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We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Also, it permits the modeling of wide families of problems involving vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth), multistage modifications, and various cut problems. Our main result is that, for this compound logic, model-checking can be done in quadratic time. All derived algorithms are constructive and this, as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle's theorem does not apply.

Introduction

Our work is kindled by the current algorithmic advances in graph modification. The core of our approach is a novel model-theoretic framework that is based on the interplay between model theory and algorithmic graph minors. Departing from this new perspective, we obtain algorithmic meta-theorems that encompass, unify, and extend all known meta-algorithmic results on minor-closed graph classes.

State of the art and our contribution

Modification problems. A graph modification problem asks whether it is possible to apply a series of modifications to a graph in order to transform it to a graph with some desired target property. Such problems have been the driving force of Parameterized Complexity where parameterization quantifies the concept of "distance from triviality" [START_REF] Guo | A structural view on parameterizing problems: Distance from triviality[END_REF] and measures the amount of the applied modification. Classically, modification operations may be vertex or edge deletions, edge additions/contractions, or combinations of them like taking a minor.

In their generality, such problems are NP-complete [60] and much research in Parameterized Complexity is on the design of algorithms in time f (k) • n O (1) , where the parameter k is some measure of the modification operation [START_REF] Cygan | Parameterized Algorithms[END_REF]. The target property may express desired structural properties that respond to certain algorithmic or combinatorial demands. A widely studied family of target properties are minor-closed graph classes such as edgeless graphs [START_REF] Chen | Improved parameterized upper bounds for vertex cover[END_REF], forests [START_REF] Chen | Improved algorithms for feedback vertex set problems[END_REF], bounded treewidth graphs [START_REF] Fedor | Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms[END_REF][START_REF] Jung | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF], planar graphs [START_REF] Bart | A near-optimal planarization algorithm[END_REF][START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF], bounded genus graphs [START_REF] Kociumaka | Deleting vertices to graphs of bounded genus[END_REF], or, most generally, minor-excluding graphs [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]. However, other families of target properties have also been considered, such as those that exclude an odd cycle [START_REF] Fiorini | Planar graph bipartization in linear time[END_REF], a topological minor [START_REF] Fedor | Hitting topological minors is FPT[END_REF], an (induced) subgraph [START_REF] Cygan | Hitting forbidden subgraphs in graphs of bounded treewidth[END_REF][START_REF] Sau | Hitting forbidden induced subgraphs on bounded treewidth graphs[END_REF], an immersion [START_REF] Archontia | Linear kernels for edge deletion problems to immersion-closed graph classes[END_REF], or an induced minor [START_REF] Golovach | Detecting induced minors in AT-free graphs[END_REF]. A broad class of graph modification problems concerns cuts. In a typical cut problem, one wants to find a minimum-size set of edges or vertices X in a graph G such that in the new graph G \ X, obtained by deleting X from G, some terminal-connectivity conditions are satisfied. For example, the condition can be that a set of specific terminals becomes separated or that at least one connected component in the new graph is of a specific size. The development of parameterized algorithms for cut problems is a popular trend in parameterized algorithms [START_REF] Cygan | Minimum bisection is fixed-parameter tractable[END_REF][START_REF] Marx | Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset[END_REF]. More involved modification measures of vertex set removals, related to treewidth or treedepth, have been considered very recently [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF][START_REF] Bulian | Fixed-parameter tractable distances to sparse graph classes[END_REF][START_REF] Eiben | Measuring what matters: A hybrid approach to dynamic programming with treewidth[END_REF][START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF].

Algorithmic meta-theorems. A vibrant line of research in Logic and Algorithms is the development of algorithmic meta-theorems. According to Grohe and Kreutzer [START_REF] Grohe | Methods for algorithmic meta theorems[END_REF], algorithmic meta-theorems state that certain families of algorithmic problems, typically defined by some logical and some combinatorial condition, can be solved "efficiently", under some suitable definition of this term. Algorithmic meta-theorems play an important role in the theory of algorithms as they reveal deep interplays between Algorithms, Logic, and Combinatorics. One of the most celebrated meta-theorems is Courcelle's theorem asserting that graph properties definable in CMSOL (counting monadic second-order logic) are decidable in linear time on graphs of bounded treewidth [START_REF] Courcelle | The monadic second-order logic of graphs. I. recognizable sets of finite graphs[END_REF]; see also [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF][START_REF] Borie | Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families[END_REF]. Another stream of research concerns identifying wide combinatorial structures where model-checking for FOL (first-order logic) can be done in polynomial time. This includes graph classes of bounded degree [START_REF] Seese | Linear time computable problems and first-order descriptions[END_REF], graph classes of bounded local treewidth [START_REF] Frick | Deciding first-order properties of locally tree-decomposable structures[END_REF], minor-closed graph classes [START_REF] Flum | Fixed-parameter tractability, definability, and model-checking[END_REF], graph classes locally excluding a minor [START_REF] Dawar | Locally excluding a minor[END_REF], and more powerful concepts of sparsity, such as having bounded expansion [26,[START_REF] Nesetril | Sparsity -Graphs, Structures, and Algorithms[END_REF], nowhere denseness [START_REF] Grohe | Deciding first-order properties of nowhere dense graphs[END_REF], or having bounded twin-width [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. (See [START_REF] Grohe | Logic, graphs, and algorithms[END_REF][START_REF] Kreutzer | Algorithmic meta-theorems[END_REF] for surveys. Also for results on the combinatorial horizon of FOL and CMSOL (and its variants) see [START_REF] Bonnet | Twin-width IV: ordered graphs and matrices[END_REF][START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF][START_REF] Grohe | Deciding first-order properties of nowhere dense graphs[END_REF] and [START_REF] Kreutzer | On the parameterised intractability of monadic second-order logic[END_REF] respectively.)
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Another line of research, already mentioned in [START_REF] Grohe | Logic, graphs, and algorithms[END_REF], is to prove algorithmic meta-theorems for extensions of FOL of greater expressibility. Two such extensions have been recently presented. The first one consists in enhancing FOL with predicates that can express kconnectivity for every k ≥ 1. This extension of FOL was introduced independently by Schirrmacher, Siebertz, and Vigny in [START_REF] Schirrmacher | First-Order Logic with Connectivity Operators[END_REF] (under the name FOL+conn) and by Bojańczyk in [START_REF] Bojańczyk | Separator logic and star-free expressions for graphs[END_REF] (under the name separator logic). The second and more expressive extension, also introduced by Schirrmacher, Siebertz, and Vigny in [START_REF] Schirrmacher | First-Order Logic with Connectivity Operators[END_REF], is FOL+DP, that enhances FOL with predicates expressing the existence of disjoint paths between certain pairs of vertices. For FOL+conn, an algorithmic meta-theorem for model-checking on graphs excluding a topological minor has been very recently given by Pilipczuk, Schirrmacher, Siebertz, Torunczyk, and Vigny [START_REF] Pilipczuk | Algorithms and data structures for first-order logic with connectivity under vertex failures[END_REF]. For the more expressive FOL+DP, an algorithmic meta-theorem for modelchecking on graphs excluding a minor has been very recently given by Golovach, Stamoulis, and Thilikos in [START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF] (see [START_REF] Golovach | Model-checking for firstorder logic with disjoint paths predicates in proper minor-closed graph classes[END_REF] for the full version).

Research on the meta-algorithmics of FOL is quite active and has moved to several directions such as the study of FOL-interpretability [START_REF] Bonnet | Model checking on interpretations of classes of bounded local cliquewidth[END_REF][START_REF] Gajarský | First-order interpretations of bounded expansion classes[END_REF][START_REF] Nesetril | Rankwidth meets stability[END_REF][START_REF] Nesetril | Structural properties of the first-order transduction quasiorder[END_REF] or the enhancement of FOL with counting/numerical predicates [START_REF] Dreier | Approximate evaluation of first-order counting queries[END_REF][START_REF] Grohe | First-order query evaluation with cardinality conditions[END_REF][START_REF] Kuske | First-order logic with counting[END_REF].

In this paper, we initiate an alternative approach consisting in combining the expressive power of FOL and CMSOL. A typical family of problems where such an approach becomes relevant is the one of modification problems. Courcelle's theorem implies that if the target property corresponds to a class of bounded treewidth and the modification conditions are definable in CMSOL, then such modification problems are fixed-parameter tractable when parameterized by the length of the sentence and the treewidth of the graph. However, when the target class graph is of unbounded treewidth, none of the aforementioned algorithmic meta-theorems encompasses broad families of modification problems. As an illustrative example, consider the Planarization problem, which consists in deciding whether at most k vertices can be removed from an input graph to make it planar (or equivalently, minor-excluding K 5 and K 3,3 ). While this problem is definable in CMSOL, Courcelle's theorem cannot be applied as we cannot assume that yes-instances are of bounded treewidth. On the other hand, we can easily assume that yes-instances minor-exclude K k+6 . However, all known meta-theorems whose combinatorial condition encompasses the minor-exclusion are about FOL, and FOL cannot express the Planarization problem. On the positive side, an algorithm in time f (k) • n 2 for Planarization is an algorithmic consequence of Robertson-Seymour's theorem [START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF] (combined with [START_REF] Kawarabayashi | The disjoint paths problem in quadratic time[END_REF][START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF]). This automatic implication follows directly (albeit non-constructively) for a wide family of modification problems whose yes-instances are minor-closed. There is a long line of research in parameterized algorithms towards providing constructive and reasonable estimations of f (k) [START_REF] Bart | A near-optimal planarization algorithm[END_REF][START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]. Note that Robertson-Seymour's theorem, besides not being constructive in general, automatically offers results only for problems whose yes-instances are minor-closed.

Our contribution. We introduce a compound logic that models computational problems through the lens of the "modulator vs target" duality of graph modification problems. Each sentence of this logic is a composition of two types of sentences. The first one, called the modulator sentence, models a modification operation, while the second one, called the target sentence, models a target property. Informally, our result, in its simplest form, asserts that if some appropriate version of the modulator sentence meets the meta-algorithmic assumptions of Courcelle's theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. recognizable sets of finite graphs[END_REF] (i.e., CMSOL-definability and bounded treewidth) and the target sentence meets the meta-algorithmic assumptions of the theorem of Flum and Grohe [START_REF] Flum | Fixed-parameter tractability, definability, and model-checking[END_REF] (i.e., FOL-definability and minor-exclusion), then model-checking for the composed compound sentence can be done, constructively, in quadratic time. Our main result (Theorem 5) can I C A L P 2 0 2 3
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Compound Logics for Modification Problems be seen as a "two-dimensional product" of the two aforementioned meta-algorithmic results, contains both of them as special cases, and automatically implies the tractability of wide families of problems that neither are FOL-definable nor have instances of bounded treewidth.

Our results

In this subsection we give formal statements of our results. We need first some definitions.

Preliminaries on graphs.

Given a graph G, we denote by cc(G) the set of all connected components of G. For a graph G and a set X ⊆ V (G), the stellation of X in G is the graph stell(G, X) obtained from G if, for every C ∈ cc(G \ X), we contract all edges of C to a single vertex v C . The torso of X in G is the graph torso(G, X) obtained from stell(G, X) if, for every v C where C ∈ cc(G \ X), we add all edges between neighbors of v C and finally remove all v C 's from the resulting graph. Given a family of graphs H, we define excl(H) as the class of all graphs minor-excluding the graphs in H and note that excl(H) is minor-closed. The Hadwiger number of a graph G, denoted by hw(G), is the minimum k where G ∈ excl({K k }) and K k is the complete graph on k vertices. We also use the well-known parameter of treewidth of a graph G, denoted by tw(G). Given a graph class G, we define tw(G) = max{tw(G) | G ∈ G}. We define hw(G) analogously. We use G all for the set of all graphs.

Preliminaries on logic. We use CMSOL (resp. FOL) for the set of sentences in counting monadic second-order logic (resp. first-order logic). Given some vocabulary τ and a sentence ϕ ∈ CMSOL[τ ], we denote by Mod(ϕ) the set of all finite models of ϕ, i.e., all structures that are models of ϕ. In this introduction, in order to simplify our presentation, all structures that we consider are either graphs or annotated graphs, i.e., pairs (G, X) where G is a graph and X ⊆ V (G). In the first case τ = {E}, and in the second τ = {E, X}.

Given a ϕ ∈ CMSOL[{E}], we define the connectivity extension

ϕ (c) of ϕ so that G |= ϕ (c) if ∀C ∈ cc(G), C |= ϕ. Similarly, for every L ⊆ CMSOL[{E}], we define L (c) = L∪{ϕ (c) | ϕ ∈ L}.
Notice that {ϕ} (c) = {ϕ, ϕ (c) }. Also by PB(L) we denote the set of all positive Boolean combinations (i.e., using only the Boolean connectives ∨ and ∧) of sentences in L. We next define the following sets of sentences:

The set CMSOL tw [{E, X}] contains every sentence β ∈ CMSOL[{E, X}] for which there exists some c β such that the torsos of all the models of β have treewidth at most c β . Formally,

CMSOL tw [{E, X}] = {β ∈ CMSOL[{E, X}] | ∃c β : tw{torso(G, X) | (G, X) |= β} ≤ c β }. The set EM[{E}]
is the set of all sentences in CMSOL[{E}] that express the minor-exclusion of a non-empty set of graphs. Formally,

EM[{E}] = {µ ∈ CMSOL[{E}] | ∃H ⊆ G all , H = ∅ : Mod(µ) = excl(H)}. Θ 0 [{E}] contains every sentence σ ∧ µ where σ ∈ FOL[{E}] and µ ∈ EM[{E}].
For simplicity, we use CMSOL tw , EM, and Θ 0 as shortcuts for CMSOL tw [{E, X}], EM[{E}], and Θ 0 [{E}], respectively. Note that both CMSOL tw and Θ 0 are undecidable.

Algorithmic meta-theorems. We are now in position to restate three major meta-algorithmic results that were mentioned in the previous subsection.

Proposition 1 (Courcelle [15]). For every β ∈ CMSOL tw , there is an algorithm deciding Mod(β) in linear time.

Proposition 2 (Robertson and Seymour [67,[START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF] and Kawarabayashi, Kobayashi, and Reed [START_REF] Kawarabayashi | The disjoint paths problem in quadratic time[END_REF]). For every minor-closed graph class G, deciding membership in G can be done in quadratic time.

F.V. Fomin, P.A. Golovach, I. Sau, G. Stamoulis, and D.M. Thilikos 51:5 Proposition 3 (Flum and Grohe [30]). For every γ ∈ Θ 0 , there is an algorithm deciding Mod(γ) in quadratic time. Some comments are in order. The statements of Proposition 1 and Proposition 3 have been adapted so to incorporate the combinatorial demands in the logical condition. While they can both be stated for structures, we state Proposition 1 for annotated graphs and Proposition 3 for graphs in order to facilitate our presentation. In the classic formulation of Courcelle's theorem, we are given a sentence β ∈ CMSOL and a tree decomposition of bounded treewidth. As such a decomposition can be found in linear time, using e.g., [START_REF] Hans | A linear time algorithm for finding tree-decompositions of small treewidth[END_REF][START_REF] Korhonen | A single-exponential time 2-approximation algorithm for treewidth[END_REF], the linearity in the running time of Courcelle's theorem is preserved when it is stated in the form of Proposition 1. For the theorem of Flum and Grohe, the situation is different as the combinatorial demand is minor-exclusion of a clique, which is not definable is FOL. For this reason we state Proposition 3 using the logic Θ 0 that contains compound sentences of the form σ ∧ µ, where σ ∈ FOL and µ expresses minor-exclusion. For the running time of the algorithm of Proposition 3, we also need to take into account Proposition 2. As we already mentioned, Proposition 1 and Proposition 3 cannot deal, in general, with modification problems to properties of unbounded treewidth. Moreover, recall that Proposition 2 applies only to problems whose yes-instances are minor-closed.

We stress that Proposition 1, Proposition 2, and Proposition 3 are non-constructive. In order to construct the algorithms promised by Proposition 1, one should also know the bound c β on the treewidth of the models of β ∈ CMSOL tw (note that bounded treewidth is also CMSOL-definable since it is characterized by a finite set of forbidden minors) and this appears in the hidden constants in the running time in Proposition 1. Similarly, for Proposition 2 (resp. Proposition 3), one should have an upper bound on the Hadwiger number of the graphs in G (resp. the models of γ).

A logic for modification problems. As a key ingredient of our result, we define the following operation between sentences. Let β ∈ CMSOL[{E, X}] and γ ∈ CMSOL [{E}]. We refer to β as the modulator sentence on annotated graphs and to γ as the target sentence on graphs. We define β γ so that

G |= β γ if there is X ⊆ V (G) such that (stell(G, X), X) |= β and G \ X |= γ. ( 1 
)
In other words, G |= β γ means that the stellation of X in G, along with X, is a model of the modulator sentence β and the G \ X is a model of the target sentence γ. That way, β implies the modification operation and γ expresses the target graph property. It is easy to see that β γ ∈ CMSOL[{E}]. This will allow us to apply the operation iteratively.

As an example, the problem of removing a set X of k vertices so that G \ X is a trianglefree planar graph can be expressed by β γ if β asks that X has k vertices and γ = σ ∧ µ, where σ expresses triangle-freeness and µ expresses planarity by the exclusion of K 3,3 and K 5 .

Before we present our result in full generality, we give first the following indicative special case, which already expresses the conditions of Proposition 1 and Proposition 3. Theorem 4. For every β ∈ CMSOL tw and every γ ∈ Θ 0 , there is an algorithm deciding Mod(β γ) in quadratic time.

Indeed, Proposition 1 follows if β expresses that X = V (G) and γ demands that G \ X is the empty graph (in particular, Theorem 4 contains Proposition 1 as a linear-time black-box procedure for deciding models of bounded treewidth) and Proposition 3 follows if β demands that X = ∅. In other words, Proposition 1 follows if the target sentence becomes void while Proposition 3 follows if the modulator sentence is void. ). Moreover, in order to present our result in full generality, we recursively define, for every i ≥ 1,

Θ i = {β γ | β ∈ CMSOL tw and γ ∈ PB(Θ (c) i-1 )}. ( 2 
)
Notice that the sentences of Theorem 4 (hence also of Proposition 1 and Proposition 3) are already contained in Θ 1 . We set Θ = i≥1 Θ i . The full strength of our results, stated in the vocabulary of graphs, is given by our main theorem.

Theorem 5. For every θ ∈ Θ, model-checking for θ can be done in quadratic time.

An alternative statement. Our results can also be seen under the typical meta-algorithmic framework where a logical and a combinatorial condition are given. For this, consider an alternative of Θ, called Θ, that is defined as in ( 2) by taking Θ0 = FOL as the base case, i.e., by discarding the minor-exclusion from the definition of Θ 0 . Notice that Θ contains FOL and can be seen as a natural extension of it. A direct consequence of Theorem 5 is the following. Theorem 6 is a corollary of Theorem 5 and provides an alternative meta-algorithmic set up between the logical and the combinatorial condition (see Figure 1): for each sentence θ in Θ, one may consider a sentence θ in Θ where we discard minor-exclusion from all its target sentences and then consider the problem of deciding Mod(θ) on some minor-excluding graph class. This correspondence is many-to-one, as many different θ ∈ Θ correspond to the same θ ∈ Θ. We opted for presenting and proving our results in the form of Theorem 5, as it is more general and more versatile in expressing modification problems. In the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF], we define we define Θ on general structures.

Compound logics based on FOL+DP.

In the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF], by combining our proofs with the meta-algorithmic results of [START_REF] Golovach | Model-checking for firstorder logic with disjoint paths predicates in proper minor-closed graph classes[END_REF][START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF], we extend Theorem 5 (resp. Theorem 6) in the cases of the logic Θ DP (resp. ΘDP ) that are obtained if in the definition of Θ (resp. Θ) we now consider the (more expressive) logic FOL+DP instead of FOL in the target sentences. That way, the derived extensions of Theorem 5 and Theorem 6 (that is, Theorem 8 and Theorem 9) encompass, as special cases, all results and applications in [START_REF] Golovach | Model-checking for firstorder logic with disjoint paths predicates in proper minor-closed graph classes[END_REF][START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF] (see Figure 3 for a visualization of the overall state-of-the-art on the related algorithmic meta-theorems on subgraph-closed graph classes). While presenting our results and techniques, for the sake of simplicity, we chose to focus on the statement and the proof of our meta-theorems for Θ (Theorem 5) and Θ (Theorem 6) and then, in the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF], present the modifications that should be applied in order to extend them for Θ DP and ΘDP .

A parametric variant of our results. A graph parameter is a function p : G all → N. We say that p is treewidth-bounded if there is a function f : N → N such that for each G ∈ G all , p(G) ≤ f (tw(G)). We say that p is CMSOL-definable if for every k ∈ N there is a CMSOLsentence (on graphs) β k such that the set of all models of

β k is Mod(β k ) = {G | p(G) ≤ k}.
Clearly, if p is treewidth-bounded then we can also assume that each β k is a sentence in CMSOL tw and in this case we say that p is CMSOL tw -definable. There are several known graph parameters that are CMSOL tw -definable, such as treewidth, pathwidth, tree-depth, bridge-depth, block tree-depth, vertex cover, feedback vertex set, branch-width, carving-width, or cutwidth.

For a graph parameter p and a graph class G, we define the new graph parameter

p G : G all → N such that p G (G) = min{k | ∃X ⊆ V (G) | p(torso(G, X)) ≤ k ∧ G \ X ∈ G}.
Thus p G measures by p the quality of a modulator X to property G. For example, when p is the size of the modulator, then this is just the vertex deletion distance to G, that is, the minimum number of vertices X such that G \ X ∈ G. When p is the tree-depth of a graph, then p G is the elimination distance to G. Or when p is the treewidth of a graph, then p G corresponds to G-treewidth. We consider the general setting where p is a CMSOL tw -definable graph parameter and G is a Θ-definable graph class, that is, Mod(θ) = G for some θ ∈ Θ. By setting

θ k = β k θ ∈ Θ, we have that Mod(θ k ) = {G | p G (G) ≤ k}.
Then the following theorem is a direct consequence of Theorem 5 and Theorem 6.

Theorem 7.

Let p be a CMSOL tw -definable graph parameter and G = Mod(θ) for some θ ∈ Θ. Then there is an algorithm that, with input a graph G and k ∈ N, checks whether p G (G) ≤ k in time O k,|θ| (n 2 ). Moreover, if G = Mod( θ) for some θ ∈ Θ, then there is an algorithm that, with the same input, checks whether

p G (G) ≤ k in time O k,|θ|,hw(G) (n 2 ).
All the results mentioned in this subsection, in what concerns minor-excluded graphs, are subsumed by Theorem 7. Moreover, by allowing FOL-definability in the target sentence and CMSOL tw -definability in the modulator sentence, we vastly extend Proposition 2 to graph classes and parameters that are not necessarily minor-closed or hereditary. We stress that none of the results in [START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF][START_REF] Pilipczuk | Algorithms and data structures for first-order logic with connectivity under vertex failures[END_REF] is able to deal with the problems captured by Theorem 7 in their full generality.

Constructibility. While Robertson-Seymour's theorem (Proposition 2) implies the existence of an algorithm, its proof is not constructive and cannot be used to construct such an algorithm [START_REF] Michael | Nonconstructive tools for proving polynomialtime decidability[END_REF]. An extra feature of the proof of Theorem 5 (as well as of its corollary Theorem 6) is that it is constructive, in the sense that the implied algorithms can be constructed if we are given some bound on the Hadwiger number of the models of θ. This considerably extends the constructibility horizon of Proposition 2 for graph classes that are not necessarily minor-closed or even hereditary. See the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF] for more details. Seymour in [START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF], along with some suitable version of the Flat Wall theorem which appeared recently in [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF][START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF] (see also [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF][START_REF] Sau | An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]). The algorithm produces equivalent and gradually "strictly simpler" instances of an annotated version of the problem. Each equivalent instance is produced in linear time and this simplification is repeated until the graph has bounded treewidth (here we may apply Courcelle's theorem, that is Proposition 1). This yields a (constructive) quadratic-time algorithm. We stress that our approach avoids techniques that have been recently used for this type of problems such as recursive understanding (in [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF]) or the use of important separators (in [START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF]) that give worst running times in n.

Natural limitations

We wish to comment on why the three basic ingredients of the definition of our logic Θ are necessary for the statement and the proof of our meta-algorithmic results.

The first ingredient of Θ is that the modulator sentences belong in CMSOL tw [{E, X}] which is defined so that the treewidth of torso(G, X) is bounded. While it is known that bounding the treewidth is necessary for CMSOL-model-checking [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Kreutzer | Algorithmic meta-theorems[END_REF], one may ask why it is not enough to just bound the treewidth of G[X]. To see why this unavoidable, consider a graph G and let G be the graph obtained from G by subdividing each edge once. Then, asking whether G is Hamiltonian, which is a well-known NP-complete problem, is equivalent to asking whether G has a vertex set S such that G [S ] is a cycle and such that G \ S is an edgeless graph, that is, a K 2 -minor-free graph. Notice that, while tw(G [S ]) = 2, torso(G , S ) = G has unbounded treewidth.

The second ingredient of Θ is minor-exclusion, that is materialized by the conjunction with µ in the definition of Θ 0 . Notice first that expressing whether a graph G contains a clique on k vertices can be done by a FOL-sentence, while the k-Clique problem is W [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF]-hard [START_REF] Cygan | Parameterized Algorithms[END_REF]. Therefore, the minor-exclusion condition cannot be dropped. Moreover, even if we consider a fixed target FOL-sentence, it was proved in [START_REF] Fedor | On the parameterized complexity of graph modification to first-order logic properties[END_REF] that there exists a FOL-sentence σ such that checking whether a graph G has a set S ⊆ V (G) with |S| = k such that G \ S |= σ is a W [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF]-hard problem, when parameterized by k. This implies that, even for this restricted problem where the FOL-sentence σ is fixed, an algorithm running in time f (k) • n O(1) cannot be expected.

The third ingredient of Θ is the FOL demand, that is materialized by the conjunction with σ in the definition of Θ 0 . This is also necessary, as otherwise we may choose some property σ not definable in FOL, such as Hamiltonicity, which is CMSOL-definable and NP-complete on planar graphs. Without the restriction that σ needs to be FOL-definable, a void modulator and a sentence µ expressing planarity would be able to model this NP-complete problem. Nevertheless, we may consider extensions of FOL in the target sentence, as done in Section 3.

Overview of the proof

In this section we summarize some of the main ideas involved in the proof of Theorem 5, while keeping the description at an intuitive level. We would like to stress that some of the informal definitions given in this section are deliberately imprecise, since providing the precise ones would result in a huge overload of technicalities that would hinder the flow of the proof. Our algorithms consider as input a general structure A (not necessarily a graph), and most of the arguments in the proofs concern its Gaifman graph G A . Dealing with general structures, besides making our results more versatile, turns out to be useful in the proofs, in particular for using tools such as the Backwards Translation Theorem [18, Theorem 1.40], or for extending our results to other modification operations beyond vertex removal (see the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF]). Since the Gaifman graph of a graph is the graph itself, in this overview we will assume for simplicity that the input of our algorithms is a graph G, instead of a general structure A. In Subsection 2.1 we present the general scheme of the algorithm. In Subsection 2.2 we present a simplified and illustrative setting, where the input sentence θ belongs to the fragment Θ1 . This (very) particular case of Theorem 5 is helpful to illustrate our main conceptual ideas. For a more detailed proof-overview and formal proofs (up to the general compound logic Θ considered in Theorem 5), we refer the reader to the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF].

General scheme of the algorithm

We use the irrelevant vertex technique introduced by Robertson and Seymour [START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF]. Our overall strategy is the "typical" one when using this technique: if the treewidth of the input graph G is bounded by an appropriately chosen function, depending only on the sentence θ ∈ Θ, then we use Courcelle's theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. recognizable sets of finite graphs[END_REF] and solve the problem in linear time, using the fact that our compound logic Θ is a fragment of counting monadic second-order logic.

Otherwise, we identify an irrelevant vertex in linear time, that is, a vertex whose removal produces an equivalent instance. Naturally, the latter case concentrates all our efforts and, in what follows, we sketch the main ingredients that we use in order to identify such an irrelevant vertex. In a nutshell, our approach is based on introducing a robust combinatorial framework for finding irrelevant vertices. In fact, what we find is annotation-irrelevant flat territories, building on our previous recent work [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF][START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF][START_REF] Fedor | An algorithmic meta-theorem for graph modification to planarity and FOL[END_REF][START_REF] Sau | An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes[END_REF][START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF], which is formulated with enough generality so as to allow for the application of powerful tools such as Gaifman's locality theorem [START_REF] Gaifman | On local and non-local properties[END_REF] or a variant of Courcelle's theorem on boundaried graphs, intuitively saying that the dynamic programming tables constructed by the proof of Courcelle's theorem are also definable in CMSOL (see [START_REF] Hans | Meta) Kernelization[END_REF]Lemma 3.2]).

Flat walls. An essential tool of our approach is the notion of flat wall, originating in the work of Robertson and Seymour [START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF]. Informally speaking, a flat wall W is a structure made up of (non-necessarily planar) pieces, called flaps, that are glued together in a bidimensional gridlike way defining the so-called bricks of the wall. While such a structure may not be planar, it enjoys topological properties similar to those of planar graphs, in the sense that two paths that are not routed entirely inside a flap cannot "cross", except at a constant-sized vertex set A whose vertices are called apices. Hence, flat walls are only "locally non-planar", and after removing apices we can apply useful locality arguments, in the sense that two vertices that are in "distant" flaps should also be "distant" in the whole graph without the apices. One of the most celebrated results in the theory of Graph Minors by Robertson and Seymour [START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF][START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF], known as the Flat Wall theorem (see also [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF][START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF] for recently proved variants), informally states that graphs of large treewidth contain either a large clique minor or a large flat wall.

In this article we use the framework recently introduced in [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF] that provides a more accurate view of some previously defined notions concerning flat walls, particularly in [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF]. Precise definitions of the concepts of flatness pair, homogeneity, regularity, tilt, and influence can be found in the full version of this article [START_REF] Fedor | Compound logics for modification problems[END_REF] and we stress that they are not critical in order to understand the main technical contributions of the current article (however, they are critical for their formal correctness). In what follows, when considering a flat wall W with an apex set A in a graph G, for simplicity we refer to W by using indistinguishably the terms "wall" and "compass of a wall", which can be roughly described as the component containing W in the graph obtained from G by removing A and the "boundary" of W .

Working with an annotated version of the problem. We start by defining a convenient equivalent version of the problem, by replacing our sentence θ ∈ Θ with an equivalent enhanced sentence θ R,c . This is done in two steps, as we explain in the following two paragraphs.
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Assuming the existence of a flat wall and an apex set in our input graph G, we first transform the question θ on G to a question on a structure obtained from G by "neutralizing" the apex set (see the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF]). The goal of this step is to ask the final FOL-sentences σ of our sentence θ in a "flattened" structure, where apices can no longer "bring close" any distant parts of the wall. This transformation of the problem, which we call apex-projection, will allow for the application of the locality-based strategy discussed in the definition of the in-signature of a wall in Subsection 2.2. To do this, we introduce some additional constant symbols c to our vocabulary that will be interpreted as the apex vertices.

The second step consists in defining an equivalent annotated version of the problem in order to deal with the FOL-sentences of θ, inspired by the approach of [START_REF] Fedor | An algorithmic meta-theorem for graph modification to planarity and FOL[END_REF]. To do so, we introduce a vertex set R ⊆ V (G), and require, for each FOL-sentence σ of θ, that the vertices interpreting the variables of (the equivalent Gaifman sentence of) σ belong to the annotated set R. We prove that the initial sentence θ and the obtained sentence, denoted by θ R,c and called an enhanced sentence, are equivalent for any choice of the apex set interpreting c and when R is interpreted as the whole vertex set of the graph. This independence of the choice of the apex set is strongly used in the proofs since, as discussed below, we will consider a number of different flat walls, each of which associated with a different apex set.

Our algorithms will work with the enhanced sentence θ R,c . Starting with the input graph G with V (G) as the annotated set R, we will create successive equivalent annotated instances, in which vertices from G are removed and such that the annotated set R is only reduced.

Zooming inside a flat wall. Our next step is to find, in G, a large flat wall W 0 to work with. The definition of our logic Θ implies that models of θ exclude a fixed complete graph K c as a minor, where c depends only on θ. Therefore, we can apply the algorithmic version of the Flat Wall Theorem [72, Proposition 10] (see also [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF][START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF][START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF]) to the input graph G and, assuming that the treewidth of G is large enough, we can find in linear time a flat wall W 0 and an apex set A in G such that the height of W 0 is a sufficiently large function of θ. Moreover, another crucial property guaranteed by this algorithm is that the treewidth of W 0 is bounded from above by a function of θ. This will be exploited in Subsection 2.2 in order to compute the so-called θ-characteristic of a wall. We will now apply a series of "zooming" arguments to the wall W 0 , which are illustrated in Figure 2.

Find_Equiv_FlatPairs W 1 W 2 W 3 W W Figure 2
Sequence of walls in the general scheme of our algorithm. The first wall is obtained by applying the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF]Proposition 14] for the wall W0 in the input graph G.

Starting from W 0 and its associated apex set A, we apply the algorithm of [72, Proposition 14] and find, in linear time, a large (again, as a function of θ) subwall W 1 that is λ-homogeneous, where λ depends only on θ. The definition of a homogenous flat wall can be found in the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF], and roughly means that each of its bricks can route the same set of partial minors of the graphs corresponding to the minor-exclusion part of the sentence θ. We now apply the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]Lemma 16] to W 1 , and obtain in linear time a large subwall W 2 that is irrelevant with respect to the minor-exclusion part of θ after the removal of a vertex set X ⊆ V (G) of small enough bidimensionality (see Subsection 2.2). Intuitively, working "inside" W 2 allows us to "forget" the minor-exclusion part of θ in what follows. As our next step, we obtain in linear time a still large subwall W 3 of W 2 such that its associated apex set A 3 is "tightly tied" to W 3 , in the sense that the neighbors in W 3 of every vertex in A 3 are spread in a "bidimensional" way.

Finding an irrelevant subwall. So far, we have found a large wall W 3 that satisfies the conditions of the above paragraph. Now, in order to identify an irrelevant vertex inside W 3 , we find, inside the wall W 3 , a collection W of pairwise disjoint subwalls, and to associate each of these subwalls with an appropriately defined θ-characteristic that captures its behavior with respect to the partial satisfaction of the sentence θ. Then the idea is that, if there are sufficiently many subwalls in W with the same θ-characteristic (called θ-equivalent), then some subwall in the interior of one of them can be declared annotation-irrelevant and this implies some progress in simplifying the current problem instance.

The above strategy allows to identify a subwall W inside W such that its central part can be removed from the annotated set R, and such that a smaller central part can be removed from G (the blue and grey subwalls in the rightmost wall of Figure 2, respectively). This is done by an algorithm, called Find_Equiv_FlatPairs, that is based on an appropriate definition of the θ-characteristic of a wall. In what follows we sketch the main ingredients and key ideas.

A simplified and illustrative setting

In order to provide some intuition, in this subsection we focus on formulas θ ∈ Θ of a particular form, i.e., belonging to Θ1 , a set of formulas which we proceed to define informally in a semantical level: Given a general graph G as input, we seek for a vertex set X ⊆ V (G), called modulator, such that, using the notation defined in the introduction, stell(G, X) satisfies the so-called modulator sentence β, and either every connected component C of G \ X, or the whole graph G \ X, satisfies the so-called target sentence γ, where γ = σ ∧ µ with σ being an arbitrary FOL-sentence and µ expressing the property of belonging to a proper minor-closed graph class.

Note that when θ ∈ Θ1 , the target sentence γ needs to be satisfied either by each of the resulting connected components separately, or jointly by their union. We deal with this easily, by introducing a •/• -flag into the corresponding sentences that distinguishes both cases. The latter case is simpler, but in this description, in order to better illustrate our techniques, we assume the former.

Identifying the privileged component. A very useful tool in our algorithms is to identify, for every given X, a unique connected component among those of G \ X, which we call the privileged component, that contains "most" of the wall W 3 . Let us formalize a bit this idea. For a positive integer q, a pseudogrid W q , is a collection of q "vertical" and q "horizontal" paths that intersect in a "grid-like" way. Note that the considered wall W 3 naturally defines a (large, as a function of θ) pseudogrid. A connected component C of a graph G is privileged with respect to a set X ⊆ V (G) and a pseudogrid W q if C is a connected component of G \ X that contains entirely at least one vertical and one horizontal path of W q . It is easy to see that such a privileged component, if it exists, is unique.

Moreover, when X is a modulator, the fact that torso(G, X) has bounded treewidth implies that every connected component of G \ X has a "small interface" to X and thus the flat wall W 0 (and any large subwall of it) is not significantly "damaged" by X, which we formalize via the notion of having small bidimensionality. Intuitively for the definition), this means that X intersects a small number of so-called "bags" of the wall. Informally, the bags of a wall W in a graph G with apex set A define a partition of G \ A into connected sets, such that each bag, except the external one, contains the part of the wall W between two I C A L P 2 0 2 3 51:12 Compound Logics for Modification Problems neighboring degree-3 vertices of the wall. This property is used extensively in the proofs and, in particular, it defines, assuming the existence of a large flat wall W 0 and a modulator X, a unique privileged component C in G \ X (regardless of the •/•-flag). In our sentences, in order to identify such a component, we need to integrate the "recognition" of a pseudogrid W q and its associated privileged component with respect to a modulator X: it is easy to see that these properties can be defined in CMSOL.

Splitting the sentence θ R,c . The existence of a privileged component C allows us to see the sentence θ R,c as a conjunction of two subsentences: one that concerns the privileged component C (where we will find the irrelevant vertex) and another one concerning the modulator X and the other (non-privileged) components of G \ X. Namely, we define a sentence θq , called the split version of θ R,c , that allows us to "break" θ into two questions: one denoted by θ out q that is the conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of G \ X and another one that concerns the target sentence γ in the privileged component C. This latter question is composed of two subsentences, namely one about the satisfaction of the FOL-sentence σ and another one about the minor-exclusion given by µ. Given this decomposition of θ into three questions (one "external" and two "internal" ones), our "irrelevancy" arguments also decompose into three parts. Concerning the "irrelevancy" for minor-exclusion, as discussed above, the fact that the whole wall W 2 is irrelevant with respect to µ allows us to focus on the other two questions. For this, we need to define the characteristic of a wall with respect to θ, denoted by θ-char. This characteristic is composed of two parts: the out-signature corresponding to the satisfiability of the sentence θ out q , and the in-signature corresponding to the FOL-sentence σ. Let us now explain how we define the out-signature and the in-signature, and sketch why we can eventually declare a subwall irrelevant.

Defining the out-signature of a wall. Dealing with the irrelevancy with respect to the "external" sentence θ out q turns out to be the most interesting part of the proof and we introduce several ideas which are, in our opinion, one of the main conceptual contributions of this article. The goal is, for each wall W in the collection W, to encode all the necessary information that concerns the satisfiability of θ out q in the "non-privileged" part of the graph and the modulator X. To do this, for each W ∈ W with apex set A, we define a set of -boundaried graphs (i.e., graphs in which "boundary" vertices are equipped with labels), constructed as we describe below, and where depends only on θ. The boundary corresponds to where the sentence has been "split" and we need to "guess" how to complement this boundary by the part of the modulator that is not inside the wall. Note that, since θ out q is a CMSOL-sentence, by a variant of Courcelle's theorem for boundaried graphs [START_REF] Courcelle | The monadic second-order logic of graphs. I. recognizable sets of finite graphs[END_REF], there exists a finite collection rep ( ) (θ out q ) of sentences on -boundaried graphs that are "representatives" of the sentence θ out q and that can be effectively constructed. We next described how these -boundaried graphs are constructed.

We observe that, using the bounded-treewidth property of the modulator sentence β, there exists a "buffer" I in W, consisting of a set of consecutive layers of the wall, which is disjoint from a hypothetical modulator X. We guess with an integer d where this "buffer" I is placed in the wall and we denote its inner part by I (d) . This naturally induces a partition of X into X in and X out , with X in being the part of X that is inside I (d) . We also guess which subset of the apex set A will belong to the modulator X and we denote it by V L (a), where L is the set containing the indices of the corresponding apex vertices. Since parts of the "non-privileged" vertex set of the graph may lie outside the considered wall, we need to guess the part of the modulator (namely, its boundary towards the component) that lies outside the wall. More precisely, we need to guess as well which subset F of X out , other than V L (a), will belong to the neighborhood of the privileged component. This is achieved by guessing all ways an (abstract) graph F with a bounded number of vertices can extend the boundary. We let F be the graph obtained from the union of V L (a) and F . Finally, we also need to consider a set Z that corresponds to X in together with the part inside I (d) that has been "chopped off" by the modulator X, that is, the part of W inside I (d) that will not belong to the privileged component after the removal of the modulator X. We denote by ∂(Z) the set of vertices in Z that have a neighbor in I (d) . Altogether, these guesses result in the -boundaried graph K (d,Z,L,F ) obtained from the graph induced by I (d) and the set F, whose boundary is the set ∂(Z) ∪ F .

With each such a guess (R, d, L, Z) we associate the out-signature defined as follows and denoted by out-sig. Its elements are pairs (H, θ), where H encodes how the set V L (a) in the boundary has been extended by the "abstract" graph F , and θ ∈ rep ( ) (θ out q ) prescribes the equivalence class, within the set of Courcelle's representatives mentioned above, of the considered -boundaried graph. This concludes the description of the out-signature.

While this out-signature indeed encodes the behavior of the considered wall with respect to the "external" sentence θ out q , a crucial issue has been overlooked so far: in order to be able to identify an irrelevant subwall inside the collection W within the claimed running time, we need to be able to compute the (in-and out-)signature of a wall in linear time. To do this using Courcelle's theorem, we need to consider a graph that has treewidth bounded by a function of θ. Recall that θ out q is the conjunction of the modulator sentence β (which is evaluated in the graph stell(G, X)) and the target sentence γ in the "non-privileged" components of G \ X. It follows that the treewidth of W is bounded by a function of θ, hence the treewidth of the -boundaried "subwall" K (d,Z,L,F ) , for which we want to compute the out-signature, is also bounded by a function of θ. However, the graph K (d,Z,L,F ) \ V (F ) "lives" inside the whole privileged component C, and we cannot guarantee that the treewidth of C is bounded by a function of θ. We overcome this problem with the following trick. We observe that the satisfaction of θ out q is preserved if, instead of the whole privileged component C, we consider the graph K (d,Z,L,F ) , which is obtained by "shrinking" C to the subwall I (d) , and which has bounded treewidth as we need. Indeed, this modification does not change any of the non-privileged components in which the target sentence γ is evaluated and, by adding edges from the "guessed extended boundary" F to I (d) in order to preserve connectivity, the resulting graph stell(G, X) remains unchanged with this transformation, and therefore the satisfaction of the modulator sentence β is also preserved.

Defining the in-signature of a wall. To deal with the irrelevancy with respect to the FOL-sentence σ, we use arguments strongly inspired by those of [START_REF] Fedor | An algorithmic meta-theorem for graph modification to planarity and FOL[END_REF]. The core tool here is Gaifman's locality theorem, which states that every FOL-sentence σ is a Boolean combination of basic local sentences σ 1 , . . . , σ p , in the sense that the satisfaction of each σ i depends only on the satisfaction of a set of sentences ψ 1 , . . . , ψ i evaluated on single vertices that can be assumed to be pairwise far apart. As discussed before, taking care of the domain of these vertices is the main reason why we consider a annotated version of the problem, corresponding to the enhanced sentence θ R,c . Extending the approach of [START_REF] Fedor | An algorithmic meta-theorem for graph modification to planarity and FOL[END_REF] (which does not deal with apices), the in-signature of a wall, denoted by in-sig, encodes all (partial) sets of variables, one set for each basic local sentence of the so-called Gaifman sentence σ, such that these variables lie inside an "inner part" of the wall, they are scattered in the "apex-projection" of this inner part, and they satisfy the local sentences ψ i .

Declaring a subwall irrelevant. We now sketch the remaining of the proof for sentences in Θ1 . As mentioned above, suppose that we have already found, inside the collection W, a large (as a function of θ) subcollection W ⊆ W of walls all having the same θ-characteristic. I C A L P 2 0 2 3
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We pick one of these walls, say W ∈ W , and we declare its central part irrelevant (see Figure 2). We need to prove that, if the input graph G satisfies θ, then the graph G obtained from G by removing the central part of W , also satisfies θ. That is, given a modulator X in the original instance G, we need to construct another set X ⊆ V (G) that is disjoint from W and that is a modulator in G . For this, we proceed as follows.

The cardinality of W and the fact that X intersects few bags of the wall W 3 imply that there is a large (again, as a function of θ) subcollection W ⊆ W of walls that are disjoint from X. We take such a wall Ŵ ∈ W and, using the fact that W and Ŵ have the same θ-characteristic, we show that we can "replace" the part of the modulator X that intersects W with another part in Ŵ , together with an alternative assignment of variables that satisfies the corresponding sentences. This results in another set X that is a modulator in G , hence yielding the annotation-irrelevancy of (the central part of) W .

Showing these facts is far from being easy and we need a number of technical details dealing with the irrelevancy with respect to θ out q (which incorporates β), σ, and µ. In particular, an important idea is that, changing from X to X , we obtain a new boundaried graph, which is in fact the same graph but with a new boundary. The replacement arguments for the in-signature work because of the aforementioned distance-preservation property of the apex-projection. See the full version of the paper [START_REF] Fedor | Compound logics for modification problems[END_REF] for more details.

3

From FOL to FOL+DP: the compound logic Θ DP

In the definition of Θ 0 , the base case of Θ, we consider compound sentences σ ∧ µ, where σ ∈ FOL and µ expresses minor-exclusion. However, one can consider extensions of FOL in the compound sentences. A possible candidate is first-order logic with disjoint-paths predicates defined in [START_REF] Schirrmacher | First-Order Logic with Connectivity Operators[END_REF] (see the paragraph below for a formal definition). This way we can define a more general logic Θ DP and prove an algorithmic meta-theorem that encompasses also the results in [START_REF] Golovach | Model-checking for firstorder logic with disjoint paths predicates in proper minor-closed graph classes[END_REF][START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF]. To ease reading, in this subsection we deal only with graphs and not with general structures. However, our results can be straightforwardly be extended to general structures. All proofs of the results of this section can be found in Section 3.

The disjoint-paths logic. We define the 2k-ary predicate dp k (x 1 , y 1 , . . . , x k , y k ), which evaluates true in a graph G if and only if there are paths P 1 , . . . , P k of G of length at least two between (the interpretations of) x i and y i for all i ∈ [k] such that for every i, j ∈ [k], i = j, V (P i ) ∩ V (P j ) = ∅. We let FOL+DP be the logic obtained from FOL after allowing dp k (x 1 , y 1 , . . . , x k , y k ), k ≥ 1 as atomic predicates.

The compound logic Θ DP . We define an extension Θ DP of Θ by considering, as the base case, instead of Θ 0 , the logic Θ DP 0 = {σ ∧ µ | σ ∈ FOL+DP and µ ∈ EM[{E}]}. Theorem 8. For every θ ∈ Θ DP , there exists an algorithm that, given a graph G, outputs whether G |= θ in time O |θ| (n 2 ).

As we define the alternative Θ of Θ, we can also define ΘDP by taking ΘDP 0 = FOL+DP as the base case, i.e., by discarding the minor-exclusion from the definition of Θ DP 0 . Notice that ΘDP contains FOL+DP and can be seen as a natural extension of it. As a corollary of Theorem 8, we get the following analogue of Theorem 6. Theorem 9. For every θ ∈ ΘDP , there exists an algorithm that, given a graph G, outputs whether G |= θ in time O |θ|,hw(G) (n 2 ).

Theorem 9 contains all results and applications of [START_REF] Golovach | Model-checking for firstorder logic with disjoint paths predicates in proper minor-closed graph classes[END_REF][START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF] as a (very) special case. For a visualization of the current meta-algorithmic landscape on subgraph-closed classes, see Figure 3. 

Further research

The minor-exclusion framework. The graph-structural horizon in both Theorem 5 and Theorem 6 is delimited by minor-exclusion. In the case of Theorem 5, this restriction is applied to the target property defined by µ in the logic Θ, while in Theorem 6 this is the promise combinatorial restriction that yields efficient model-checking for Θ. This restriction is hard-wired in our proof in the way it combines the Flat Wall theorem with Gaifman's theorem. Recently, several efficient algorithms appeared for modification problems targeting or assuming topological minor-freeness (see [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF][START_REF] Fedor | Hitting topological minors is FPT[END_REF][START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF] and the meta-algorithmic results in [START_REF] Pilipczuk | Algorithms and data structures for first-order logic with connectivity under vertex failures[END_REF][START_REF] Schirrmacher | Model checking disjoint-paths logic on topological-minor-free graph classes[END_REF]). For such classes, to achieve efficient model-checking for Θ, or some fragment of it, is an interesting open challenge.

Quadratic time. The proof of Theorem 5 can be seen as a possible "meta-algorithmization" of the irrelevant vertex technique introduced by Robertson and Seymour [START_REF] Robertson | Graph minors. XIII. The disjoint paths problem[END_REF], going further than the two known recent attempts in this direction [START_REF] Fedor | An algorithmic meta-theorem for graph modification to planarity and FOL[END_REF][START_REF] Golovach | Model-checking for first-order logic with disjoint paths predicates in proper minor-closed graph classes[END_REF]. The main routine of the algorithm transforms the input of the problem to a simpler graph by detecting territories in it that can be safely discarded, therefore producing a simpler instance. This routine is applied repetitively until the graph has "small" treewidth, so that the problem can be solved in linear time by using Courcelle's theorem. This approach gives an algorithm running in quadratic time. Any improvement of this quadratic running time should rely on techniques escaping the above scheme of gradual simplification. The only results in this direction are the cases of making a graph planar by deleting at most k vertices (resp. edges) in [START_REF] Bart | A near-optimal planarization algorithm[END_REF] (resp. [START_REF] Kawarabayashi | Computing crossing number in linear time[END_REF]) that run in time O k (n).

Further than connectivity closure. One of the key operations defining Θ is the connectivity extension operation, that is, given a sentence ϕ, to consider the (conjunctive) sentence ϕ (c) . We incorporated this operation to our logic in order to express elimination distance modifications (such as those of tree-depth [START_REF] Bulian | Fixed-parameter tractable distances to sparse graph classes[END_REF] and bridge-depth [START_REF] Bougeret | Bridge-depth characterizes which structural parameterizations of vertex cover admit a polynomial kernel[END_REF]) where, at each step, we remove some tree-like structure and then we apply the current target sentence to the connected components of the remaining graph. In [START_REF] Oznur | Block elimination distance[END_REF], the notion of block elimination distance has been introduced, where the target property is applied to the biconnected components of the remaining graph (instead of the connected components). We are confident that our results can be adapted so to include the biconnectivity extension -or even the 3-connectivity extension, as defined by Tutte's decomposition. However, we prefer to avoid this here as it would add undesirable burden to the statement of our results (and to the proofs as well).

Another direction is to consider different versions of ϕ (c) . One of them might be a disjunctive version, namely ϕ ∨(c) , where G |= ϕ ∨(c) if at least one of the connected components of G is a model of ϕ. Another one is a selective version, namely ϕ ∃(c) , where G |= ϕ ∧(c) if there is some subset of the connected components of G whose union is a model of ϕ. Our proof fails if we wish to incorporate any of these two variants of ϕ (c) in Θ. However, it can be easily adapted so to incorporate ϕ ∨(c) in Θ.

Descriptive complexity and the Θ-hierarchy. Recall that Θ = i∈N Θ i , where each level of the sentence set Θ i is defined by adding an extra modulator sentence, followed by some positive Boolean combination of the connectivity closure of the lower level. We extended our result from Θ 1 to every Θ i because Θ is quite versatile and makes it easier to express more complex hierarchical modification problems. However, it is an open problem whether this hierarchy is proper with respect to the descriptive complexity of the problems that it defines in each of its levels. In simple cases where the modulator sentence asks for a set of bounded size, and under the absence of positive Boolean combinations, it is possible to express any Θ-definable problem using Θ 1 . For instance, elimination ordering to some Θ 0 -definable class can be straightforwardly expressed in Θ, however with a more technical proof one can also express it in Θ 1 (see [START_REF] Fedor | Parameterized complexity of elimination distance to first-order logic properties[END_REF]). Is this collapse maintained when we consider the full expressive power of Θ? We conjecture a negative answer to this question for both Θ and Θ DP .

  As a first step towards a more general statement, Theorem 4 also holds if we replace γ ∈ Θ 0 by γ ∈ Θ (c) 0 or even by positive Boolean combinations of sentences in Θ
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 61 Figure 1Theorem 6 in the current meta-algorithmic landscape. The vertical axis is the combinatorial one and is marked by four different types of (structural) sparsity, while the horizontal one is the logical one and is marked with FOL, Θ, and CMSOL.
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 38 The algorithm and the proofs of Theorem 5 use as departure point core techniques from the proofs of Propositions 1, 3, and 2 such as Courcelle's theorem for dealing with CMSOL-sentences, the use of Gaifman's theorem for dealing with FOL-sentences, I C A L P 2 0 2 Logics for Modification Problems and an extended version of the irrelevant vertex technique, introduced by Robertson and
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 9 -17], Borie, Parker & Tovey[START_REF] Borie | Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families[END_REF] and Arnborg, Lagergren & Seese[START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF] Pilipczuk, Schirrmacher, Siebertz, Torunczyk, & Vigny[START_REF] Pilipczuk | Algorithms and data structures for first-order logic with connectivity under vertex failures[END_REF] FOL+conn, FOL+DP, ΘDP , CMSOL Theorem
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 3 Figure 3The current meta-algorithmic landscape on subgraph-closed classes and the position of Theorem 9 in it.

The Hajós number of a graph G is the maximum k for which G contains K k as a topological minor.I C A L P
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