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Abstract. Embedded devices used in security applications are natural
targets for physical attacks. Thus, enhancing their side-channel resistance
is an important research challenge. A standard solution for this purpose
is the use of Boolean masking schemes, as they are well adapted to cur-
rent block ciphers with efficient bitslice representations. Boolean masking
guarantees that the security of an implementation grows exponentially
in the number of shares under the assumption that leakages are suffi-
ciently noisy (and independent). Unfortunately, it has been shown that
this noise assumption is hardly met on low-end devices. In this paper,
we therefore investigate techniques to mask cryptographic algorithms in
such a way that their resistance can survive an almost complete lack of
noise. Building on seed theoretical results of Dziembowski et al., we put
forward that arithmetic encodings in prime fields can reach this goal. We
first exhibit the gains that such encodings lead to thanks to a simulated
information theoretic analysis of their leakage (with up to six shares). We
then provide figures showing that on platforms where optimized arith-
metic adders and multipliers are readily available (i.e., most MCUs and
FPGAs), performing masked operations in small to medium Mersenne-
prime fields as opposed to binary extension fields will not lead to notable
implementation overheads. We compile these observations into a new
AES-like block cipher, called AES-prime, which is well-suited to illustrate
the remarkable advantages of masking in prime fields. We also confirm
the practical relevance of our findings by evaluating concrete software
(ARM Cortex-M3) and hardware (Xilinx Spartan-6) implementations.
Our experimental results show that security gains over Boolean masking
(and, more generally, binary encodings) can reach orders of magnitude
despite the same amount of information being leaked per share.

1 Introduction

Research question. Masking is an important countermeasure against side-
channel attacks. Introduced in [46,27], it has attracted significant attention
thanks to the strong security guarantees it can provide [53,76,36,37]. Since lead-
ing to efficient implementations in software [79,13], bitslice software [47,49] and
hardware [50,23], additive (Boolean) masking is for now the most investigated
type of encoding. Concretely, assuming that the shares’ leakage is sufficiently



noisy and independent, Boolean masking can amplify the noise of an implemen-
tation (and therefore its security) exponentially in the number of shares.

Yet, and despite these strong theoretical guarantees, ensuring the noise and
independence conditions may not be easy in practice. The independence issue
is a well investigated one. Physical defaults such as glitches [61,62] or transi-
tions [30,8] can cause leakage about re-combined shares. Fortunately, these de-
faults can be circumvented (at some cost) thanks to well understood design tech-
niques [72,44,24]. To the best of our knowledge, the noise issue is for now a less
investigated one. Concrete results of so-called horizontal attacks such as [12,20]
showed that a lack of noise can lead to devastating attacks against Boolean
masking. Improved security against horizontal attacks has been captured with
the notion of noise rate [5,25]. But gadgets with limited noise rate only reduce
the number of manipulations of the shares (in order to prevent reducing the
noise by averaging). Therefore, they have limited impact when the noise level of
an implementation is already small without averaging, as it is for example the
case for small embedded devices (e.g., 32-bit ARM Cortex or similar cores). An-
other class of attacks which has been shown to threaten the security of Boolean
masking by exploiting an insufficient noise level is based on leveraging the static
power consumption of devices as a side-channel. In such attacks which, unlike
horizontal attacks, are mostly a concern for hardware implementations, the ad-
versary obtains the leakage of a halted computation state with almost arbitrarily
low noise, which limits the effectiveness of Boolean encodings [70,75,68,66,67].

As a result, the main objective of this paper is to initiate a study of encodings
and ciphers that can lead to secure and efficient low-noise implementations.
Precisely, we question the possibility that increasing the number of shares in a
masking scheme leads to security amplification without any noise.

Seed results. Interestingly, the literature contains several hints that the an-
swer to this question might be positive if changing the Boolean encoding into
a more “complex” one. On the one hand, it has been observed that the Inner
Product (IP) masking introduced in [40] can lead to significantly better security
in low-noise settings than Boolean masking, for example in case of leakage func-
tions that are close to the Hamming weight one (see for example [7], Figure 3
for an illustration with two shares). Unfortunately, computing on IP encodings
generally leads to significant implementation overheads, and it remains an open
question whether its security vs. efficiency trade-off can compare positively with
the (simpler) multiplication algorithms of additive masking schemes.

On the other hand, Dziembowski et al. showed that the level of noise required
for masking to amplify security can be significantly reduced if the encodings are
defined in groups of prime orders [41]. Such an observation has the significant
advantage of being valid for simple (additive) masking schemes that have been
intensively studied in recent years and can benefit from increasingly efficient
automated verification tools [10,17,9,57]. However, the practical impact of these
seed investigations has not been studied yet, leaving open questions like:

– How do these theoretical guarantees translate into concrete security guaran-
tees for practically-relevant leakage functions and noise levels?



– What is the impact of increasing the prime size in these practical cases?

– Can masking with prime encodings be used to improve the side-channel
security of block cipher implementations in software and hardware?

– What is the (software and hardware) cost of implementing masked block
cipher operations in prime fields instead of binary extension fields?

Contributions. Based on this state of the art, we pick up on the challenge of
better understanding masking in low-noise settings and propose encodings and
ciphers that allow secure and efficient implementations in this context. More
precisely, our contributions in this respect are in three parts:

First, we show in Section 2 that moving from Boolean encodings to arithmetic
encodings, first in binary fields, then in prime fields, leads to gradual side-channel
security improvements. We use the information theoretic framework put forward
in [84] for this purpose, and consider both the standard Hamming weight leakage
model and a (localized) model leaking the Least Significant Bit (LSB) of the
target intermediate computations in our evaluations. It allows us to confirm
Dziembowski et al.’s claimed gains in low-noise environments, but also to observe
that these gains can be maintained without any noise (for these non-injective
leakage functions) and are preserved as the noise increases. We additionally
explain the low-noise weakness of Boolean encodings formally and show that for
the practically-relevant Hamming weight leakage function, increasing the size of
the prime moduli improves the side-channel security of masked encodings.

Next, we consider the question of efficiency. In Section 3, we show that by
selecting small Mersenne primes to operate our masked computations, it is pos-
sible to implement them with performances that compare with binary fields, es-
pecially in case optimized arithmetic adders and multipliers are available (e.g.,
on most recent MCUs and FPGAs). Since standard symmetric designs are not
directly suitable for efficient masked implementations with non-binary encod-
ings, we then consider so-called prime ciphers in Section 4. A prime cipher is
a cipher which performs all operations in Fp with p a prime modulus. In or-
der to illustrate our results, we then consider AES-prime as a first example of
such a prime cipher, where the S-box is based on a small power in Fp and the
MixColumns operation is based on an MDS matrix in the same field.

Eventually, we move to the concrete evaluation of our designs in Section 5.
Since our simulated evaluations in Section 2 are based on the Hamming weight
and LSB leakage functions, and are limited to encodings, an important ques-
tion is whether the security guarantees of these examples are observed when
measuring concretely-relevant implementations with several exploitable target
sensitive operations that may not exactly leak as assumed in our simulations.
We answer this question positively by experimentally analyzing software (ARM
Cortex-M3) implementations, where the (worst-case) adversary is first given full
profiling access to the device to characterize its leakage behavior before perform-
ing the actual attack. Our results confirm that masking prime ciphers with prime
encodings can significantly improve the security compared to Boolean masked



designs in a low-noise setting. We also conduct a hardware (FPGA) case study,
confirming the improved security provided for a naturally noisier target.

Cautionary note: why the AES-prime? Initiating the investigation of new
encodings naturally raises the question of what is the best cipher for evaluating
them. As for example witnessed by the NIST Lightweight cryptography compe-
tition, the vast majority of the state-of-the-art ciphers designed for masking are
bitslice ones.1 Unfortunately, such ciphers cannot be easily turned into “prime
equivalents”. At the opposite side of the spectrum, the use of large prime mod-
uli has recently attracted a lot of attention for the design of ciphers tailored for
advanced cryptographic applications (e.g., multiparty computation, hybrid fully
homomorphic encryption or zero knowledge proofs). Examples include MiMC [2]
and its Feistel variant GMiMC [1], Rescue [4], HADESMiMC [48], CIMINION [34],
HERA [28] or PASTA [35]. In general, these ciphers are not directly adapted to
our goals either, since their proposed instances usually favor multiplications in
large fields (in order to reduce their overall number) while embedded implemen-
tations crucially require small and well-chosen primes for efficiency. As a result,
there is also little work on the secure implementation of such new ciphers. Given
this state of the art, we turn back to AES-like ciphers for which it is easy to
specify binary and prime versions. This allows us to leverage the wide body of
research on countermeasures and evaluation tools tailored for the AES (which,
we hope, can further stimulate external analyzes and follow up studies). It also
allows us to work with primes that are well suited to the software and hardware
implementations we target. We insist that the goal of the AES-prime cipher is
only to illustrate the potential of prime masking. Since illustrating this potential
requires mixing abstractions from different research fields, we admittedly do not
claim that its security analysis is as comprehensive as if the very design of the
AES-prime was our main contribution. So the security analysis we provide is
only aimed to show that a prime cipher with an AES-like structure can be secure
with a similar number of rounds as a binary cipher with an AES-like structure,
based on the (standard) cryptographic properties of its components. Overall, the
AES-prime may not be the best cipher for prime masking in the long run, but it
is a suitable starting point for a comparison, since AES and AES-prime are the
closest match between binary and prime cipher that we have at the moment.
We hope that the promising results it leads to can motivate the design of new
ciphers that are tailored for this specific application of prime-field masking and
can compete with bitslice ciphers from an efficiency point of view.

2 From Boolean to prime field arithmetic masking

In this first section, we revisit the theoretical investigations of Dziembowsi et al.
from a more practical viewpoint. Precisely, it is shown in [41] that masking with
encodings in prime fields can lead to effective noise amplification. We next ques-
tion the concrete security that can be observed for practically-relevant leakage

1 https://csrc.nist.gov/Projects/lightweight-cryptography.
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functions without any noise, and whether the gains of these prime encodings are
maintained in high noise regimes. We additionally show the positive impact of
increasing the size of the prime moduli and provide theoretical insights on our
results and their generalization to parallel implementations.

2.1 Methodology

As a usual starting point to analyze the worst-case security provided by a coun-
termeasure quantitatively, we use the information theoretic framework put for-
ward in [84]. Namely, we will compute the mutual information between a target
sensitive value X ∈ X and the leakage of its shares L, that is:

MI(X;L) = H(X) +
∑
x∈X

p(x) ·
∫
l∈Ld

f(l|x) · log2 p(x|l), (1)

with p(x) the shortcut notation for Pr(X = x). Assuming uniformly distributed

sensitive values, H(X) = log2(|X |) and p(x|l) is computed as f(l|x)∑
x∗∈X f(l|x∗) where

f(l|x) is the Probability Density Function (PDF) of the leakage samples. In the
case of a masked implementation with d shares, this PDF then takes the shape
of a mixture distribution defined as f(l|x) =

∑
r∈Xd−1 f(l|x, r) · p(r).

In the following, we will make the standard assumption that the leakage of
each component p(l|x, r) in the mixtures is a Gaussian distribution, so that the
leakage of each share can be written as L(Xi) = δ(Xi) + Ni, the full leakage
vector can be written as L = (L(X1), L(X2), . . . , L(Xd)) and the variance of the
noise σ2 is a security parameter. As for the deterministic part of the leakage
function δ, we will consider both the standard Hamming weight function and a
(more localized) bit leakage function leaking the LSB of Xi.

Note that directly computing the mutual information rapidly turns out to be
computationally intensive as the number of shares increases. This is for example
witnessed by the results of Fumaroli et al. [45, Fig. 2] and Standaert et al. [85,
Fig. 7] which were limited to d ≤ 3. We improve over these previous works by
leveraging the fact that computing the mixture PDF of a masked encoding can
be done without summing over all the terms of the mixture explicitly, because the
leakage of such masked encodings can be written as a convolution product [64,
Prop. 1]. Moreover, if several encodings of sensitive intermediate computations
leak, the latter observation can be generalized as a Soft Analytical Side-Channel
Attack (SASCA) without cycles [51,20], where the Belief Propagation (BP) al-
gorithm efficiently provides an exact solution [86]. Therefore, the complexity of
evaluating Equation 1 actually scales in O(d · n · 2n), instead of O

(
22n·d

)
for

a naive approach. Concretely, we use the SCALib library for this purpose.2 It
allows us to analyze the leakage of up to 13-bit targets with up to 6 shares.

2.2 Information theoretic evaluation results

The results of our information theoretic investigations are depicted in Figure 1.
Recall that the number of traces to perform a key recovery attack is inversely

2 https://scalib.readthedocs.io/en/latest/index.html
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Fig. 1: Information theoretic evaluation of different masked encodings for dif-
ferent numbers of shares. Top: Hamming weight leakage function, bottom: LSB
leakage function. Left: Boolean encoding, middle: arithmetic encoding in Z2n ,
right: arithmetic masking in Fp. The X axis is the noise variance in log scale.
The Y axis is the MI in log scale. The different curves are for increasing numbers
of shares (from 2 to 6). The target sensitive variable is on 8 bits.

proportional to the MI [33]. So as expected in theory, all these curves have a slope
−d in the high noise regime [63]. The relevant observations for our investigations
are twofold. First, arithmetic masking significantly improves the situation in
low-noise regimes. This is reflected by the “stepped” regions of the curves. For
Boolean masking, the left (low noise) parts of the figure show no reduction of the
MI when increasing the number of shares. By contrast, arithmetic masking can
lead to (exponential) security improvements (i.e., equidistant steps) in the same
region. This only holds for the Hamming weight leakage function (on the top of
the figure) when considering arithmetic masking in Z2n (in the middle plots) and
it even holds for the LSB leakage function (on the bottom of the figure) when
considering arithmetic masking in Fp (in the right plots). We insist that this
exponential security amplification without noise of prime masking theoretically
holds for any non-injective leakage function [41]. Our evaluations amplify this
fact with the reassuring observation that its concrete impact is especially strong
with leakage functions that are commonly considered to be suitable abstractions
of real device behavior. Second, the gains that are obtained with low noise are
maintained when increasing the noise, which was not studied by Dziembowski
et al. So these results confirm that there is an interest to use prime encodings
for better dealing with noise-free leakages, and put forward that such encodings
can also lead to significant security improvements when leakages become noisy.



2.3 Theoretical explanation

We now argue why increasing the number of Boolean shares without noise is
useless in presence of Hamming weight leakage. For this purpose, we use a spec-
tral analysis of the conditional Probability Mass Functions (PMFs) spanned by
the noise-free Hamming weight leakage model. We said in subsection 2.2 that
such distributions can be computed through discrete convolutions [64, Prop. 1].
So according to the convolution theorem, each PMF p(X|L) can be computed in
a transformed domain as the element-wise product of the d PMFs — expressed
themselves in the same transformed domain — associated to each of the cor-
responding shares p(Xi|Li). For Boolean masking, this transformed domain is
described by the Walsh-Hadamard transform over the input domain Fn2 , which
can be seen as an n-dimensional Fourier transform over F2 . Therefore, the ω-th
coefficient of the Walsh-Hadamard transform is computed as:

WHT(p, ω) =
∑
x∈Fn

2

(−1)〈ω,x〉p(x|l), (2)

where 〈ω, x〉 is the inner product between ω and x. Figure 2 below depicts it
when computed for Hamming weight leakages corresponding to a 4-bit target
variable. It can be observed that for l = 0 or l = n (i.e., the dotted gray curves
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Fig. 2: Walsh-Hadamard transform of the conditional distribution p(X|L) for
each hypothetical value of the Hamming weight leakage function.

in Figure 2), the absolute value of the Walsh-Hadamard coefficients is a constant
1. This corresponds to values for which the leakage model is injective (i.e., the
conditional probability distribution of the sensitive variable collapses to a single
Dirac). Let us first consider the unrealistic assumption that these leakages are
never observed – we will discuss the general case afterwards. For the remaining
leakages that an adversary may observe, only the first and last coefficient of the
Walsh-Hadamard transform are equal to 1 in absolute value. The first coefficient
being equal to 1 is due to p being a probability distribution (i.e., all probabilities
are summing to 1). For the last coefficient (i.e., for ω = 1n), the inner product
〈1n, x〉 coincides with the Hamming weight of x, i.e. HW(x) = 〈1n, x〉. Hence:

WHT(p, 1n) =
∑
x∈Fn

2

(−1)〈1
n,x〉p(x|l) =

∑
x∈Fn

2

(−1)HW(x) 1HW(x)=l(
n
l

) = (−1)
l
. (3)



As a consequence, any element-wise product between d Walsh-Hadamard trans-
forms among the ones observable in a Hamming weight leakage model can only
decrease all coefficients at an exponential rate, except the first and last ones. It
results that when d→∞, the Walsh-Hadamard transform of the masked leakage
distribution tends towards (1, 0, . . . , 0,±1). Such asymptotic Walsh-Hadamard
transforms correspond to uniform distributions over two non-overlapping sup-
ports of equal size 2n−1, both leading to a conditional entropy of n− 1 bits.

Finally, we discuss our assumption that the adversary did not observe any
sample such that l = 0 or l = n. As a consequence, d in our previous reasoning
is replaced by the number of samples in the leakage that are neither null nor
equal to n. Let us denote this number by the random variable T . Hereupon, we
may notice that the marginal distribution of the leakage is such that T follows
a binomial law of parameter B(d, 1

2n−1 ). Such a law is known to concentrate

exponentially fast towards its mean d
2n−1 . As a result, the probability to observe

a number of null or full (equal to n) leakages becomes negligible when d→∞.

2.4 Intuitive explanation

The theoretical explanation confirms our observations from the information the-
oretic analysis formally. To gain a more intuitive understanding of why the secu-
rity level stagnates for binary masking (Boolean and arithmetic) when increasing
the number of shares without noise we can also point to concrete properties of
the considered leakage functions. If an adversary receives noise-free Hamming
weight observations HW(x1), ..., HW(xn) of the Boolean shares x1, ..., xn of
a secret variable x with x1 ⊕ ... ⊕ xn = x, then the parity-bit b ≡ HW(x1) +
... + HW(xn) mod 2 is also the parity of the Hamming weight of x. Likewise,
the parity of noise-free LSB observations of all shares is also the LSB of the
secret, since LSB(x) ≡ LSB(x1) + ... + LSB(xn) mod 2. The latter equation
holds for both Boolean masking and arithmetic encodings in binary fields. In
all described cases the information learned about the secret variable is indepen-
dent of the number of shares and the statistical security order. The order of the
masking only becomes relevant when increasing the noise level. By contrast, for
arithmetic encodings in prime fields no such relationships exist and an exponen-
tial decrease of the MI can be observed even in the no-noise scenario. This is
true for any non-injective leakage model (i.e., in any case where not all shares
and intermediates are already known to the adversary with probability 1).

2.5 Impact of the prime size

The results in Section 2.2 are for 8-bit targets. A natural further question is
whether increasing the size of the prime modulus has any (positive or detrimen-
tal) effect on security. This investigation is especially interesting since the field
size is a source of potential non-tightness in masking security proofs [54,63].

Using the same information theoretic approach as in Section 2.2, we can
observe in Figure 3 (especially in the bottom parts of the figure) that increasing
the prime size significantly improves the security of the masked encodings for the



Hamming weight leakage function, while it has no impact for the LSB leakage
function.3 Again, this is a quite positive outcome since the Hamming weight
leakage function is commonly considered as a reasonable simplification of many
leakage functions observed in practice. It also recalls that side-channel security
against very localized leakage functions (e.g., the LSB one that corresponds to
a probing attack) is very challenging to obtain. But as observed in [58], such
models generally exploit significantly more powerful (and expensive) sources of
leakage than the power consumption or electromagnetic radiation.
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Fig. 3: Information theoretic evaluation of masked encodings with prime moduli
p = 2n − 1 of increasing sizes. Top: Hamming weight leakage function. Middle:
LSB leakage function. The bottom figures are for the no-noise regime only.

3 In fact, for the LSB leakage function and a fixed number of shares, it can even be
shown that the MI(X;L) is lower bounded when increasing the size of p. For 2 shares
the concrete lower bound is given by lim

p→∞
MI(X;L) = 0.2787.



2.6 Parallel leakage

By assuming that the adversary can observe the leakage of each share separately,
our previous evaluations naturally correspond to a serial (e.g., software) imple-
mentation. Yet, the problem that we observe with low physical noise leakages
actually holds even in the case of a parallel manipulation of the shares (more
reflective of a hardware implementation). We analyzed this scenario by simply
replacing the leakage vector L by the sum of its d elements. The resulting eval-
uation is depicted in Figure 4 (for 8-bit targets). As expected, we see that the
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Fig. 4: Information theoretic evaluation of serial and parallel binary masking.

curves of the parallel implementation are always below (i.e., less informative)
than the ones of the serial implementation, which is explained by the accumu-
lation of the leakage of the shares processed in parallel, which leads to a loss of
information available to the observer. More interestingly for our following inves-
tigations, we also see that the curves in Figure 4b and Figure 4d are stuck to
the 1 bit threshold in the low-noise regime, matching the observations in [82].

Here as well, our previous spectral analysis provides an explanation of our
observations. In the serial case, the adversary is given a leakage tuple l =
(l1, . . . , ld), so the PMF x 7→ p(X = x|l) is the convolution product x 7→
(p(X1|l1) ∗ . . . ∗ p(Xd|ld)) (x), as previously discussed [64, Prop.1]. In the par-
allel case, the adversary is only given the sum ` =

∑
i li of the tuple l, also

denoted by S(l) hereafter. By applying the total probability formula over all
the tuples l verifying S(l) = `, and leveraging the mutual independence of the
variables L1, . . . , Ld, the conditional PMF Pr(X|S(L)) verifies:

Pr(X|S(L) = `) =
∑

l:S(l)=`

(p(X1|l1) ∗ . . . ∗ p(Xd|ld)) · Pr(L = l|S(l) = `) . (4)

In other words, the PMF becomes the averaged convolution product over all
possible tuples verifying the constraint. Nevertheless, we argue that when d →
∞, averaging does not affect the resulting PMF much. Indeed, for each tuple
verifying the constraint, the parity of the number of odd values remains constant:
if ` is even, there is always an even number of odd values in the tuple l. Likewise,
if ` is odd, there is always an odd number of odd values in the tuple l. This ensures
that all the convolution products that are averaged converge towards the same
uniform distribution over a subset of size 2n−1, as argued in subsection 2.3.
Hence, the resulting conditional entropy (of n− 1 bits) remains unaffected.



2.7 Final remark

While arithmetic masking in prime fields can be sufficient to deal with low-
noise leakages, we may wonder whether it is necessary to consider groups of
prime size, or if an odd modulus would suffice. This case has been discussed
by Dziembowski et al. who showed that for groups of composite order, there
exists some leakage models for which masking is ineffective [41, Prop. 1]. This
result is actually closely linked to a wide literature studying the convergence of
probability distributions through the iterative application of a self-convolution
product [56,3]. For example, consider the group Z15, where the inner law is the
addition modulo 15. Assuming that the target variable leaks such that L(x) = x
mod 3, the adversary will obtain log2(3) bits. It can be verified that masking
at any order keeps the conditional probability distribution of the target variable
unchanged, up to a permutation, which in turn keeps the mutual information
constant. Using prime orders avoids this theoretical possibility. As will be clear
in Section 4, it also makes the cryptanalytic treatment of prime ciphers easier.

3 Performance and cost

The primary motivation to tailor block ciphers and masking schemes towards
binary fields is efficiency. From an implementation perspective the ability to
perform field addition/subtraction using a simple bit-wise Exclusive-OR (XOR)
operation is one of the core advantages of working in F2n compared to per-
forming the equivalent tasks in Fp. Field multiplication including the reduction
using an irreducible polynomial can be implemented quite efficiently for small
n as well. In hardware, XOR/AND sequences are used for this purpose, in soft-
ware log/alog tables are one of the most efficient options [32]. In this section
we argue that prime field arithmetic can be executed with similar (and some-
times even better) efficiency as (than) binary arithmetic on many platforms,
due to a direct utilization of existing computation structures. In fact, devices
like Micro-Controller Units (MCUs) and Field-Programmable Gate Arrays (FP-
GAs) are mostly developed with general purpose computing in mind. Hence,
they often provide regular arithmetic operations like addition, subtraction and
multiplication as dedicated and heavily-optimized hardware circuitry (for one
specific size of operands). Many 32-bit micro-controllers for example include
single-cycle arithmetic instructions for 32-bit operands. Yet, single-cycle multi-
plications sometimes produce only a 32-bit result, instead of a full 64-bit product
(e.g., ARM Cortex-M0/M3). FPGAs on the other hand offer DSP slices which
commonly include full 18 × 18-bit or 27 × 18-bit multipliers. Whenever such
a hardware support is available, the heavy lifting for implementing prime field
arithmetic is (at least for small primes) taken care of at the expense of occupying
the integrated arithmetic accelerators (temporarily). The remaining element that
might be a bottleneck in such implementations is the modular reduction. Yet,
the efficiency of reduction algorithms modulo a prime is a well-studied subject
in general and in Elliptic-Curve Cryptography (ECC) in particular.



3.1 Small Mersenne primes

It is commonly known that reduction modulo a Mersenne prime, i.e., a prime
of the form p = 2n − 1, can be performed very efficiently on a binary com-
puter. There are further categories of primes that emerged as particularly suit-
able choices for efficient modular reduction. These include generalized Mersenne
primes, pseudo-Mersenne primes and Montgomery-friendly primes [52,18,19,6].
Yet, these alternatives are mostly needed because large Mersenne primes are
sparsely distributed. In the range between 2127 − 1 and 2521 − 1 for example,
there exist none. For our purposes, however, we are primarily interested in primes
much smaller than that, namely with bit-lengths close to the size of binary ex-
tension fields that popular symmetric block ciphers operate in, e.g., F28 for the
AES [32]. The Mersenne prime exponents closest to 8 are n = 7 and n = 13. In
the following we extend this range a bit and compare the performance and cost
of masked multiplication algorithms in fields F2n and F2n−1 for all Mersenne
exponents n with 3 ≤ n ≤ 31. These sizes allow efficient implementation of
field arithmetic both in software and hardware. Hence, they are relevant targets
for the construction of cryptographic building blocks. Besides, Mersenne prime
fields have the additional advantage that any multiplication of a field element
by a power of 2 is merely a rotation of the bits, which is cheap in software
and entirely free in hardware. As a result, also the Hamming weight of a value
is preserved when it is multiplied by a power of 2. Eventually, when mapping
messages into the desired prime field for encryption, Mersenne primes cause the
minimum amount of unused bit strings (i.e., only the all-ones string).

3.2 Masked multiplication in binary fields vs. prime fields

When masking a cryptographic primitive like a block cipher, the linear opera-
tions can trivially be extended and applied to each share individually. Therefore,
the cost of masked linear operations grows linearly in the number of shares. The
implementation of non-linear elements is less straightforward and requires ded-
icated gadgets which optimally offer (robust) probing security and, if desired,
satisfy composability notions to enable their secure combination to construct
larger (robust) probing secure circuits [44,11]. It is a common abstraction to es-
timate that the cost of masked non-linear operations grows quadratically in the
number of shares [47]. This is traditionally motivated by the number of partial
products required for executing the ISW multiplication algorithm [53]. Clearly,
the main bottleneck for the efficiency of masked cipher implementations is the
realization of the non-linear operations, or as commonly abstracted, the multi-
plications. In the following we therefore compare the performance and cost of
masked multiplication algorithms and circuits. These gadgets are well-suited for
a comparison as they not only consist of field multiplications but also require
field addition and subtraction (which are equivalent in binary fields).

Software. First, we concentrate on software platforms. For the comparison we
have chosen an STM32VLDISCOVERY board4 with an STM32F100RB ARM
4 https://www.st.com/en/evaluation-tools/stm32vldiscovery.html

https://www.st.com/en/evaluation-tools/stm32vldiscovery.html


Table 1: Cycle counts of the ISW multiplication algorithm on an ARM Cortex-
M3 MCU (STM32F100RB on STM32VLDISCOVERY) for binary and prime
fields with small to medium Mersenne prime exponents 3 ≤ n ≤ 31.

Number of Shares

Field n 1 2 3 4 5 6

F2n

3 24 73 173 330 656 956
5 26 75 215 388 672 968
7 26 75 217 392 720 1032
13 162 629 1429 2581 3933 6014
17 210 821 1861 3349 5085 7758
19 234 917 2077 3733 5661 8630
31 378 1493 3373 6037 9117 13862

Number of Shares

Field n 1 2 3 4 5 6

F2n−1

3 5 20 39 104 230 382
5 5 20 39 104 230 382
7 5 20 39 104 230 382
13 5 20 39 104 230 382
17 17 82 224 468 804 960
19 17 82 224 468 804 960
31 19 86 230 476 820 1262

Cortex-M3 32-bit micro-controller. It provides single-cycle addition, subtraction
and multiplication instructions for 32-bit operands. However, the single-cycle
multiplication instruction (MUL) only produces 32-bit results and is therefore
effectively a 16 × 16-bit multiplier for our purposes. A multi-cycle 32 × 32-bit
multiplication instruction (UMULL) producing a 64-bit result exists, but it does
not execute in constant time and is therefore not considered in this work. All our
software implementations are written in C and have been compiled and analyzed
using Keil MDK for ARM (MDK-Lite Version 5.36.0.0). Table 1 compares the
number of cycles required to execute an ISW multiplication in constant time in
both binary and Mersenne-prime fields with up to six shares (providing fifth-
order security). Up to n = 7, the masked binary ISW multiplication is quite
efficient, as the partial products can be computed using log/alog tables [32]. The
remaining operations in the masked multiplication algorithm are XORs. For n =
13 and larger fields, log/alog tables are too big to be hard-coded as static tables
in the program and to be flashed onto the device. Thus, for 13×13-bit and larger
multiplications, the partial products are computed using a regular constant-time
Galois field multiplication based on shift, XOR and AND operations.5

The masked Mersenne-prime ISW multiplication is more efficient for any
number of shares on this target platform since, unlike the binary field operation,
it can leverage the arithmetic multiplication instructions. The subsequent mod-
ular reduction takes another 4 cycles for small n values. For n = 17 and larger
Mersenne primes, the multiplication result does not fit into a single 32-bit word,
implying the need for multi-precision arithmetic. Using the standard Karatsuba
algorithm, at most three calls to the constant-time 16-bit multiplication instruc-
tion (MUL) are needed for 17 ≤ n ≤ 31. Therefore, both the multiplication and
the subsequent reduction require more cycles for these sizes. Nevertheless, com-
pared to binary field multiplications of the same size they are still significantly
more efficient, by up to one order of magnitude (for n = 31).

5 It is possible to compute the tables on the device when they are needed. Yet, it
creates additional (memory) overheads and complicates the comparison.



This comparison obviously neglects the significant performance improve-
ments that can be achieved for binary field operations when making use of bit-
slicing (first introduced in [14] to speed up DES implementations). Unfortunately
this technique can not be transferred to prime fields. By contrast, using medium-
sized (e.g., 31-bit) primes that leverage the data width of the target platform
optimally could serve as an alternative to build fast software implementations. A
more detailed comparison including such considerations falls outside the scope
of this work. Our point is anyway not that prime field operations are gener-
ally cheaper in software than binary field operations, but merely that Mersenne
prime field arithmetic can be implemented very efficiently on such platforms too,
mainly due to the existence of optimized arithmetic hardware support. Combin-
ing with their excellent side-channel security features, it makes them promising
candidates for effective and efficient masking in low noise conditions.

Hardware. For hardware implementations it is usually distinguished between
Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate
Arrays (FPGAs). In this work we mainly consider FPGAs as a suitable target
platform, since similar to MCUs they already come with optimized arithmetic
hardware multipliers and adders on-board. If such resources are not available,
the cost of building Mersenne-prime field multiplication from combinatorial logic
cells (provided by a standard cell library) is, according to our estimation, about
twice as high as for binary fields of the same size (this overhead shrinks for larger
n). For addition and subtraction the resource overhead is even 3-4. However,
when the FPGA includes DSP slices with multipliers and adders, the utilization
of soft logic (LUTs, FFs, Slices) can be significantly reduced for prime field
operations, at the cost of occupying the integrated arithmetic processors.

Table 2 shows the resource utilization of ISW multiplication circuits with
up to 6 shares on a Xilinx Spartan-6 FPGA (XC6SLX75-2CSG484C) for both
binary and Mersenne prime fields with exponents in the range 3 ≤ n ≤ 31. This
target FPGA offers 132 DSP48A1 slices with one 18×18-bit multiplier each. All
circuits have been implemented using Xilinx ISE Design Suite 14.7 with synthesis
parameters -keep hierarchy set to yes and -use dsp48 set to Auto. On average
the masked prime field multiplications require less soft logic than the binary field
equivalents, at the cost of using DSP48A1 slices. From the resource utilization
figures, it becomes clear that n = 5 and n = 19 are sub-optimal choices for this
target. For n = 5 the corresponding Mersenne prime p = 31 is still too small to
effectively leverage the 18-bit multipliers (the synthesis tool then opted to not
use a DSP slice), while its DSP-free implementation is already quite expensive.
For n = 19 the multiplication cannot fit into an 18× 18-bit multiplier, but it is
also too small to effectively utilize a second instance for each multiplication, so
the multiplier is extended by expensive soft logic. However, for n = 7, n = 13
and n = 17 (and even n = 31), efficient masked multiplications are found.

3.3 Larger prime ciphers

It is well-known from ECC-related research that performing cryptographic op-
erations in larger prime fields requires expensive multi-precision arithmetic. For



Table 2: Resource consumption of the ISW multiplication algorithm on a Xilinx
Spartan-6 FPGA (XC6SLX75-2CSG484C) for binary and prime fields with small
to medium Mersenne prime exponents 3 ≤ n ≤ 31. Note that 132 is the maximum
number of available DSP48A1 slices on this target FPGA (*).

Shares Field n LUTs Slices DSPs

1

F2n

3 3 3 0
5 12 6 0
7 26 9 0
13 81 35 0
17 132 56 0
19 166 71 0
31 407 180 0

F2n−1

3 3 3 0
5 34 13 0
7 16 6 1
13 27 12 1
17 35 15 1
19 116 36 1
31 63 24 4

Shares Field n LUTs Slices DSPs

2

F2n

3 22 16 0
5 64 41 0
7 114 62 0
13 382 157 0
17 590 249 0
19 742 322 0
31 1722 802 0

F2n−1

3 25 19 0
5 197 79 0
7 121 47 4
13 216 80 4
17 284 99 4
19 623 183 4
31 520 156 16

Shares Field n LUTs Slices DSPs

3

F2n

3 57 46 0
5 156 102 0
7 273 152 0
13 862 440 0
17 1352 545 0
19 1711 738 0
31 3957 1904 0

F2n−1

3 66 48 0
5 468 198 0
7 327 123 9
13 569 202 9
17 737 253 9
19 1512 444 9
31 1335 405 36

Shares Field n LUTs Slices DSPs

4

F2n

3 108 84 0
5 294 168 0
7 500 294 0
13 1623 610 0
17 2414 1319 0
19 3060 1410 0
31 7099 335 0

F2n−1

3 126 85 0
5 866 385 0
7 600 254 16
13 1082 386 16
17 1428 467 16
19 2792 816 16
31 2527 768 64

Shares Field n LUTs Slices DSPs

5

F2n

3 175 128 0
5 460 295 0
7 821 446 0
13 2473 1237 0
17 3761 1826 0
19 4808 2201 0
31 11217 5086 0

F2n−1

3 205 137 0
5 1369 575 0
7 984 381 25
13 1788 605 25
17 2284 769 25
19 4468 1301 25
31 4095 1295 100

Shares Field n LUTs Slices DSPs

6

F2n

3 258 200 0
5 672 432 0
7 1188 714 0
13 3657 1653 0
17 5469 2624 0
19 6933 3182 0
31 16237 7110 0

F2n−1

3 303 211 0
5 1966 884 0
7 1422 612 36
13 2625 891 36
17 3373 1131 36
19 6532 1894 36
31 9254 2369 132*



this reason, most existing prime-based block ciphers are not perfectly suited
to deliver the desired efficiency for low-end embedded devices. For instance, a
single unmasked 129×129-bit multiplication, as required 82 times in the MiMC-
129/129 block cipher [2], already costs multiple hundreds of clock cycles (without
modulo reduction) on devices where single-cycle 32-bit hardware multipliers are
available [38]. On a Spartan-6 FPGA a single 129× 129-bit unmasked multipli-
cation without reduction is about as expensive as 16 31× 31-bit multiplications
or 64 17 × 17-bit (or smaller) multiplications. Considering additionally that no
129-bit Mersenne prime exists, the overheads for the modulo reduction will be
even more significant. The same problems arise for all prime ciphers which are
either based on operations in too large fields or which require reduction modulo
an implementation-unfriendly prime (since integer division might be needed).
We conclude that the design space for small to medium Mersenne-prime ciphers,
dedicated to efficient masked implementations, is still mostly unexplored. We
next show the interest of this design space by exhibiting the advantages of a first
AES-prime cipher over its standard version for masked implementations.

4 AES-prime for prime encodings

Section 2 showed that prime encodings can improve the security of the mask-
ing countermeasure in low-noise settings. Section 3 showed that the resulting
operations can be implemented efficiently in hardware and software. The next
step in proving the utility of these encodings is to analyze concretely-relevant
computations. Yet, as mentioned in the introduction, applying prime encodings
to binary ciphers is expected to lead to large performance overheads. In general,
prime ciphers, for which the key addition is in Fp and the diffusion layer is linear
in this field, would be better suited to this goal. As a natural starting point, we
propose an AES variant operating in prime fields, denoted as AES-prime.

4.1 AES-prime design for p = 27 − 1

The main design guideline of AES-prime consists in adapting the standard AES

design to Fp where p is a prime, using only additions and multiplications over
the chosen prime field. The main design components are the same: the key is a
vector of 16 elements of Fp and the state is considered as a table of 4 by 4 Fp
elements. The round architecture is the same with the following adaptation on
SubBytes, MixColumns and AddRoundKey. See [32] for details.

SubBytes. The non-linear substitution built upon the inverse function in F28

is replaced by a power function and the addition of a constant. The S-box is
defined as f(x) = xe + c where e is the first integer such that e and p − 1 are
co-prime, to ensure that the function mapping x ∈ Fp to xe is a bijection, and c
is the smallest positive integer such that f(x) has no fix points (as in the original
design). Then for p = 27 − 1 we have e = 5, c = 2 and f(x) = x5 + 2.

Note that contrarily to the original AES nonlinear function this power map
is not its own inverse. The main reason for this choice is that it allows reducing



the number of multiplications in the S-box, which is the most expensive oper-
ation to mask. Concretely, the considered x5 mapping can be performed with
three multiplications. A counterpart of this choice is that the inverse will be less
efficient. For now we therefore assume that AES-prime will be preferably used
in an inverse-free mode of operation (e.g., CTR [59]), leaving the investigation of
S-boxes in prime fields with efficient inverses as an open problem.

MixColumns. This part of the affine layer is replaced by a 4 by 4 Maximum
Distance Separable (MDS) matrix over Fp. The reason is to guarantee a branch
number of 5 as in the original AES design (which is optimal for this size), for
diffusion properties. To choose the MDS matrix, we start from a Vandermonde
matrix and perform minor modifications to decrease the number of different
elements. It is beneficial to choose elements which are powers of 2 when p is a
Mersenne prime, since multiplication by such a value is merely a rotation of the
bits. For p = 27 − 1 it leads to the following choice:

M =


1 1 1 1
1 2 4 16
1 4 16 2
1 16 2 4

 .
AddRoundKey. The bit-wise addition of the AES is replaced by the addition over
Fp between the 16 elements of the round key and the state.

For completeness, we finally mention that AES-prime uses the key scheduling
algorithm of the AES adapted with a prime S-box and additions modulo p. Its
round constants are computed as multiples of 3 modulo p, resulting in the se-
quence 0x01, 0x03, 0x09, 0x1B, 0x51, 0x74, 0x5E, 0x1C, 0x54, ...

4.2 Security analysis

The proximity between the AES-prime and AES designs allows us to benefit from
two decades of cryptanalysis in order to determine the security of the AES-prime
to known attacks. For our choice of parameters, we can also lean on the security
analysis of the HADES design strategy [48] that recently studied generalizations
of SPN designs over prime fields. The main focus of [48] is on big prime sizes
(where log2(p) corresponds to the targeted security such as 128-bit) for MPC
applications, but its security analysis also considers smaller sizes. For example,
for log2(p) = 8 and a state of 16 words they advocate 14 rounds for a 128-
bit security (16 × log2(p) more precisely). The main attacks exhibited against
these prime designs are statistical attacks (mostly differential cryptanalysis),
and algebraic attacks based on interpolation and Gröbner bases.

AES-prime has two main differences with the HADES ciphers. First, all rounds
have a full S-box layer whereas HADES combines full S-box layers and partial
S-box layers in order to decrease the total number of products. Second, the
diffusion of AES-prime uses a 4 by 4 MDS matrix whereas HADES uses an MDS
matrix on the whole state (16 by 16 in our case). We argue these differences



have a limited impact on the security analyses, and a similar number of rounds
could be considered. For statistical attacks, the strategy of HADES relies on the
differential and linear probabilities of an S-box and the number of active S-
boxes in the full layers. The S-box of AES-prime being a power function as
in HADES, we can bound the statistical probabilities using the same arguments,
and we can bound the number of active S-boxes from the diffusion properties
proven for the regular AES. For algebraic attacks, the strategy of HADES is based
on determining the degree of the polynomials obtained after r rounds, and the
number of coefficients of such polynomials. The same strategy can be applied to
AES-prime. We next give more details on these attacks on AES-prime.

Statistical attacks. The most common attacks on block ciphers are linear [65]
and differential cryptanalyses [16] and their variants. They consist in following
how statistical biases from the S-boxes propagate along various rounds of the
cipher in order to determine the key. Following the Wide Trail Strategy [31],
we bound the linear and differential probability of the S-box function, and use
the branch number to bound the number of active S-boxes over various rounds,
in order to determine the minimal number of rounds preventing characteristics
with probability higher than 2−λ, where λ is the security parameter. As in [48]
we ensure that each characteristic has a probability smaller than 2−2λ in order
to avoid that a combination of various of them lead to an attack.

The differential probability of a 1-variable p-ary function f from a to b (both
in Fp) is defined as |{x : f(x + a) − f(x) = b}|/|Fp| and its linear probability
relatively to a, b as |{x : f(x) = ax+b}|/|Fp|.6 Since Fp is a field, any polynomial
of degree e has at most e roots, which gives the upper bound of (deg(f)−1)/p for
the differential probabilities and deg(f)/p for the linear ones. Since in AES-prime

ShiftRows is the one of the regular AES and MixColumns is based on an MDS
matrix as for AES too, the number of active S-boxes in a four-round differential
(or linear) trail is lower bounded by 25 (see [32], Theorem 9.5.1). Therefore, with
8 rounds the differential probabilities admit the upper bound:

p ≤
(

deg(f)

p

)50

, hence for p = 27 − 1 it gives p ≤
(

5

127

)50

≈ 2−233.

These probabilities are smaller than 2−2λ and, as in [48], we add two rounds
in order to guarantee that no differential attack can be set up by key guessing,
which leads to a minimum of 10 rounds to avoid these attacks.

Algebraic attacks. As for the HADES framework, we consider that the main
algebraic attacks threatening AES-prime are the interpolation attack [55] and
attacks exploiting Gröbner bases. In both cases, the goal of the analyses are to
determine a minimum number of rounds such that the polynomial representa-
tions of the cipher that an adversary can build has a too high degree of too many
monomials. First, we note that for a fixed key the encryption could be studied as
a function (mapping each plaintext to a ciphertext) from Fp16 to Fp16 . Then, even

6 A n-variable p-ary function is a function from Fn
p to Fp.



determining the polynomial corresponding to one full S-box layer is non-trivial.
Accordingly, the basis field we consider for the cryptanalyses is Fp, and poly-
nomials built by the adversary belong to Fp[z0, · · · , z15]/(zp0 − 1, · · · , zp15 − 1).
Since the degree in one variable is at most p − 1, the total degree is at most
16(p − 1) and there are p16 monomials. The S-box used in AES-prime being a
power function xe added to a constant, the total degree will therefore increase
as er for the first r rounds, until reaching the maximum of 16(p − 1). For the
number of monomials, most of the monomials will be present in each polynomial
after a few rounds (most since even for a random polynomial each monomial
is present with probability (p − 1)/p). Indeed, after dloge(p)e rounds, all the
univariate monomials (zji ) are obtained. Two more rounds ensure to have sums
with each one of the 16 variables (at some power) as input of the S-box’ f func-
tion (defined in Section 4.1). As a result, dloge(p)e more rounds are sufficient to
obtain all monomials. Overall, we obtain dense polynomials after 2dloge(p)e+ 2
rounds, which corresponds to 10 rounds for the chosen p = 27 − 1.

For the interpolation attack, the attacker aims at interpolating a polynomial
from F16

p to Fp corresponding to the encryption over all minus one rounds using
known plaintext/ciphertext pairs. If such a polynomial has a low degree or few
monomials, the adversary can guess the key of the final round, decrypt the
ciphertexts, interpolate the polynomial corresponding to all minus one rounds
and confirm it with an extra plaintext/ciphertext pair. The data cost is well
approximated by the number of plaintext/ciphertext pairs necessary to build
such a polynomial. Following the strategy of HADES, we consider that such an
attack cannot succeed when the number of monomials in the cipher polynomial
is equal to the full code book, since it corresponds to p16 ≈ 2λ monomials which
already meets the targeted security. Accordingly, we count 2dloge(p)e+3 rounds
to rule out the interpolation attack, 11 for p = 27 − 1. Due to the proximity of
design between SHARK [78] and AES-prime, we also consider the analysis of the
first interpolation attack [55] on this block cipher. The principle of this attack
is that even if the S-box corresponds to a function of high degree (maximal in
the case of the inverse as in SHARK), it can be attacked more easily in another
representation (e.g., as a fraction of low-degree polynomials). In this case, the
complexity of the attack comes from the number of S-boxes rather than their
size or degree. The complexity of the best attack is then at least 2(tr−3)t, where
t is the number of S-boxes and r the number of rounds. For the AES-prime it
corresponds to 2 · 1616(r−3), hence at least 5 rounds for p = 27 − 1.

For Gröbner bases attacks, the attacker aims at solving a system of multi-
variate polynomials over Fp in the key elements obtained with sufficient plain-
text/ciphertext pairs. Determining the (tight) complexity of these attacks is im-
possible. Hence the security of ciphers against these attacks is usually based on
the infeasibility of computing the Gröbner basis in degree reverse lexical order.
We follow this strategy also used in HADES. Since the design differences (e.g., MDS
matrix on partial or full state, full or partial S-boxes layers) have no influence on
the final complexity, we respect the bound of at least 2+dloge(p)/2e+dloge(16)e
rounds. For p = 27 − 1 it leads to a minimum of 6 rounds.



Number or rounds. Based on the complexity of the different attacks consid-
ered, 11 rounds would be sufficient for the targeted security of b16 log(27−1)c =
111 bits for this value of p, which is coherent with the number of rounds in
the AES. Since various improvement of the considered attacks, or attacks of the
same families, are possible we take a more conservative approach and follow the
estimations of HADES. Accordingly, we advocate the use of 14 rounds.

Before moving to the experimental validation of our findings, we re-insist that
the proposed instance of the AES-prime cipher with p = 27 − 1 is only aimed
to confirm the interesting design space that prime ciphers open. In particular,
our following conclusions only require that AES-like ciphers operating in binary
and prime fields of similar sizes require similar number of rounds (i.e., differ
by factors that are covered by the physical security gains that the AES-prime

provides). Besides, we note that this design is scalable. For example, if 128 bits of
security or more are required, a 13-bit variant with p = 213−1 can be considered.
The S-box could then be based on f(x) = x11 + 3 while keeping the same MDS
matrix as the 7-bit instance for MixColumns, and the same number of rounds.

5 Experimental validation

In this last section, we finally consider the practical impact of prime encodings
on the security of masked block cipher implementations in software and hard-
ware. For this purpose we implement masked field multiplications in F27−1 based
on the ISW multiplication algorithm [53] and construct probing secure imple-
mentations of the AES-prime S-box, i.e., x5 +2. We refrain from any comparison
to masked versions of the standard AES S-box here, which is based on Galois
field inversion in F28 . The different bit lengths of inputs processed, the different
number and size of field multiplications required and the various known imple-
mentation strategies for the standard AES S-box are among the reasons why any
such comparison would depend a lot on the ad-hoc choices made along the way
and indeed feel like comparing apples to oranges. Thus, we chose to compare the
identical operations, i.e., multiplication and f(x) = x5 + 2, in the corresponding
fields F27−1 and F27 . We stress that the following results are not meant as an
efficiency comparison (which would favor binary fields for this choice of S-box
since the squaring operation is linear in F27), but merely as a comparison of
their side-channel leakage. For our software case study, we evaluate the security
of these implementations for an increasing number of shares (up to 6) against a
profiled SASCA attack (similar to the one considered in [20]). In this setting the
adversary is given full profiling access to the device to characterize its leakage
behavior and build optimal models for the attack. Furthermore, the chosen 32-
bit MCU (specified next) has shown a low natural noise level when measuring its
power consumption. As a second case study, we evaluate the leakage reduction
offered by prime field operations in hardware compared to the equivalent binary
field operations using a detection-based leakage assessment [81].



5.1 Target devices and experimental setups

For the software-based investigations, we have targeted the same device as al-
ready described in Section 3, namely an STM32VLDISCOVERY board with an
embedded STM32F100RB ARM Cortex-M3 32-bit micro-controller. Both the
discovery board and the MCU are identical to the Cortex-M3 experiments pre-
sented in [20], where bitslice masked implementations have been analyzed. Also
similar to [20], we have conducted a standard modification of the board for
power measurements, namely carefully removing the decoupling capacitors in
the power grid of the target chip to obtain improved results. The Cortex-M3 has
been operated at 8 MHz throughout our experiments.

For the hardware-based investigation we have evaluated the masked imple-
mentations on a SAKURA-G FPGA board,7 which employs two Xilinx Spartan-6
FPGAs: one as a target and one as a control unit. The target FPGA is the exact
Spartan-6 device we have used for the estimation of the resource consumption
of masked field multiplications in Section 3. We have operated the target imple-
mentations at 6 MHz. Low frequencies were selected since we are interested in
conducting our comparisons at minimal noise levels.

In both cases, we have used the same measurement equipment and settings.
In detail, we have placed a CT-1 current probe from Tektronix with a band-
width up to 1 GHz in the power supply path of the target FPGA and acquired
the measurements with a PicoScope 5244D digital sampling oscilloscope. The
sampling rate was set to 250 MS/s and the vertical resolution was 12 bit.

5.2 Software case study

The goal of the software-based case study is to validate whether moving to
encodings and operations in prime fields actually leads to concrete security im-
provements compared to standard Boolean masking in real-world experiments.
To answer this question, we mount horizontal attacks against the AES-prime

S-box for two different encodings and two implementation strategies realized on
a small 32-bit micro-controller (known to provide limited natural noise).

Methodology. We implemented the S-box as a sequence of three ISW multi-
plications , as described in Section 4. It gives rise to intermediate computations
x, x2, x4, x5. We added refreshing gadgets according to the trivial composition
strategy of [47,26]. We follow the attack of Bronchain and Standaert from CHES
2021 [20] to efficiently leverage the horizontal leakages and extend it to opera-
tions in prime fields. Concretely, this analytical attack targets all the encodings
appearing in the multiplication chain, which has the significant advantage that
the resulting factor graph does not have cycles and is guaranteed to converge.8

7 http://satoh.cs.uec.ac.jp/SAKURA/index.html
8 We also tested SASCA with the full factor graph, using the heuristic of running the

BP algorithm for a number of steps corresponding to twice the diameter of the factor
graph. This attack variant did not lead to significant improvements.

http://satoh.cs.uec.ac.jp/SAKURA/index.html


Table 3: Concrete cycle counts (left) and resource utilization figures (right) of
the software and hardware implementations measured in this section. All values
are for constant time implementations and exclude randomness generation.

Field Arith. log/alog

d F2n F2n−1 F2n F2n−1

2 1321 189 232 282
3 2902 334 448 535
4 5213 600 800 912
5 8255 1125 1340 1581
6 12038 1692 1988 2283

Binary Field F2n Prime Field F2n−1

d LUTs Slic. DSPs LUTs Slic. DSPs

2 26 15 0 20 11 1
3 126 77 0 131 70 4
4 285 161 0 348 160 9
5 539 293 0 710 306 16
6 848 486 0 1096 515 25

The procedure of the attack is as follows. We assume that the adversary can
profile the leakage of the device while even knowing the random values used
during the profiling phase. This is a standard assumption when trying to evalu-
ate the security in the worst-case scenario for the designer by considering a very
strong attacker model [20]. The adversary uses the profiles subsequently to target
each share and intermediate value separately and finally combines all acquired
information to determine the underlying secrets. For this purpose, we first select
representative Points-of-Interest (POIs) in the trace for each relevant intermedi-
ate value thanks to the standard Signal-to-Noise Ratio (SNR) metric [60]. The
leakage distribution of each target intermediate value is then profiled thanks to
a pooled template attack [29] after a dimensionality reduction step using Linear
Discriminant Analysis (LDA) [83]. As a result, we obtain leakage models for all
the target intermediate values of the factor graph and use them in place of the a
priori (Hamming weight and LSB) ones of Section 2. These multivariate models
can be superior to the previous HW and LSB models and may enable attacks
with very few traces. Since we are interested in the practical interest of prime
encodings, we also switch from (easier to estimate) information theoretic metrics
to a security metric, namely the Guessing Entropy (GE) [84] that captures the
average key rank and which we estimated based on 1, 000 different attacks.

Experimental results. We have implemented the masked computation of
x5+2 in both fields F27 and F27−1 using two different implementation strategies.
First, using regular field arithmetic for the multiplication, which includes shift,
XOR and AND operations for the binary field and single-cycle multiplication and
addition instructions for the prime field. However, since these approaches show
a vastly different leakage pattern, we have additionally realized a table-lookup
based implementation using log/alog tables for both fields. The table-lookup
based implementations are realized using very similar sequences of instructions
and are therefore perfectly suited for a fair comparison. It is important to men-
tion that all implementations work in constant time. For the log/alog table im-
plementations we have only considered traces for the attack where the inputs
to the lookup-based field multiplication are non-zero. Despite the fact that all
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Fig. 5: Illustrative Cortex-M3 sample traces of a first-order masked implementa-
tion computing x5 + 2 in binary field (left) and prime field (right) using regular
field arithmetic operations (top) and log/alog tables (bottom).

our implementations execute in constant time (for any input), there is still an
operation dependency in the case that one or both multiplication inputs are zero
(see [32] for a description of the lookup function). This dependency, which is in-
herent to all log/alog table based implementations, allows to trivially identify all
zero-inputs with probability one in the traces. In order to avoid this special case
in our comparison we have only considered non-zero inputs for both binary and
prime fields. For our purposes this simple workaround was acceptable, for real im-
plementations we recommend more prudent strategies such as presented in [80].
Sample traces of the acquired measurements from the Cortex-M3 for the four
different implementations are shown in Figure 5 for the case of 2 shares. We have
repeated those measurements for 3, 4, 5 and 6 shares for each of the four cases.
For completeness, we provide the concrete cycle counts and resource utilization
figures of the analyzed implementations in Table 3. As detailed before, the cy-
cle counts required for performing three consecutive masked multiplications are
compared in the software case (which is clearly not the most efficient manner to
compute x5, especially in binary fields). Please note that log/alog table based
prime implementations require slightly more cycles than the equivalent Boolean
implementations, since only the partial multiplications are performed via table
lookup, while additions are still performed using regular arithmetic (requiring
a reduction in the prime case). Figure 6 for example shows the Signal-to-Noise
Ratio (SNR) for one input share per implementation. As expected, the leakage
patterns and magnitudes are different between binary and prime field compu-
tation when considering the regular field arithmetic implementations. However,
they are strikingly similar for the table-based implementations.

In order to perform the attacks we have built profiles using 50,000 traces
each, selected a maximum of 200 POIs per variable and set the number of di-
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Fig. 6: Signal-to-Noise Ratio (SNR) of input share 0 for the traces in Figure 5.

mensions after LDA projection to 2. The results are depicted in Figure 7. As
expected for a low-noise device, Boolean masking (in F27) with multiplication
based on field arithmetic (Figure 7a) leads to trivial attacks in less than 10 traces
against all implementations with up to 6 shares using the profiled models. By
contrast, the corresponding SASCA against the AES-prime S-box (Figure 7b)
requires significantly more observations to succeed. Attacking the 6-share imple-
mentation requires around 4, 000 traces. Yet, the differences between Figure 7b
and Figure 7a could potentially be influenced by the way the field multiplication
is implemented. Therefore, we repeated the attacks for the table-based imple-
mentations, where the leakage per share has been shown to be equivalent. The
result is depicted in Figures 7c and 7d. It can be observed that the attacks re-
quire more traces to succeed for both fields due to the lower SNR (c.f. Figure 6).
Yet, 50-60 traces still suffice to retrieve the key of the Boolean masked compu-
tation with 6 shares, while about 10, 000 traces are required for the equivalent
prime field masked S-box. These results confirm the interest of prime encodings.
In particular, they show a significant security benefit when increasing the num-
ber of shares for prime field masking even in this challenging low-noise software
context, which is a major advantage over Boolean masking.

5.3 Hardware case study

In order to investigate whether similarly impressive security improvements can
be achieved for the (naturally more noisy) case of parallel hardware implemen-
tations, we have conducted a second case study. In this experiment, we imple-
mented the ISW multiplication algorithm in hardware and, as for the previous
case study, compare the security provided by Boolean (in F27) and prime field
(in F27−1) masking. When implemented in two cycles (and synchronizing the
outputs with a register [69]), the ISW multiplication algorithm leads to a ro-
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Fig. 7: Guessing Entropy of SASCA against a software implementation of the
AES-prime S-box (top) and a binary variant (bottom) for 2 to 6 shares.

bust probing secure and composable circuit gadget [44]. This is crucial to avoid
a reduction of the statistical security order due to the presence of physical de-
faults in the hardware such as glitches. We implemented the ISW multiplication
in both considered fields for up to five shares in a fully pipelined manner. A
comparison of their resource utilization on the Spartan-6 FPGA is given in Ta-
ble 3. As detailed in Section 3, the prime field multiplications are supported by
DSP slices instead of pure soft logic implementations. We only execute and mea-
sure a single masked multiplication gadget to obtain relatively low noise levels
(aside from the parallelism inside the gadget itself). Then we perform a Test
Vector Leakage Assessment (TVLA)-based analysis [81] to verify the security
order provided by the circuits and analyze the number of traces required to ex-
ceed the detection threshold. We chose to perform this analysis using two fixed
classes (0x00 · 0x00 vs. 0x7E · 0x7E) to minimize the number of measurements
required to detect data-dependent information, as suggested in [39]. Our results
are depicted in Figure 8. Table 4 lists the required amounts of traces to pass the
detection threshold (t > 4.5) in the respective TVLA procedures.

For the unmasked case, the difference is insignificant. However, when increas-
ing the number of shares, the amount of traces required to confidently detect
leakage grows much more quickly for the prime field multiplication than for
the binary field one. Concretely, the 4- and 5-share masked multiplications in
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(c) 3-Share ISW Multiplication, Top: F27 , Bottom: F27−1
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Fig. 8: TVLA-based comparison of ISW multiplications. Left to right: sample
trace, TVLA over points, TVLA over traces.



Table 4: Required numbers of traces to pass the detection threshold.

Field \d 1 2 3 4 5

F2n < 10 100 20, 300 198, 000 5, 870, 000
F2n−1 < 10 3, 700 128, 100 > 10, 000, 000 > 10, 000, 000

F27 still show confidently detectable leakage after approximately 198,000 and
5,870,000 traces respectively. The analysis of the corresponding F27−1 multipli-
cations on the other hand can not find enough input-dependent information in
10,000,000 traces to distinguish the two fixed classes with a confidence above the
threshold. For the 4-share case this means that even a 50 times larger number
of observations is insufficient to achieve the same detection result.

We note that in the 3-share case, the relative difference between the metrics
for binary and prime fields appears to be smaller. Yet, we believe that it does not
reflect a smaller relative difference between the practical security levels provided
by these two implementations, but is instead owed to known shortcomings of
the TVLA procedure [87]. Indeed, there are factors beyond the security of the
implementation that influence the magnitude of the statistic and also the number
of traces required to reach a certain magnitude in TVLA (e.g., we verified that
the relative gap in the 3-share case is larger for different choices of the input
classes). So as usual with leakage detection, these results should be used as first
hints towards the significantly improved security that prime field masking offers,
especially given the overwhelming differences in the higher order cases. But they
are not a directly suitable way to conclude about a security level expressed in
terms of number of traces to recover the key. We leave such an advanced analysis
of worst-case attacks as an interesting scope for further research.

6 Conclusions

The results in this paper show that masking with prime encodings can lead
to major security improvements in the practically-relevant case of devices with
low noise. Evaluations in software and hardware show security improvements by
orders of magnitude over Boolean masking (for targets of equivalent sizes). We
hope these results open the way to a better understanding of masking in this
challenging context. We also believe they lead to important open problems.

A first direction is to further improve security by decreasing the side-channel
signal. One option for this purpose is to work with larger p values, which will also
raise evaluation challenges, as it implies the need to profile larger intermediate
computations (which is expensive with current tools). Another one is to leverage
algorithmic noise, either by using random values that are larger than p in the
ISW multiplications, or by performing all the computations modulo p ·N (where
N would be an algorithmic noise parameter). A second direction is to further
study the physical cryptanalysis of prime encodings. For example, investigating
algebraic attacks could be relevant (although also raising challenges, as these



attacks generally have a limited noise tolerance that may not be adapted to
masking) [77,22,73]. As mentioned in the introduction, assessing the interest of
prime encodings in the context of static leakage is another interesting question.
And of course, the design of ciphers that are even better suited to masking in
prime fields than the AES-prime, and their comparison with optimized bitslice
ciphers implemented with Boolean masking is an important long-term goal.
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