Lars Jaffke

Laure Morelle

Ignasi Sau

Dimitrios M Thilikos

Dynamic programming on bipartite tree decompositions

Keywords: 2012 ACM Subject Classification Theory of computation → Parameterized complexity Keywords and phrases tree decomposition, bipartite graphs, dynamic programming, odd-minors, packing, maximum cut, vertex cover, independent set, odd cycle transversal. Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.16 Dynamic programming on bipartite tree decompositions

We revisit a graph width parameter that we dub bipartite treewidth, along with its associated graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs and whose adhesions contain at most one vertex from the bipartite part of any other bag, while the width of such decomposition measures how far the bags are from being bipartite. Adapted from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA 2010] and explicitly defined by Tazari [Theor. Comput. Sci. 2012], bipartite treewidth appears to play a crucial role for solving problems related to odd-minors, which have recently attracted considerable attention. As a first step toward a theory for solving these problems efficiently, the main goal of this paper is to develop dynamic programming techniques to solve problems on graphs of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results, FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that Kt-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut are FPT parameterized by bipartite treewidth. We also provide the following complexity dichotomy when H is a 2-connected graph, for each of the H-Subgraph-Packing, H-Induced-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems: if H is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while, if H is non-bipartite, then the problem is solvable in XP-time. Beyond bipartite treewidth, we define 1-H-treewidth by replacing the bipartite graph class by any graph class H. Most of the technology developed here also works for this more general parameter.

Introduction

A graph H is said to be an odd-minor of a graph G if it can be obtained from G by iteratively removing vertices, edges, and contracting edge cuts. Hadwiger's conjecture [START_REF] Hadwiger | Über eine klassifikation der streckenkomplexe[END_REF], which is open since 1943, states that if a graph excludes K t as a minor, then its chromatic number is at most t -1. In 1993, Gerards and Seymour [START_REF] Tommy | Graph coloring problems[END_REF] generalized this conjecture to odd-minors, hence drawing attention to odd-minors: the Odd Hadwiger's conjecture states that if a graph excludes K t as an odd-minor, then its chromatic number is at most t-1. Since then, a number of papers regarding odd-minors appeared. Most of them focused to the resolution of the Odd Hadwiger's conjecture (see for instance [START_REF] Geelen | On the odd-minor variant of Hadwiger's conjecture[END_REF], and [START_REF] Steiner | Improved bound for improper colourings of graphs with no odd clique minor[END_REF] for a nice overview of the results), while some others aimed at extending the results of graph minor theory to odd-minors (see for instance [START_REF] Demaine | Decomposition, approximation, and coloring of odd-minor-free graphs[END_REF][START_REF] Huynh | The Linkage Problem for Group-labelled Graphs[END_REF][START_REF] Kawarabayashi | The graph minor algorithm with parity conditions[END_REF]). In particular, Demaine, Hajiaghayi, and Kawarabayashi [START_REF] Demaine | Decomposition, approximation, and coloring of odd-minor-free graphs[END_REF] provided a structure theorem which essentially states that graphs excluding an odd-minor can be obtained by clique-sums of almost-embeddable graphs and almost bipartite graphs. To prove this, they implicitly proved the following, which is described more explicitly by Tazari [START_REF] Tazari | Faster approximation schemes and parameterized algorithms on (odd-)h-minorfree graphs[END_REF].

▶ Proposition 1 ([31], adapted from [START_REF] Demaine | Decomposition, approximation, and coloring of odd-minor-free graphs[END_REF]). Let H be a fixed graph and let G be a given H-odd-minor-free graph. There exists a fixed graph H ′ , κ, µ ∈ N depending only on H, and an explicit uniform algorithm that computes a rooted tree decomposition of G such that: the adhesion of two nodes has size at most κ, and the torso of each bag B either consists of a bipartite graph W B together with µ additional vertices (bags of Type 1) or is H ′ -minor-free (bags of Type 2).

Furthermore, the following properties hold: 1. Bags of Type 2 appear only in the leaves of the tree decomposition, 2. if B 2 is a bag that is a child of a bag B 1 in the tree decomposition, then |B 2 ∩V (W B1)| ≤ 1;

and if B 2 is of Type 1, then |B 1 ∩ V (W B2)| ≤ 1 as well, 3. the algorithm runs in time O H (|V (G)| 4), and 4. the µ additional vertices of the bags of Type 1, called apex vertices, can be computed within the same running time.

It is worth mentioning that Condition 2 of Proposition 1 is slightly stronger than what is stated in [START_REF] Tazari | Faster approximation schemes and parameterized algorithms on (odd-)h-minorfree graphs[END_REF], but it follows from the proof of [START_REF] Demaine | Decomposition, approximation, and coloring of odd-minor-free graphs[END_REF]Theorem 4.1].

The tree decomposition described in Proposition 1 seems hence adapted to study problems related to odd-minors. As a first step toward building a theory for solving such problems, we study in this paper a new type of tree decomposition, which we call bipartite tree decomposition, corresponding to the tree decompositions of Proposition 1, but where all bags are only of Type 1. We also stress that this decomposition has also been implicitly used in [START_REF] Kawarabayashi | An (almost) linear time algorithm for odd cyles transversal[END_REF] and is also introduced, under the same name, in [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF].

Bipartite treewidth. Let B denotes the class of bipartite graphs. A bipartite tree decomposition of a graph G is a triple (T, α, β), where T is a tree and α, β : V (T) → 2 V (G) , such that (T, α ∪ β) is a tree decomposition of G, for every t ∈ V (T), α(t) ∩ β(t) = ∅, for every t ∈ V (T), G[β(t)] ∈ B, and for every tt

′ ∈ E(T), |(α ∪ β)(t ′) ∩ β(t)| ≤ 1.
The width of (T, α, β) is equal to max |α(t)| t ∈ V (T) . The bipartite treewidth of G, denoted by btw(G), is the minimum width over all bipartite tree decompositions of G.

16:3

It follows easily from the definition that btw(G) = 0 if and only if G is bipartite (indeed, to prove the sufficiency, just take a single bag containing the whole bipartite graph, with no apex vertices). More generally, for every graph G it holds that btw(G) ≤ oct(G), where oct denotes the size of a minimum odd cycle transversal, that is, a vertex set intersecting every odd cycle. On the other hand, since a bipartite tree decomposition is a tree decomposition whose width is not larger than the maximum size of a bag (in each bag, just declare all vertices as apices), for every graph G it holds that btw(G) ≤ tw(G) + 1, where tw denotes treewidth. Thus, bipartite treewidth can be seen as a common generalization of treewidth and the odd cycle transversal number. Hence, an FPT-algorithm parameterized by btw should generalize both FPT-algorithms parameterized by tw and by oct. Since our goal is to develop a theory for solving problems related to odd-minors, the first prerequisite is that bipartite treewidth is closed under odd-minors. Fortunately, this is indeed the case (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.2]). Interestingly, this would not be true anymore if, in Condition 2 of Proposition 1, the considered intersections were required to be upper-bounded by some integer larger than one (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.3]).

This type of tree decomposition has been already used implicitly by Kawarabayashi and Reed [START_REF] Kawarabayashi | An (almost) linear time algorithm for odd cyles transversal[END_REF] in order to solve Odd Cycle Transversal parameterized by the solution size. Independently of our work, Campbell, Gollin, Hendrey, and Wiederrecht [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF] are also currently studying bipartite tree decompositions. In particular, they provide universal obstructions characterizing bounded btw in the form of a "grid theorem" (actually the result of [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF] apply in the much more general setting of undirected group labeled graphs). They also designed an FPT-approximation algorithm that can construct a bipartite tree decomposition in time g(k) • n 4 log n. This FPT-approximation is an important prerequisite for our algorithmic results as it permits us to assume that, for the implementation of our algorithms, some (approximate) bipartite tree decomposition is provided in advance.

Our aim is to provide a general framework for the design of dynamic programming algorithms on bipartite tree decompositions and, more generally, on a broader type of decompositions that we call 1-H-tree decompositions. These decompositions generalize bipartite tree decompositions, in the sense that the role of bipartite graphs is replaced by a general graph class H.

Our results.

In this article we formally introduce bipartite treewidth and bipartite tree decompositions (noticing that they were implicitly already used before, as discussed above). We then focus on the complexity of various problems when the bipartite treewidth of the input graph is taken as a parameter. In particular, we show the following (cf. Table 1): While a graph with btw at most k is (k + 2)-colorable (cf. [17, Lemma 6.1]), 3-Coloring is NP-complete even on graphs of oct of size three (cf. [17, Lemma 6.2]), and thus btw at most three. K t -Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut are FPT parameterized by btw (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Corollaries 4.3,4.5,4.6,4.7]). In particular, our FPT-algorithms extend the domain where these well-studied problems can be solved in polynomial time to graphs that are "locally close to being bipartite". Furthermore, as btw(G) ≤ oct(G) for any graph G, we think that the fact that Odd Cycle Transversal is FPT parameterized by btw is relevant by itself, as it generalizes the well-known FPT-algorithms parameterized by the solution size [START_REF] Daniel Lokshtanov | Faster parameterized algorithms using linear programming[END_REF][START_REF] Reed | Finding odd cycle transversals[END_REF]. We would like to mention that combining in a win-win manner our dynamic programming algorithm with the FPT-approximation and the Grid Exclusion Theorem of [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF] we may derive an FPT-algorithm for Odd Cycle Transversal parameterized by

I P E C 2 0 2 3

16:4

Dynamic programming on bipartite tree decompositions the solution size, whose running time is considerably better than the one in [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF], which has been obtained independently by using the irrelevant vertex technique (see also [START_REF] Kawarabayashi | An (almost) linear time algorithm for odd cyles transversal[END_REF]).

Let H be a 2-connected graph. We prove that H-Minor-Packing is para-NP-complete parameterized by btw. For each of the H-Subgraph-Packing, H-Induced-Subgraph-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems (cf. Appendix B for the definitions), we obtain the following complexity dichotomy: if H is bipartite, then the problem is para-NP-complete parameterized by btw (in fact, even for btw = 0), and if H is non-bipartite, then the problem is solvable in XP-time. The definition of the problems and the XP-algorithms are presented in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Section 5] and the hardness results in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6].

In view of the definition of bipartite tree decompositions, it seems natural to consider, instead of bipartite graphs as the "free part" of the bags, any graph class H. This leads to the more general definition of 1-H-tree decomposition and 1-H-treewidth (cf. [17, Section 3]), with 1-{∅}-treewidth being equivalent to the usual treewidth and 1-B-treewidth being the bipartite treewidth if B is the class of bipartite graphs. We introduce these more general definitions because our dynamic programming technologies easily extend to 1-H-treewidth. It also seems natural to consider, instead of allowing at most one "bipartite vertex" in each adhesion, allowing any number q of them. For q = 0, this corresponds to the H-treewidth defined in [START_REF] Eiben | Measuring what matters: A hybrid approach to dynamic programming with treewidth[END_REF] (see also [START_REF] Agrawal | Deleting, eliminating and decomposing to hereditary classes are all fpt-equivalent[END_REF][START_REF] Bart | FPT algorithms to compute the elimination distance to bipartite graphs and more[END_REF] on the study of H-treewidth for several instantiations of H). However, as mentioned above, while 1-B-treewidth is closed under odd-minors (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.2]), this is not the case anymore for q ≥ 2 (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.3]). For q ≥ 2, some problems remain intractable even when H is not bipartite. As an illustration of this phenomenon, we prove that H-Scattered-Packing (where there cannot be an edge in G among the copies of H to be packed) is para-NP-complete parameterized by q-B-treewidth for q ≥ 2 even if H is not bipartite (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.7]).

In the statements of the running time of our algorithms, we always let n (resp. m) be the number of vertices (resp. edges) of the input graph of the considered problem.

Problem

Complexity Constraints on H/Running time H(-Induced)-Subgraph/Odd-Minor para-NP-complete, k = 0 H bipartite containing P3 as a subgraph -Cover [START_REF] Yannakakis | Node-deletion problems on bipartite graphs[END_REF] H-Minor-Cover [START_REF] Yannakakis | Node-deletion problems on bipartite graphs[END_REF] H containing P3 as a subgraph H(-Induced)-Subgraph-Packing H bipartite containing P3 as a subgraph Related results. Other types of tree decompositions integrating some "free bipartite parts" have been defined recently. As we already mentioned, Eiben, Ganian, Hamm, and Kwon [START_REF] Eiben | Measuring what matters: A hybrid approach to dynamic programming with treewidth[END_REF] defined H-treewidth for a fixed graph class H. The H-treewidth of a graph G is essentially the minimum treewidth of the graph induced by some set X ⊆ V (G) such that the connected components of G\X belong to H, and is equal to 0-H-treewidth minus one (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Section 3]). In particular, when H is the class of bipartite graphs B, Jansen and de Kroon [START_REF] Bart | FPT algorithms to compute the elimination distance to bipartite graphs and more[END_REF] provided an FPT-algorithm to test whether the B-treewidth of a graph is at most k.

H-Minor-Packing H 2-connected with |V (H)| ≥ 3 H-Odd-Minor-Packing H 2-connected bipartite with |V (H)| ≥ 3 H-Scattered-Packing H 2-connected bipartite with |V (H)| ≥ 2 3-Coloring para-NP-complete, k = 3 Kt-Subgraph-Cover FPT O(2 k • (k t • (n + m) + m √ n)) Independent Set O(2 k • (k • (k + n) + m √ n)) Weighted Independent Set O(2 k • (k • (k + n) + n • m)) Odd Cycle Transversal O(3 k • k • n • (m + k 2)) Maximum Weighted Cut O(2 k • (k • (k + n) + n O(1))) H-Subgraph-Packing XP H non-bipartite 2-connected H-Induced-Subgraph-Packing H-Scattered-Packing n O(k) H-Odd-Minor-Packing
Recently, as a first step to provide a systematic theory for odd-minors, Gollin and Wiederrecht [START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF] defined the H-blind-treewidth of a graph G, where H is a property of annotated graphs. Then the H-blind-treewidth is the smallest k such that G has a tree decomposition where every bag β(t) such that (G, β(t)) / ∈ H has size at most k. For the case where C consists of every (G, X) where every odd cycle in H as at most one vertex in X, we obtain the C-blind-treewidth, for which [START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF] gives an analogue of the Grid Exclusion Theorem [START_REF] Chuzhoy | Towards tight(er) bounds for the Excluded Grid Theorem[END_REF][START_REF] Robertson | Quickly excluding a planar graph[END_REF] under the odd-minor relation. Moreover, [START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF] provides an FPT-algorithm for Independent Set parameterized by C-blind-treewidth. According to [START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF], the bipartite-blind treewidth of a graph G is lower-bounded by a function of the maximum treewidth over all non-bipartite blocks of G. This immediately implies that bipartite-blind treewidth is lower-bounded by bipartite treewidth. Hence, our FPT-algorithm for Independent Set is more general than the one of [START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF]. Independently of our work, [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF] presents an FPT-algorithm to solve Odd Cycle Transversal parameterized by btw in time f (btw) • n 4 log n (in fact, they solve a more general group labeled problem). Our algorithm for Odd Cycle Transversal (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Corollary 4.6]) is considerably faster.

Organization of the paper. Due to space restrictions, many definitions, results and proofs cannot be provided here, but are available in the full version of the paper [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]. In Section 2 we provide an overview of our techniques. In Section 3 we give a general dynamic programming algorithm to obtain FPT-algorithms, and apply it to Maximum Weighted Cut. Finally, we present several questions for further research in Section 4. Additional necessary definitions are provided in Appendix A.

Overview of our techniques

In this section we present an overview of the techniques that we use to obtain our results.

Dynamic programming algorithms

Compared to dynamic programming on classical tree decompositions, there are two main difficulties for doing dynamic programming on (rooted) bipartite tree decompositions. The first one is that the bags in a bipartite tree decomposition may be arbitrarily large, which prevents us from applying typical brute-force approaches to define table entries. The second one, and apparently more important, is the lack of an upper bound on the number of children of each node of the decomposition. Indeed, unfortunately, a notion of "nice bipartite tree decomposition" preserving the width (even approximately) does not exist (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.4]).

We discuss separately the main challenges involved in our FPT-algorithms and in our XPalgorithms.

I P E C 2 0 2 3

16:6

Dynamic programming on bipartite tree decompositions

FPT-algorithms

In fact, for most of the considered problems, in order to obtain FPT-algorithms parameterized by btw, it would be enough to bound the number of children as a function of btw, but we were not able to come up with a general technique that achieves this property (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.4]).

For particular problems, however, we can devise ad-hoc solutions. Namely, for K t -Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut parameterized by btw, we overcome the above issue by managing to replace the children by constant-sized bipartite gadgets. More specifically, we guess an annotation of the "apex" vertices of each bag t, whose number is bounded by btw, that essentially tells which of these vertices go to the solution or not (with some extra information depending on each particular problem; for instance, for Odd Cycle Transversal, we also guess the side of the bipartition of the non-solution vertices). Having this annotation, each adhesion of the considered node t with a child contains, by the definition of bipartite tree decompositions, at most one vertex v that is not annotated. At this point, we crucially observe that, for the considered problems, we can make local computation for each child, independent from the computations at other children, depending only on the values of the optimum solutions at that child that are required to contain or to exclude v (note that we need to be able to keep this extra information at the tables of the children). Using the information given by these local computations, we can replace the children of t by constant-sized bipartite gadgets (sometimes empty) so that the newly built graph, which we call a nice reduction, is an equivalent instance modulo some constant. If a nice reduction can be efficiently computed for a problem Π, then we say that Π is a nice problem (cf. Appendix A, and [17, Section 4] for additional intuition). The newly modified bag has bounded oct, so we can then use an FPT-algorithm parameterized by oct to find the optimal solution with respect to the guessed annotation.

An illustrative example.

Before entering into some more technical details and general definitions, let us illustrate this idea with the Weighted Vertex Cover problem. We want to compute the dynamic programming tables at a bag associated with a node t of the rooted tree given by the bipartite tree decomposition. Remember that the vertices of the bag at t are partitioned into two sets: β(t) induces a bipartite graph and its complement, denoted by α(t), corresponds to the apex vertices, whose size is bounded by the parameter, namely btw. The first step is to guess, in time at most 2 btw , which vertices in α(t) belong to the desired minimum vertex cover. After such a guess, all the vertices in α(t) can be removed from the graph, by also removing the neighborhood of those that were not taken into the solution. The definition of bipartite tree decomposition implies that, in each adhesion with a child of the current bag, there is at most one "surviving" vertex. Let v be such a vertex belonging to the adhesion with a child t ′ of t. Suppose that, inductively, we have computed in the tables for t ′ the following two values, subject to the choice that we made for α(t): the minimum weight w v of a vertex cover in the graph below t ′ that contains v, and the minimum weight w v of a vertex cover in the graph below t ′ that does not contain v. Then, the trick is to observe that, having these two values at hand, we can totally forget the graph below t ′ : it is enough to delete this whole graph, except for v, and attach a new pendant edge vu, where u is a new vertex, such that v is given weight w v and u is given weight w v .

It is easy to verify that this gadget mimics, with respect to the current bag, the behavior of including vertex v or not in the solution for the child t ′ . Adding this gadget for every child results in a bipartite graph, where we can just solve Weighted Vertex Cover in polynomial time using a classic algorithm [START_REF] King | A faster deterministic maximum flow algorithm[END_REF][START_REF] Orlin | Max flows in O(nm) time, or better[END_REF], and add the returned weight to our tables.

The running time of this whole procedure, from the leaves to the root of the decomposition, is clearly FPT parameterized by the bipartite treewidth of the input graph.

Extensions and limitations. Note that the algorithm sketched above for Weighted Vertex Cover is problem-dependent, in particular the choice of the gadgets for the children, and the fact of deleting the neighborhood of the vertices chosen in the solution. Which type of replacements and reductions can be afforded in order to obtain an FPT-algorithm for bipartite treewidth? For instance, concerning the gadgets for the children, as far as the considered problem can be solved in polynomial time on bipartite graphs, we could attach to the "surviving" vertices an arbitrary bipartite graph instead of just an edge. If we assume that the considered problem is FPT parameterized by oct (which is a reasonable assumption, as btw generalizes oct), then one could think that it may be sufficient to devise gadgets with bounded oct. Unfortunately, this will not work in general: even if each of the gadgets has bounded oct (take, for instance, a triangle), since we do not have any upper bound, in terms of btw, on the number of children (hence, the number of different adhesions), the resulting graph after the gadget replacement may have unbounded oct. In order to formalize the type of replacements and reductions that can be allowed, we introduce in Appendix A the notions of nice reduction and nice problem, along with an illustration (cf. Figure 1). Additional insights into these definitions, which are quite lengthy, are provided in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Section 4.1].

Another sensitive issue is that of "guessing the vertices into the solution". While this is quite simple for Weighted Vertex Cover (either a vertex is in the solution, or it is not), for some other problems we may have to guess a richer structure in order to have enough information to combine the tables of the children into the tables of the current bag. This is the reason for which, in the general dynamic programming scheme that we present in Section 3, we deal with annotated problems, i.e., problems that receive as input, apart from a graph, a collection of annotated sets in the form of a partition X of some X ⊆ V (G). For instance, for Weighted Vertex Cover, we define its annotated extension, which we call Annotated Weighted Vertex Cover, that takes as an input a graph G and two disjoint sets R and S of vertices of G, and asks for a minimum vertex cover S ⋆ such that S ⊆ S ⋆ and S ⋆ ∩ R = ∅.

General dynamic programming scheme. Our general scheme essentially says that if a problem Π has an annotated extension Π ′ that is a nice problem and solvable in FPT-time parameterized by oct, then Π is solvable in FPT-time parameterized by btw. More specifically, it is enough to prove that Π ′ is solvable in time f (|X|) • n O (1) on an instance (G, X) such that G \ X is bipartite, where X is a partition of X corresponding to the annotation. This general dynamic programming algorithm works in a wider setting, namely for a general graph class H that plays the role of bipartite graphs, as far as the annotated extension Π ′ is what we call H-nice; cf. Lemma 2 for the details.

Applications. We then apply this general framework to give FPT-algorithms for several problems parameterized by bipartite treewidth. For each of Maximum Weighted Cut (Subsection 3.4), K t -Subgraph-Cover (cf. [

Dynamic programming on bipartite tree decompositions

To prove that an annotated problem has a nice reduction, we essentially use two ingredients. Given two compatible boundaried graphs F and G with boundary X (a boundaried graph is essentially a graph along with some labeled vertices that form a boundary, see the formal definition in Appendix A), an annotated problem is usually nice if the following hold:

(Gluing property) Given that we have guessed the annotation X in the boundary X, a solution compatible with the annotation is optimal in the graph F ⊕ G obtained by gluing F and G if and only if it is optimal in each of the two glued graphs. In this case, it means that the optimum on (F ⊕ G, X) is equal to the optimum on (F, X) modulo some constant depending only on G and X .

(Gadgetization) Given that we have guessed the annotation in the boundary X \ {v} for some vertex v in X, there is a small boundaried graph G ′ , that is bipartite (maybe empty), such that the optimum on (F ⊕ G, X) is equal to the optimum on (F ⊕ G ′ , X) modulo some constant depending only on G and X .

The gluing property seems critical to show that a problem is nice. This explains why we solve H-Subgraph-Cover only when H is a clique. For any graph H, Annotated H-Subgraph-Cover is defined similarly to Annotated Weighted Vertex Cover by specifying vertices that must or must not be taken in the solution. If H is a clique, then we crucially use the fact that H is a subgraph of F ⊕ G if and only if it is a subgraph of either F or G to prove that Annotated H-Subgraph-Cover has the gluing property. However, we observe that if H is not a clique, then Annotated H-Subgraph-Cover does not have the gluing property (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 4.3]). This is the main difficulty that we face to solve H-Subgraph-Cover in the general case.

Note also that if we define the annotated extension of Odd Cycle Transversal in a similar fashion (that is, a set S of vertices contained in the solution and a set R of vertices that do not belong to the solution), then we can prove that this annotated extension does not have the gluing property. However, if we define Annotated Odd Cycle Transversal as the problem that takes as an input a graph G and three disjoint sets S, X 1 , X 2 of vertices of G and aims at finding an odd cycle transversal S ⋆ of minimum size such that S ⊆ S ⋆ and X 1 and X 2 are on different sides of the bipartition obtained after removing S ⋆ , then Annotated Odd Cycle Transversal does have the gluing property (cf. [17, Lemma 4.9]).

For Maximum Weighted Cut, the annotation is pretty straightforward: we use two annotation sets X 1 and X 2 , corresponding to the vertices that will be on each side of the cut. It is easy to see that this annotated extension has the gluing property (cf. Lemma 3).

Finding the right gadgets is the main difficulty to prove that a problem is nice. As explained above, for Annotated Weighted Vertex Cover, we replace the boundaried graph G by an edge that simulates the behavior of G with respect to v, which is the only vertex that interest us (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 4.7]). For Annotated Maximum Weighted Cut, if X = (X 1 , X 2), the behavior of G can be simulated by an edge between v and a vertex in X 1 of weight equal to the optimum on (G, (X 1 , X 2 ∪ {v})) and an edge between v and a vertex in X 2 of weight equal to the optimum on (G, (X 1 ∪ {v}, X 2)) (see Lemma 4). For Annotated K t -Subgraph-Cover, if X = (R, S), depending on the optimum on (G, (R ∪ {v}, S)) and the one on (G, (R, S ∪ {v})), we can show that the optimum on (F ⊕ G, X) is equal to the optimum on (F, X) or (F \ {v}, X) modulo some constant (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 4.4]). For Annotated Odd Cycle Transversal, if X = (S, X 1 , X 2), we can show that the optimum on (F⊕G, X) is equal modulo some constant to the optimum on either (F, X), or (F \{v}, X), or (F ′ , X), where F ′ is obtained from F by adding an edge between v and either a vertex of X 1 or a vertex of X 2 (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 4.10]).

Finally, let us now mention some particular ingredients used to prove that the considered annotated problems are solvable in time f (|X|) • n O (1) on an instance (G, X) such that G \ X is bipartite, where X is a partition of a vertex set X corresponding to the annotation. For Annotated K t -Subgraph-Cover and Annotated Weighted Vertex Cover, this is simply a reduction to (Weighted Vertex) Cover on bipartite graphs. For Odd Cycle Transversal, we adapt the algorithm of Reed, Smith, and Vetta [START_REF] Reed | Finding odd cycle transversals[END_REF] that uses iterative compression to solve Annotated Odd Cycle Transversal in FPT-time parameterized by oct, so that it takes annotations into account (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 4.12]). As for Maximum Weighted Cut parameterized by oct, the most important trick is to reduce to a K 5odd-minor-free graph, and then use known results of Grötschel and Pulleyblank [START_REF] Grötschel | Weakly bipartite graphs and the max-cut problem[END_REF] and Guenin [START_REF] Guenin | A characterization of weakly bipartite graphs[END_REF] to solve the problem in polynomial time (Proposition 6).

XP-algorithms

We now sketch some of the basic ingredients of the XP-algorithms that we present in [17, Section 5] for H(-Induced)-Subgraph/Scattered/Odd-Minor-Packing. The main observation is that, if H is 2-connected and non-bipartite, since the "non-apex" part of each bag is bipartite and H is non-bipartite, in any H-subgraph/induced/scattered/odd-minorpacking and every bag of the decomposition, there are at most btw occurrences of H that intersect that bag. We thus guess these occurrences, and how they intersect the children, which allow us to reduce the number of children by just deleting those not involved in the packing. The guess of these occurrences is the dominant term in the running time of the resulting XP-algorithm using this method. Note that for H(-Induced)-Subgraph/Scattered-Packing, we can indeed easily guess those occurrences in XP-time parameterized by btw, as the total size of the elements of the packing intersecting a given bag is bounded by a function of btw and H. However, for H-Odd-Minor-Packing, this is not the case anymore, as an element of the packing may contain an arbitrary number of vertices in the bipartite part of a bag. We overcome this issue as follows. As stated in [17, Lemma 3.1], the existence of an H-odd-minor is equivalent to the existence of a so-called odd H-expansion, which is essentially a collection of trees connected by edges preserving the appropriate parities of the resulting cycles. In an odd H-expansion, the branch vertices are those that have degree at least three, or that are incident to edges among different trees. Note that, in an odd H-expansion, the number of branch vertices depends only on H (cf. [17, Lemma 5.2]). Equipped with this property, we first guess, at a given bag, the branch vertices of the packing that intersect that bag. Note that this indeed yields an XP number of choices, as required. Finally, for each such a choice, we use an FPT-algorithm of Kawarabayashi, Reed, and Wollan [START_REF] Kawarabayashi | The graph minor algorithm with parity conditions[END_REF] solving the Parity k-Disjoint Paths to check whether the guessed packing exists or not. This approach is formalized in [17, Lemma 5.3].

It is worth mentioning that, as discussed in Section 4, we leave as an open problem the existence of FPT-algorithms for the above packing problems parameterized by btw.

Hardness results

Finally, we discuss some of the tools that we use to obtain the para-NP-completeness results summarized in Table 1, which can be found in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Section 6]. We present a number of different reductions, some of them consisting of direct simple reductions, such as the one we provide for 3-Coloring in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.2].

Except for 3-Coloring, all the considered problems fall into two categories: covering or packing problems. For the first family (cf. [17, Section 6.2]), the para-NP-completeness is an immediate consequence of a result of Yannakakis [START_REF] Yannakakis | Node-deletion problems on bipartite graphs[END_REF] that characterizes hereditary I P E C 2 0 2 3 16:10 Dynamic programming on bipartite tree decompositions graph classes G for which Vertex Deletion to G on bipartite graphs is polynomial-time solvable and those for which Vertex Deletion to G remains NP-complete.

For the packing problems (cf. [17, Section 6.2]), we do not have such a general result as for the covering problems, and we provide several reductions for different problems. For instance, we prove in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.3] that if H is a bipartite graph containing P 3 as a subgraph, then H-Subgraph-Packing and H-Induced-Subgraph-Packing are NP-complete on bipartite graphs. The proof consists in a careful analysis and a slight modification of a reduction of Kirkpatrick and Hell [START_REF] Kirkpatrick | On the complexity of general graph factor problems[END_REF] for the problem of partitioning the vertex set of an input graph G into subgraphs isomorphic to a fixed graph H. The hypothesis about containing P 3 is easily seen to be tight.

For the minor version, we prove in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.4] that if H is a 2-connected graph with at least three vertices, then H-Minor-Packing is NP-complete on bipartite graphs. The proof uses a reduction from P 3 -Subgraph-Packing on bipartite graphs, which was proved to be NP-complete by Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF]. The 2-connectivity of H is crucially used in the proof. Given that odd-minors preserve cycle parity (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 3.1]), when H is bipartite, H-Odd-Minor-Packing and H-Minor-Packing are the same problem on bipartite graphs. Hence, the same hardness result holds for H-Odd-Minor-Packing when H is 2-connected and bipartite (cf. [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.5]).

In [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.6] we prove that, if H is a 2-connected bipartite graph with at least one edge, then H-Scattered-Packing is NP-complete on bipartite graphs, by a simple reduction from the Induced Matching on bipartite graphs, which is known to be NP-complete [START_REF] Cameron | Induced matchings[END_REF].

Finally, in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF]Lemma 6.7] we prove that if H is a (non-necessarily bipartite) 2-connected graph containing an edge and q ∈ N ≥2 , then H-Scattered-Packing is para-NP-complete parameterized by q-B-treewidth. In fact, this reduction is exactly the same as the one when q = 1, with the extra observation that, if G ′ is the graph constructed in the reduction, then the "bipartite" treewidth of G ′ is at most the one of H for q ≥ 2.

General dynamic programming to obtain FPT-algorithms

In this section, we give introduce a framework for giving FPT-algorithms for problems parameterized by the width of a given bipartite tree decomposition of the input graph. In Subsection 3.1 we provide some preliminary definitions and notations, especially concerning annotated problems. Due to space constraints treewidth, boundaried graphs, and nice problems are defined in Appendix A. In Subsection 3.2 we provide a dynamic programming scheme for nice problems, along with some generalizations of this scheme in Subsection 3.3. Finally, we give an application to Maximum Weighted Cut in Subsection 3.4. Applications to K t -Vertex Cover, Weighted Vertex Cover, and Odd Cycle Transversal are additionally given in [START_REF] Jaffke | Dynamic programming on bipartite tree decompositions[END_REF].

Preliminaries

Partitions. Given p ∈ N, a p-partition of a set X is a tuple (X 1 , . . . , X p) of pairwise disjoint subsets of X such that X = i∈[p] X i . We denote by P p (X) the set of all p-partitions of X. Given a partition X ∈ P p (X), its domain X is also denoted as ∪X . A partition is a p-partition for some p ∈ N. Note that this corresponds to the usual definition of an ordered near-partition, since we allow empty sets in a p-partition and since the order matters. Given Y ⊆ X, X = (X 1 , . . . , X p) ∈ P p (X), and

Y = (Y 1 , . . . , Y p) ∈ P p (Y), we say that Y ⊆ X if Y i ⊆ X i for each i ∈ [p]
. Given a set U , two subsets X, A ⊆ U , and X = (X 1 , . . . , X p) ∈ P p (X), X ∩ A denotes the partition (X 1 ∩ A, . . . , X p ∩ A) of X ∩ A.

Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos

16:11

Optimization problems. A p-partition-evaluation function on graphs is a function f that receives as input a graph G along with a p-partition P of its vertices and outputs a nonnegative integer. Given such a function f and some choice opt ∈ {max, min} we define the associated graph parameter p f,opt where, for every graph G,

p f,opt (G) = opt{f (G, P) | P is a p-partition of V (G)}.
An optimization problem is a problem that can be expressed as follows.

Input: A graph G. Objective: Compute p f,opt (G).
The annotated extension of p f,opt is the parameter pf,opt such that pf,opt (G, X) = opt{f (G, P) | P is a p-partition of V (G) with X ⊆ P}.

Observe that p f,opt (G) = pf,opt (G, ∅ p), for every graph G. The problem Π ′ is a p-annotated extension of the optimization problem Π if Π can be expressed by some p-partition-evaluation function f and some choice opt ∈ {max, min}, and that Π ′ can be expressed as follows.

Input: A graph G and X ∈ P p (X) for some X ⊆ V (G).

Objective: Compute pf,opt (G, X).

We also say that Π ′ is a p-annotated problem.

While our goal in this article is to study bipartite treewidth, defined below, we define a more general parameter, namely 1-H-treewidth, with the hope of it finding some application in future work. We use the term 1-H-treewidth to signify that the "H-part" of each bag intersects each neighboring bag in at most one vertex. This also has the benefit of avoiding confusion with H-treewidth defined in [START_REF] Eiben | Measuring what matters: A hybrid approach to dynamic programming with treewidth[END_REF], which would be another natural name for this class of parameters.

1-H-tree decompositions.

Let H be a graph class. A 1-H-tree decomposition is defined exactly like a tree decomposition, but by replacing the class B of bipartite graphs by H.

General dynamic programming scheme

We now have all the ingredients for our general scheme dynamic programming algorithm on bipartite tree decompositions. We essentially prove that if a problem Π has an annotated extension that is B-nice and solvable in FPT-time parameterized by oct, then Π is solvable in FPT-time parameterized by btw. This actually holds for more general H. ▶ Lemma 2. Let p ∈ N. Let H be a graph class. Let Π be an optimization problem. Let Π ′ be a problem that is: a p-annotated extension of Π corresponding to some choice of p-partition-evaluation function g and some opt ∈ {max, min}, H-nice, and solvable on instances

(G, X) such that G \ ∪X ∈ H in time f (| ∪ X |) • n c • m d , for some c, d ∈ N.

Then, there is an algorithm that, given a graph G and a 1-H-tree decomposition of G of width

k, computes p f,opt (G) in time O(p k •f (k+O(1))•(k•n) c •m d) (or O(p k •f (k+O(1))•(m+k 2 •n) d) if c = 0).
I P E C 2 0 2 3 16:12 Dynamic programming on bipartite tree decompositions Proof. Let Alg be the algorithm that solves instances (G, X) such that

G \ ∪X ∈ H in time f (| ∪ X |) • n c • m d . Let (T, α, β, r) be a rooted 1-H-tree decomposition of G of width at most k. Let σ : V (G) → N be an injection. For t ∈ V (T), let G t = (G t , δ t , σ |δt), let X t = α(t) ∪ δ t ∪ t ′ ∈chr(t) δ t ′ , let X t = (G[X t], X t , σ |Xt), let H t = X t ⊞ (⊞ t ′ ∈chr(t) G t ′), let F t be such that G t = F t ⊕ H t . let A t = α(t) ∪ δ t , and let B t = X t \ A t = X t ∩ β(t) \ δ t . Note that |bd(G t ′) \ A t | ≤ 1 for t ′ ∈ ch r (t).
We proceed in a bottom-up manner to compute s X t := pg,opt (G t , X), for each t ∈ V (T), for each X ∈ P p (δ t). Hence, given that δ r = ∅, s ∅ r = p g,opt (G). Let t ∈ V (T). By induction, for each t ′ ∈ ch r (t) and for each X t ′ ∈ P p (δ t ′), we compute the value s

X t ′ t ′ . Let X ∈ P p (δ t). Let Q be the set of all A ∈ P p (A t) such that A ∩ δ t = X . Let A ∈ Q. Since Π ′ is H-nice, there is an H-nice reduction (H A , A ′ , s A) of (H t , A) with respect to Π ′ . Hence, pg,opt (G t , A) = pg,opt (H A ▷ F t , A ′) + s A . Let us compute pg,opt (H A ▷ F t , A ′).
By definition of a H-reduction, (H A ▷F t)\(∪A ′) ∈ H. Hence, we can compute pg,opt (H A ▷ F t , A ′), and thus pg,opt (G t , A), using Alg on the instance (

H A ▷ F t , A ′). Finally, s X t = opt A∈Q pg,opt (G t , A).
It remains to calculate the complexity. Throughout, we make use of the fact that p is a fixed constant. We can assume that T has at most n nodes: for any pair of nodes t, t ′ with (α ∪ β)(t) ⊆ (α ∪ β)(t ′), we can contract the edge tt ′ of T to a new vertex t ′′ with α(t ′′) = α(t ′) and β(t ′′) = β(t ′). This defines a valid 1-H-tree decomposition of same width. For any leaf t of T , there is a vertex u ∈ V (G) that only belongs to the bag of t. From this observation, we can inductively associate each node of T to a distinct vertex of G. So this H-tree decomposition has at most n bags. Hence, if

c t = |ch r (t)|, then we have t∈V (T) c t ≤ n. Let also n t = |(α ∪ β)(t)| and m t = |E(G[(α ∪ β)(t)])|. Note that |A t | = |α(t)| + |δ t ∩ β(t)| ≤ k + 1 and that |B t | = | t ′ ∈V (T) δ t ′ ∩ β(t)| ≤ c t , so |X t | ≤ k + 1 + c t .
Moreover, the properties of the tree decompositions imply that the vertices in β(t) \ X t are only present in node t. Then,

t∈V (T) n t = t∈V (T) (|X t | + |β(t) \ X t |) = O(k • n).
Also, let mt be the number of edges only present in the bag of node t. The edges that are present in several bags are those in the adhesion of t and its neighbors. t is adjacent to its |c t | children and its parent, and an adhesion has size at most k + 1. Thus, t∈V (T) m t ≤ t∈V (T) (mt

+ k 2 (1 + c t)) = O(m + k 2 • n).
There are p |At| ≤ p k+1 = O(p k) partitions of P p (A t). For each of them, we compute in time

O(k • c t) a H-nice reduction (H A , A ′ , s A) with | ∪ A ′ | = |A t | + O(1) = k + O(1) and with O(|B t |) = O(c t) additional vertices and edges. We thus solve Π ′ on (H A ▷ F t , A ′) in time f (k+O(1))•O((n t +c t) c •(m t +c t) d). Hence, the running time is O(p k •f (k+O(1))•(k•n) c •m d) (or O(p k • f (k + O(1)) • (m + k 2 • n) d) if c = 0). ◀

Generalizations

For the sake of simplicity, we assumed in Lemma 2 that the problem Π under consideration takes as input just a graph. However, a similar statement still holds if we add labels/weights on the vertices/edges of the input graph. This is in particular the case for Maximum Weighted Cut (Subsection 3.4) and Weighted Independent Set where the vertices or edges are weighted.

Moreover, again for the sake of simplicity, we assumed that Π ′ is solvable in FPTtime, while other complexities such as XP-time could be considered. Similarly, in the definition of the nice reduction, the contraints

|A ′ | = |A| + O(1), |V (G ′)| ≤ |X| + O(|B|), |E(G ′)| ≤ |E(G[X])| + O(|B|)
can be modified. In both cases, the dynamic programming algorithm still holds, but the running time of Lemma 2 changes.

To give a precise running time for Maximum Weighted Cut (Subsection 3.4), K t -Subgraph-Cover, and Weighted Independent Set, let us observe that, if Π ′ is solvable in time

f (| ∪ X |) • n ′c • m ′d , where G ′ = G \ ∪X , n ′ = |V (G ′)|, and m ′ = |E(G ′)|,
then the running time of Lemma 2 is better. Indeed, in the proof of the complexity of Lemma 2, we now solve Π ′ on (

H A ▷ F, A ′) in time f (k + O(1)) • O((n ′ t + c t) c • (m ′ t + c t) d), where n ′ t = |β(t)| and m ′ t = |E(G[β(t)])|. We have t∈V (T) n ′ t = t∈V (T) (|B| + |β(t) ∩ δ t | + |β(t) \ X|) = O(n) and t∈V (T) m ′ t ≤ m. Hence, the total running time is O(p k • (k • n + f (k + O(1)) • n c • m d)).

Application to Maximum Cut

We now apply the above framework to give an FPT-algorithm for Maximum Weighted Cut parameterized by bipartite treewidth. Thanks to Lemma 2, this now reverts to showing that the problem under consideration has an B-nice annotated extension that is solvable in FPT time when parameterized by oct, where B is the class of bipartite graphs.

The Maximum Weighted Cut problem is defined as follows.

Maximum Weighted Cut

Input: A graph G and a weight function w : E(G) → N.

Objective: Find an edge cut of maximum weight.

Let H be a graph. We define f cut as the 2-partition-evaluation function where, for every graph G with edge weight w and for every P = (X 1 , X 2) ∈ P 2 (V (G)),

f cut (G, P) = w(P) = w(E(X 1 , X 2)).
Hence, Maximum Weighted Cut is the problem of computing p fcut,max (G). We call its annotated extension Annotated Maximum Weighted Cut. In other words, Annotated Maximum Weighted Cut is defined as follows.

Annotated Maximum Weighted Cut

Input: A graph G, a weight function w : E(G) → N, and two disjoint sets X 1 , X 2 ⊆ V (G). Objective: Find an edge cut of maximum weight such that the vertices in X 1 belongs to one side of the cut, and the vertices in X 2 belong to the other side.

The following property seems critical to show that a problem is H-nice.

Gluing property.

Let Π be a p-annotated problem corresponding to some choice of ppartition-evaluation function f and some opt ∈ {max, min}. We say that Π has the gluing property if, given two compatible boundaried graphs F and G with boundary X, X ∈ P p (X), and

P ∈ P p (V (F ⊕ G)) such that X ⊆ P, then pf,opt (F ⊕ G, X) = f (F ⊕ G, P) if and only if pf,opt (F, X) = f (F, P ∩ V (F)) and pf,opt (G, X) = f (G, P ∩ V (G)).
We first prove that Annotated Maximum Weighted Cut has the gluing property.

▶ Lemma 3 (Gluing property). Annotated Maximum Weighted Cut has the gluing property. More precisely, given two boundaried graphs

F = (F, B F , ρ F) and G = (G, B G , ρ G), a weight function w : E(F ⊕ G) → N, a set X ⊆ V (F ⊕ G) such that B F ∩ B G ⊆ X, and X = (X 1 , X 2) ∈ P 2 (X), if we set w = w(X ∩ B F ∩ B G), then we have pfcut,max (F ⊕ G, X , w) = pfcut,max (F, X ∩ V (F), w) + pfcut,max (G, X ∩ V (G), w) -w.
I P E C 2 0 2 3 16:14 Dynamic programming on bipartite tree decompositions Proof. Let P ∈ P 2 (V (F ⊕ G)) be such that X ⊆ P and pfcut,max (F ⊕ G, X , w) = f cut (F ⊕ G, P, w). Then, pfcut,max (F ⊕ G, X , w) = w(P)

= w(P ∩ V (F)) + w(P ∩ V (G)) - w ≤ pfcut,max (F, X ∩ V (F), w) + pfcut,max (G, X ∩ V (G), w) -w.
Reciprocally, for H ∈ {F, G}, let P H = (X H 1 , X H 2) ∈ P 2 (V (H)) be such that X ∩ V (H) ⊆ P H and pfcut,max (H, X ∩V (H), w) = f oct (H, P H , w). Then, since

P H ∩B F ∩B G = X ∩B F ∩B G for H ∈ {F, G}, we have pfcut,max (F ⊕ G, X , w) ≥ w(E(X F 1 ∪ X G 1 , X F 2 ∪ X G 2)) = w(E(X F 1 , X F 2)) + w(E(X G 1 , X G 2)) - w = pfcut,max (F, X ∩ V (F), w) + pfcut,max (G, X ∩ V (G), w) -w.

◀

We now show how to reduce a graph F ⊕ G to a graph F ′ when the boundary of F and G has a single vertex v that is not annotated. w, and w ′ (e) = w(e) otherwise. Then pfcut,max (F ⊕ G, X , w) = pfcut,max (F, X , w ′).

▶ Lemma 4 (Gadgetization). Let F = (F, B F , ρ F) and G = (G, B G , ρ G) be two boundaried graphs, let w : E(F ⊕ G) → N be a weight function, let X ⊆ V (F ⊕ G) be such that B F ∩ B G ⊆ X, let v ∈ B F ∩ B G , and let X = (X 1 , X 2) ∈ P 2 (X \ {v}). Suppose that there is v 1 ∈ X 1 and v 2 ∈ X 2 adjacent to v with w(vv 1) = w(vv 2) = 0. Let X 1 = (X 1 ∪ {v}, X 2) and X 2 = (X 1 , X 2 ∪ {v}). For a ∈ [2], let g a = pfcut,max (G, X a ∩ V (G), w). Let w = w(X ∩ B F ∩ B G). Let w ′ : E(F) → N be such that w ′ (vv 1) = g 2 -w, w ′ (vv 2) = g 1 -
Proof. For a ∈ [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF], let f a = pfcut,max (F, X a ∩ V (F), w). Note that in F with partition X , if v is on the same side as X 1 , then we must count the weight of the edge vv 2 , but not the weight of vv 1 , and vice versa when exchanging 1 and 2. Thus, using Lemma 3, we have

pfcut,max (F ⊕ G, X , w) = max{p fcut,max (F ⊕ G, X 1 , w), pfcut,max (F ⊕ G, X 2 , w)} = max{f 1 + g 1 -w, f 2 + g 2 -w} = max{f 1 + w ′ (vv 2), f 2 + w ′ (vv 1)} = max{p fcut,max (F ′ , X 1 , w ′), pfcut,max (F, X 2 , w ′)} = pfcut,max (F, X , w ′).

◀

Using Lemma 3 and Lemma 4, we can prove that Annotated Maximum Weighted Cut is H-nice. Essentially, given an instance (G = X ⊞ (⊞ i∈[d] G i), (A, B), A, w), we reduce G to X where we add two new vertices in A and add every edges between this new vertices and the vertices in B. We then show that if the appropriate weight is given to each new edge, then the resulting boundaried graph is equivalent to G modulo some constant s.

▶ Lemma 5 (Nice problem). Let H be a graph class. Annotated Maximum Weighted

Cut is H-nice.

Maximum Weighted Cut is a NP-hard problem [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. However, there exists a polynomialtime algorithm when restricted to some graph classes. In particular, Grötschel and Pulleyblank [START_REF] Grötschel | Weakly bipartite graphs and the max-cut problem[END_REF] proved that Maximum Weighted Cut is solvable in polynomial-time on weakly bipartite graphs, and Guenin [START_REF] Guenin | A characterization of weakly bipartite graphs[END_REF] proved that weakly bipartite graphs are exactly K 5 -odd-minor-free graphs, which gives the following result.

▶ Proposition 6 ([13,14]). There is a constant c ∈ N and an algorithm that solves Maximum Weighted Cut on K 5 -odd-minor-free graphs in time O(n c).

Moreover, we observe the following.

▶ Lemma 7.

A graph G such that oct(G) ≤ 2 does not contain K 5 as an odd-minor.

Proof. Let u, v ∈ V (G) be such that G ′ = G \ {u, v} is bipartite. G ′ does not contain K 3 as an odd-minor, so G does not contain K 5 as an odd-minor. ◀

Combining Proposition 6 and Lemma 7, we have that Annotated Maximum Weighted Cut is FPT parameterized by oct.

▶ Lemma 8. There is an algorithm that, given a graph G, a weight function w : E(G) → N, and two disjoint sets

X 1 , X 2 ⊆ V (G), such that G ′ = G \ (X 1 ∪ X 2) is bipartite, solves Annotated Maximum Weighted Cut on (G, X 1 , X 2 , w) in time O(k • n ′ + n ′c), where k = |X 1 ∪ X 2 | and n ′ = |V (G ′)|. Proof. Let G ′′ be the graph obtained from G by identifying all vertices in X 1 (resp. X 2) to a new vertex x 1 (resp. x 2). Let w ′ : V (G ′′) → N be such that w ′ (x 1 x 2) = e∈E(G) w(e) + 1, w ′ (x i u) = x∈Xi w(xu) for i ∈ [2] and u ∈ N G (X i), and w ′ (e) = w(e) otherwise. Let (X ⋆ 1 , X ⋆ 2) ∈ P 2 (V (G)) be such that (X 1 , X 2) ⊆ (X ⋆ 1 , X ⋆ 2). For i ∈ [2], let X ′ i = X ⋆ i \ X i . Then w(X ⋆ 1 , X ⋆ 2) = w(X 1 , X 2) + w(X ′ 1 , X ′ 2) + xy∈E(X1,X ′ 2) w(xy) + xy∈E(X ′ 1 ,X2) w(xy) = w(X 1 , X 2) + w ′ (X ′ 1 , X ′ 2) + u∈X2∩N G (X1) w ′ (x 1 u) + u∈X1∩N G (X2) w ′ (x 2 u) = w ′ (X ′ 1 ∪ {x 1 }, X ′ 2 ∪ {x 2 }) + w(X 1 , X 2) -w ′ (x 1 x 2) Let w be the contant w(X 1 , X 2) -w ′ (x 1 x 2). Hence, f cut (G, (X ⋆ 1 , X ⋆ 2)) = f cut (G ′′ , (X ′ 1 ∪ {x 1 }, X ′
2 ∪{x 2 }))+ w, and so pfcut,max (G, (X 1 , X 2)) = pfcut,max (G ′′ , ({x 1 }, {x 2 }))+ w. Furthermore, given that the weight of the edge x 1 x 2 is larger than the sum of all other weights, x 1 and x 2 are never on the same side of a maximum cut in G ′′ . Hence, pfcut,max (G ′′ , ({x 1 }, {x 2 })) = p fcut,max (G ′′), and therefore, pfcut,max (G, (X 1 , X 2)) = p fcut,max (G ′′) + w.

Constructing G ′′ takes time O(k•n) and computing w takes time O(k 2). Since oct(G ′′) = 2, according to Proposition 6 and Lemma 7, an optimal solution to Maximum Weighted Cut on G ′′ can be found in time O(n ′c), and thus, an optimal solution to Annotated Maximum Weighted Cut on (G, X 1 , X 2) can be found in time O(k • (k + n ′) + n ′c). ◀

We apply Lemma In this paper we study the complexity of several problems parameterized by bipartite treewidth, denoted by btw. In particular, our results extend the graph classes for which Vertex Cover/Independent Set, Maximum Weighted Cut, and Odd Cycle Transversal are polynomial-time solvable. A number of interesting questions remain open. Except for 3-Coloring, all the problems we consider are covering and packing problems. We are still far from a full classification of the variants that are para-NP-complete, and those that are not (FPT or XP). For instance, concerning H-Subgraph-Cover, we provided an FPT-algorithms when H is a clique. This case is particularly well-behaved because we know that in a tree decomposition every clique appears in some bag. On the other hand, as an immediate consequence of the result of Yannakakis [START_REF] Yannakakis | Node-deletion problems on bipartite graphs[END_REF], we know that H-Subgraph-Cover is para-NP-complete for every bipartite graph H containing P 3 . We do not know what happens when H is not bipartite nor a clique. An apparently simple but challenging case is C 5 -Subgraph-Cover. The main difficulty seems to be that C 5 -Subgraph-Cover does not have the gluing property, which is the main ingredient in this paper to show that a problem is nice, and therefore to obtain an FPT-algorithm. We do not exclude the possibility that the problem is para-NP-complete, as we were not even able to obtain even an XP algorithm.

Concerning the packing problems, namely H-Subgraph/Induced/Scattered/Odd-Minor-Packing, we provide XP-algorithms for them when H is non-bipartite. Unfortunately, we do not know whether any of them admits an FPT-algorithm, although we suspect that it is indeed the case. We would like to mention that it is possible to apply the framework of equivalence relations and representatives (see for instance [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF][START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Garnero | Explicit linear kernels for packing problems[END_REF]) to obtain an FPTalgorithm for K t -Subgraph-Packing parameterized by btw. However, since a number of definitions and technical details are required to present this algorithm, we decided not to include it in this paper (which is already quite long). However, when H is not a clique, we do not know whether H-Subgraph-Packing admits an FPT-algorithm. A concrete case that we do not know how to solve is when H is the paw, i.e., the 4-vertex graph consisting of one triangle and one pendent edge.

Beyond bipartite tree decompositions, we introduce a more general type of decompositions that we call q(-torso)-H-tree decompositions. For B being the class of bipartite graphs, we prove that for every q ≥ 2 and every 2-connected graph H with an edge, H-Scattered-Packing is para-NP-complete parameterized by q(-torso)-B-treewidth. It should be possible to prove similar results for other covering and packing problems considered in this article.

Most of our para-NP-completeness results consist just in proving NP-completeness on bipartite graph. There are two exceptions. On the one hand, the NP-completeness of 3-Coloring on graphs with odd cycle transversal at most three and H-Scattered-Packing parameterized by q-B-treewidth for every integer q ≥ 2. Interestingly, none of our hardness results really exploits the structure of bipartite tree decompositions (i.e., for q = 1), beyond being bipartite or having bounded odd cycle transversal.

Finally, as mentioned in the introduction, the goal of this article is to make a first step toward efficient algorithms to solve problems related to odd-minors. We already show in this paper that bipartite treewidth can be useful in this direction, by providing an XP-algorithm for H-Odd-Minor-Packing. Bipartite treewidth, or strongly related notions, also plays a strong role in the recent series of papers about odd-minors by Campbell, Gollin, Hendrey, and Wiederrecht [START_REF] Campbell | Odd-Minors II: Bipartite treewidth[END_REF][START_REF] Gollin | Odd-Minors I: Excluding small parity breaks[END_REF]. This looks like an emerging topic that is worth investigating.

▶ Corollary 9 .

 9 [START_REF] Chuzhoy | Towards tight(er) bounds for the Excluded Grid Theorem[END_REF] and Lemma 8 to the dynamic programming algorithm of Lemma 2 to obtain the following result. Given a graph G and a bipartite tree decomposition of G of width k, there is an algorithm that solvesMaximum Weighted Cut on G in time O(2 k • (k • (k + n) + n c)).

Table 1

 1 Summary of the results obtained in this article.

Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos 16:5

 17, Section 4.4.1]), Weighted Vertex Cover/Independent Set (cf. [17, Section 4.4.2]), and Odd Cycle Transversal (cf. [17, Section 4.4.3]), we prove that the problem has an annotated extension that is 1) nice and 2) solvable in FPT-time parameterized by oct, as discussed above.

	16:8
	I P E C 2 0 2 3

Acknowledgments. We thank Sebastian Wiederrecht and the reviewers for helpful remarks.

Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos 16:17

Funding

The second and the third authors were supported by the ANR project ELIT (ANR-20-CE48-0008-01), the three last authors were supported by the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027), and the first author was supported by the Research Council of Norway (No 274526).

https://

A

Graphs, treewidth, boundaried graphs, and nice problems Functions. Given two sets A and B, and two functions f, g : A → 2 B , we denote by f ∪g the function that maps x ∈ A to f (x) ∪ g(x) ∈ 2 B . Let f : A → B be an injection. Let K ⊆ B be the image of f . By convention, if f is referred to as a bijection, it means that we consider that f maps A to K. Given a function w : A → N, and A ′ ⊆ A, w(A ′) = x∈A ′ w(x).

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and without loops or multiple edges. We use standard graph-theoretic notation and we refer the reader to [START_REF] Diestel | Graph Theory[END_REF] for any undefined terminology. For convenience, we use uv instead of {u, v} to denote an edge of a graph. Let G be a graph. In the rest of this paper we always use Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos

16:19

n for the cardinality of V (G), and m for the cardinality of E(G), where G is the input graph of the problem under consideration. For S ⊆ V (G), we set

For k ∈ N, we denote by P k the path with k vertices, and we say that P k has length k -1 (i.e., the length of a path is its number of edges). We denote by cc(G) the set of connected components of a graph G. For A, B ⊆ V (G), E(A, B) denotes the set of edges of G with one endpoint in A and the other in B. We say that

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and

for every e ∈ E(G), there is a t ∈ V (T) such that χ(t) contains both endpoints of e, and for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T) | v ∈ χ(t)} is connected. The width of (T, χ) is equal to max |χ(t)| -1 t ∈ V (T) and the treewidth of G, denoted by tw(G), is the minimum width over all tree decompositions of G.

For every node t ∈ V (T), χ(t) is called bag of t. Given tt ′ ∈ E(T), the adhesion of t and t ′ , denoted by adh(t, t ′), is the set χ(t) ∩ χ(t ′).

A rooted tree decomposition is a triple (T, χ, r) where (T, χ) is a tree decomposition and (T, r) is a rooted tree (i.e., T is a tree and r ∈ V (T)). Given t ∈ V (T), we denote by ch r (t) the set of children of t and by par r (t) the parent of t (if t ̸ = r). We set δ r t = adh(t, par r (t)), with the convention that δ r r = ∅. Moreover, we denote by G r t the graph induced by t ′ ∈V (Tt) χ(t ′) where (T t , t) is the rooted subtree of (T, r). We may use δ t and G t instead of δ r t and G r t when there is no risk of confusion.

where G is a graph, B ⊆ V (G), |B| = t, and ρ : B → N is an injection. We say that B is the boundary of G and we write B = bd(G). We call G trivial if all its vertices belong to the boundary. We say that two t-boundaried graphs

We denote by B t the set of all (pairwise non-isomorphic) t-boundaried graphs. A boundaried graph F is a boundaried induced subgraph (resp. boundaried subgraph) of G if F can be obtained from G by removing vertices (resp. and edges). A boundaried graph F is a boundaried odd-minor of G if F can be obtained from a bounderied subgraph G ′ of G by contracting an edge cut such that every vertex in bd(G ′) is on the same side of the cut. We say that two boundaried graphs

as the unboundaried graph obtained if we take the disjoint union of G 1 and G 2 and, for every

Illustration of the setting of the nice problem and reduction. The shaded area on the left is G where X = X1 ∪ X2 ∪ X ⋆ , and the shaded area on the right is G ′ where

, and given an edge vu in G 1 ⊕ G 2 , we say that vu is the heir of an edge

, where B is the sets of all heirs from G 1 and G 2 and ρ : B → N is the union of ρ 1 and ρ 2 after identification. Note that in circumstances where ⊞ is repetitively applied, the heir relation is maintained due to its transitivity. Moreover, we define G 1 ▷ G 2 as the unboundaried graph G obtained from G 1 ⊕ G 2 by removing all heirs from G 2 that are not heirs 1 and all heirs of from G 2 that are not heirs of edges from G 1 . Note that ▷ is not commutative. For the sake of simplicity, with a slight abuse of notation, we sometimes identify a vertex with its heir.

Nice problem and nice reduction. Let p ∈ N, let H be a graph class, and let Π be a p-annotated problem corresponding to some choice of p-partition-evaluation function f and some opt ∈ {max, min}. We say that Π is a H-nice problem if there exists an algorithm that receives as input a boundaried graph G = (G, X, ρ), a trivial boundaried graph X = (G[X], X, ρ X) and a collection

, and for every i ∈ [d] and each X i ∈ P p (X i), the value pf,opt (G i , X i), and outputs, in time

called H-nice reduction of the pair (G, A) with respect to Π, such that the following hold.

There is a set

There is a trivial boundaried graph

See Figure 1 If G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval, chordal) graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion, Chordal Vertex Deletion) problem. Also, given a graph H, if G is the class of graphs that do not contain H as a subgraph (resp. a minor/odd-minor/induced subgraph), then the corresponding problem is called H-Subgraph-Cover (resp. H-Minor-Cover/H-Odd-Minor-Cover/H-Induced-Subgraph-Cover).

Let H be a graph and w : V (G) → N be a weight function (constant equal to one in the unweighted case). We define f H as the 2-partition-evaluation function where, for every graph G, for every (R, S)

Seen as an optimization problem, (Weighted) H-Subgraph-Cover is the problem of computing p f H ,min (G). We call its annotated extension (Weighted) Annotated H-Subgraph-Cover. In other words, (Weighted) Annotated H-Subgraph-Cover is defined as follows.

(Weighted) Annotated H-Subgraph-Cover Input: A graph G, two disjoint sets R, S ⊆ V (G) (and a weight function w : V (G) → N). Objective: Find, if it exists, the minimum size (resp. weight) of a set S ⋆ ⊆ V (G) such that R ∩ S ⋆ = ∅, S ⊆ S ⋆ , and G \ S ⋆ does not contain H as a subgraph.

Odd Cycle Transversal.

Let H be a graph. We define f oct as the 3-partition-evaluation function where, for every graph G and for every (S, X 1 , X 2) ∈ P 3 (V (G)),

Hence, seen as an optimization problem, Odd Cycle Transversal is the problem of computing p foct,min (G). We call its annotated extension Annotated Odd Cycle Transversal. In other words, Annotated Odd Cycle Transversal is defined as follows.

(Weighted) Annotated Odd Cycle Transversal Input: A graph G, three disjoint sets S, X 1 , X 2 ⊆ V (G) (and a weight function w : V (G) → N). Objective: Find, if it exists, a set S ⋆ of minimum size (resp. weight) such that S ⊆ S ⋆ , (X 1 ∪ X 2) ∩ S ⋆ = ∅, and G \ S ⋆ is bipartite with X 1 and X 2 on different sides of the bipartition. If in the definition of G-Packing we add the condition that there is no edge in the input graph between vertices of different H i 's, then we refer to the corresponding problem as H-Scattered-Packing, where we implicitly assume that we refer to the subgraph relation, and where we do not specify a degree of "scatteredness", as it is usual in the literature when dealing, for instance, with the scattered version of Independent Set. For instance, K 2 -Scattered-Packing is exactly Induced Matching.

I P E