divergence of
Theorem 10 to the particular case where the true covariance matrix Σ is the identity using
Lemma 8. Furthermore, in the case of gTA with Σ = I, the following lemma gives an
algebraic formulation of the upper bound.

Lemma 9. For a Gaussian distribution with Σ = I, the KL divergence is given by:

2DKL

(
f (·)

∥∥∥ f̂ (·)
)

= log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D (65)

+ (µ̂− µ)ᵀ Σ̂−1 (µ̂− µ) . (66)

Proof. By definition,

DKL

(
f (·)

∥∥∥ f̂ (·)
)

= E
L∼f

[
log
(

f (L)
f̂ (L)

)]
.
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Substituting both f (·) and f̂ (·) with their respective density, it follows that

2DKL

(
f (·)

∥∥∥ f̂ (·)
)

= log

det
(

Σ̂
)

det(Σ)

+ E
L∼f

[
(L− µ̂)ᵀ Σ̂−1 (L− µ̂)− (L− µ)ᵀ Σ−1 (L− µ)

]
Using [PP+08, Lemma 8.2.2], it follows that the second term inside the brackets has D
as expected value, whereas the first term inside the brackets has (µ− µ̂)ᵀ Σ̂−1 (µ− µ̂) +
Tr
(

Σ̂−1Σ
)
as expected value, hence the result.

We now bound each term of Lemma 9. First, we bound Equation 66. The term (66) is
the well known Hotelling’s T 2 statistic, as recalled by the following lemma.

Lemma 10 ([And03, Thm. 5.2.2]). For N/Q ≥ D, the quantity

N

QD

N/Q−D
N/Q− 1 · (µ̂− µ)ᵀΣ̂−1(µ̂− µ) (67)

follows a Fisher-Snedecor law of parameters (D,N/Q−D).

Accordingly, as the Fisher distribution converges towards a χ2 distribution with D

degrees of freedom, it follows that the quantity (66) belongs to O
(
DQ
N

)
.

Second, we bound Equation 65. The terms of Equation 65 are upper bounded in the
following theorem.

Theorem 11. Suppose that the leakage follows a Gaussian distribution with Σ = I, and
that

∥∥∥Σ̂− I
∥∥∥
∗
≤ 1/2. Then the first following inequality always holds true and there exists

a constant C such that for all δ > 0 and for all N ≥ 4C2 log
( 2
δ

)
D the second following

inequality holds with probability at least 1− δ:

0 ≤ log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D ≤ 2C log

(2
δ

)
QD2

N
. (68)

The proof of this theorem relies on the following thechnical lemmas.

Lemma 11 (Basic linear algebra). Let A,B ∈ RD×D be symmetric matrices. Then,

• det(AB) = det(A) det(B),
• det(A) =

∏D
i=1 λi, where λ1, . . . , λD are its eigenvalues,

• Tr(AB) = Tr(BA),
• Tr(A) =

∑D
i=1 λi,

• If λ is an eigenvalue of A, then 1
λ is an eigenvalue of A−1.

Lemma 12. For all x ∈ (−1, 1), we have

0 ≤ x− log(1 + x) ≤ x2

1 + x
. (69)

Proof. It is widely known that x
1+x ≤ log(1 + x) ≤ x. Multiplying by −1 and adding x,

we get the result.

We are now ready to demonstrate the desired result. The whole proof comes into two
parts. First, in Lemma 13 we upper bound the quantity of interest in terms of spectral
norms of the estimation error of the covariance matrix. Then, we invoke Theorem 12 to
upper bound the latter spectral norm in terms of the parameters N/Q,D of our problem.
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Lemma 13. Let Σ̂ be an empirical covariance matrix estimated from samples following
the D-dimensional normal distribution with zero mean and the identity I as a covariance
matrix. Then, if

∥∥∥Σ̂− I
∥∥∥
∗
≤ 1/2,

0 ≤ log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D ≤ 2D

∥∥∥Σ̂− I
∥∥∥2

∗
.

Proof. First, we rephrase the first two terms of the KL divergence in terms of eigenvalues
λ1 ≥ . . . ≥ λD of Σ̂. Since Σ̂ is a positive symmetric matrix, we know that λD is
non-negative. Moreover, by assuming that N/Q ≥ D, we know that λD > 0 with high
probability. Furthermore,

log
(

det
(

Σ̂
))

= log
(

D∏
i=1

λi

)
=

D∑
i=1

log(λi) .

Besides, using Lemma 11,

Tr
(

Σ̂−1
)
−D =

D∑
i=1

(
1
λi
− 1
)

.

Hence, we may rephrase the quantity to upper bound as follows:

log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D =

D∑
i=1

(
1
λi
− 1− log

(
1
λi

))
Using Lemma 12, the right hand-side of the latter equation is upper-bounded as follows:

log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D ≤

D∑
i=1

λi

( 1
λi
− 1
)2

=
D∑
i=1

(λi − 1)2

λi
. (70)

We then remark that if λi is an eigenvalue of Σ̂, then λi − 1 is an eigenvalue of Σ̂ − I,
where I ∈ RD×D denotes the identity matrix. As a consequence, for all 1 ≤ i ≤ D,

|λi − 1| ≤ max
i
|λi − 1| =

∥∥∥Σ̂− I
∥∥∥
∗
.

Therefore, since by assumption
∥∥∥Σ̂− I

∥∥∥
∗
≤ 1/2 we have for all i

0 ≤ (λi − 1)2

λi
≤

∥∥∥Σ̂− I
∥∥∥2

∗

1−
∥∥∥Σ̂− I

∥∥∥
∗

≤ 2
∥∥∥Σ̂− I

∥∥∥2

∗
. (71)

Finally, combining Equation 71 with Equation 70 gives the result.

We are now reduced to bound
∥∥∥Σ̂− I

∥∥∥
∗
, which is the purpose of the following theorem.

Theorem 12 (Prop. 2.1 [Ver12]). For all Σ, there exists a constant C such that for all
δ > 0, the inequality ∥∥∥Σ̂− Σ

∥∥∥
∗
≤ C ‖Σ‖∗ ·

√
log
(2
δ

)
D

N
(72)

holds with probability at least 1− δ.

Proof of Theorem 11. The theorm is a direct combination of the bounds of Theorem 12
and Lemma 13.
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Proof of Corollary 3. Let us now combine all the previous results.

Proof. Starting from the KL divergence of Theorem 10, we restrict ourselves to the case
Σ = I using Lemma 8. Then, we get a bound on the KL divergence with Lemma 9, whose
term are themselve bounded in Lemma 10 and Theorem 11. Finally, we can see that
Hotelling’s T 2 statistic can be neglected.

D.1.1 Proof of Tightness

Theorem 13 ([CLZ15, Cor. 1]). For all Σ ∈ RD×D, the log determinant of Σ̂, estimated
for N samples drawn from a multivariate Gaussian distribution of covariance matrix Σ,
satisfies

1√
2QD/N

log

det
(

Σ̂
)

det(Σ)

−QD(D + 1)/(2N)

 L−→
N→∞

N (0, 1) . (73)

Theorem 13 is an analogue of the Central-Limit Theorem for the log-det term with a
Θ
(
QD2

N

)
positive bias. The following term shows that the bias from the trace of inverse

covariance matrix is positive.

Lemma 14. The trace of the inverse empirical covariance matrix is positively biased:

E
[
Tr
(

Σ̂−1
)
−D

]
≥ 0 . (74)

Proof. For any symmetric positive matrix such as Σ̂, the mapping Σ̂ 7→ Tr
(

Σ̂−1
)

is
convex [BV14, Ex. 3.18]. Using Jensen’s inequality, we get

E
[
Tr
(

Σ̂−1
)]
≥ Tr

(
E
[
Σ̂
]−1
)
≥ Tr(ID) = D .

Hence, the left hand-side of Equation 74 is non-negative.

Therefore, the latter bias cannot compensate the former one, which proves the tightness
of our KL divergence bound (Lemma 9) in the general case.

D.2 Proofs for the Naive Bayes bound
Theorem 14. Assume that Σ = I and Σ̂ is a diagonal matrix. Then, for all δ > 0 the
following inequality holds:

0 ≤ log
(

det
(

Σ̂
))

+ Tr
(

Σ̂−1
)
−D ≤ C log

(2
δ

)
DQ

N
. (75)

Proof. Since Σ̂ is diagonal then log det
(

Σ̂
)
exactly coincides with the sum of the empirical

log-variances estimated for each of the D time samples of the traces. Likewise, Tr
(

Σ̂−1
)

coincides with the sum of inverse empirical variances. Estimating the error term in
Equation 75 can be reduced to estimate the sum of D error terms, each for one-dimensional
covariance matrices. Therefore, using Equation 68 in the particular case where D = 1, and
multiplying by the true dimensionality D gives the result.

Proof of Corollary 4. The proof is almost identical to the proof of Corollary 3, using
Theorem 14 instead of Theorem 11. Finally, we can see that Hotelling’s T 2 statistic has
the same convergence rate as Theorem 14.
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D.3 Proof for the p-gTA
For two classes, we may use a change of variable such that the true covariance matrix is
the identity, and the two true centroids are situated respectively at ∓∆

2 e1 (where e1 =
(1, 0, . . . , 0)). In that case, β = Σ̂−1(µ̂1 − µ̂0) −∆e1 and γ = 1

2

(
µ̂ᵀ

0Σ̂−1µ̂0 − µ̂ᵀ
1Σ̂−1µ̂1

)
.

It also follows:

Lemma 15. The regret for two classes can be rephrased as follows

2R (p-gTA) = E
L∼f0

[
log
(

1 + eλ̂(L)
)]

+ E
L∼f1

[
log
(

1 + e−λ̂(L)
)]

− 2 E
L∼f0

[
log
(

1 + e∆eᵀ1L
)]

, (76)

where λ̂(L) = (∆e1 + β)ᵀL+ γ.

Proof. First, denoting l1 = eᵀ1l (and L1 = eᵀ1L), we observe that

p(0 | l) = f0(l)
f0(l) + f1(l) = e−

1
2 (l1+ ∆

2 )2

e−
1
2 (l1+ ∆

2 )2 + e−
1
2 (l1−∆

2 )2 = 1
1 + e∆l1

and, since f1(−l) = f0(l), we have p(1 | l) = p(0 | −l). Furthermore,

m(0 | l) = e−
1
2 (l−µ̂0)ᵀΣ̂−1(l−µ̂0)

e−
1
2 (l−µ̂0)ᵀΣ̂−1(l−µ̂0) + e−

1
2 (l−µ̂1)ᵀΣ̂−1(l−µ̂1)

= 1
1 + eλ̂(l)

,

m(1 | l) = e−
1
2 (l−µ̂1)ᵀΣ̂−1(l−µ̂1)

e−
1
2 (l−µ̂0)ᵀΣ̂−1(l−µ̂0) + e−

1
2 (l−µ̂1)ᵀΣ̂−1(l−µ̂1)

= 1
1 + e−λ̂(l)

.

Then, we have

2R (p-gTA) = E
L∼f0

[
log
(

p(0 | L)
m(0 | L)

)]
+ E
L∼f1

[
log
(

p(1 | L)
m(1 | L)

)]
= E
L∼f0

[
log
(

1
m(0 | L)

)]
+ E
L∼f1

[
log
(

1
m(1 | L)

)]
−
(

E
L∼f0

[
log
(

1
p(0 | L)

)]
+ E
L∼f1

[
log
(

1
p(1 | L)

)])
and, by making the change of variable L′ = −L in the last term, we remark that the two
last terms are equal. Finally, injecting our values of p(0 | l), m(0 | l) and m(1 | l) into this
expression gives the expected result.

Theorem 15. Let µ0, µ1,Σ be respectively the D-dimensional centroids of the two classes,
and the pooled covariance matrix. Let p-gTA be an attacker outputting estimates µ̂0, µ̂1, Σ̂
from the profiling phase. Let

β = Σ̂−1 (µ̂1 − µ̂0) −Σ−1 (µ1 − µ0) , (77)

γ = − 1
2

(
µ̂1Σ̂−1µ̂1 − µ̂0Σ̂−1µ̂0

)
+1

2
(
µ1Σ−1µ1 − µ0Σ−1µ0

)
. (78)

Then, the regret of p-gTA satisfies

R (p-gTA) ≤
(
γ2 + ‖β‖22 + |γβ1|

)
+O

((
γ2 + ‖β‖22

)3/2) (79)

where β1 is the first element of β.
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Proof. Using the expression of the regret given in Lemma 15 and taking the Taylor
expansion (with the notation R (β, γ) = R (p-gTA)), we have

R (β, γ) = R (0, 0) + ∂

∂γ
R (0, 0) · γ +∇βR (0, 0)ᵀ β

+ 1
2

(
∂2

∂γ2 R (0, 0) γ2 + ∂

∂γ
∇βR (0, 0)ᵀ β · γ + βᵀ∇2

βR (0, 0)β
)

+O
((
γ2 + ‖β‖2

)3/2)
.

(80)

We shall prove that

1. All zero-th and first-order terms are zero and,

2. The second-order terms are bounded by constant independent of D.

All first-order terms are zero. First, observe that for β = 0, γ = 0, the model corresponds
to the true distribution: m(y | l) = p(y | l) and thus R (0, 0) = 0. Second, let us express
∂
∂γR (0, 0):

∂

∂γ
R (0, 0) = 1

2 E
L∼f0

[
∂

∂γ

{
log
(

1 + eλ̂(L)
)}

(0, 0)
]

+ 1
2 E
L∼f1

[
∂

∂γ

{
log
(

1 + e−λ̂(L)
)}

(0, 0)
]

= 1
2 E
L∼f0

 ∂
∂γ

{
eλ̂(L)

}
(0, 0)

1 + e∆eᵀ1L

+ 1
2 E
L∼f1

 ∂
∂γ

{
e−λ̂(L)

}
(0, 0)

1 + e−∆eᵀ1L


= 1

2 E
L∼f0

[
e∆eᵀ1L

1 + e∆eᵀ1L

]
− 1

2 E
L∼f1

[
e−∆eᵀ1L

1 + e−∆eᵀ1L

]

= 1
2 E
L∼f0

[
e∆eᵀ1L

1 + e∆eᵀ1L

]
− 1

2 E
L∼f0

[
e∆eᵀ1L

1 + e∆eᵀ1L

]
= 0,

where we used the same change of variable as in the proof of Lemma 15 in the last line.
Now, let us express ∇βR (0, 0)ᵀ β. Similarly to the derivation of ∂

∂γR (0, 0), we get that

∂

∂βi
R (0, 0) = 1

2 E
L∼f0

[
Lie

∆eᵀ1L

1 + e∆eᵀ1L

]
+ 1

2 E
L∼f1

[
−Lie−∆eᵀ1L

1 + e−∆eᵀ1L

]
(81)

Applying the same change of variable as previously, we get that

∂

∂βi
R (0, 0) = E

L∼f0

[
Lie

∆eᵀ1L

1 + e∆eᵀ1L

]
.

Since f0 is a multivariate Gaussian with diagonal covariance matrix, Li is independent of
L1 for all 1 < i ≤ D, and furthermore the mean of Li is zero. Therefore, for such i 6= 1,

∂

∂βi
R (0, 0) = E

L∼f0
[Li] E

L∼f0

[
e∆eᵀ1L

1 + e∆eᵀ1L

]
= 0 .

For the remaining case where i = 1, observe that

E
L∼f0

[
L1

e∆L1

1 + e∆L1

]
= K

∫ ∞
−∞

e−
1
2 (x+∆/2)2

x

1 + e−∆x dx = Ke−∆2/8
∫ ∞
−∞

x
e−x

2/2

e∆x/2 + e−∆x/2 dx

for some constant K. Since the latter integrand is an even function of R, the integral
equals 0.
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Bounds for Second-Order Terms. Finally, it remains to bound the second-order terms.
For 1 ≤ i, j,≤ D, the (i, j)-coefficient of the Hessian matrix of log

(
1 + eλ̂(L)

)
is given by

∂2

∂βi∂βj
log
(

1 + eλ̂(L)
)

= ∂

∂βi

{
Lj

eλ̂(L)

1 + eλ̂(L)

}
= LiLj

eλ̂(L)(
1 + eλ̂(L)

)2 .

Likewise, we have

∂2

∂βi∂βj
log
(

1 + e−λ̂(L)
)

= − ∂

∂βi

{
Lj

e−λ̂(L)

1 + e−λ̂(L)

}
= LiLj

eλ̂(L)(
1 + eλ̂(L)

)2 .

Using the change of variable f1(l) = f0(−l), this gives

∂2

∂βi∂βj
R (0, 0) = 1

2

(
E

L∼f0

[
LiLje

∆L1

(1 + e∆L1)2

]
+ E
L∼f1

[
LiLje

∆L1

(1 + e∆L1)2

])
= E
L∼f0

[
LiLj

e∆L1

(1 + e∆L1)2

]
.

(82)
For 1 ≤ i < j ≤ D, the right hand-side of Equation 82 is zero since Lj is independent of
Li and L1, and furthermore the mean of Lj is zero. For 1 < i = j ≤ D the right hand-side
is positive and can be upper bounded by E

L∼f0

[
L2
i

]
= 1. In the last case i = j = 1, the

second derivative of the regret is also positive and reduces to

∫ ∞
−∞

e−
1
2 (L1+∆/2)2

√
2π

L2
1

e∆L1

(1 + e∆L1)2 dL1 =
∫ ∞
−∞

e−
∆2
8

(1 + e∆L1)2L
2
1
e−

L2
1

2
√

2π
dL1 ≤

∫ ∞
−∞

L2
1
e−

1
2L

2
1

√
2π

dL1

(83)
where the last integral is equal to 1 (it is the variance of a standard normal distribution).
Therefore, the following bounds hold:

0 ≤ βᵀ∇2
βR (0, 0)β ≤ ‖β‖22 .

Similarly to Equation 82, it can be shown that for 1 ≤ j ≤ D we have

∂2

∂γ∂βj
R (0, 0) = E

L∼f0

[
Lje

∆L1

(1 + e∆L1)2

]
. (84)

For j > 1 the latter partial derivative equals zero since Lj is independent of L1 and has zero
mean. For j = 1, using a reasonning similar to Equation 83, we get that ∂2

∂γ∂β1
R (0, 0) ≤ 0.

Let us now look for a lower bound:

∂2

∂γ∂β1
R (0, 0) =

∫ ∞
−∞

e−
1
2 (L1+∆/2)2

√
2π

L1
e∆L1

(1 + e∆L1)2 dL1 =
∫ ∞
−∞

e−
∆2
8

(1 + e∆L1)2L1
e−

L2
1

2
√

2π
dL1

≥
∫ 0

−∞

e−
∆2
8

(1 + e∆L1)2L1
e−

L2
1

2
√

2π
dL1 = −

∫ ∞
0

e−
∆2
8

(1 + e−∆L1)2L1
e−

L2
1

2
√

2π
dL1

≥ −
∫ ∞

0
L1e

− 1
2L

2
1dL1 = −1 .

Finally, we have that

∂2

∂γ2 R (0, 0) = 1
2 E
L∼f0

[
e∆L1

(1 + e∆L1)2

]
+ 1

2 E
L∼f1

[
e−∆L1

(1 + e−∆L1)2

]
. (85)

We deduce from Equation 85 that ∂2

∂γ2 R (0, 0) ≤ 1.
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Putting All Together. Going back to Equation 80, we may now bound the regret as
follows:

R (β, γ) ≤ γ2 + ‖β‖22 + |γβ1|+O
((

γ2 + ‖β‖2
)3/2

)
.

Next, we use the following lemma to prove Corollary 5.

Lemma 16 ([Efr75, Lemma 2]). The estimation error of β, γ satisfies the following
convergence in law:

√
N

(
γ
β

)
L−→

N→∞
N (O,Σ) , (86)

where N denotes the normal distribution centered in the origin, and a diagonal covariance
matrix with coefficients

(
1 + ∆2

4 , 1 + ∆2

2 , 1 + ∆2

4 , . . . , 1 + ∆2

4

)
.

Proof of Corollary 5. Using Lemma 16, we know that for any δ such that 0 < δ < 1, there
exists αδ > 0 and Nδ such that

Pr
(
∀0 ≤ i ≤ D : |βi| ≤ αδ

√
∆2 + 1
N

)
≥ δ

for all N ≥ Nδ and for any true distribution parameters µ0, µ1 and Σ. It follows that,
with probability at least δ,

γ2 + ‖β‖22 + |γβ1| ≤ α2
δ

(
∆2 + 1

) D + 1
N

and
O
((

γ2 + ‖β‖22
)3/2

)
⊂ O

(
α2
δ

(
1 + ∆2

4

)
D + 1
N

)
.

Using Theorem 15 and considering a constant δ gives the final result.
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