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Abstract. Masking is a counter-measure that can be incorporated to
software and hardware implementations of block ciphers to provably se-
cure them against side-channel attacks. The security of masking can be
proven in different types of threat models. In this paper, we are interested
in directly proving the security in the most realistic threat model, the
so-called noisy leakage adversary, that captures well how real-world side-
channel adversaries operate. Direct proofs in this leakage model have
been established by Prouff & Rivain at Eurocrypt 2013, Dziembowski
et al. at Eurocrypt 2015, and Prest et al. at Crypto 2019. These
proofs are complementary to each other, in the sense that the weak-
nesses of one proof are fixed in at least one of the others, and conversely.
These weaknesses concerned in particular the strong requirements on the
noise level and the security parameter to get meaningful security bounds,
and some requirements on the type of adversary covered by the proof —
i.e., chosen or random plaintexts. This suggested that the drawbacks of
each security bound could actually be proof artifacts. In this paper, we
solve these issues, by revisiting Prouff & Rivain’s approach.

1 Introduction

1.1 Context

Side-Chanel Analysis (SCA) represents an important threat for cryptographic
implementations on embedded devices such as smart-cards, Micro-Controller
Units (MCUs), etc. [37,38]. In such attacks, the adversary has a physical access
to the target device.More precisely, the adversary is assumed to measure some
physical metrics of the device called leakages — e.g. the power consumption of
the device or the Electro-Magnetic (EM) emanations around the target — dur-
ing one or several encryptions. It is then possible to use this side information —
beside leveraging plaintexts and ciphertexts — to guess the values of sensitive
variables, i.e. the values of intermediate calculations depending on some chunks
of secret. This way, an SCA adversary may independently recover the secret in
a divide-and-conquer approach, making the typical complexity of such attacks
often negligible compared to a regular cryptanalysis. That is why the SCA threat



should carefully be taken into account in the design of cryptographic implemen-
tations.

Thankfully, this does not prevent the deployment and the use of embedded
cryptography, as this threat can be mitigated by incorporating counter-measures
in the implementation. At a very high level, most of the counter-measures such
as masking or shuffling turn a deterministic cryptographic primitive into a non-
deterministic implementation by injecting some randomness during the execu-
tion of the primitive, either at a physical level or at an algorithmic level. In this
paper, we focus on the main counter-measure considered so far in SCA, namely
masking [29,18], a.k.a. “Multi-Party Computation (MPC) on silicon” [34]. In a
nutshell, any sensitive variable is submitted to a (d + 1)-linear secret-sharing,
where d is the security parameter that the designer may control in order to
achieve the desired security level. The implementation is then modified in a way
such that all the subsequent calculations involving a sensitive variable are now
replaced by some gadgets operating on the shares separately, as in multi-party
computation. As a result, any SCA adversary must have access to the noisy ob-
servation of every share of secret to be able to recover any piece of information
about a sensitive variable. If any noisy observation induces some uncertainty on
the actual value of the corresponding share, it results in an amplified uncertainty
on the actual value of the target sensitive variable — an intuition that dates back
to the seminal works of Chari et al. at Crypto 99 [18]. As a consequence, the
complexity of any SCA attack increases exponentially fast — up to some lim-
its — with the security parameter d, at the price of quadratic (or super-linear)
runtime and memory overheads in the implementation only [34].

1.2 Provable Security of Masking

The latter intuition has been formalized over the past few years by masking
security proofs. Generally speaking, a masking security proof takes as inputs
an abstract representation of the implementation, the number of shares d + 1
(where d act as he security parameter) and a measure of the noisiness of the
leakage, usually characterized from the device embedding the implementation.
The masking security proof then returns an upper bound on a metric depicting
the security level of the implementation.

There exists different strategies to establish a masking security proof. In this
paper, we focus on masking security bounds directly stated in the most realistic
threat model. This approach has been first considered by Chari et al. [18], before
being formalized by Prouff and Rivain [46]. Concretely, a noisy observation of
an intermediate calculation may be turned into a conditional Probability Mass
Function (p.m.f.) over all the hypothetical values that the operands may take:
the closer the p.m.f. to the uniform distribution, the noisier the leakage.

The idea of security proofs in the noisy leakage model is to assume that any
noisy leakage accessed by the adversary is δ-close to the uniform distribution,
for some real-valued parameter δ stated in a metric that can be measured by the
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practitioner.1 Then, the goal is to prove that the p.m.f. of the secret key, given an
access to the full leakage, is in turn ϵ-close to the p.m.f. that an adversary without
access to side-channel would get, for some real-valued parameter ϵ depending on
δ, the security parameter d, and some other specifications of the implementation.

This direct approach has gained the reputation of being “not convenient” [8,10]
to work with, up to the point that most masking security proofs are now estab-
lished in much simpler yet unrealistic threat models [34,6,8,9,17], relying on a
non-tight reduction from the noisy leakage model to such simpler threat mod-
els [25]. As a result, only three previous works tackled masking security proofs
through this direct way so far. These works, from Prouff and Rivain at Euro-
crypt 2013 [46], Dziembowski et al. at Eurocrypt 2015 [27], and Prest et
al. at Crypto 2019 [45], considered implementations of block ciphers protected
with an Ishai-Sahai-Wagner (I.S.W.) masking scheme [34,48], assuming leak-free
refreshings. The latter assumption is a drawback, as it is unrealistic — other-
wise studying leaky computations would not be relevant — and some real-world
refreshings could critically decrease the security level [21]. Interestingly, these
three proofs are quite complementary to each other, in the sense that the weak-
nesses of one proof are fixed in at least one of the others, and conversely. We give
hereafter a brief overview of these pros and cons — also synthesized in Table 1:

1. Strong noise requirements [46]. Prouff and Rivain’s bound required the
baseline noise parameter δ to scale polynomially with the field size, which is
prohibitive for concrete block ciphers, e.g., the Advanced Encryption Stan-
dard (AES) whose field size is 256. On the opposite, Dziembowski et al.’s
bound have a nearly tight noise requirement that does not depend on the
field size.

2. Lack of incentive for noisier leakage [27]. In Dziembowski et al.’s se-
curity bound assuming that the noise requirement is verified, the bound no
longer depends on the actual baseline noise level δ. This suggests that to
reach the desired security level ϵ, the designer would have no incentive in
choosing a noisier device on which implementing the block cipher, which
sounds unrealistic. In the extreme case where the device is so noisy enough
that δ ≤ ϵ, masking would not be necessary, whereas Dziembowski et al.’s
bound would still require a prohibitive number of shares to be meaningful.
On the opposite, the bounds of Prouff and Rivain and Prest et al. still carry
some incentive towards noisier baseline leakage.

3. Too conservative and hard to estimate metric [45]. Contrary to the
other proofs, the baseline noise in Prest et al.’s security bound is assumed to
be measured in a worst-case metric, the so-called Relative Error (RE). This
contrasts with all the other works considering average-case metrics, such as
the MI [46] or the SD [27], and does not fit either with SCA security metrics
such as Guessing Entropy (GE) or Success Rate (SR) [51] that are averaged
metrics as well. Using worst-case metrics has two main drawbacks. First,
a baseline noise characterization made with a worst-case metric necessarily

1 e.g., the Statistical Distance (SD), the Euclidean Norm (EN), or the Mutual Infor-
mation (MI). Notice that in our context, “noisier” means a lower δ.
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results in more conservative requirements than with average-case metrics.
Second, worst-case metrics are by definition harder to estimate on concrete
devices by evaluators, and hereupon the RE may not be efficiently tractable

— especially for high-dimensional leakage — nor even be formally defined in
some cases. As an example, Prest et al. even needed to use tedious tail-cut
arguments on the exemplary leakage distributions of their case study [45,
Remark 2].

4. Leakage from the gates vs. from the wires. Beyond using different
metrics from one past work to another, the formal modelization of an imple-
mentation may also differ. On the one hand, the works of Prouff and Rivain
originally took inspiration from the “only computations leak” paradigm, in
which a cryptographic computation is split into a sequence of elementary
operations that each leaks information on the accessed part of the device
state [47]. On the other hand, Duc et al. and all their subsequent works have
assumed the leakage observed by the adversary to be occured by the wires
of the device storing some intermediate values of the computation. While
the latter one can be encompassed by the former one [11, Lemma 1], the
past literature suggested that these different views might result in different
security levels [25, Sec. 5.5]. Whether such differences were actually proof
artifacts was not widely discussed in the literature, so it remains an open
problem.

5. Random message attacks [46]. Last but not least, Prouff and Rivain’s
security bounds are given for random message attacks, whereas Dziembowski
et al. and Prest et al. state security bounds for chosen plaintext attacks.
Even if most of state-of-the-art SCA adversaries consider random plaintext
attacks, this contrasts with the common practice in cryptography, where the
adversary is assumed to (adaptively) choose the message or the ciphertext.

Table 1: Comparison between all proofs in the Noisy Leakage model: Prouff & Ri-
vain [46], Dziembowski et al. [27], Prest et al. [45].

Feature [46] [27] [45] Our work

Strong noise requirement Yes No No No
Leak-free refreshing Yes Yes Yes (Sec. 6) Yes
Incentive to small δ 3 7 3 3

Average-case metric 3 3 7 3

Adaptive attacks 7 3 3 3

1.3 Recent Improvements on Security Bounds for Encodings Only

In light of the previous drawbacks listed so far, Duc et al. conjectured at Euro-
crypt 2015 that the weaknesses (1-3) were actually proof artifacts [26]. More
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precisely, it would be possible to prove a masking security bound in terms of MI
with tight noise requirement, and tight amplification rates, while covering the
leakage of the full block cipher. In a recent line of works, Ito et al. [35], Masure
et al. [42], and Béguinot et al. [15] have been able to prove a reduced version
of Duc et al.’s conjectured security bound, for the leakage of one encoding only.
While these works represent a first milestone, they were limited in that they did
not cover the leakage coming from the computations, and Duc et al.’s conjecture
remained to be proven for the leakage of a full block cipher.

1.4 Our Contribution

In this paper, we prove new masking security bounds stated in the noisy leakage
model, in the same setting as the one of the previous works discussed so far —
namely Rivain-Prouff’s masking scheme, with leak-free refreshings [46]. To this
end, we revisit Prouff and Rivain’s approach, by showing that some drawbacks
of their results can be circumvented.

– A tight bound with respect to the noise parameter δ. We leverage the
recent results of Ito et al. [35], Masure et al. [42] and Béguinot et al. [15], to
bound the amount of informative leakage of computations coming from a full
block cipher, masked with an I.S.W.-like masking scheme. In our result, we
consider the two cases where the leakage comes from the wires of comes from
the gates, which results into different security bounds with a non-trivial gap.
Nevertheless, our noise requirement is tight in both cases [33], while carrying
a much higher incentive to noisier leakage than in the previous works.

– A security bound with low dependency on the field size. With the
previous contribution alone, our final security bound would still carry a con-
stant factor scaling quadratically with the size of the field over which the
block cipher operates, regardless of the number of shares. While this is much
better than Prouff & Rivain’s bound and competitive with Dziembowski et
al.’s bound, this still sounds unnatural, as it does not perfectly fit Duc et
al.’s conjecture [26], and might be fatal for block ciphers operating over large
fields. To tackle this problem, we show how a careful scrutiny of the imple-
mentation, under mild assumptions on the Sbox, can allow us to make this
constant factor quasi-linear with the field size.

– Security Bound with Average Metric. In our masking security proof,
any metric, be it the baseline noise δ or the final security bound ϵ, is expressed
in MI. This contrasts with Prouff & Rivain’s work where the parameters δ
and ϵ are not expressed in the same metric. Since MI is an averaged metric,
it is quite easy to estimate by evaluators when characterizing the behavior
of the target device in worst-case evaluations [4].

– Attacks with Chosen Messages. Eventually, we argue how our security
bounds stated for random plaintext attacks can be extended to the case
of chosen plaintext attacks, using a similar argument as the one stated by
Dziembowski et al. in their follow-up work at Tcc 2016 [28].
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Overall, our work is the first to state a masking proof with meaningful security
bounds, i.e., for which the desired security level can be reached with a reasonable
amount of masking shares, and requiring a reasonable amount of noise from the
device. Therefore, our masking security bound can be practically used by an
SCA evaluator to upper bound current state-of-the-art SCA adversaries. This
suggests that masking proofs directly stated in the noisy leakage model can be
seen as complementary to the more generic proofs in other threat models. The
only shortcoming of our proof, in line of the previous works, concerns the use of
leak-free refreshings. We hope future works may allow to relax this assumption,
and thereby provide a comparable setting with masking security proofs in the
indirect approach taking advantage of reductions between models.

Erratum. A previous version of this paper, published on eprint and included
in the proceedings of Crypto 2023, contained two flaws: one on Theorem 5
and another one in a section formerly situated between section 3 and section 4.
We would like to testify our gratefulness to Julien Béguinot (Télécom Paris) for
spotting the flaw in the proof of section 3 [16] and Jürgen Pulkus (g+d) for
kindly pointing out the second flaw.

Updates in the Extended Version. We have addressed the first flaw by
correcting the proof of Theorem 5 and modifying the statement of the theorem
accordingly, it lead us to revisit the difference between leakages from the gates
and leakages from the wires, which results now in a discussion in subsection 4.1.
Finally, we have removed the flawed section as it did not look fixable. This
section was independent, so it did not affect the remaining of the paper.

2 Preliminaries

In this paper, we denote sets by calligraphic letters, e.g., X . In particular, the
letter Y denotes a finite field (Y,⊕,×) of characteristic two. Upper-case letters
are used to denote random variables, while lower-case letters denote observations
of random variables. In this paper, we adopt the following convention: A,B
stand for independent random variables uniformly distributed over Y, while G,H
denote random variables that are not necessarily uniform over Y, nor assumed
to be independent. The letter L will be used to denote a randomized function
Y → L, were the set L is assumed without loss of generality to be discrete.
When the context does not carry any ambiguity, we will often denote the random
variable L(Y) by omitting the reference to Y. Finally, bold letters denote vectors
of random variables.

Mutual Information. Let Y ∈ Y be a discrete random variable. The entropy
of Y, denoted by H(Y), defined by: H(Y) = −

∑
s∈Y Pr(Y = s) log2 Pr(Y = s) .

Moreover, we define MI between two discrete random variables Y and L as:

MI(Y;L) = H(Y)− E
l
[H(Y | L = l)] .
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2.1 Model of Noisy Leaking Computation

We describe hereafter the frame in which Prouff and Rivain’s result is established,
that is mostly adapted from their seminal work [46].2

Block Cipher. A block cipher over a finite field Y is defined by a pair of
inputs K,P seen as vectors of Y, and by a sequence of T elementary calculations
(Ci)1≤i≤T defined either over Y or Y ×Y . More precisely, since Y is assumed to
be a finite field, we consider the elementary calculations to be either an addition
⊕ or a field multiplication ×, whether the operands are constant or random
variables.3

Leakage and SCA Adversary. When processed on some input Y (resp. a pair
of inputs A,B), an elementary calculation Ci reveals Li(Y) (resp. L(A,B)) to
the adversary, for some noisy leakage function Li, that depends both on Y (resp.
A,B), and on some internal randomness assumed to be drawn independently
each time Li leaks. Whenever the context does not carry any ambiguity, we may
simply denote the leakage Li(Y) by Li. In this paper, we consider an adversary
having access to the full leakage induced by each elementary calculation and
trying to recover a chunk of secret key.

Definition 1 (SCA key recovery adversary). An SCA adversary for a block
cipher defined over Y is an algorithm that, upon a sequence of Na plaintexts
P = (P1, . . . ,PNa

), takes as an input a sequence {(Li)1≤i≤T }1≤j≤Na
of leakages

induced by each elementary calculation of a block cipher, and that returns a
guess K̂ of one chunk K ∈ Y of the secret key K. We say that the adversary is
random-plaintext if P is chosen randomly and uniformly over YNa , whereas we
say that the adversary is chosen-plaintext if the adversary can arbitrarily choose
the sequence P — possibly adaptively.

Notice that K̂ depends on the plaintexts used by the adversary (and on the
internal randomness of the leakage functions). Accordingly, the accuracy of the
key guessing is expected to increase with the number Na of queries. We formalize
this in the definition hereafter.

Definition 2 (Success Rate). The success rate of an SCA key recovery ad-
versary is the quantity

SR(Na) = Pr
(
K̂ = K

)
. (1)

Similarly, for any probability threshold 1
|Y| ≤ β ≤ 1, we define the efficiency

N⋆
a (β) of an SCA key recovery adversary as the minimal amount of queries

necessary to get a success rate higher than β.
2 The interested reader may also refer to Rivain’s habilitation thesis for a thorough

discussion about the leakage model [47].
3 As argued by Prouff & Rivain, any mapping over a finite field can be decomposed

as a sequence of additions and multiplications, using Lagrange interpolation.
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MI-Noisy Leakage. The success of an SCA key recovery adversary depends
on how informative the leakage is about the underlying secret data processed.
To measure this, we assume that the evaluator may determine how noisy any
leakage function is. To this end, we formally define hereafter the concept of
MI-noisy leakage.

Definition 3 (Noisy leakage of one input). Let L : Y → L be a leakage
function. L is said to be δ-MI-noisy, for some δ ≥ 0, if for a uniformly distributed
random variable A ∈ Y,

MI(A;L(A)) ≤ δ .

Definition 3 allows for example to measure the amount of informative leakage
that occurs when processing an intermediate computation A→ C(A). Likewise,
we may define hereafter δ-noisy leakages with respect to two random variables,
e.g., when processing a binary gate A,B→ C(A,B).

Definition 4 (Noisy leakage of two inputs). Let L : Y2 → L be a leakage
function with two inputs. L is said to be δ-MI-noisy, for some δ ≥ 0, if for any
input random variables A,B of C, independent and uniformly distributed over Y,

MI(A,B;L(A,B)) ≤ δ .

Leakage from the Gates vs. Leakages from the Wires. Definition 4 is the
generic way to define noisy leakage occurring from the gates, as formalized by
Prouff and Rivain. In a sense, it consists in viewing a binary gate with inputs over
Y as a unary gate with inputs over Y2. However, Duc et al. have introduced in
their groundbreaking work another paradigm, namely that the leakage is assume
to occur from the wires [25].

Definition 5 (Noisy leakage from the wires). Let C : Y2 → Y be an el-
ementary calculation associated with the leakage function L. L is said to be a
leakage from the wires of C(A,B) if there exist three functions L′,L′′ and L′′′,
such that

L(A,B) =
(
L′(A),L′′(B),L′′′(C(A,B))

)
,

and such that conditionally to A and B, L′,L′′ and L′′′ are independent. Moreover,
L is said to be (δ′, δ′′, δ′′′)-noisy if L′,L′′ and L′′′ are respectively δ′, δ′′ and δ′′′-
noisy.

It is straightforward to see from Definition 5 that the “leaky wires” approach
is encompassed as a particular case into the “leaky gates” point of view, while
the inverse is not true. We will see later in this paper that those points of view
lead to different security bounds.

On the Choice of the Metric. We chose the MI as a metric of reference in our
proof, because it is at the core of Prouff & Rivain’s security bound that we revisit
in this paper, and also because we can therefore rely on the recent improvement
of Ito et al. [35], Masure et al. [42] and Béguinot et al. [15]. Moreover, the MI
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is known to be tightly linked to the complexity of Differential Power Analysis
(DPA) attacks [39,40,41,24,19], and “generally carries more intuition (see, e.g.,
[5] in the context of linear cryptanalysis)” [26]. We discuss this choice of metric
in section 4.

2.2 Rivain-Prouff’s Masking Scheme

We recall hereafter the definition of masking, mostly taken from Prouff and
Rivain’s paper [46, Def. 2].

Definition 6. Let d be a positive integer. The d-encoding of Y ∈ Y is a (d+1)-
tuple (Yi)0≤i≤d satisfying

⊕d
i=0 Yi = Y and such that for any strict subset I ofJ0, dK, (Yi)I is uniformly distributed over Y |I|.

The parameter d in Definition 6 refers here to the security parameter of the
counter-measure. In their paper, Prouff and Rivain explain how to turn any
block cipher into a d-order secure implementation — i.e. such that any interme-
diate computation depending on a secret has a (d+ 1)-encoding [46]. First, the
plaintext and the secret key are split into d + 1 shares. Then, each elementary
calculation of the block cipher is transformed as follows. If the elementary cal-
culation is linear with respect to its inputs, then it is replaced by the sequence
of elementary calculations listed in Algorithm 1. If the elementary calculation is

Algorithm 1 Linear gadget in Prouff & Rivain’s proof.
Require: A: (d+ 1)-sharing of A, C: elementary calculation linear with its input.
Ensure: B : (d+ 1)-sharing of C(A).
1: for i = 0, . . . , d do
2: Bi ← C(Ai) ▷ Type 1 or 2
3: end for
4: B← Refresh(B) ▷ Assumed to be leak-free
5: A← Refresh(A) ▷ Only if A used subsequently.

an Sbox, then it can first be decomposed as a sequence of linear calculations and
field multiplications. Then the linear calculations can be processed as in Algo-
rithm 1, and the field multiplications can be replaced by the procedure listed in
Algorithm 2. It is a variant of the actual I.S.W. scheme revisited by Rivain and
Prouff at Ches 2010, up to a permutation between independent operations, so
it does not change the amount of informative leakage. Overall, Rivain-Prouff’s
masked implementation can be decomposed as subsequences of any of the fol-
lowing types:

1. (zi ← g(xi))0≤i≤d, with g being a linear function (of the block-cipher);
2. (zi ← g(xi))0≤i≤d, with g being an affine function (within an Sbox evalua-

tion);
3. (vi,j ← ai × bj)0≤i,j≤d (cross-products computation step in multiplication);
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Algorithm 2 Multiplication gadget in Prouff & Rivain’s proof.
Require: A,B: (d+ 1)-sharing of A,B.
Ensure: C : (d+ 1)-sharing of A× B.
1: for i = 0, . . . , d do
2: for j = 0, . . . , d do
3: Vi,j ← Ai × Bj ▷ Cross products (type 3)
4: end for
5: end for
6: V← Refresh(V) ▷ Assumed to be leak-free
7: for i = 0, . . . , d do
8: Ci = 0
9: for j = 0, . . . , d do

10: Ci ← Ci ⊕Vi,j ▷ Compression (type 4)
11: end for
12: end for
13: C← Refresh(C) ▷ Assumed to be leak-free
14: A,B← Refresh(A) ,Refresh(B) ▷ Only if A,B used subsequently.

4. (ti,j ← ti,j−1 ⊕ vi,j)0≤i,j≤d (compression step multiplication).

For concreteness, we list two examples of schemes of the AES Sbox (at least
its non-linear part) with this method in Algorithms 3 and 4. Algorithm 3 is the
one initially proposed by Rivain and Prouff at Ches 2010. Recently, Cardoso
et al. proposed at Cardis 2022 an alternative exponentiation scheme depicted
in Algorithm 4 which, combined with other implementation tricks, improved
upon Rivain-Prouff’s exponentiation [49]. Both exponentiations contain the same
number of I.S.W. multiplications.4

Algorithm 3 R&P’s Exp254 [48].
Require: X: (d + 1)-sharing of X
Ensure: C : (d + 1)-sharing of X254

1: Z← SecLin(s 7→ s2, X) ▷ Z = X2

2: X← Refresh(X)
3: Y← SecMult(Z, X) ▷ Y = X3

4: V← SecLin(s 7→ s4, Y) ▷ V = X12

5: V← Refresh(V)
6: Y← SecMult(Y, V) ▷ Y = X15

7: Y← SecLin(s 7→ s16, Y) ▷ Y = X240

8: Y← SecMult(Y, W) ▷ Y = X252

9: C← SecMult(Y, Z) ▷ C = X254

Algorithm 4 Cardoso’s Exp254 [49].
Require: X: (d + 1)-sharing of X
Ensure: C : (d + 1)-sharing of X254

1: Z← SecLin(s 7→ s2, X) ▷ Z = X2

2: Z← Refresh(Z)
3: Y← SecMult(Z, X) ▷ Y = X3

4: Z← SecLin(s 7→ s2, Y) ▷ Y = X6

5: Y← SecMult(Z, X) ▷ Y = X7

6: Z← SecLin(s 7→ s2, Y) ▷ Z = X14

7: Y← SecMult(Z, X) ▷ Y = X15

8: Y← SecLin(s 7→ s16, Y) ▷ Y = X240

9: C← SecMult(Y, Z) ▷ C = X254

3 Revisiting Prouff and Rivain’s Bound

We are now ready to revisit Prouff and Rivain’s formal security proof in this
section. To this end we briefly recall the outline of their proof — that we follow
4 There are other generic methods to securely compute an Sbox with masking [32],

which are out of the scope of this paper.
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as well — based on three steps. First, they leverage the assumption that refresh
gadgets are leak-free in order to reduce the MI of a sequence of elementary
computations to the sum of the MIs between the secret and each subsequence
of leakage. Second, some of these elementary computations — e.g., the non-
linear operations of the Sbox — may process non-uniform secrets. That is why
the authors make an intermediate reduction to the case where every elementary
computation processes uniform secrets — and mutually independent as well, in
the case of binary gates. Finally, the authors apply some noise amplification
lemma from the literature. Our revisited proof applies the same outline. We now
dig into the details of these steps.

3.1 Step 1: Decomposition into Subsequences

We first recall that the MI of a sequence of mutually independent leakages can
be bounded by the sum of MIs of each leakage.

Theorem 1 (Subsequence decomposition [46]). Let Y be a random vari-
able over a finite set Y, not necessarily uniform. Let L = (L1, . . . ,Lt) be t random
variables such that the random variables (Li | Y = y)i are mutually independent
for every y ∈ Y. Then, we have

MI(Y;L) ≤
t∑

i=1

MI(Y;Li) . (2)

Although we do not claim any improvement in this first step, we reproduce
the proof in section B for completeness.

3.2 Step 2(a): Reduction to Uniform Secrets for Unary Gates

We now revisit the second step of Prouff and Rivain’s work, namely the reduction
from non-uniform secrets to uniform secrets. To this end, we will split our results
into two cases. The first case processed in this subsection deals with non-uniform
inputs of unary calculations, such as Line 4 in Algorithm 3. The second case
deals with non-uniform and non-independent inputs of binary calculations, such
as Line 6 in Algorithm 3, and will be deferred in subsection 3.3.

The results presented in this section aim at bounding the MI between C(Y),
where C : Y → Y and its corresponding leakage. We first state the following
theorem that relies on a technical lemma from Shulman and Feder [50].

Theorem 2 (Generic Bound for Non-Uniform Secrets [50, p. 1360]).
Let L : Y → L be a random function denoting a leakage, and let Y be uniformly
distributed over Y. Then, there exists a constant α such that for all random
variables G arbitrarily distributed over Y, the following inequality holds true:

MI(G;L(G)) ≤ α · |Y| ·MI(Y;L(Y)) . (3)

Moreover, the smallest value α such that Equation 3 holds true belongs to the
interval α ∈

[
log2(e)

e , 1− e−1
]
≈ [0.53, 0.63].
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Theorem 2 introduces an overhead scaling with |Y|, which could decrease
the final security level by one or several orders of magnitude (e.g., for the AES,
|Y| = 28). Note that Equation 3 is nearly tight in the general case, in the
sense that the range of α is narrow. Shulman and Feder exhibit an example
of worst case leakage function, such that Equation 3 becomes an equality, for
α ≈ 0.53 [50].

The Power Map Trick. However, such worst-case C functions are not likely
to be used in cryptographic primitives, since, e.g., the input and output of Sbox
are expected to be uniformly distributed, for cryptographic reasons. That is why
we refine hereafter the generic statement of Theorem 2, and we present some
examples where this refinement could remove the dependency on the field size.
To this end, we revisit Theorem 2 by relying on an intermediate result of Shulman
and Feder’s proof.

Lemma 1 ([50, Lemma 6]). Given a leakage function L and two random vari-
ables Y,Y′ distributed (non-necessarily uniformly) over the finite set Y, and such
that the support of Pr

(
Y′
)

contains the support of Pr(Y). Then, the following
inequality holds:

MI(Y;L(Y))

MI
(
Y′;L(Y′)

) ≥ min
y∈Y

Pr(Y = y)

Pr
(
Y′ = y

) .

As a result, we straightforwardly get the following corollary.

Corollary 1. In the same setting as in Lemma 1, if now the support of Pr(Y)
contains the support of Pr

(
Y′
)
, the following inequality holds true:

MI
(
Y′;L(Y′)

)
MI(Y;L(Y))

≤ max
y∈Y

Pr
(
Y′ = y

)
Pr(Y = y)

. (4)

Proof. Straightforward, using Lemma 1 and the identity maxx∈X x = 1
min

x∈X 1
x

,
for some finite ordered set X .

We will leverage Corollary 1 in the case where the Sbox is a monomial, i.e.
is of the shape y 7→ yk. Admittedly, this makes our proof slightly more specific
than Prouff and Rivain’s one, as the latter one can handle any Sbox expressed
as a polynomial. Nevertheless, this assumption remains mild, as it covers many
Sboxes used in practical ciphers, including the AES, and will allow us to remove
a constant factor equal to the field size.

We have seen in Algorithms 3 and 4 that the monomial y 7→ yk can be com-
puted in the Rivain-Prouff masking scheme by computing intermediate power
maps y 7→ yk

′ for some k′ ≤ k, through some square-and-multiply schemes [48].
The bound on the leakage induced by such an intermediate computation is han-
dled by the following corollary.
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Corollary 2. Let Y be a uniform random variable over a finite field Y of size
M ≥ 2. For any k ∈ J1,M − 1K, define the function C : y ∈ Y 7→ yk. Let
L : Y → L be a δ-MI-noisy leakage. Then:

MI
(

Y;L(Yk)
)
≤ gcd{k,M − 1} · δ . (5)

Proof. Using the Data Processing Inequality (DPI) (stated in Lemma 2 in Ap-
pendix A), we are reduced to upper bound MI

(
Yk;L(Yk)

)
. To this end, we

shall compute the p.m.f. of Yk. The result will then follow from Lemma 1 and
Lemma 2. First, notice that by definition of a field, yk = 0 if and only if (i.f.f.)
y = 0, so Pr

(
Yk = 0

)
= 1

M . Second, notice that since (Y,⊕,×) is a finite field,
the group (Y∗,×) is cyclic, hence isomorphic with ZM−1. As a result, for any
s 6= 0 for which there exists y ∈ Y verifying yk = s, we have

Pr
(

Yk = s
)
=

gcd(k,M − 1)

M
,

and Pr
(

Yk = s
)
= 0 otherwise. To summarize, for all s ∈ Y , we have

Pr
(

Yk = s
)

Pr(Y = s)
≤ M

M
· gcd(k,M − 1) . (6)

Comparing the universal bound of Equation 3 to the specific bound in Equa-
tion 5, we can see that we replaced a factor 0.63·M by a factor gcd(k,M − 1). As
an example Table 2 reports the different constant factors induced by Equation 5
for the exponentiation scheme of Algorithms 3 and 4, and how they compare to
the generic bound of Equation 3. Our power-map-specific bound is between one
and two orders of magnitude lower than the generic bound in Equation 3.

Table 2: Factor overheads from Equation 5, and ratio between the generic bound of
Equation 3 and the refined bound of Equation 5.

Scheme k gcd(k, 255) (1−e−1)·256
gcd(k,255)

Rivain-Prouff [48] 2, 3, 12, 1, 3, 3, 161.3, 53.8, 53.8,
15, 240, 252 15, 15, 3 10.8, 10.8, 53.8

Cardoso et al. [49] 2, 3, 6, 7, 1, 3, 3, 1, 161.3, 53.8, 53.8, 161.3,
14, 15, 240, 252 1, 15, 15, 3 161.3,10.8, 10.8, 53.8

Admittedly, the numbers reported in Table 2 depend on the exponentiation
scheme, and thereby depend on the underlying power-map we aim at computing
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— which may differ for other block ciphers with power-map-based Sbox beyond
the AES. We may therefore wonder how gcd(k,M − 1) generally scales when
M grows. It is not hard to find some integer k such that gcd(k,M − 1) scales
linearly with M ,5 so our improved bound could marginally improve the one
from Equation 3 in some worst-case exponentiation schemes. Still, the following
theorem suggests that this is not likely to happen.

Theorem 3 ([13, Thm. 3.2]). Let M > 2 be an integer. Then, for all ϵ > 0,
we have E

k
[gcd(k,M)] = O(M ϵ) , where the expectation is taken with respect to

k uniformly distributed in J1,MK.
The practical interpretation of Theorem 3 is that if a given exponentiation

scheme gives high constant factors, then it should not be hard to modify it, in
order to make the constant factor in the right hand-side of Equation 5 arbitrarily
low. As a consequence, we may treat the right hand-side of Equation 5 as asymp-
totically independent of M with high probability. That is why in the remaining
of this paper, we will abuse notation by denoting any gcd factor as scaling as
O(M ϵ) — which is confirmed on our implementations of interest by Table 2.

3.3 Step 2(b): Reduction to Uniform Secrets for Binary Gates

We have shown in subsection 3.2 how to significantly decrease the loss in the
reduction from non-uniform secrets to uniform secrets for leakage coming from
unary gates dealing with power maps. In order to have a complete toolbox for
reductions to uniform secrets, we also need to deal with leakages coming from
gadgets with two input operands, e.g., I.S.W. multiplications. Hereupon, The-
orem 2 straightforwardly applies, although spanning a loss of 0.63 |Y|2 in the
reduction.

That is why we may naturally think of extending the power map trick intro-
duced before. But contrary to Theorem 2, Corollary 2 does not extend as straight-
forwardly for binary gates. Indeed, calculations with more than one operand add
another difficulty: not only the operands may not be uniformly distributed, but
they might also be non-independent. This results in the following corollary.

Corollary 3. Let Y be a random variable uniformly distributed over the finite
field Y. For p, q ∈ J2,M − 2K, let Z = (Yp,Yq). Let L : Y2 → L be a δ-MI-noisy
leakage. Then,

MI(Y;L(Z)) ≤ min {gcd(p,M − 1) , gcd(q,M − 1)} ·M · δ . (7)

Proof. We apply Lemma 1 for the random vector Z′ = (Y,Y′), where Y′ is an
independent copy of Y. For any x, y ∈ Y , the total probability formula implies
that

Pr(Yp = x,Yq = y)

Pr
(
Y = x,Y′ = y

) ≤ ∑y′ Pr(Yp = x,Yq = y′)

Pr
(
Y = x,Y′ = y

) =
Pr(Yp = x)

Pr(Y = x) Pr
(
Y′ = y

) .

5 As an example, for the AES field M − 1 = 255, which is divided by 3 so there exists
some k, e.g., k = 85, such that gcd(k,M − 1) = M−1

3
.
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Using Equation 6, we get that
Pr(Yp = x,Yq = y)

Pr(Y = x) Pr
(
Y′ = y

) ≤ gcd(p,M − 1) ·M . (8)

By symmetry, we can obtain the same bound by permuting the roles of p and q,
which gives Equation 7.

Remark 1. Note that the inequality in Equation 8 is tight, e.g., if p divides q, or
inversely. Likewise, we argued that Equation 3 is generally tight — unless con-
sidering further assumptions on the prior distribution. Nevertheless, both facts
do not necessarily imply that Equation 7 is tight. Whether the latter inequality
could be refined for binary gates with non-independent operands remains an
open-question that we will briefly discuss in subsection 3.4.

3.4 Step 3: The Amplification Theorems
We now revisit the third step of Prouff & Rivain’s approach. To this end, like
in subsection 3.2 and subsection 3.3, we make a discrepancy between the unary
gates and the binary gates.

For Unary Gates. The following amplification theorem is at the core of our
direct proof in the noisy leakage model, and holds the name of Mrs. Gerber’s
Lemma (MGL). It has initially been stated by Wyner and Zyv [54] for binary
random variables, and has been recently extended by Jog and Anantharam to
random variables in Abelian groups whose size is a power of two [36]. This result
has recently been pointed out to the SCA community by Béguinot et al. at
Cosade 2023 [15].
Theorem 4 (Mrs. Gerber’s Lemma (MGL) [15, Cor. 1]). Let |Y| = 2n for
some bit-size n and d be a positive integer. Let Y0, . . . ,Yd be a (d+ 1)-encoding
of the uniform random variable Y over Y, and L = (L0, . . . ,Ld) be such that,
conditionally to Yi, the variable Li is independent of the others. Assume that for
all i ∈ J0, dK, MI(Yi;Li) ≤ δi for some parameter 0 ≤ δi ≤ 1. Then

MI(Y;L) ≤ fMI(δ0, . . . , δd) =
δ→0

η

d∏
i=0

δi
η
+O

(
d∏

i=0

δ2i

)
, (9)

where fMI(·) is Mrs. Gerber’s function, and η = (2 log 2)−1 ≈ 0.72.
We refer to the works of Béguinot et al. for more details about Mrs. Gerber’s

function [15]. In our context, we only need the properties summarized hereafter,
and proven in section A.
Proposition 1 (Properties of the MGL function). The Mrs. Gerber’s
Lemma (MGL) function fMI(·) is non-decreasing with respect to each of its vari-
ables. Furthermore, for all δ0, . . . , δd ∈ [0, 1], we have

fMI(δ0, . . . , δd) ≤
1

log(2)

d∏
i=0

2δi . (10)
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The upper bound of Equation 10 is looser than the approximation of Equa-
tion 9, yet it is non-asymptotic.

For Binary Gates. We now extend Béguinot et al.’s Theorem 4 to the case
of binary gates, as stated hereafter by the following theorem that we prove in
Appendix B.1, following a similar outline as Prest et al. [45, Thm. 6].

Theorem 5 (Binary Gates, Leaky Gates). Let A,B be two independent and
uniform random variables, over a finite field Y. Let (Ai)0≤i≤d, (Bj)0≤j≤d be d-
encodings of A and B respectively. Let Li,j : Ai,Bj 7→ Li,j(Ai,Bj) be a family
of randomized and mutually independent leakage functions such that for every
i, j, Li,j is δi,j-noisy (according to Definition 4). Denote the concatenation of
the leakages {Li,j}0≤i,j≤d by L. Then, MI(A,B;L) is upper bounded by

fMI

|Y| · d∑
j=0

δ0,j , . . . , |Y| ·
d∑

j=0

δd,j

+ fMI

(
|Y| ·

d∑
i=0

δi,0, . . . , |Y| ·
d∑

i=0

δi,d

)
.

(11)

Theorem 6 (Binary Product, Leaky Wires). Let A,B be two independent
and uniform random variables, over a finite field Y. Let (Ai)0≤i≤d, (Bj)0≤j≤d
be d-encodings of A and B respectively. Let Li,j be a family of randomized and
mutually independent leakage functions verifying Definition 5, i.e., such that

Li,j(Ai,Bj) =
(
L′i,j(Ai),L′′i,j(Bj),L′′′i,j(Ai · Bj)

)
,

where L′i,j ,L
′′
i,j ,L

′′′
i,j are respectively δ′i,j-noisy, δ′′i,j-noisy, and δ′′′i,j-noisy. Denote

the concatenation of the leakages {Li,j}0≤i,j≤d by L. Then, MI(A,B;L) is upper
bounded by

fMI

2 ·
d∑

j=0

δ0,j , . . . , 2 ·
d∑

j=0

δd,j

+ fMI

(
2 ·

d∑
i=0

δi,0, . . . , 2 ·
d∑

i=0

δi,d

)
. (12)

3.5 Security Bound for each Type of Subsequence

In this section, we leverage the noise amplification result to bound the amount
of leakage in each subsequence.

Type 1 subsequences occur for linear elementary calculations over uniform
secrets, and are already covered by Theorem 4, which is a straightforward appli-
cation of the MGL.

Corollary 4 (Type 1 subsequences). Let Y be a uniform random variable
over a finite field Y and (Yi)0≤i≤d be a d-encoding of Y. Let δ ≥ 0 and L0, . . . ,Ld

be δ-MI-noisy leakage functions over Y. Denote (L0(Y0), . . . ,Ld(Yd)) by L. Then
we have:

MI(Y;L) ≤ 1

log(2)
· (2 · δ)d+1

. (13)
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Likewise, type 2 subsequences cover linear elementary calculations over non-
uniform secrets, e.g., occurring inside Sboxes. Such subsequences are covered by
the following corollary.

Corollary 5 (Type 2 subsequences). Let Y be a uniform random variable
over a finite field Y. Let k, d be positive integers and (Gi)0≤i≤d be a (d + 1)-
sharing of Yk. Let 0 ≤ δ ≤ 1 and let L0(G0), . . . ,Ld(Gd) be δ-MI-noisy leakages.
Denote the concatenation of the leakages {Li}0≤i≤d by L. Then, we have:

MI(Y;L) ≤ gcd(k, |Y| − 1) · 1

log(2)
· (2 · δ)d+1

. (14)

Proof. Straightforward, by combining Theorem 4 with Corollary 2.

We now focus on the more involved type of subsequences, namely type 3,
which is a binary gate. It occurs in the cross-products of the I.S.W. multiplication.

Corollary 6 (Type 3 subsequences). Let Y be a uniform random variable
over a finite field Y, let d, p, q be positive integers. Let (Gi)i, (Hj)j be d + 1-
additive sharings of Yp,Yq respectively. Let 0 ≤ δ, and {Gi,Hj 7→ Li,j(Gi,Hj)}i,j
be δ-MI-noisy leakage functions. Let us denote the concatenation of the leakages
{Li,j}0≤i,j≤d by L, and denote φ(p, q,M) = min(gcd(p,M − 1) , gcd(q,M − 1)).
Then we have:

MI(Y;L) ≤ 2 · |Y| · φ(p, q, |Y|) · 1

log(2)
· (2 · |Y| · (d+ 1) · δ)d+1

. (15)

Moreover, if the Li,j are leakage on the wires, then

MI(Y;L) ≤ 2 · |Y| · φ(p, q, |Y|) · 1

log(2)
· (4 · (d+ 1) · δ)d+1

. (16)

Proof. Using Corollary 3,

MI(Y;L(Yp,Yq)) ≤ |Y| · φ(p, q, |Y|) ·MI(A,B;L(A,B)) ,

where A,B are uniform and independent random variables over Y. Now invoking
Theorem 5 to upper bound MI(A,B;L(A,B)) gives

MI(A,B;L(A,B)) ≤ 2 fMI(|Y| · (d+ 1) · δ, . . . , |Y| · (d+ 1) · δ) ,

where f (·) denotes the MGL function. We conclude the proof by using Propo-
sition 1, which gives Equation 15. For Equation 16, the same proof applies by
using Theorem 6 instead of Theorem 5.

It now remains to give some upper bounds for type 4 subsequences. These
subsequences can be observed in the compression phase of I.S.W. multiplications
(after cross-products and refreshings). This is the aim of the following result that
we prove in Appendix B.1.
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Theorem 7. Let Y0, . . . ,Yd be d + 1 independent uniformly random variables
over a finite set Y. Let L1, . . . ,Ld be a family of δi-MI leakage functions, defined
over Y × Y, for some 0 ≤ δi ≤ 1. We have:

MI(Yd;L1(Y0,Y1), . . . ,Ld(Yd−1,Yd)) ≤ δd . (17)

Corollary 7 (Type 4 subsequences). Let Y be a secret, such that for p, q ∈ N
the product of the multiplication Yp × Yq is processed by an I.S.W. gadget. For
0 ≤ i, j ≤ d and for Ti,j ,Vi,j ∈ Y, let L = {Li,j(Ti,j−1,Vi,j)}0≤i,j≤d denote the
corresponding type 4 leakages such that for all i, j, the leakage Li,j(Ti,j−1,Vi,j)
is δi,j-MI-noisy, for δi,j ≤ δ ≤ 1. Then the following inequality holds true:

MI(Y;Li,j(Ti,j−1,Vi,j)0≤i,j≤d) ≤ gcd(p+ q,M − 1) · 1

log(2)
· (2 · δ)d+1

. (18)

Proof. Using Corollary 2, we reduce to the case where Yp ×Yq is uniformly dis-
tributed over Y, inducing a gcd(p+ q,M − 1) factor overhead. Then, by gather-
ing the leakages Li,j sharing the same index i by batches, we may notice that
each batch of index only depends on one share of Y. We may therefore invoke
Theorem 4 as follows:

MI(Y;L) ≤ fMI(δ
′
0, . . . , δ

′
d) , (19)

where δ′i = MI
(

Yi; {Li,j(Ti,j−1,Vi,j)}0≤j≤d
)

. Finally, we can upper bound each
δ′i by δi,d using Theorem 7.

3.6 From Subsequences to a Complete Computation.

We can now combine the three previous steps to state the main result, in a
similar way as Prouff and Rivain [46, Thm. 4] and as Prest et al. [45, Sec. 6.3].

Theorem 8. Consider a Y-block cipher with monomial Sboxes, where a se-
quence of elementary calculations depends on a random variable Y uniformly dis-
tributed. Assume that these elementary calculations are protected by a d-encoding
masking scheme as described in subsection 2.2, resulting in T elementary calcu-
lations giving access to the leakage L = (Li)1≤i≤T , where each leakage function
Li is assumed to be δ-MI-noisy. Then, the following inequality is verified:

MI(Y;L) ≤ t3 ·
1

log(2)
· (2 · |Y| · (d+ 1) · δ)d+1

+ t1,2,4 ·
1

log(2)
· (2 · |Y| · δ)d+1

,

such that

t3 =
∑

(p,q)∈M

φ(p, q, |Y|) , t1,2,4 =
∑

(p,q)∈M

ϕ(p, q, |Y|) +
∑
k∈S

ψ(k, |Y|) , (20)

whereM is the sequence of pairs (p, q) of exponents in the operands of the I.S.W.
multiplication gadgets, S is the sequence of exponents (k) of operands over which
a linear transformation is applied, and
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– φ(p, q,M) = 2 ·M · M
M−1 ·min(gcd(p,M − 1) , gcd(q,M − 1)),

– ϕ(p, q,M) = M
M−1 · gcd(p+ q,M − 1),

– ψ(k,M) = gcd(k,M − 1).

Theorem 9. In the same conditions as Theorem 8, assuming in addition that
the type-3 subsequence occur leakages from their wires, then

MI(Y;L) ≤ t3 ·
1

log(2)
· (4 · (d+ 1) · δ)d+1

+ t1,2,4 ·
1

log(2)
· (2 · δ)d+1

,

Proofs of Theorems 8 and 9. We apply Theorem 1 to decompose the MI into a
sum of MIs for each subsequence. Since by assumption Y is uniformly distributed
over Y, Corollaries 4, 5, 6, 7 directly apply to bound each term in the sum.

Note that in (20), t3 = O
(
|Y|1+ϵ · |M|

)
, and t1,2,4 = O(|Y|ϵ · (|M|+ |S|)).

Corollary 8. For any random-plaintext SCA key recovery adversary targeting
a Y-block cipher protected by the masking scheme described in subsection 2.2, the
efficiency verifies the following bound:

N⋆
a (SR) ≥

f(SR, |Y|)
t3 + t1,2,4

· log(2) · (2 · |Y| · (d+ 1)δ)
−(d+1)

,

where f(SR,M) = log2(M) − (1 − SR) log2(M − 1) − H2(SR), where H2 is the
binary entropy function, and where the constants t3 and t1,2,4 are the ones defined
in Theorem 8. Moreover, if the leakage is assumed to come from the wires, then

N⋆
a (SR) ≥

f(SR, |Y|)
t3 + t1,2,4

· log(2) · (4 · (d+ 1)δ)
−(d+1)

,

Proof. Chérisey et al.’s security bound allows to link the SCA key recovery
efficiency to the MI between Y = K⊕ P and the corresponding leakage:

N⋆
a (β) ≥

f(SR, |Y|)
MI(Y;L) .

Plugging Theorem 8 or Theorem 9 — depending on the assumptions — into the
latter inequality gives the result.

4 Discussion

We have established our main results in section 3. We propose hereafter to discuss
some features of our results, and to compare them to previous works. To this
aim, we first argue in subsection 4.1 why the assumption “leakage from the
wires vs. leakage from the gates” is very sensitive with respect to the resulting
security bounds. Then, we compare in subsection 4.2 our bounds to previous
works. Finally, we discuss in subsection 4.4 how we can extend our results to
security bounds in terms of chosen plaintext attacks.
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4.1 On the Tightness of the Proof
We have seen throughout section 3 that assuming the leakage to come from
the wires leads to tighter security bounds. Hereupon, the large gap between
the two settings is intriguing. Indeed, the polynomial field size factor from Equa-
tion 11 does not seem to come from any physical reason. Unfortunately, we argue
hereafter that this gap is unavoidable. To this end, let us consider the leakage
function L : F2 → F ∪ {⊥} defined by:

L(A,B) =

{
A, if B = 0

⊥, otherwise
. (21)

Equation 21 is an example of leakage function that cannot be encompassed into
the wire-leakage paradigm. One can verify — as we show in Appendix C — that
this leakage model is δ-noisy for δ = O

(
log(|Y|)
|Y|

)
. This means that, should an

upper bound of the shape of Equation 12 hold for any type of leakage from the
gates, the type 3 subsequences leaking according to Equation 21 are expected to
remain leakage-resilient, provided that the field size if big enough, i.e., |Y| � d.
However, there exists an attack with complexity and success rate polynomial
in d and |Y| whenever the leakage function defined by Equation 21 is applied
to a type-3 sequence. More precisely, let us assume an adversary is given the
{L(Ai,Bj)}i,j , for i, j ∈ J0, dK, and where L is the leakage function defined by
Equation 21. Then it suffices that at least one share Bj is not equal to zero to

recover all the shares of A, which occurs with probability 1−
(
1− 1

|Y|

)d
≈ d
|Y| .

The following proposition, proven in Appendix C .
Proposition 2. Let A =

∑d
i=1 Ai and B =

∑d
i=1 Bi, where the random vari-

ables Ai and Bj are uniformly distributed over a finite field F of size M . Suppose
that the adversary observes L = {L(Ai,Bj)}i,j, for i, j ∈ J1, dK, and where L is
defined by Equation 21. Then,

MI(A,B;L) = d · log2(M)

M
+O

(
log2(M)

M2

)
. (22)

Hence, Theorem 5 is tight with respect to the field size, and tighter upper
bounds require further assumptions — such as leakage from the wires.

4.2 Comparison with Related Works
We compare in this section our security bounds with related works. To this end,
we first discuss the noise requirements in the different security bounds in the
literature. We synthesize in Table 3 the different noise requirements of masking
security bounds.
6 As pointed out by Béguinot et al., some results of [46,45] are flawed. Some patches are

proposed in [16]. Moreover, as explained by Prest et al. [45, Appendix E], the Average
Relative Error (ARE) is not formally defined for unbounded leakage models like
Gaussian noise, unless requiring to a tail-cut argument that adds another constant
factor hidden in the Ω(·) notation.
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Table 3: Noise requirements, and illustration on a case study on a Hamming weight
leakage model with additive Gaussian noise.

Work (year) Leak. Model Leak-free refresh Requirement Equiv. Gaussian noise

[46] (2013)6 Gates Yes EN ≤ O
(

1
d·M3

)
[25] (2014) Gates No SD ≤ O

(
1

d·M2

)
[45] (2019) Gates Yes RE ≤ O

(
1
d

)
This work Gates Yes MI ≤ O

(
1

d·M

)
[25] (2014) Wires No SD ≤ O

(
1

d·M

)
σ ≥ Ω

(
dM

√
log(M)

)
[27] (2015) Wires Yes SD ≤ O

(
1
d

)
σ ≥ Ω

(
d
√

log(M)
)

[45] (2019) Wires No ARE ≤ O
(
1
d

)
σ ≥ Ω(d log(M))

This work Wires Yes MI ≤ O
(
1
d

)
σ ≥ Ω

(√
d log(M)

)

Leakage from the Wires. At first glance, when considering a leakage from
the wires, our security bound gets a similar noise requirement as the proofs of
Dziembowski et al. [27] and Prest et al. [45], although stated in different metrics.
To clarify this comparison, we extend Prest et al.’s case study on the exemplary
leakage distribution in which each intermediate calculation is assumed to leak
its Hamming weight with an additive Gaussian noise of standard deviation σ [45,
Table 1]. We complete Table 3 with our new result, by using the fact that for
such a leakage model, MI = Θ

(
log(M)

σ2

)
[7]. It can be noticed that on this par-

ticular leakage distribution, our requirement on the minimal noise level is now
the weakest of all security proofs based on the I.S.W. masking scheme, with the
only drawback of requiring leak-free refreshings.

Notice that the dependency of the noise requirement in d is tight, since it
depicts the potential ability of an adversary to increase its success of recovering
each share through horizontal attacks, as argued by Battistello et al. [7] and
Grosso and Standaert [33]. Nevertheless, it is still possible to relax this depen-
dency by using other multiplication gadgets [1,3,2,8,30,31].

Leakage from the Gates. When considering the more general paradigm of
leakage from the gates, Table 3 suggests that Prest et al.’s RE-based security
bound remains the best one on the noise requirements. However, we emphasize
that the RE is a worst-case metric, whereas all the other metrics in Table 3 are
averaged metrics. Estimating worst-case metrics may not always be efficiently
tractable by practitioners, especially for high-dimensional leakage. In addition,
worst-case metrics are by definition more conservative than averaged metrics.
This is usual in theoretical cryptography, but it contrasts with the concrete
SCA security metrics like the GE or the SR [51] that are also averaged metrics.

To illustrate this, let us consider another example of leakage distribution,
namely the now famous random probing model considered by Duc et al. in their
groundbreaking work [25]. In this leakage model, the adversary can recover the
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exact value of any intermediate calculation, each with probability 0 ≤ κ ≤ 1,
where the parameter κ denotes the baseline noise level here. It can be verified that
the MI of this leakage model is log |Y|·κ, whereas its RE is always fixed to |Y|−1
regardless of the value of κ, so that the MI can be set arbitrarily close to zero

— by setting κ accordingly — while the RE remains constant. In other words,
the random probing model can never be proven secure with masking by using a
security bound involving the RE, whereas our masking security bound remains
meaningful for the random probing leakage model, as long as κ ≤ O

(
1

log|Y|·d

)
.7

As a result, the only security bound comparable with ours in terms of noise
requirements remains Dziembowski et al.’s bound [27]. Their bound is obtained
using Azuma’s concentration inequalities [12]. Although a similar approach us-
ing Chernoff’s concentration inequality has been fruitful in Duc et al.’s elegant
reduction to the probing model [25] due to its genericity, it has a major drawback
since the convergence rate of the security bound no longer depends on the actual
baseline noise level δ. This is highlighted in their final bound [27, Eq. (42)]: it
can be verified that the bound is even always increasing for values of d between
0 and 8, and becomes non-trivial — i.e., lower than one — only for d ≥ 142 if
|Y| = 256. On the opposite, our security bounds do not suffer from this caveat,
since they depend on the actual baseline noise level δ, which makes our bounds
non-trivial for arbitrarily small value of d, provided that δ is small enough.

4.3 Beyond Monomial Sboxes

So far, our proof has focused on the particular case of monomial Sboxes, covering
the AES Sbox. We may therefore wonder to which extent the latter assumption
is sensitive to derive our proof. Thankfully, relaxing the monomial assumption
is still possible, at the cost of an additional constant factor scaling with the
field size, by simply using the generic reduction to non-uniform secrets stated by
Theorem 2 instead of refining its refined variant.

Corollary 9. Let Y be a random variable arbitrarily distributed over Y, and
protected by a masking scheme with d+ 1 shares as described in subsection 2.2,
resulting in T elementary calculations. Assume that the scheme protects |S| linear
operations, and |M| I.S.W. multiplications. Let L = (Li)1≤i≤T be the random
vector denoting the leakage of the full masking scheme, and let δ ≥ 0 be such
that every Li is δ-MI-noisy. Then, the inequalities of Theorem 8 and Theorem 9
are verified for:

t3 = 2 ·
(
1− e−1

)
· |Y|2 · |M| , t1,2,4 =

(
1− e−1

)
· |Y| · (|S|+ |M|) .

Proof. We apply Theorem 1, then we group the type 1, 2, and 4 subsequences
together and we apply the reduction to uniform secrets using Theorem 2. Like-
wise, we apply Theorem 2 for type 3 subsequences over the domain Y × Y . We
can then directly apply Theorem 4 and Theorem 5 respectively.
7 This condition could even be relaxed to κ ≤ O

(
1
d

)
in the particular case of leakage

in the random probing model, if one would directly state a security bound for this
leakage model, e.g., by extending Eq. (9) of Duc et al. [26].

22



4.4 Beyond Random Plaintext Attacks

Likewise, one may argue that the latter comparison with the works of Dziem-
bowski et al. is not completely fair, since their bound is stated for SCA adver-
sary with chosen plaintext. Hereupon, the authors stated later at Tcc 2016
that by leveraging a reduction from non-uniform secrets to uniform secrets [28,
Lemma 2],

“The cryptographic interpretation of [reductions from non-uniform to
uniform secrets] is that it suffices to consider only random-plaintext at-
tacks, instead of chosen-plaintext attacks” [28, p. 297].

We notice that our Theorem 2 actually represents such a reduction. Accordingly,
Theorems 8 and 9 can be extended to cover adversaries with chosen plaintexts,
by multiplying the constant factors by (1− e−1) · |Y|, instead of using the power
map trick. In other words, Corollary 9 also holds for chosen-plaintexts attacks.

Table 4 synthesizes the different constant factors t3, whether the SCA adver-
sary is assumed to operate with random or chosen plaintexts. We may notice

Table 4: Constant factor overhead, depending on the attack scenario, and on the mul-
tiplication gadget used.

Sbox \ Plaintext Random Chosen

Any Sbox O
(
|Y|2

)
O
(
|Y|2

)
Monomial Sbox O

(
|Y|1+ϵ) O(|Y|2)

that the constant factor of Corollary 9 scaling quadratically with the field size
seems at first glance worse than the one of Dziembowski et al. [27, Thm. 1],
whereas their security bound only scales linearly with the field size |Y|. Never-
theless, their bound is stated in terms of SD, whereas ours is stated in terms of
MI, which does not behave the same as recalled in Table 3.

4.5 Perspectives

The main limitation of our work remains the leak-free assumption for the mask
refreshings, like in the previous works [46,27,45]. It remains an open problem
whether this assumption could be relaxed. Likewise, our masking security proof
only covers the I.S.W. masking scheme, as in the previous works, whereas the
generic approach through the probing model can cover any type of masking
scheme. Nevertheless, we do not see any prior reason why our security proof
could not be used to extend over different masking gadgets, beyond the I.S.W.
multiplication gadget, and in particular for table-based masking schemes [20,22],
that are known to be efficiently secure in the probing model, but much less in the
noisy leakage [52,14]. Overall, this leaves the door open for good opportunities
of improvement in the next few years.
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A Utilitary Lemma

Proof of Proposition 1. By definition of the MGL function, we have

fMI(δ0, . . . , δd) = 1− H

(
1

2
− 2d ·

d∏
i=0

(
1

2
− H−1(1− δi)

))
,

where H stands here for the binary entropy function. Therefore, to upper bound
the MGL function, we need to lower bound the binary entropy function, and to
lower bound its inverse. The former one it straightforward to derive. Using the
inequality log(1+x) ≤ x, it comes from the definition of the binary entropy that
H
(
1
2 − ϵ

)
≥ 1− 4ϵ2

log(2) for any 0 ≤ ϵ ≤ 1
2 .

We now focus on the upper bound. The binary entropy function is bijective
from [0, 1/2] to [0, 1], and upper bounded by 2

√
p(1− p) — which is itself bijec-

tive from [0, 1/2] to [0, 1]. Since it is also non-decreasing over [0, 1/2], so is its
inverse over [0, 1], which means that

H(p) ≤ 2
√
p(1− p) =⇒ p ≤ H−1

(
2
√
p(1− p)

)
.

Let us make the following change of variable p = 1
2−ϵ and let 1−δ = 2

√
p(1− p).

This implies that ϵ =
√

1−(1−x)2
4 . In other words,

H−1(1− x) ≥ 1

2
−
√

1− (1− x)2
4

.

Thus,

1

2
− H−1(1− x) ≤

√
1− (1− x)2

4

=⇒
d∏

i=0

(
1

2
− H−1(1− δi)

)
≤

√√√√ d∏
i=0

(
1− (1− δi)2

4

)

=⇒ 1

2
− 2d

d∏
i=0

(
1

2
− H−1(1− δi)

)
≥ 1

2
− 2d

√√√√ d∏
i=0

(
1− (1− δi)2

4

)

=⇒ H

(
1

2
− 2d

d∏
i=0

(
1

2
− H−1(1− δi)

))
≥ 1− 4

log(2)
·

2d

√√√√ d∏
i=0

(
1− (1− δi)2

4

)2

= 1− 1

log(2)

d∏
i=0

(2δi − δ2i ) .
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Hence,

fMI(δ0, . . . , δd) ≤
1

log(2)

d∏
i=0

(2δi − δ2i ) ≤
1

log(2)

d∏
i=0

2δi

Lemma 2. Let Y ∈ Y be a discrete random variable, and let g : Y 7→ g(Y) be a
mapping Y → Y. Let L : Y → L be a noisy leakage function. Then:

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) .

Proof of Lemma 2. First, notice that we have the two following Markov chains:

Y→ g(Y)→L(g(Y)) ,

g(Y)← Y→L(g(Y)) .

By the DPI [23, Sec. 2.8] on the first two chains, we have MI(Y;L(g(Y))) ⋚
MI(g(Y);L(g(Y))), hence:

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) .

Lemma 3 (Leakage from binary gates). Let A,B be two independent uni-
form random variables over a finite set of size M , and let L : F2 → L be a
δ-noisy function, i.e. MI(A,B;L(A,B)) ≤ δ. Then, for any realization b of B, we
have

MI(A;L(A, b)) ≤M · δ . (23)

Proof. Using the chain rule of MI [23, Thm. 2.5.2] the other way around, we get
the following inequality:

E
b
[MI(A;L(A, b))] = MI(A;L(A,B) | B) ≤ MI(A,B;L(A,B)) = δ .

Since the expectation is taken over a finite set of size M , we have that

max
b

MI(A;L(A, b)) ≤M · E
b
[MI(A;L(A, b))] ≤M · δ ,

hence the result.

Lemma 4 (Leakage from wires). Let A be a uniform random variable over a
finite set of size M , and let L : F → L be a δ-noisy function, i.e. MI(A;L(A)) ≤ δ.
Then, for any b ∈ F , we have

MI(A;L(A · b)) ≤ δ . (24)
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Proof. The inequality is trivial for b = 0, so we assume hereafter that b 6= 0.
Observe first that for any random variable A (non-necessarily uniform), since b 6=
0, the PMF Pr(A · b) is equal to Pr(A) up to a fixed permutation characterized
by b. This means in particular that if A is uniformly distributed, A′ = A · b and
A are equally distributed as a uniform random variable over F . Likewise, A′ d

= A
implies that L(A′) d

= L(A), as for any l ∈ L,

Pr(L(A) = l) =
∑
a

Pr(L(A) = l | A = a) · Pr(A = a)

=
1

M

∑
a

Pr(L(a) = l)

=
1

M

∑
a′=a·b

Pr(L(a′) = l)

=
∑
a′

Pr
(
L(A′) = l | A′ = a′

)
· Pr
(
A′ = a′

)
= Pr

(
L(A′) = l

)
.

Furthermore, for every a ∈ F , l ∈ L,

Pr(A = a,L(A · b) = l) = Pr(A = a) · Pr(L(A · b) = l | A = a)

= Pr(A · b = a · b) · Pr(L(A · b) = l | A · b = a · b)
= Pr

(
A′ = a · b

)
· Pr
(
L(A′) = l | A′ = a · b

)
= Pr

(
A′ = a · b,L(A′) = l

)
,

where the first and the last equalities come from the definition of conditional
probabilities, the second equality comes from the fact that A = a if and only if
A · b = a · b since b ∈ F⋆, the third equality comes from the definition of A′. As
a result of those facts, denoting MI(A;L(A · b)) by δb, we have

δb = DKL(Pr(A,L(A · b)) ‖ Pr(A)⊗ Pr(L(A · b)))

=
∑
a∈F

∑
l∈L

Pr(A = a,L(A · b) = l) · log
(

Pr(A = a,L(A · b) = l)

Pr(A = a) · Pr(L(A · b) = l)

)

=
∑
a∈F

∑
l∈L

Pr
(
A′ = a · b,L(A′) = l

)
· log

(
Pr
(
A′ = a · b,L(A′) = l

)
Pr(A = a) · Pr

(
L(A′) = l

))

=
∑

a′=a·b∈F

∑
l∈L

Pr
(
A′ = a′,L(A′) = l

)
· log

(
Pr
(
A′ = a′,L(A′) = a′

)
Pr
(
A′ = a′

)
· Pr
(
L(A′) = l

))
= MI

(
A′;L(A′)

)
= δ ,

where the first and second equalities are by definition of the MI and the Kullback
- Leibler (KL) divergence. The third equality is obtained by replacing the proba-
bilities thanks to the previous computations, and the fourth equality is obtained
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by the change of variable a′ = a · b. Finally, the last equality comes from the fact
that A′ d

= A.

Corollary 10. Assume L is a leakage from wires on a binary gate, i.e., there
exist three δ-noisy functions L′,L′′ and L′′′ such that

L(A,B) =
(
L(A),L′′(B),L′′′(A · B)

)
,

and such that conditionally to A and B, Li1 ,Li2 and Lo are independent. Then,
for any b ∈ F⋆, we have:

MI(A;L(A, b)) ≤ 2 · δ . (25)

Moreover, for b = 0, we have MI(A;L(A, b)) ≤ δ.

Proof. According to the chaining rule for MIs [23, Thm. 2.5.2], we have

MI(A;L(A, b)) = MI
(
A;L′(A)

)
+MI

(
A;L′′′(A · b) | L′(A)

)
+MI

(
A;L′′(b) | L′(A),L′′′(A · b)

)
By assumption, the first term of the right-hand side above can be upper bounded
by δ. Moreover, since L′′(b) is independent of A, the last term of the right-hand
side above is equal to zero. Finally observe for the second term that

MI
(
A;L′′′(A · b) | L′(A)

)
= H

(
L′′′(A · b) | L′(A)

)
− H

(
L′′′(A · b) | A,L′(A)

)
= H

(
L′′′(A · b) | L′(A)

)
− H

(
L′′′(A · b) | A

)
≤ H

(
L′′′(A · b)

)
− H

(
L′′′(A · b) | A

)
= MI

(
A;L′′′(A · b)

)
≤ δ ,

where the first equality holds by definition of the conditional mutual information,
the second equality holds as conditionally to A, L′(A) is independent of L′′′(A·b),
the first inequality holds as conditioning reduces the entropy, the last equality
holds by definition of the mutual information, and the last inequality holds by
virtue of Lemma 4.

B Proofs of Main Results

Proof of Theorem 1. By definition, we have

H(L | Y) = E
y
[H(L1, . . . ,Lt | Y = y)] . (26)

By assumption, all the leakages, conditioned to Y = y are mutually independent
so

H(L | Y = y) =

t∑
i=1

H(Li | Y = y) .
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Hence, combining with Equation 26, H(L | Y) =
∑t

i=1 H(Li | Y). Thereby,

MI(L;Y) ≤
t∑

i=1

MI(Li;Y)

Proof of Theorem 2. Now, we can see L as an — undesired — communication
channel. By definition of the capacity C of the channel L, and using Lemma 2,
we get that

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) ≤ max
Pr(Z)

MI(Z;L(Z)) = C .

Using [50, Thm. 1, Eq. (17)], we get that

C

MI(Y;L(Y))
≤ |Y| ·min

{
2−C , 1− e−1

}
≤ |Y| ·

(
1− e−1

)

B.1 Proofs of Theorem 5 and Theorem 6

Proof. Using the chain rule of MI [23, Thm. 2.5.2], we have:

MI((A,B);L) = MI(A;L) +MI(B;L | A) . (27)

Let us bound the first term of Equation 27. The bound on the second term will
straightforwardly follow.

Bounding MI(A;L). Observe that since A and B are independent, it follows that
A and B are also independent. As a result, H(A | B) = H(A). Furthermore,
since conditioning decreases the entropy, we have H(A | L,B) ≤ H(A | L).
The two latter facts imply that

MI(A;L) ≤ MI(A;L | B) = E
b
[MI(A;L | B = b)] . (28)

Let b = (b0, . . . , bd) be fixed for now, and let us bound MI(A;L | B = b). To
this end, notice that we may now gather the leakages Li,j by batches sharing
the same index i as follows:

MI(A;L | B = b) = MI
(

A; {L0,j(A0, bj)}0≤j≤d , . . . , {Ld,j(Ad, bj)}0≤j≤d
)
.

(29)
By assumption, each batch of leakages {Li,j(Ai, bj)}0≤j≤d only depends on the
share Ai. Hence, we may use Theorem 4 to bound the right hand-side of Equa-
tion 29 as follows. Let us define MI

(
Ai; {Li,j(Ai, bj)}0≤j≤d

)
= δ′i — notice that

δ′i depends on all the bj . Then we have

MI
(

A; {L0,j}0≤j≤d , . . . , {Ld,j}0≤j≤d
)
≤
(9)

f2n(δ
′
0, . . . , δ

′
d) . (30)
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Substituting Equation 30 in Equation 29, and then plugging into Equation 28
gives

MI(A;L) ≤ E
b
[f2n(δ

′
0, . . . , δ

′
d)] . (31)

We are then reduced to upper bound Equation 31. To this end, notice that for i
fixed, the batch of leakages {Li,j(Ai, bj) | Ai}0≤j≤d are mutually independent.
Hence, we can now leverage Theorem 1 to upper bound δ′i, as follows:

δ′i = MI
(

Ai; {Li,j(Ai, bj)}0≤j≤d
)
≤
(2)

d∑
j=0

MI(Ai;Li,j(Ai, bj)) . (32)

Depending on the assumptions on the leakage, i.e., whether the leakage is as-
sumed to come from the gates or from the wires, we get the following upper
bounds:

MI(Ai;Li,j(Ai, bj)) ≤

{
M · δi,j , leakage from the gates (Lemma 3);
2 · δi,j , leakage from the wires (Corollary 10) .

(33)
Hence, combining Equation 32 with Equation 33, we get that

δ′i ≤

{
M ·

∑d
j=0 δi,j , leakage from the gates ;

2 ·
∑d

j=0 δi,j , leakage from the wires .
(34)

Finally, plugging Equation 34 into Equation 31 gives the first term in the right
hand-side of Equation 11.

Bounding MI(B;L | A). Using the chain rule of the MI again, we may bound
MI(B;L | A) by conditioning on the d last shares of A (except the share of
index 0):

MI(B;L | A) ≤ MI
(

B;L | A, {Ai}1≤i≤d
)

Using the same argument as Dziembowski et al. [28, Lemma 3], we may notice
that since A is assumed to be uniform:(

A, {Ai}1≤i≤d
)

d
=

(
A⊕

(
d⊕

i=1

Ai

)
, {Ai}1≤i≤d

)
d
= {Ai}0≤i≤d ,

it implies that MI
(

B;L | A, {Ai}1≤i≤d
)
= MI(B;L | A). By symmetry of the

roles, the latter term can be bound in the same way as the right hand-side of
Equation 28, by permuting the roles of the indices i and j.

B.2 Proof of Theorem 7
Proof of Theorem 7. Let L = (L1(Y0,Y1), . . . ,Ld(Yd−1,Yd)) for short. Expand-
ing MI(Yd;L), we have

MI(Yd;L) = MI(Yd;Ld(Yd−1,Yd) | Ld−1(Yd−2,Yd−1), . . . ,L1(Y0,Y1))

+MI(Yd;Ld−1(Yd−2,Yd−1), . . . ,L1(Y0,Y1))
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Notice first that the second term in the right hand-side equals 0, since by as-
sumption Yd is independent of the {Yi}0≤i≤d−1. Likewise, the first term of the
right hand-side can be upper bounded by MI(Yd;Ld(Yd−1,Yd) | Yd−1), which
can in turn be upper bounded by δd.

C Proofs and Technical Lemma from the Example

Proposition 3. Let L be the leakage function defined by Equation 21. Then

maxb∈F MI(A;L(A, b))
MI(A,B;L(A,B))

= Ω(M) . (35)

Proof of Proposition 3. The leakage function is deterministic, so the MI coin-
cides with the entropy. On the one hand, we have

MI(A;L(A, b)) =

{
log2(M), if b = 0

0, otherwise
(36)

On the other hand, let us compute MI(A,B;L(A,B)). The leakage function takes
M + 1 values, namely ⊥ and all the values a ∈ F . More precisely,

Pr(L = a) = Pr(A = a,B = 0) =
1

M2
,

Pr(L = ⊥) = Pr(B 6= 0) =
M − 1

M
.

As a result,

H(L(A,B)) =M · 1

M2
· 2 log2(M) +

M − 1

M
· log2

(
M

M − 1

)
= 2

log2(M)

M
−
(
1− 1

M

)
· log2

(
1− 1

M

)
= O

(
log2(M)

M

)

Lemma 5. Let B1, . . . ,Bd be d random variables, each being uniformly dis-
tributed over F⋆, and let B =

∑d
i=1 Bi. Then,

H(B) = log2(M) +O
(

1

Md

)
(37)

Proof. Let p be the p.m.f. of one non-zero share, i.e., p = (0, 1
M−1 , . . . ,

1
M−1 ).

Denoting the uniform p.m.f. by u and m = (1, 0, . . . , 0), observe that u = 1
M ·

m+M−1
M · p, i.e., p = 1

M−1 · (M · u−m). Let p∗ d be the p.m.f. p convoluted d
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times with itself. Using the fact that for any p.m.f. p′, we have that p′ ∗ u = u,
and that m ∗m = m, we get that:

p∗ d =
1

(M − 1)
d
·

d∑
k=0

(
d

k

)
·Mk · ∗ ku ∗m∗ d−k ·(−1)d−k

=
1

(M − 1)
d
·

(
(−1)d ·m+(−1)d ·

d∑
k=1

(
d

k

)
· (−M)k · u

)

=
1

(M − 1)d
·
(
(−1)d ·m+

[
(M − 1)d − (−1)d

]
· u
)

= u ·
(
1− (−1)d

(M − 1)d

)
+m · (−1)d

(M − 1)d
.

In other words, Pr(B = 0) = 1
M

(
1 + (−1)d

(M−1)d−1

)
, and for any b 6= 0, we have

Pr(B = b) = 1
M

(
1− (−1)d

(M−1)d

)
. Plugging this into Lemma 6 gives the desired

result.

Lemma 6. Let p = u+ 1
M · (ϵ, ϵ

′, . . . , ϵ′), such that ϵ′ = O
(

ϵ
M

)
. Then, H(p) =

log2(M) +O
(

ϵ
M

)
.

Proof. Let p = 1
M (1 + ϵ). Observe first that

−p log(p) = p · log
(

M

1 + ϵ

)
= p · log(M)− p ·

(
ϵ+O

(
ϵ2
))

= p · log(M)− (
1

M
+

ϵ

M
) · (ϵ+O

(
ϵ2
)
)

= p · log(M)− ϵ

M
+O

(
ϵ2

M

)
.

Summing the latter expansion for every probability of p, we get that

H(p) = −
M−1∑
i=0

pi log(pi) = log(M) ·
M−1∑
i=0

pi−
M−1∑
i=0

(
ϵi
M

+O
(
ϵ2i
M

))

= log(M) +O
( ϵ

M

)
+

M−1∑
i=1

O
(
ϵ′

M

)
= log(M) +O

( ϵ

M

)
.

Proof of Proposition 2. The adversary may observe d+1 types of leakage, namely
when 0 ≤ k ≤ d columns of the cross-product matrix are revealed.
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– When k = d columns are revealed, we know all the shares of A and since all
the columns are revealed, this also means that all the shares of B are equal
to zero. Hence, the conditional entropy is equal to 0.

– When 0 < k < d columns are revealed, A is fully revealed to the adversary,
along with the k shares of B that are equal to zero. In other words, B is
the sum of d− k shares uniformly distributed over F⋆. Hence,the entropy is
equal to log2(M) +O

(
1

Md−k

)
, according to Lemma 5.

– When k = 0 columns are revealed, A remains fully uniform to the adversary,
and B is the sum of d shares uniformly distributed over F⋆. Hence, the
entropy is equal to 2 log2(M) +O

(
1

Md

)
, according to Lemma 5.

Furthermore, the probability that k columns are revealed follows a binomial
distribution, i.e., Pr(“k columns revealed”) =

(
d
k

)
1

Mk

(
1− 1

M

)d−k. Hence,

H(A,B | L) =
(
1− 1

M

)d

·
(
2 log2(M) +O

(
1

Md

))
+

d−1∑
k=1

(
log2(M) +O

(
1

Md−k

))
·
(
d

k

)
· 1

Mk

(
1− 1

M

)d−k

(38)

That is,

H(A,B | L) = log2(M) ·

(
2

(
1− 1

M

)d

+

d−1∑
k=1

(
d

k

)
1

Mk

(
1− 1

M

)d−k
)

+O

((
2

M

)d
)

= log2(M) ·

(
2

(
1− 1

M

)d

+ 1− 1

Md
−
(
1− 1

M

)d
)

+O

((
2

M

)d
)

= 2 log2(M)− d · log2(M)

M
+O

(
log2(M)

M2

)
This implies that MI(A,B;L) = d·log2(M)

M +O
(

log2(M)
M2

)
.

32



References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Com-
puting. pp. 715–724. ACM Press, San Jose, CA, USA (Jun 6–8, 2011). https:
//doi.org/10.1145/1993636.1993731 21

2. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: A modular approach. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part III. Lec-
ture Notes in Computer Science, vol. 10993, pp. 427–455. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.org/10.1007/
978-3-319-96878-0_15 21

3. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/ log(n))
leakage rate. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2016, Part II. Lecture Notes in Computer Science, vol. 9666, pp. 586–
615. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016). https:
//doi.org/10.1007/978-3-662-49896-5_21 21

4. Azouaoui, M., Bellizia, D., Buhan, I., Debande, N., Duval, S., Giraud, C., Jaulmes,
E., Koeune, F., Oswald, E., Standaert, F.X., Whitnall, C.: A systematic appraisal
of side channel evaluation strategies. Cryptology ePrint Archive, Report 2020/1347
(2020), https://eprint.iacr.org/2020/1347 5

5. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanaly-
sis? In: Lee, P.J. (ed.) Advances in Cryptology – ASIACRYPT 2004. Lecture Notes
in Computer Science, vol. 3329, pp. 432–450. Springer, Heidelberg, Germany, Jeju
Island, Korea (Dec 5–9, 2004). https://doi.org/10.1007/978-3-540-30539-2_
31 9

6. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016: 23rd Conference on Computer and Communications Security. pp. 116–
129. ACM Press, Vienna, Austria (Oct 24–28, 2016). https://doi.org/10.1145/
2976749.2978427 3

7. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2016. Lec-
ture Notes in Computer Science, vol. 9813, pp. 23–39. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–19, 2016). https://doi.org/10.1007/
978-3-662-53140-2_2 21

8. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: Verification, composition, expansion and new constructions. In: Micciancio, D.,
Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020, Part I. Lecture
Notes in Computer Science, vol. 12170, pp. 339–368. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2020). https://doi.org/10.1007/
978-3-030-56784-2_12 3, 21

9. Belaïd, S., Rivain, M., Taleb, A.R.: On the power of expansion: More efficient
constructions in the random probing model. In: Canteaut, A., Standaert, F.X. (eds.)
Advances in Cryptology – EUROCRYPT 2021, Part II. Lecture Notes in Computer
Science, vol. 12697, pp. 313–343. Springer, Heidelberg, Germany, Zagreb, Croatia
(Oct 17–21, 2021). https://doi.org/10.1007/978-3-030-77886-6_11 3

10. Belaïd, S., Rivain, M., Taleb, A.R., Vergnaud, D.: Dynamic random probing ex-
pansion with quasi linear asymptotic complexity. In: Tibouchi, M., Wang, H. (eds.)

33

https://doi.org/10.1145/1993636.1993731
https://doi.org/10.1145/1993636.1993731
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_21
https://eprint.iacr.org/2020/1347
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-77886-6_11


Advances in Cryptology – ASIACRYPT 2021, Part II. Lecture Notes in Computer
Science, vol. 13091, pp. 157–188. Springer, Heidelberg, Germany, Singapore (Dec 6–
10, 2021). https://doi.org/10.1007/978-3-030-92075-3_6 3

11. Belaïd, S., Cassiers, G., Mutschler, C., Rivain, M., Roche, T., Standaert, F.X.,
Taleb, A.R.: A methodology to achieve provable side-channel security in real-world
implementations. Cryptology ePrint Archive, Paper 2023/1198 (2023), https://
eprint.iacr.org/2023/1198, https://eprint.iacr.org/2023/1198 4

12. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press (2013) 22

13. Broughan, K.A.: The gcd-sum function. J. Integer Seq. 4(2.2) (2001) 14
14. Bruneau, N., Guilley, S., Najm, Z., Teglia, Y.: Multivariate high-order attacks of

shuffled tables recomputation. Journal of Cryptology 31(2), 351–393 (Apr 2018).
https://doi.org/10.1007/s00145-017-9259-7 23

15. Béguinot, J., Cheng, W., Guilley, S., Liu, Y., Masure, L., Rioul, O., Standaert,
F.X.: Removing the field size loss from duc et al.’s conjectured bound for masked
encodings. Cryptology ePrint Archive, Paper 2022/1738 (2022), https://eprint.
iacr.org/2022/1738, https://eprint.iacr.org/2022/1738 5, 8, 15

16. Béguinot, J., Cheng, W., Guilley, S., Rioul, O.: Formal security proofs via doeblin
coefficients: Optimal side-channel factorization from noisy leakage to random prob-
ing. Cryptology ePrint Archive, Paper 2024/199 (2024), https://eprint.iacr.
org/2024/199, https://eprint.iacr.org/2024/199 6, 20

17. Cassiers, G., Faust, S., Orlt, M., Standaert, F.X.: Towards tight random probing se-
curity. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021,
Part III. Lecture Notes in Computer Science, vol. 12827, pp. 185–214. Springer, Hei-
delberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/
978-3-030-84252-9_7 3

18. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [53], pp. 398–412. https://doi.org/10.
1007/3-540-48405-1_26 2

19. Cheng, W., Liu, Y., Guilley, S., Rioul, O.: Attacking masked cryptographic im-
plementations: Information-theoretic bounds. In: IEEE International Symposium
on Information Theory, ISIT 2022, Espoo, Finland, June 26 - July 1, 2022.
pp. 654–659. IEEE (2022). https://doi.org/10.1109/ISIT50566.2022.9834556,
https://doi.org/10.1109/ISIT50566.2022.9834556 9

20. Coron, J.S.: Higher order masking of look-up tables. In: Nguyen and Oswald [44],
pp. 441–458. https://doi.org/10.1007/978-3-642-55220-5_25 23

21. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel secu-
rity and mask refreshing. In: Moriai [43], pp. 410–424. https://doi.org/10.1007/
978-3-662-43933-3_21 3

22. Coron, J.S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables
with common shares. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2018(1), 40–72 (2018). https://doi.org/10.13154/tches.v2018.i1.
40-72, https://tches.iacr.org/index.php/TCHES/article/view/832 23

23. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
25, 27, 28

24. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most
successful. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(2), 49–79 (2019). https://doi.org/10.13154/tches.v2019.i2.49-79,
https://tches.iacr.org/index.php/TCHES/article/view/7385 9

34

https://doi.org/10.1007/978-3-030-92075-3_6
https://eprint.iacr.org/2023/1198
https://eprint.iacr.org/2023/1198
https://eprint.iacr.org/2023/1198
https://doi.org/10.1007/s00145-017-9259-7
https://eprint.iacr.org/2022/1738
https://eprint.iacr.org/2022/1738
https://eprint.iacr.org/2022/1738
https://eprint.iacr.org/2024/199
https://eprint.iacr.org/2024/199
https://eprint.iacr.org/2024/199
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1109/ISIT50566.2022.9834556
https://doi.org/10.1109/ISIT50566.2022.9834556
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.13154/tches.v2018.i1.40-72
https://doi.org/10.13154/tches.v2018.i1.40-72
https://tches.iacr.org/index.php/TCHES/article/view/832
https://doi.org/10.13154/tches.v2019.i2.49-79
https://tches.iacr.org/index.php/TCHES/article/view/7385


25. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen and Oswald [44], pp. 423–440. https://doi.org/10.
1007/978-3-642-55220-5_24 3, 4, 8, 21, 22

26. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) Advances in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in
Computer Science, vol. 9056, pp. 401–429. Springer, Heidelberg, Germany, Sofia,
Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-46800-5_16
4, 5, 9, 22

27. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II.
Lecture Notes in Computer Science, vol. 9057, pp. 159–188. Springer, Heidel-
berg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/
978-3-662-46803-6_6 3, 4, 21, 22, 23

28. Dziembowski, S., Faust, S., Skórski, M.: Optimal amplification of noisy leakages.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A: 13th Theory of Cryptography
Conference, Part II. Lecture Notes in Computer Science, vol. 9563, pp. 291–318.
Springer, Heidelberg, Germany, Tel Aviv, Israel (Jan 10–13, 2016). https://doi.
org/10.1007/978-3-662-49099-0_11 5, 23, 29

29. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) Cryptographic Hardware and Em-
bedded Systems – CHES’99. Lecture Notes in Computer Science, vol. 1717, pp.
158–172. Springer, Heidelberg, Germany, Worcester, Massachusetts, USA (Aug 12–
13, 1999). https://doi.org/10.1007/3-540-48059-5_15 2

30. Goudarzi, D., Joux, A., Rivain, M.: How to securely compute with noisy leakage in
quasilinear complexity. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology
– ASIACRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 11273, pp.
547–574. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2–
6, 2018). https://doi.org/10.1007/978-3-030-03329-3_19 21

31. Goudarzi, D., Prest, T., Rivain, M., Vergnaud, D.: Probing security through
input-output separation and revisited quasilinear masking. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2021(3), 599–640
(2021). https://doi.org/10.46586/tches.v2021.i3.599-640, https://tches.
iacr.org/index.php/TCHES/article/view/8987 21

32. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017,
Part I. Lecture Notes in Computer Science, vol. 10210, pp. 567–597. Springer,
Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017). https://doi.org/10.
1007/978-3-319-56620-7_20 10

33. Grosso, V., Standaert, F.X.: Masking proofs are tight and how to exploit it in
security evaluations. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 10821, pp.
385–412. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018).
https://doi.org/10.1007/978-3-319-78375-8_13 5, 21

34. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 463–481. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2003). https://doi.org/10.1007/
978-3-540-45146-4_27 2, 3

35

https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-662-49099-0_11
https://doi.org/10.1007/978-3-662-49099-0_11
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-030-03329-3_19
https://doi.org/10.46586/tches.v2021.i3.599-640
https://tches.iacr.org/index.php/TCHES/article/view/8987
https://tches.iacr.org/index.php/TCHES/article/view/8987
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-78375-8_13
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27


35. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th Con-
ference on Computer and Communications Security. pp. 1521–1535. ACM Press,
Los Angeles, CA, USA (Nov 7–11, 2022). https://doi.org/10.1145/3548606.
3560579 5, 8

36. Jog, V.S., Anantharam, V.: The entropy power inequality and mrs. ger-
ber’s lemma for groups of order 2n. IEEE Trans. Inf. Theory 60(7), 3773–
3786 (2014). https://doi.org/10.1109/TIT.2014.2317692, https://doi.org/
10.1109/TIT.2014.2317692 15

37. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96.
Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 18–22, 1996). https://doi.org/
10.1007/3-540-68697-5_9 1

38. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [53], pp.
388–397. https://doi.org/10.1007/3-540-48405-1_25 1

39. Mangard, S.: Hardware countermeasures against DPA – A statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) Topics in Cryptology – CT-RSA 2004.
Lecture Notes in Computer Science, vol. 2964, pp. 222–235. Springer, Heidelberg,
Germany, San Francisco, CA, USA (Feb 23–27, 2004). https://doi.org/10.1007/
978-3-540-24660-2_18 9

40. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007) 9

41. Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unify-
ing standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–
110 (2011). https://doi.org/10.1049/iet-ifs.2010.0096, https://doi.org/
10.1049/iet-ifs.2010.0096 9

42. Masure, L., Rioul, O., Standaert, F.X.: A nearly tight proof of duc et al.’s con-
jectured security bound for masked implementations. Cryptology ePrint Archive,
Paper 2022/600 (2022), https://eprint.iacr.org/2022/600, https://eprint.
iacr.org/2022/600 5, 8

43. Moriai, S. (ed.): Fast Software Encryption – FSE 2013, Lecture Notes in Computer
Science, vol. 8424. Springer, Heidelberg, Germany, Singapore (Mar 11–13, 2014) 34,
37

44. Nguyen, P.Q., Oswald, E. (eds.): Advances in Cryptology – EUROCRYPT 2014,
Lecture Notes in Computer Science, vol. 8441. Springer, Heidelberg, Germany,
Copenhagen, Denmark (May 11–15, 2014) 34, 35

45. Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models
on a Rényi day. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology –
CRYPTO 2019, Part I. Lecture Notes in Computer Science, vol. 11692, pp. 683–
712. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26948-7_24 3, 4, 16, 18, 20, 21, 23

46. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EURO-
CRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 142–159. Springer,
Heidelberg, Germany, Athens, Greece (May 26–30, 2013). https://doi.org/10.
1007/978-3-642-38348-9_9 2, 3, 4, 5, 7, 9, 11, 18, 20, 21, 23

47. Rivain, M.: On the provable security of cryptographic implementations : Habilita-
tion thesis. Personal website (2022), https://www.matthieurivain.com/hdr.html,
https://www.matthieurivain.com/hdr.html 4, 7

36

https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1109/TIT.2014.2317692
https://doi.org/10.1109/TIT.2014.2317692
https://doi.org/10.1109/TIT.2014.2317692
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1049/iet-ifs.2010.0096
https://eprint.iacr.org/2022/600
https://eprint.iacr.org/2022/600
https://eprint.iacr.org/2022/600
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://www.matthieurivain.com/hdr.html
https://www.matthieurivain.com/hdr.html


48. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Man-
gard, S., Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Sys-
tems – CHES 2010. Lecture Notes in Computer Science, vol. 6225, pp. 413–
427. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–20, 2010).
https://doi.org/10.1007/978-3-642-15031-9_28 3, 10, 12, 13

49. Cardoso dos Santos, L., Gérard, F., Großschädl, J., Spignoli, L.: Rivain-Prouff on
steroids: Faster and stronger masking of the AES. In: Buhan, I., Schneider, T.
(eds.) Smart Card Research and Advanced Applications. pp. 123–145. Springer
International Publishing, Cham (2023) 10, 13

50. Shulman, N., Feder, M.: The uniform distribution as a universal prior. IEEE
Trans. Inf. Theory 50(6), 1356–1362 (2004). https://doi.org/10.1109/TIT.2004.
828152, https://doi.org/10.1109/TIT.2004.828152 11, 12, 28

51. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology –
EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 443–461.
Springer, Heidelberg, Germany, Cologne, Germany (Apr 26–30, 2009). https://
doi.org/10.1007/978-3-642-01001-9_26 3, 21

52. Tunstall, M., Whitnall, C., Oswald, E.: Masking tables - an underesti-
mated security risk. In: Moriai [43], pp. 425–444. https://doi.org/10.1007/
978-3-662-43933-3_22 23

53. Wiener, M.J. (ed.): Advances in Cryptology – CRYPTO’99, Lecture Notes in Com-
puter Science, vol. 1666. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 15–19, 1999) 34, 36

54. Wyner, A.D., Ziv, J.: A theorem on the entropy of certain binary sequences and
applications-i. IEEE Trans. Inf. Theory 19(6), 769–772 (1973). https://doi.org/
10.1109/TIT.1973.1055107, https://doi.org/10.1109/TIT.1973.1055107 15

37

https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1109/TIT.2004.828152
https://doi.org/10.1109/TIT.2004.828152
https://doi.org/10.1109/TIT.2004.828152
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-662-43933-3_22
https://doi.org/10.1007/978-3-662-43933-3_22
https://doi.org/10.1109/TIT.1973.1055107
https://doi.org/10.1109/TIT.1973.1055107
https://doi.org/10.1109/TIT.1973.1055107

	Prouff & Rivain's Formal Security Proof of Masking, Revisited

