Laure Morelle

Ignasi Sau

Giannos Stamoulis

Dimitrios M Thilikos

Faster parameterized algorithms for modification problems to minor-closed classes

Keywords: 2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact algorithms Graph minors, Parameterized algorithms, Graph modification problems, Vertex deletion, Elimination distance, Irrelevant vertex technique, Flat Wall Theorem, Obstructions. Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.4 Category Track A: Algorithms, Complexity and Games

Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of G if G contains a set S of at most k vertices such that G \ S belongs to G. Our first result is an algorithm that decides whether G is a k-apex of G in time 2 poly(k) • n 2 . This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time was 2 poly(k) • n 3 . The elimination distance of G to G, denoted by edG(G), is the minimum number of rounds required to reduce each connected component of G to a graph in G by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the existence of an FPT-algorithm, with parameter k, to decide whether edG(G) ≤ k. This algorithm is based on the computability of the minor-obstructions and its dependence on k is not explicit. We extend the techniques used in the first algorithm to decide whether edG(G) ≤ k in time 2 2 2 poly(k)

• n 2 . This is the first algorithm for this problem with an explicit parametric dependence in k. In the special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one running in time 2 2 O(k 2 log k)

• n 2 and one running in time 2 poly(k) • n 3 . As a stepping stone for these algorithms, we provide an algorithm that decides whether edG(G) ≤ k in time 2 O(tw•k+tw log tw) • n, where tw is the treewidth of G. This algorithm combines the dynamic programming framework of Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste, Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial function whose degree depends on G, while the hidden constants also depend on G. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs E k (G) = {G | edG(G) ≤ k}.

Introduction

The distance from triviality is a concept formalized by Guo, Hüffner, and Niedermeier [START_REF] Guo | A structural view on parameterizing problems: Distance from triviality[END_REF] to express the closeness of a graph to a supposedly "simple" target graph class. One such a measure of closeness is, for instance, the number of vertices or edges that one must delete/add from/to a graph G to obtain a graph in the target graph class. This concept of distance to a graph class has recently gained the interest of the parameterized complexity community. The motivation is that, if a problem is tractable on a graph class G, it is natural to study other classes of graphs according to their "distance to G". In this paper, we focus on two such measures of distance from triviality: Given a target graph class G, we consider the vertex deletion distance to G and the elimination distance to G, which we formalize next. Given a target graph class G and a non-negative integer k, we define A k (G) as the set of all graphs containing a set S of at most k vertices whose removal results in a graph in G. If G ∈ A k (G), then we say that G is a k-apex of G. We refer to S as a k-apex set of G for the class G. In other words, we consider the following meta-problem for a fixed class G.

Vertex Deletion to G Input: A graph G and a non-negative integer k. Objective: Find, if it exists, a k-apex set of G for the class G.

Throughout the paper, we denote by n (resp. m) the number of vertices (resp. edges) of the input graph of the problem under consideration. The importance of Vertex Deletion to G can be illustrated by the variety of graph modification problems that it encompasses. For instance, if G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval, chordal) graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion, Chordal Vertex Deletion) problem.

The second measure of distance from triviality that we study was recently introduced by Bulian and Dawar [START_REF] Bulian | Graph isomorphism parameterized by elimination distance to bounded degree[END_REF][START_REF] Bulian | Fixed-parameter tractable distances to sparse graph classes[END_REF]. Given a graph class G, we define the elimination distance of a graph G to G, denoted by ed G (G), as follows:

ed G (G) =        0 if G ∈ G, 1 + min{ed G (G \ {v}) | v ∈ V (G)} if G is connected, max{ed G (H) | H is a connected component of G} otherwise.
Given that ed G (G) ≤ k, a set S ⊆ V (G) of vertices recursively deleted from G to achieve ed G (G) is called a k-elimination set of G for G. We define the (parameterized) class of graphs E k (G) = {G | ed G (G) ≤ k}. The above notion can be seen as a natural generalization of treedepth (denoted by td), which corresponds to the case where G contains only the empty graph. Treedepth, along with treewidth, are two of the most studied and widely used parameters to measure the structural complexity of a graph [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Kloks | Computations and Approximations[END_REF][START_REF] Nesetril | Sparsity -Graphs, Structures, and Algorithms[END_REF]. The second meta-problem that we consider is the following, again for a fixed graph class G.

Elimination Distance to G Input: A graph G and a non-negative integer k. Objective: Find, if it exists, a k-elimination set of G for the class G.

Unsurprisingly, Vertex Deletion to G is NP-hard for every non-trivial graph class G [START_REF] Lewis | The node-deletion problem for hereditary properties is NP-complete[END_REF], while Elimination Distance to G is NP-hard even when G contains only the empty graph [START_REF] Pothen | The complexity of optimal elimination trees[END_REF]. To circumvent this intractability, we study both problems from the parameterized complexity point of view and consider their parameterizations by k. In this setting, the most desirable behavior is the existence of an algorithm running in time f (k) • n O (1) , where f is a computable function depending only on k. Such an algorithm is called fixed-parameter tractable, or FPT-algorithm for short, and a parameterized problem admitting an FPTalgorithm is said to belong to the parameterized complexity class FPT. Also, the function f is called parametric dependence of the corresponding FPT-algorithm, and the challenge is to design FPT-algorithms with small parametric dependencies and with a polynomial factor of small degree [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Niedermeier | Invitation to fixed parameter algorithms[END_REF]. We may also consider XP-algorithms, i.e., algorithms running in time f (k) • n g (k) for some computable functions f and g depending only on k.

In general, for any of the two considered problems, we cannot expect FPT-algorithms for every graph class G. For instance, the two problems are NP-hard, even for k = 0, for every graph class G whose recognition problem is NP-hard. This is the case of 3-colorable graphs, which is a class closed under taking (induced) subgraphs. In this paper, we focus on a family of graph classes that exhibits a nice behavior with respect to the considered problems (and many others): we consider G to be a minor-closed graph class, i.e., such that every minor of a graph in G (that is, obtained from a subgraph of a graph in G by contracting edges; see Section 2 for the formal definition) is also in G. Indeed, it turns out that, for every such a family G, the problems become fixed-parameter tractable, as we proceed to discuss.

The minor-obstruction set (in short obstruction set) of G is the set of minor-minimal graphs that do not belong to G, and is denoted by obs(G). Notice that obs(G) gives a complete characterization of G as, for every graph G, it holds that G ∈ G if and only if, for every H ∈ obs(G), H is not a minor of G. Because of Robertson and Seymour's theorem [START_REF] Robertson | Graph Minors. XX. Wagner's conjecture[END_REF], obs(G) is finite for every minor-closed graph class. As checking whether an h-vertex graph H is a minor of G can be done in time f (h) • n 2 [START_REF] Kawarabayashi | The disjoint paths problem in quadratic time[END_REF][START_REF] Robertson | Graph Minors. XIII. The Disjoint Paths Problem[END_REF], the finiteness of obs(G) along with the above characterization imply that, for every minor-closed graph class G, checking whether G ∈ G can be done in time c • n 2 , where c is a constant depending on the graph class G. This meta-theorem implies the existence of FPT-algorithms for a wide family of problems, including Vertex Deletion to G and Elimination Distance to G. Indeed, this follows by observing that if G is minor-closed, then for every non-negative integer k, the classes A k (G) and E k (G) are also minor-closed.

As Robertson and Seymour's theorem [START_REF] Robertson | Graph Minors. XX. Wagner's conjecture[END_REF] does not give any way to construct the corresponding obstruction sets, the aforementioned argument is not constructive, i.e., it cannot construct the obstruction sets required for the corresponding FPT-algorithms. Moreover, these algorithms are non-uniform in k, meaning that we have a distinct algorithm for every value of k. Important steps towards the constructibility of such FPT-algorithms were done by Adler, Grohe, and Kreutzer [START_REF] Adler | Computing excluded minors[END_REF] and Bulian and Dawar [START_REF] Bulian | Fixed-parameter tractable distances to sparse graph classes[END_REF], who respectively proved that obs(A k (G)) and obs(E k (G)) are effectively computable. Hence, for both problems, it is possible to construct uniform (in k) algorithms running in time f (k) • n 2 for some computable function f . However, this does not imply any reasonable, or even explicit, parametric dependence of the obtained algorithms.

The main focus of this paper is on the parametric and polynomial dependence of FPTalgorithms to solve Vertex Deletion to G and Elimination Distance to G, i.e., for recognizing the classes A k (G) and E k (G), when G is a minor-closed graph class.

Concerning Vertex Deletion to G, after a number of articles for particular cases of minor-closed classes G, such as graphs of bounded treewidth [START_REF] Fedor | Planar F-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Jung | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF], planar graphs [START_REF] Bart | A near-optimal planarization algorithm[END_REF][START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF], or graphs of bounded genus [START_REF] Kociumaka | Deleting Vertices to Graphs of Bounded Genus[END_REF], an explicit FPT-algorithm for any minor-closed graph G was recently proposed by Sau, Stamoulis, and Thilikos [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF], running in time 2 O(k c) • n 3 , where c is a constant that depends on the maximum size of a graph in the obstruction set of G.

I C A L P 2 0 2 3

4:4

Faster parameterized algorithms for modification problems to minor-closed classes Moreover, in the case where obs(G) contains some apex-graph (that is, a 1-apex for the class of planar graphs), Sau, Stamoulis, and Thilikos [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] gave an improved running time of 2 O(k c) • n 2 . Note also that the more general variant where G is a topological-minor-closed graph class is in FPT as well [START_REF] Fedor | Hitting topological minors is FPT[END_REF].

As for Elimination Distance to G when G is minor-closed, no explicit parametric dependence was known, with the notable exception of treedepth, for which Reidl, Rossmanith, Villaamil, and Sikdar [START_REF] Reidl | A faster parameterized algorithm for treedepth[END_REF] gave an algorithm deciding whether td(G) ≤ k in time 2 O(k•tw) • n, where tw := tw(G) (see also [START_REF] Hans | Approximating treewidth, pathwidth, and minimum elimination tree height[END_REF]). Using our terminology, and given that tw(G) ≤ td(G) for every graph G, this yields an FPT-algorithm for Elimination Distance to G ∅ , where G ∅ is the class consisting of the empty graph, running in time 2 O(k 2) • n. Note that this algorithm [START_REF] Reidl | A faster parameterized algorithm for treedepth[END_REF], combined with the fact that td(G) ≤ log(n) • tw(G) (see [START_REF] Hans | Approximating treewidth, pathwidth, and minimum elimination tree height[END_REF]), imply an XPalgorithm for the problem of computing td when parameterized by tw, namely an algorithm that computes the value of td(G) in time n O(tw(G) 2) . To the best of our knowledge, it is open whether computing td parameterized by tw is in FPT.

Before describing our results, let us mention some recent relevant results dealing with Elimination Distance to G for classes G that are not necessarily minor-closed. Agrawal and Ramanujan [4] (resp. Agrawal, Kanesh, Panolan, Ramanujan, and Saurabh [START_REF] Agrawal | An FPT algorithm for elimination distance to bounded degree graphs[END_REF]) provided FPT-algorithms, with parameter k, when G is the class of cliques (resp. graphs of bounded degree). Fomin, Golovach, and Thilikos [START_REF] Fedor | Parameterized complexity of elimination distance to first-order logic properties[END_REF] identified sufficient and necessary conditions for the existence of FPT-algorithms when G is definable in first-order logic (such as having bounded degree). Jansen, de Kroon, and Włodarczyk [START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF] proved, among other results, that if G is a hereditary union-closed graph class and Vertex Deletion to G can be solved in time 2 k O (1) • n O(1) (as it is the case for every minor-closed class G by the results of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF]), then there is an algorithm that, given an n-vertex graph G, computes an O(ed 1) . Therefore, for union-closed minor-closed graph classes G, the result of [START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF] yields an FPT-approximation algorithm for Elimination Distance to G.

G (G) 3)-elimination set of G for G in time 2 ed G (G) O(1) • n O(
Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, and Zehavi [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF] proved that if G is hereditary, union-closed, and definable in monadic second-order logic, then Vertex Deletion to G is (non-uniformly) in FPT if, and only if, Elimination Distance to G is (non-uniformly) in FPT. Incidentally, they also showed that if G is defined by excluding a finite number of connected topological minors, then Elimination Distance to G is (uniformly) in FPT. We note that the results of [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF] do not provide explicit parametric dependencies for these FPT-algorithms. Also, let us mention that it was conjectured in [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF] that Elimination Distance to G is in FPT parameterized by a generalization of treewidth called G-treewidth (see [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF][START_REF] Eiben | Measuring what matters: A hybrid approach to dynamic programming with treewidth[END_REF][START_REF] Bart | Vertex deletion parameterized by elimination distance and even less[END_REF]). Note that, if true, this conjecture would answer the open problem mentioned above of whether computing td parameterized by tw is in FPT.

Our results. In this paper, we provide explicit FPT-algorithms for Vertex Deletion to G and Elimination Distance to G for every fixed minor-closed graph class G. Our first result is the following.

▶ Theorem 1. For every minor-closed graph class G, there exists an algorithm that solves

Vertex Deletion to G in time 2 poly(k) • n 2 .
The degree of the polynomial function poly in the running time of Theorem 1 and of the other results below, as well as the constants hidden in the O-notation in the running time of the algorithms, depend on the maximum size of a graph in obs(G). Thus, the algorithm of Theorem 1, while being uniformly FPT in k, is not uniform in the target class G, as one needs to know an upper bound on the size of the minor-obstructions. This "meta-non-uniformity" applies to all the algorithms presented in this paper, and it is also the case, among many others, of the FPT-algorithms in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF]. The algorithm of Theorem 1 improves the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] from cubic to quadratic complexity in n while keeping the same parametric dependence on k. This answers positively one of the open problems posed in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF].

Our next algorithmic results concern Elimination Distance to G and provide, to the authors' knowledge, the first FPT-algorithms for this problem, when G is minor-closed, with an explicit parametric dependence.

▶ Theorem 2. For every minor-closed graph class G, there exists an algorithm that solves Elimination Distance to G in time 2 2 2 poly(k)

• n 2 . In the particular case where obs(G)

contains an apex-graph, this algorithm runs in time

2 2 O(k 2 log k) • n 2 .
Examples of classes G where obs(G) contains an apex-graph are graphs of bounded Euler genus, such as planar graphs. Our next result improves the parametric dependence of the algorithm of Theorem 2 when obs(G) contains an apex-graph, with a worse polynomial factor.

▶ Theorem 3. For every minor-closed graph class G such that obs(G) contains an apex-graph, there exists an algorithm that solves Elimination

Distance to G in time 2 poly(k) • n 3 .
As discussed later, a crucial ingredient in the algorithms of Theorem 2 and Theorem 3 is to solve Elimination Distance to G parameterized by the treewidth of the input graph. The following result, which may be of independent interest, deals with this case.

▶ Theorem 4. For every minor-closed graph class G, there exists an algorithm that solves

Elimination Distance to G in time 2 O(k•tw+tw log tw)
• n, where tw denotes the treewidth of the input graph.

The algorithm of Theorem 4 can be seen as a generalization of the algorithm of Reidl, Rossmanith, Villaamil, and Sikdar [START_REF] Reidl | A faster parameterized algorithm for treedepth[END_REF] deciding whether td(G) ≤ k in time 2 O(k•tw) • n. Since, for any graph G and any graph class G, ed G (G) ≤ td(G) ≤ tw(G) • log n, Theorem 4 implies the existence of an XP-algorithm for Elimination Distance to G parameterized by treewidth, when G is minor-closed, running in time n O(tw 2) . Given that the conjecture of [START_REF] Agrawal | Deleting, Eliminating and Decomposing to Hereditary Classes Are All FPT-Equivalent[END_REF] is still open, this is the best type of algorithm that one can expect for Elimination Distance to G parameterized by treewidth.

Finally, for any minor-closed graph class G, we provide an upper bound on the size of the graphs in the obstruction set of E k (G).

▶ Theorem 5. For every minor-closed graph class G and for every positive integer

k, each graph in obs(E k (G)) has at most 2 2 2 2 poly(k)
vertices. Moreover, if obs(G) contains an apex-graph, this bound drops to 2 2 poly(k) .

The only previously known bound for the graphs in obs(E k (G)) is the one for treedepth by Dvořák, Giannopoulou, and Thilikos [START_REF] Dvořák | Forbidden graphs for tree-depth[END_REF], who proved that every graph in obs(E k (G ∅)) has size at most 2 2 k-1 . Theorem 5 can be seen as a generalization of the results of Sau, Stamoulis, and Thilikos [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF], who provided similar upper bounds for the graphs in obs(A k (G)).

These two results are, to the authors' knowledge, the first upper bounds on the size of the graphs in the obstruction set for the elimination distance parameter, and give, as an immediate consequence, the first known upper bound for the size of these obstruction sets.

Our techniques. This paper builds heavily on the techniques recently introduced in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] in order to deal with Vertex Deletion to G, which are based on exploiting the Flat Wall Theorem of Robertson and Seymour [START_REF] Robertson | Graph Minors. XIII. The Disjoint Paths Problem[END_REF], namely the version proved by Kawarabayashi, I C A L P 2 0 2 3

4:6

Faster parameterized algorithms for modification problems to minor-closed classes Thomas, and Wollan [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF] and its recent restatement by Sau, Stamoulis, and Thilikos [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF]. In a nutshell, the idea of Theorem 1, Theorem 2, and Theorem 3 is that, as far as the treewidth of the input graph is sufficiently large as an appropriate function of k, it is possible to either "branch" into a number of subproblems that depends only on k and where the value of the parameter is strictly smaller, or to find an irrelevant vertex (i.e., a vertex that does not change the answer to the considered problem) and remove it from the graph. The irrelevant vertex technique originates from Robertson and Seymour [START_REF] Robertson | Graph Minors. XIII. The Disjoint Paths Problem[END_REF] and is further developped in [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]. Once the treewidth is bounded, what remains is to apply the most efficient possible algorithm to solve the problem via dynamic programming on tree decompositions.

Let us focus more particularly on the techniques we use to prove Theorem 1. Contrary to the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] that solves Vertex Deletion to G for any minor-closed class G, we avoid using iterative compression. This explains the improvement from cubic to quadratic complexity in n. The algorithm of Theorem 1 can be seen as an extension of the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] that solves Vertex Deletion to G in the particular case where obs(G) contains some apex-graph, and uses ideas that date back to the work of Marx and Schlotter [START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF] for the Planarization problem, that is, when G is the class of planar graphs. In Section 3 we provide a sketch of the algorithms claimed in Theorem 1, Theorem 2, and Theorem 3, and in Section 4 we present the algorithm of Theorem 1 in full detail, along with a proof of its correctness.

The proof of Theorem 4 consists of a dynamic programming algorithm that combines the framework of [START_REF] Reidl | A faster parameterized algorithm for treedepth[END_REF] for the particular case where G contains only the empty graph (i.e., for treedepth) with the representative-based techniques introduced in [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF]. A bit more precisely, the idea is to encode the partial solutions (called characteristic) via sets of annotated trees with some additional properties. Here, the trees correspond to partial elimination trees and the annotations indicate the representatives, in the leaves of the elimination trees, with respect to the canonical equivalence relation defined for the target class G. The size of the characteristic dominates the running time of the whole algorithm. As usual when dealing with dynamic programming, the formal description of the algorithm is quite technical and lengthy, and has been deferred to the full version of the paper.

Finally, to obtain the upper bound on the size of a graph G ∈ obs(E k (G)) claimed in Theorem 5, we proceed in two steps. First, we bound the treewidth of G by a function of k.

To do so, we observe that if the treewidth of G is big enough, then there is a big enough wall in G, and we find an irrelevant vertex v for Elimination Distance to G in G. However, G \ {v} ∈ E k (G) and G / ∈ E k (G), hence we reach a contradiction. The second step is to bound the size of a minor-minimal obstruction of small treewidth. This uses the classic technique of Lagergren [START_REF] Lagergren | Upper bounds on the size of obstructions and intertwines[END_REF] (see also [21-23, 28, 29, 38, 40, 52]) combined with the encoding of the tables of the dynamic programming algorithm that we use to prove Theorem 4; see the full paper.

Preliminaries

In this section we give some basic definitions needed to understand the main body of the paper. Due to space limitations and the length of all the formal definitions, the complete preliminaries are provided in the full version of the paper (definitions and preliminary results regarding treedepth, treewidth and boundaried graphs, and framework of flat walls).

Minors and obstructions.

A graph G ′ is a minor of a graph G, denoted by G ′ ⪯ G, if G ′ can be obtained from G by a sequence of vertex removals, edge removals, and edge contractions. Let G be a graph class that is closed under taking minors. Recall that the minor obstruction set of G is defined as the set of all minor-minimal graphs that are not in G, and is denoted by obs(G). Given a finite non-empty collection of non-empty graphs F, we denote by exc(F) the set containing every graph G that excludes all graphs in F as minors.

We call each graph in exc(F) F-minor-free.

Restating the problems.

Let G be a minor-closed graph class and F be its obstruction set.

Clearly, Vertex Deletion to G is the same problem as asking, given a graph G and some k ∈ N, for a vertex set S ⊆ V (G) of at most k vertices such that G \ S ∈ exc(F). Following the terminology of [5-8, 19, 20, 34, 35, 51], we call this problem F-M-Deletion. Likewise, Elimination Distance to G is the same problem as asking whether ed exc(F) (G) ≤ k. We thus follow a similar notation and call this problem F-M-Elimination Distance. Using the notation, {K 1 }-M-Elimination Distance is the problem of asking whether td(G) ≤ k.

Some conventions.

In the rest of the paper, we fix G to be a minor-closed graph class and F to be the set obs(G). From Robertson and Seymour's theorem [START_REF] Robertson | Graph Minors. XX. Wagner's conjecture[END_REF], we know that F is a finite collection of graphs. Given a graph G, we define its apex number to be the smallest integer a for which there is a set A ⊆ V (G) of size at most a such that G \ A is planar. An apex-graph is a graph with apex number one. Also, we define the detail of G, denoted by detail(G), to be the maximum among |E(G)| and |V (G)|. We define three constants depending on F that will be used throughout the paper whenever we consider such a graph family F. We define a F as the minimum apex number of a graph in F, we set s F := max{|V (H)| | H ∈ F}, and we set ℓ F := max{detail(H)| | H ∈ F}. Given a tuple t = (x 1 , . . . , x ℓ) ∈ N ℓ and two functions χ, ψ : N → N, we write χ(n) = O t (ψ(n)) in order to denote that there exists a computable function ϕ :

N ℓ → N such that χ(n) = O(ϕ(t) • ψ(n)). Notice that s F ≤ ℓ F ≤ s F (s F -1)/2, and thus O ℓ F (•) = O s F (•).
Observe also that A k (G) and E k (G) are K s F +k -minor-free graph classes, and thus, due to [START_REF] Thomason | The extremal function for complete minors[END_REF], we can always assume that G has O s F (k √ log k • n) edges, otherwise we can directly conclude that (G, k) is a no-instance for both problems.

Walls and flat walls.

In this paper we extensively deal with walls and flat walls, following the framework of [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF]. Unfortunately, more than ten pages are required to provide all the technical notions to correctly present all this framework, that is necessary to use the tools developed in [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF][START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF]. Thus, formal definitions are provided in the full version of the paper. More precisely, we introduce walls and several notions concerning them (just look at Figure 1 to understand what a wall is). We then provide the definitions of a rendition and a painting in order to define flat walls. There are a number of technical terms (such as tilts, influence, regular flatness pairs, ...) that are not the main focus of this work. Let us just mention that the perimeter of a flat wall of a graph G separates V (G) into two sets X and Y with Y containing the wall. The compass of a flat wall is G[Y].

We define canonical partitions and the notion of bidimensionality. Informally speaking, a canonical partition of a graph with respect to some wall W refers to a partition of the vertex set of a graph in bags that follow the structure of a wall subgraph of the given graph; see Figure 1 for an illustration. The bidimensionality of a vertex set X with respect to a wall W of a graph G intuitively expresses the "spread" of a set X in a W -canonical partition of G. The crucial idea is that a set X of small bidimensionality cannot "destroy" a large (flat) wall too much.

Finally, we present homogeneous walls. Intuitively, homogeneous flat walls are flat walls that allow the routing of the same set of (topological) minors in the augmented flaps (i.e., the flaps together with the apex set) "cropped" by each one of their bricks. Such a homogeneous wall can be detected in a big enough flat wall (Proposition 10) and this "homogeneity" property implies that some central part of a big enough homogeneous wall can be declared irrelevant (Proposition 11).

I C A L P 2 0 2 3 4:8

Faster parameterized algorithms for modification problems to minor-closed classes Figure 1 A 5-wall and its canonical partition Q. The red bag is the external bag Qext.

Sketch of the algorithms

In this section we provide a sketch of the algorithms claimed in Theorem 1, Theorem 2 and Theorem 3. As mentioned in the introduction, Theorem 1 can be seen as a generalization of the algorithm of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] that solves F-M-Vertex Deletion in the particular case where F contains some apex-graph. While many techniques taken from [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] remain the same, some new ingredients are needed so as to deal with the possible existence of many apices in all graphs in F. On the other hand, Theorem 2 and Theorem 3 can be seen as an adaptation of Theorem 1 to F-M-Elimination Distance. Since these three algorithms follow a common streamline, we sketch all of them simultaneously while pointing out the steps where they differ. Moreover, the full proof of Theorem 1 is given in Section 4, while the proofs of Theorem 2 and Theorem 3 can be found in the full version of the paper.

The first common step is to run the following algorithm that states that a graph G in A k (exc(F)) or E k (exc(F)) either has bounded treewidth or contains a large wall. This result was proved in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] in the case of F-M-Deletion. The proof in the case of F-M-Elimination Distance, necessary for Theorem 2 and Theorem 3, can be found in the full version of the paper.

▶ Proposition 6 ([51], full paper). Let F be a finite collection of graphs. There exist a function f 1 : N → N and an algorithm with the following specifications:

Find-Wall(G, r, k) Input: A graph G, an odd r ∈ N ≥3 , and k ∈ N.

Output: One of the following:

Case 1: Either a report that (G, k) is a no-instance of F-M-Deletion (resp. F-M-Elimination Distance), or Case 2: a report that G has treewidth at most f 1 (s

F) • r + k, or Case 3: an r-wall W of G. Moreover, f 1 (s F) = 2 O(s 2 F •log s F)
, and the algorithm runs in time

2 O ℓ F (r 2 +(k+r)•log(k+r)) • n (resp. 2 O ℓ F (r 2 +(k+r)•log(k+r)) • n).
In Case 1, we can immediately conclude. In Case 2, since the treewidth of G is bounded, we use a dynamic programming algorithm to solve the corresponding problem. Namely, we solve F-M-Deletion on instances of bounded treewidth using the main result from [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF].

▶ Proposition 7 ([5]). For every finite collection of graphs F, there exists an algorithm that, given a triple (G, tw, k) where G is a graph of treewidth at most tw and k is a non-negative integer, solves

F-M-Deletion in time 2 O ℓ F (tw•log tw) • n.
For F-M-Elimination Distance, we use Theorem 4 to conclude. The proof of this (quite technically involved) dynamic programming algorithm is given in the full version of the paper.

Therefore, it only remains to deal with Case 3. Given an r-wall W of G, we want to reduce the size of G. To do so, we observe that we can either:

Case 3a: find a subwall W a of W and an apex set A a such that W a is flat in G \ A a and has a compass of bounded treewidth, or Case 3b: find a subwall W b of W that is very "well connected" to an apex set A b of small size. The above distinction is done using two algorithmic versions of the Flat Wall Theorem consecutively. The first one comes from [START_REF] Kawarabayashi | A new proof of the flat wall theorem[END_REF]Theorem 7.7] and is translated here in the new framework with tilts of [START_REF] Sau | A more accurate view of the Flat Wall Theorem[END_REF]. Informally, we say that a graph H is grasped by a wall W in a graph G if there is a model of H in G such that the model of every node of H intersects W .

▶ Proposition 8 ([32]

). There are two functions f 2 , f 3 : N → N, such that the images of f 2 are odd integers, and an algorithm with the following specifications:

Grasped-or-Flat(G, r, t, W) Input: A graph G, an odd r ∈ N ≥3 , t ∈ N ≥1 , and an f 2 (t) • r-wall W of G.

Output: One of the following:

Either a model of a K t -minor in G grasped by W , or a set A ⊆ V (G) of size at most f 3 (t) and a flatness pair 24), and the algorithm runs in time O(t 24 m + n).

(W ′ , R ′) of G \ A of heigth r such that W ′ is a W ′ -tilt of some subwall W ′ of W . Moreover, f 2 (t) = O(t 26), f 3 (t) = O(t
We would like to mention that the notion of being grasped by a wall is one of the new main arguments yielding the improvement of the complexity for F-M-Deletion compared to [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF].

The second one comes from [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] and adds the condition that W ′ has a compass of bounded treewidth, at the price of dropping the condition that the model of K t is grasped by W .

▶ Proposition 9 ([51]

). There exist a function f 4 : N → N and an algorithm with the following specifications:

Clique-Or-twFlat(G, r, t) Input: A graph G, an odd r ∈ N ≥3 , and t ∈ N ≥1 . Output: One of the following: Either a report that K t is a minor of G, or a tree decomposition of G of width at most f 4 (t) • r, or a set A ⊆ V (G) of size at most f 3 (t) and a regular flatness pair

(W ′ , R ′) of G \ A of height r whose R ′ -compass has treewidth at most f 4 (t) • r. Moreover, f 4 (t) = 2 O(t 2 log t)
and this algorithm runs in time 2 Ot(r 2) • n. The algorithm can be modified to obtain an explicit dependence on t in the running time, namely

2 2 O(t 2 log t) •r 3 log r •n.
Grasped-or-Flat is used to find a big enough complete graph "controlled" by the input wall, while we need Clique-or-twFlat to find a flat wall whose compass has bounded treewidth. Unfortunately, we cannot obtain both conditions simultaneously, and this is why we need both results. If, after using both algorithms, we obtain a flatness pair (W ′ , R ′) of G \ A a of heigth r a whose compass has bounded treewidth, then we are in Case 3a. In that case, the following result from [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] provides an algorithm that, given a flatness pair of big enough height, outputs a homogeneous flatness pair.

▶ Proposition 10 ([51]

). There is a function f 5 : N 4 → N, whose images are odd integers, and an algorithm with the following specifications:

I C A L P 2 0 2 3

4:10

Faster parameterized algorithms for modification problems to minor-closed classes Homogeneous(r, ã, a, ℓ, t, G, A, W, R) Input: Five integers r ∈ N ≥3 , ã, a, ℓ, t ∈ N, where ã ≤ a, a graph G, a set A ⊆ V (G) of size at most a, and a flatness pair (W, R) of G \ A of height f 5 (r, a, ã, ℓ) whose R-compass has treewidth at most t. Output: A flatness pair (W , Ȓ) of G \ A of height r that is ℓ-homogeneous with respect to A ≤ã and is a W ′ -tilt of (W, R) for some subwall W ′ of W . Moreover, f 5 (r, ã, a, ℓ) = O(r f6(ã,a,ℓ)) where f 6 (ã, a, ℓ) = 2 a ã •2 O((ã+ℓ)•log(ã+ℓ)) and the algorithm runs in time 2 O(f6(ã,a,ℓ)•r log r+t log t) • (n + m).

Then we use the next result, that essentially says that the central vertex v of a big enough homogeneous wall is irrelevant, i.e., (G, k) and (G \ v, k) are equivalent instances of the corresponding problem. Here, bid G\A,W (X) denotes the bidimensionality of a set X in the wall W with apex set A.

▶ Proposition 11 ([52]). Let F be a finite collection of graphs. There exist two functions f 7 : N 4 → N and f 8 : N 2 → N, and an algorithm with the following specifications:

Find-Irrelevant-Vertex(k, a, G, A, W, R) Input: Two integers k, a ∈ N, a graph G, a set A ⊆ V (G), and a regular flatness pair (W, R) of G \ A of height at least f 7 (a, ℓ F , 3, k) that is f 8 (a, ℓ F)-homogeneous with respect to A ≤a . Output: A vertex v of G \ A such that for every set X ⊆ V (G) with bid G\A,W (X) ≤ k and |A \ X| ≤ a, it holds that G \ X ∈ exc(F) if and only if G \ (X \ v) ∈ exc(F). Moreover, f 7 (a, ℓ F , q, k) = O(k • (f ul (16a + 12ℓ F)) 3 + q)
, where f ul is the function of the Unique Linkage Theorem (see [START_REF] Kawarabayashi | A Shorter Proof of the Graph Minor Algorithm: The Unique Linkage Theorem[END_REF]) and f 8 (a, ℓ F) = a + ℓ F + 3, and this algorithm runs in time O(n + m).

We can prove that both k-apex sets and k-elimination sets have small bidimensionality. If, for every k-apex set S, G \ S ∈ exc(F) if and only if G \ (S \ v) ∈ exc(F), then it is straightforward to see that v is irrelevant for F-M-Deletion. It is slightly less trivial to prove that, for each k-elimination set S, we can find some superset X ⊇ S of small bidimensionality such that a similar statement holds. Additional details are available in the full paper.

Therefore we can recursively solve the problems on the instance (G \ v, k).

If no flatness pair whose compass has bounded treewidth was found, then we are in Case 3b. In this case, inspired by [START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF] and [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF], we use the following result of [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF] that basically says that if there is a big enough flat wall W and an apex set A ′ of a F vertices that are all adjacent to many bags of a canonical partition of W , then each k-apex set or k-elimination set intersects A ′ .

▶ Proposition 12 ([52]

). There exist three functions f 9 , f 10 , f 11 :

N 3 → N, such that if G is a graph, k ∈ N, A is a subset of V (G), (W, R) is a flatness pair of G \ A of height at least f 9 (a F , s F , k), Q is a W -canonical partition of G \ A, A ′ is a subset of vertices of A that are adjacent, in G, to vertices of at least f 10 (a F , s F , k) many f 11 (a F , s F , k)-internal bags of Q, and |A ′ | ≥ a F , then for every set X ⊆ V (G) such that G \ X ∈ exc(F) and bid G\A,W (X) ≤ k, it holds that X ∩ A ′ ̸ = ∅. Moreover, f 9 (a, s, k) = O(2 a • s 5/2 • k 5/2), f 10 (a, s, k) = O(2 a • s 3 • k 3), and f 11 (a, s, k) = O((a 2 + k) • s)
, where a = a F and s = s F .

For the F-M-Deletion problem, if we find such a set A ′ , then we can branch by guessing which vertex v ∈ A ′ belongs to a k-apex set and recursively solving (G \ v, k -1). Given that A ′ has size a F and that k decreases after each guess, this step is applied at most a k F times.

However, for F-M-Elimination Distance, k does not decrease, given that the size of a k-elimination set may not depend on k. Thus, this step may be done a n F times, which does not give an FPT-algorithm. To circumvent this problem, we propose two alternatives: Option 1: The first alternative is to only use Case 3a. This is possible given that (K s F +k , k) is a no-instance of both problems. Thus, when using the algorithms Grasped-or-Flat and Clique-or-twFlat, we force the outcome to be an apex set A and a flatness pair of G \ A. However, the bound on the size of A now depends on k, and thus, so does the variable a in the input of the algorithm Homogeneous. This explains the triple-exponential parametric dependence on k in Theorem 2. Interestingly, a precise analysis of the time complexity shows that if a F = 1, i.e., when F contains an apex graph, the parametric dependence is only double-exponential on k (cf. Theorem 2).

Option 2:

The second alternative is to restrict ourselves to the case where a F = 1. Thus, in Case 3b, we find a vertex v that belongs to every k-elimination set. There is no need to branch, and this step is done at most n times. However, the fact that the time complexity of this step is quadratic in n explains the cubic complexity of the algorithm in Theorem 3.

It remains to show that if no flatness pair whose compass has bounded treewidth was found, then we can find a flatness pair and a set A ′ satisfying the conditions of Proposition 12. To do so, using flow techniques, we find the set A of vertices with sufficiently many internallydisjoint paths to W , independently from one another. If this set is too large, we can safely declare a no-instance. Otherwise, we extend the canonical partition of W and just check whether a F vertices of A are adjacent to many vertices of this new canonical partition. If this happens, then we can safely use Proposition 12. The second main improvement with respect to the algorithm in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms[END_REF] is the new argument that the extension of the canonical partition of W can be done in a totally arbitrary manner. The quadratic complexity of this step stems from the search for internally-disjoint paths for every vertex of the input graph.

Vertex deletion to a minor-closed graph class

In this section we prove our main result for the F-M-Deletion problem, namely Theorem 1.

All the propositions necessary for this proof have already been stated in Section 3, aside from the following result proved in [START_REF] Sau | Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions[END_REF] that intuitively states that, given a canonical partition Q of a flat wall (W, R) of big enough height, we can find a "packing" of subwalls of W that are inside some central part of W and such that the vertex set of every bag of Q intersects the vertices of at most one of these walls.

▶ Proposition 13 ([52]

). There exists a function f 12 :

N 3 → N such that if p, l ∈ N ≥1 , r ∈ N ≥3 is an odd integer, G is a graph, (W, R) is a flatness pair of G of height at least f 12 (l, r, p), and Q is a W -canonical partition of G, then there is a collection W = {W 1 , . . . , W l } of r-subwalls of W such that for every i ∈ [l], influence R (W i) is a subgraph of {Q | Q is a p-internal bag of Q} and for every i, j ∈ [l], with i ̸ = j, there is no internal bag of Q that contains vertices of both V (influence R (W i)) and V (influence R (W j)). Moreover, f 12 (l, r, p) = O(√ l • r + p) and W can be constructed in time O(n + m).

Description of the algorithm for F-M-Deletion

Our algorithm for F-M-Deletion has three steps. In Step 1, either we can easily conclude with a positive or a negative answer (Cases 1 and 2) or we find a big wall. If we can find I C A L P 2 0 2 3

4:12

Faster parameterized algorithms for modification problems to minor-closed classes a large flat wall of bounded treewidth inside this wall, then we go to Step 2 and find an irrelevant vertex (Case 3a). Otherwise, we proceed to Step 3 where, by using flow techniques, we find a set of vertices that intersects every solution, and we branch on this set or we report a negative answer (Case 3b). The correctness of the algorithm is not trivial and will be justified in Subsection 4.2.

Given a non-negative integer x, we denote by odd(x) the smallest odd number that is not smaller than x. We define the following constants. 2). This can be done in time O s F (k

√ log k • n).
If for some of these subwalls the result is a set A ⊆ V (D W2) with |A| ≤ a and a flatness pair (W 3 , R 3) of D W2 \ A of height r 3 then, as in Proposition 13, compute a W 3 -canonical partition Q of D W2 \ A and a collection W = {W 1 , ..., W a F } of r 4 -subwalls of W 3 such that for every i ∈ [a F], influence R3 (W i) is a subgraph of {Q | Q is a p-internal bag of Q} and for every i, j ∈ [a F], with i ̸ = j, there is no internal bag of Q that contains vertices of both V (influence R3 (W i)) and V (influence R3 (W j)). This can be done in time O s F (k √ log k • n). For i ∈ [a F], let W i * be the central (r 4 -2)-subwall of W i and let D W i be the graph obtained from D W2 after removing A and the perimeter of W i and taking the connected component containing W i * . Run the algorithm Clique-or-twFlat of Proposition 9 with input (D W i , r 5 , s F). This takes time 2 O ℓ F (r 2 5) • n = 2 O ℓ F (k 2c) • n. If for one of these subwalls the result is a set A ′ of size at most b and a regular flatness pair (W 5 , R 5) of D W i \ A ′ of height r 5 whose R 5 -compass has treewidth at most t, then we proceed to Step 2.

If, for every flatness pair (W 3 , R 3) and for every i ∈ [a F], the result is a report that K s F is a minor of D W i , then we proceed to Step 3.

a = f 3 Step 1 .

 31 (s F + a F -1), b = f 3 (s F), q = f 10 (a F , s F , k), p = f 11 (a F , s F , k), l = (q -1) • (k + b), r 6 = f 7 (a + b, ℓ F , 3, k) d = f 8 (a + b, ℓ F) r 5 = f 5 (r 6 , a + b, a + b, d), t = f 4 (s F) • r 5 , r 4 = odd(t + 3), r 3 = f 12 (a F , r 4 , 1), r 2 = odd(2 + f 2 (s F + a F -1) • r 3), r ′ 2 = odd(max{f 9 (a F , s F , k), f 12 (l + 1, r 2 , p)}), r 1 = odd(f 2 (s F) • r ′ 2 + k). Note that r 6 = O ℓ F (k), r 5 , r 4 , r 3 , r 2 , t = O ℓ F (k c), and r ′ 2 , r 1 = O ℓ F (k c+2) where c = f 6 (a + b, a + b, d). Recall from Section 2 that we may assume that G has O s F (k √ log k • n) edges. Run the algorithm Find-Wall from Proposition 6 with input (G, r 1 , k) and, in time 2 O ℓ F (r 2 1 +(k+r1) log(k+r1)) • n = 2 O ℓ F (k 2(c+2)) • n, either report a no-instance, or conclude that tw(G) ≤ f 1 (s F)•r 1 +k and solve F-M-Deletion in time 2 O ℓ F ((r1+k) log(r1+k)) • n = 2 O ℓ F (k c+2 •log k) • nusing the algorithm of Proposition 7, or obtain an r 1 -wall W 1 of G. If the output of Proposition 6 is an r 1 -wall W 1 , consider all the r1 r2 2 = 2 O ℓ F (k c log k) r 2 -subwalls of W 1 . For each one of them, say W 2 , let W * 2 be the central (r 2 -2)-subwall of W 2 and let D W2 be the graph obtained from G after removing the perimeter of W 2 and taking the connected component containing W * 2 . Run the algorithm Grasped-or-Flat of Proposition 8 with input (D W2 , r 3 , s F + a F -1, W *

Akanksha Agrawal and M. S. Ramanujan. On the parameterized complexity of clique elimination distance. In Proc. of the 15th International Symposium on Parameterized and Exact Computation (IPEC), volume 180 of LIPIcs, pages 1:1-1:13, 2020. doi:10.4230/LIPIcs.IPEC. 2020.1.

Acknowledgement. We would like to thank the reviewers for helpful remarks that improved the presentation of the article.

Funding Supported by the ANR projects ELIT (ANR-20-CE48-0008-01), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

4:13

Step 2 (irrelevant vertex case). We obtain a 7-tuple R ′ 5 by adding all vertices of G \ V (Compass R5 (W 5)) to the set in the first coordinate of R 5 , such that (W 5 , R ′ 5) is a regular flatness pair of G\(A∪A ′) whose R ′ 5 -compass has treewidth at most t. We apply the algorithm Homogeneous of Proposition 10 with input (r 6 , a + b, a + b, d, t, G, A ∪ A ′ , W 5 , R ′ 5), which outputs, in time 2 O ℓ F (t log t+k log k) •n = 2 O ℓ F (k c log k) •n, a flatness pair (W 6 , R 6) of G\(A∪A ′) of height r 6 that is d-homogeneous with respect to 2 A∪A ′ and is a W * -tilt of (W 5 , R ′ 5) for some subwall W * of W 5 . We apply the algorithm Find-Irrelevant-Vertex of Proposition 11 with input (k, a + b, G, A ∪ A ′ , W 6 , R 6), which outputs, in time (G, k) and (G \ v, k) are equivalent instances of F-M-Deletion. Then the algorithm runs recursively on the equivalent instance (G \ v, k).

Step 3 (branching case). Consider all the r ′ 2 -subwalls of W 1 , which are at most r1

2 O ℓ F (k c+2 log k) many, and for each of them, say W ′ 2 , compute its canonical partition Q. Then, contract each bag Q of Q to a single vertex v Q , and add a new vertex v all and make it adjacent to all v Q 's. In the resulting graph G ′ , for every vertex y of G \ V (W ′ 2), check, using a path augmentation algorithm [START_REF] Diestel | Graph Theory[END_REF], whether there are q internally vertex-disjoint paths from v all to y in time

Let à be the set of all such y's.

For each one of them, say A * , construct Q by enhancing Q on G \ A * . Then, we distinguish two cases depending on whether for every A * all its vertices are adjacent to vertices of q p-internal bags of Q.

If each vertex of A * is adjacent to vertices of q p-internal bags of Q, then (due to Proposition 12) A * should intersect every solution of F-M-Deletion for the instance (G, k). Therefore, the algorithm runs recursively on each instance (G \ y, k -1) for y ∈ A * . If one of them is a yes-instance with (k -1)-apex set S of G \ y, then (G, k) is a yes-instance with k-apex set S ∪ {y} of G. If all of them are no-instances, then report a no-instance. This concludes the case where each vertex of A * is adjacent to vertices of q p-internal bags of Q.

If for every subset A * of à of size a F , there is a vertex of A * that is not adjacent to vertices of q p-internal bags of the given Q, then report a no-instance. This concludes the case that a F ≤ | Ã| ≤ k + b.

If for every wall, | Ã| > k + b, then report that (G, k) is a no-instance of F-M-Deletion.

Notice that Step 3, when applied, takes time 2 O ℓ F (k c+2 log k) • n 2 , because we apply the flow algorithms to each of the 2 O ℓ F (k c+2 log k) r ′ 2 -subwalls and for each vertex of G. However, the search tree created by the branching algorithm has at most a F branches and depth at most k. So Step 3 cannot be applied more than a F k times during the course of the algorithm.

• n, and both may be applied at most n times, the claimed time complexity follows: the algorithm runs in time

Correctness of the algorithm

Suppose first that (G, k) is a yes-instance and let S be a k-apex set of G. The application of the algorithm Find-Wall of Proposition 6 with input (G, r 1 , k) either returns a report that tw(G) ≤ f 1 (s F) • r 1 + k or returns an r 1 -wall. In the first case, i.e., if tw(G) ≤ f 1 (s F) • r 1 + k, the application of the algorithm of Proposition 7 correctly outputs a k-apex set of G. We will focus on the latter case, i.e., where the algorithm Find-Wall returns an r 1 -wall of G, say

4:14

Faster parameterized algorithms for modification problems to minor-closed classes contain vertices of S. Since G \ S does not contain K s F as a minor, there is no model of K s F grasped by W * 1 and therefore, due to Proposition 8 with input (G \ S, r ′ 2 , s F , W * 1), we know that there is a set B ⊆ V (G \ S), with |B| ≤ b, and a flatness pair

Let G ′ be the graph obtained by contracting each bag Q of Q to a single vertex v Q , and adding a new vertex v all and making it adjacent to all v Q 's. Let à be the set of vertices y of G \ V (W ′ 2) such that there are q internally vertex-disjoint paths from v all to y in G ′ . We claim that à ⊆ S ∪ B. To show this, we first prove that, for every y / ∈ S ∪ B, the maximum number of internally vertex-disjoint paths from v all to y in

, there are at most k + b such paths that intersect the set S ∪ B and at most four paths that do not intersect S ∪ B (in the graph

Let Ã′ be the set of vertices in S ∪ B that are adjacent to vertices of at least q p-internal bags of Q (recall that à is the set of vertices in S ∪ B that are adjacent to vertices of at least q internal bags of Q). Note that Ã′ ⊆ à and therefore

If | Ã′ | < a F , then at most a F -1 vertices of S ∪ B are adjacent to vertices of at least q p-internal bags of Q. This means that the p-internal bags of Q that contain vertices adjacent to some vertex of (S ∪ B) \ Ã′ are at most (q -1)

. The existence of W follows from Proposition 13 and the fact that r ′ 2 ≥ f 12 (l + 1, r 2 , p). The fact that the p-internal bags of Q that contain vertices adjacent to some vertex of (S ∪ B) \ Ã′ are at most l implies that there exists an i ∈

and let D W2 be the graph obtained from G by removing the perimeter of W 2 and taking the connected component that contains

Let Q′ be a W 3 -canonical partition of D W2 \ A. Let W ′ = {W 1 , ..., W a F } be a collection of r 4 -subwalls of W 3 such that for every i ∈ [a F],

influence R3 (W i) is a subgraph of {Q | Q is an internal bag of Q′ } and for every i, j ∈ [a F], with i ̸ = j, there is no internal bag of Q′ that contains vertices of both V (influence R3 (W i)) and V (influence R3 (W j)). Since | Ã′ | < a F , there is an i ∈ [a F] such that V (influence R3 (W i)) does not intersect Ã′ . The existence of W ′ follows from Proposition 13 and the fact that r 3 ≥ f 12 (a F , r 4 , 1).

Let W 4 := W i . Let W * 4 be the central (r 4 -2)-subwall of W 4 and let D W4 be the graph obtained from D W2 after removing A and the perimeter of W 4 and taking the connected component containing W * 4 . Observe that any path between a vertex of S and a vertex of V (influence R3 (W 4)) in D W2 intersects Ã′ . Since Ã′ does not intersect V (influence R3 (W 4)), it implies that Ã′ does not intersect D W4 , and thus

and thus S ′ ∩ Ã′ ̸ = ∅. Thus, there is a vertex y ∈ Ã′ such that (G \ y, k -1) is a yes-instance. Hence, if the algorithm runs Step 3, it finds a vertex y ∈ Ã′ such that (G \ y, k -1) is a yes-instance.

Note that the enhancement Q of the canonical partition Q is not unique. In particular, Ã′ depends on Q. However, as long as there is such a Q such that | Ã′ | < a F , the algorithm finds the wanted flatness pair (W 4 , R 4) in Step 1 and then runs Step 2. Hence, if (G, k) is a yes-instance, the algorithm runs Step 3 only if for all such Ã′ , | Ã′ | ≥ a F . Note that, since | Ã| ≥ | Ã′ |, in this case we have that, for all such Ã′ , | Ã| ≥ a F . This justifies the arbitrary canonical partition enhancement in Step 3 and the fact that, if | Ã| < a F in Step 3, then the algorithm reports a no-instance.

Let us now show the correctness of Step 2, and for this we do not suppose anymore that (G, k) is a yes-instance since the argument is the same for both types of instances. Suppose that the algorithm finds in Step 1 a set A ′ of size at most b and a regular flatness pair (W 5 , R 5) of D W4 \ A ′ of height r 5 whose R 5 -compass has treewidth at most t. We obtain a 7-tuple R ′ 5 by adding all vertices of G \ V (Compass R5 (W 5)) to the set in the first coordinate of R 5 . Since (W 5 , R 5) is a regular flatness pair of D W4 \ A ′ and since the vertices added in R ′ 5 are either in A, or adjacent at most to the perimeter of W 4 , then (W 5 , R ′ 5) is a regular flatness pair of G \ (A ∪ A ′). Since Compass R5 (W 5) = Compass R ′ 5 (W 5), Compass R ′ 5 (W 5) has treewidth at most t. Thus, if we apply the algorithm Homogeneous of Proposition 10 with input (r 6 , a + b, a + b, d, t, G, A ∪ A ′ , W 5 , R ′ 5), we obtain a flatness pair (W 6 , R 6) of G \ (A ∪ A ′) of height r 6 that is d-homogeneous with respect to 2 A∪A ′ and is a W * -tilt of (W 5 , R ′ 5) for some subwall We now suppose that (G, k) is a no-instance. In the beginning of Step 1, the algorithm either reports a no-instance or finds a wall. In the latter case, the algorithm either goes

4:16

Faster parameterized algorithms for modification problems to minor-closed classes is yes-instance, then so is (G, k). Thus, (G \ y, k -1) is a no-instance for every considered vertex y and the algorithm always reports a no-instance. Hence, Theorem 1 follows.

Concluding remarks

For a minor-closed graph class G, we proved that Vertex Deletion to G can be solved in time 2 poly(k) • n 2 and that Elimination Distance to G can be solved in time 2 2 2 poly(k)

• n 2 , and in time 2 2 c•k 2 log k • n 2 and 2 poly(k) • n 3 in the case where the obstruction set of G contains an apex-graph. Here the degree of poly and c heavily depend on the size of the obstructions of G. An open question is whether poly(k) could be replaced by c • k d for some constant c depending on G and some universal constant d (independent of G). We tend to believe that this dependence on G in the exponent of the polynomial is unavoidable, at least if we want to use the irrelevant vertex technique, and specially our definition of homogeneity.

On the other hand, we are not aware, for any of the two considered problems, of any lower bound, assuming the Exponential Time Hypothesis [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF], stronger than 2 o(k) • n O (1) , which follows quite easily from known results for Vertex Cover. Proving stronger lower bounds seems to be quite challenging.

Another open problem is whether it is possible to drop the time complexity of Elimination Distance to G to 2 poly(k) • n 2 for every minor-closed graph class G. We tend to believe that this should be possible. However, it seems to require to use branching ingeniously and, in particular, to find equivalent instances of Elimination Distance to G with a decreasing value of k.

As for the polynomial running time of our FPT-algorithms, a priori, nothing prevents the existence of algorithms running in linear time, although we are quite far from achieving this. Kawarabayashi [START_REF] Kawarabayashi | Planarity allowing few error vertices in linear time[END_REF] presented such a linear FPT-algorithm for the Planarization problem, heavily relying on the embedding on the resulting planar graph. Extending this technique to general minor-closed classes would require a very compact encoding of the (entangled) structure of minor-free graphs [START_REF] Robertson | Graph Minors. XVI. Excluding a non-planar graph[END_REF] that would be possible to handle in linear time.