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Abstract

In recent years, several machine learning approaches have been proposed to predict gene expression and epigenetic

signals from the DNA sequence alone. These models are often used to deduce, and, to some extent, assess putative

new biological insights about gene regulation, and they have led to very interesting advances in regulatory genomics.

This article reviews a selection of these methods, ranging from linear models to random forests, kernel methods, and

more advanced deep learning models. Specifically, we detail the different techniques and strategies that can be used

to extract new gene-regulation hypotheses from these models. Furthermore, because these putative insights need to

be validated with wet-lab experiments, we emphasize that it is important to have a measure of confidence associated

with the extracted hypotheses. We review the procedures that have been proposed to measure this confidence for

the different types of machine learning models, and we discuss the fact that they do not provide the same kind of

information.
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Introduction

Machine learning (ML) has been used for decades in
genomics and bioinformatics. Among many other examples,
protein modeling with Hidden Markov models dates
back to 19921, and the book of P. Baldi and S.
Brünak Bioinformatics: the machine learning approach was
published in 19982. In regulatory genomics specifically,
position weight matrices (PWMs), which are the most
common models for transcription factor (TF) binding sites,
appeared in the late 80’s3,4. In the following years, many
algorithms have been proposed in the literature to estimate
the parameters of a PWM from sequence examples4–7.
Today, PWMs of hundreds of TFs are available in databases
like JASPAR8 and HOCOMOCO9, and can be used to
compute binding affinities and to identify potential binding
sites in genomes.

In recent years, several ML approaches have been
proposed to go beyond single TF binding sites, by
modeling entire regulatory sequences spanning hundreds
or even thousands base pairs. These models range from
linear models10 to random forests11, kernel methods12,13,
convolutional neural networks14,15, and more advanced deep
learning approaches16,17. Notably, deep learning approaches

adapted from methods initially developed for image and
natural language processing have attracted considerable
attention in the field. These studies take place in a supervised
framework, where the goal is to train a model able to
predict a signal measuring gene expression (RNA-seq,
CAGE, . . . ), TF binding or histone marks (ChIP-seq, ATAC-
seq, . . . ) on the basis of the DNA sequence only. Despite
the supervised framework, in a large number of studies
these models are not really used as predictors. Instead, the
goal is to use the model to deduce, and to some degree
assess, new biological knowledge and hypotheses about gene
regulation; hypotheses that have then to be experimentally
validated. Along with the availability of a huge quantity
and diversity of genomic, transcriptomic and epigenetic data,
these approaches have allowed very interesting progresses
in regulatory genomics. Maybe one of the most striking
results is the fact that gene expression can be predicted with
often high accuracy from the sequence only, which means
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that a large part of the instructions for the control of gene
expression likely lie at the level of the DNA. This is in
contradiction with a common belief that gene expression
first depends on chromatin marks that are not necessarily
controlled by the DNA sequence18. Actually, several of the
early works in the field have shown that epigenetic marks can
be predicted from the sequence alone, often with very good
accuracy11,13,15.

Beyond this very general result, other biological
hypotheses can be deduced from ML models. As we will
see in this review, different strategies/methods can be used
to deduce and assess interesting biological hypotheses with
these models. Certain general knowledge, such as the cell
specificity of a regulatory mechanism, can be quite easily
tested by learning different models for different conditions
and comparing their accuracy. However, for more specific
knowledge, such as the DNA motifs involved in a specific
regulation, we have to directly analyse the learned model,
and this knowledge-extraction process is highly dependent
on the model type. In addition, because this putative
knowledge must be validated with wet-lab experiments, it
is important to have a measure of importance associated
with each of the extracted hypotheses. However, we will also
see that the different models do not provide the same kind
of importance measure. Specifically, for some models these
measures can be considered as objective, in the sense that
they rely directly on the error of the model, estimated from
the data. For other approaches, however, these estimates are
more subjective, as they are computed solely on the basis
of the signal predicted by the model, with no link to the
associated error.

There are several recent reviews devoted to deep
learning approaches for modeling genomic sequences19–22.
In addition, several other papers address the problems of
model interpretation in machine learning—see for example
references23–26. This review differs from these papers on
several points: i) it is specifically dedicated to the modeling
of genomic sequences involved in the regulation of gene
expression; ii) it presents a wide variety of models, without
being restricted to deep learning approaches; iii) it makes an
inventory of methods and practices that can be used to extract
different levels of biological knowledge from these models.
This review is intended to biologists and computational
biologists who are curious to know how machine learning
can be used to deduce new biological hypothesis about gene
regulation. Special attention has been paid to explaining the
mathematical concepts simply and intuitively but also in a
sufficiently detailed way, so that readers without knowledge

of machine-learning should be able to fully understand
the advantages and limitations of the different approaches.
This paper does not intend to provide an exhaustive list
of methods and approaches that use machine learning to
study regulatory sequences. Rather, the aim is to develop
and provide the reader with the technical concepts necessary
to understand this literature. Most of the works presented
below have been selected for their pioneering aspect, in the
sense that they are, to our knowledge, the first to introduce a
specific type of machine learning model or to apply a specific
method to evaluate new hypotheses or to interpret a given
machine learning model.

This review is organized as follows. We first present a
selection of models for predicting either epigenetic marks
or expression signals. The following sections discus how
these models are used to infer new biological hypothesis,
and give some examples of knowledge that were gained
from these studies. Specifically, we give a brief literature
tour on the identification and prioritization of nucleotide
variants. Next, we describe simple approaches that are used
to assess very general hypotheses with these models. Finally,
the last section is devoted to the extraction of more complex
DNA features, and to the measures of importance that are
associated with these features.

Machine learning for regulatory genomics

Given a genome-wide experiment (RNA-seq, ChIP-seq,
ATAC-seq, . . . ) monitoring a specific signal (gene expres-
sion, TF binding, histone mark, . . . ) in a specific condition
(cell type, time point, treatment, . . . ), the aim is to learn a
model able to predict this signal based on the DNA sequence
alone. We have a set of sequences X = {x1, . . . , xN}, each
sequence xi being associated with a signal yi. For clas-
sification problems (typically when predicting TF binding
or histone mark) yi is limited to two values (e.g. -1 / +1)
indicating whether the i-th sequence is or is not bound by
the studied factor in the ChIP-seq experiment. For regression
problems (typically when predicting a gene expression sig-
nal) yi is a continuous value that measures the expression
associated with i-th sequence (in this case, sequences may
be for example gene promoters or enhancer sequences).
Therefore, the goal is to learn a prediction function f(x) that
predicts the signal associated with sequence x. An important
remark is that the function f is associated with a specific
experiment and therefore with specific conditions: if the
conditions change (for example if the cell is treated with a
new drug) the function f may no longer be a good fit of
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the cell and another predictor should be learned from data
monitoring these new conditions.

Note that even when the purpose of the study is not to
make predictions per se, the prediction framework keeps
several interests: first, when estimating the accuracy of the
model we also assess the amount of information that has
been captured by the model—and, maybe more importantly,
what remains to be captured. Second, in comparison to
simple correlation analyses that can also identify some links
between sequence features and the target signal, predictive
models enable the combination of several DNA variables and
hence reveal cellular mechanisms that cannot be studied with
simple correlation analyses.

In the following, we distinguish the methods that predict
an expression signal from those that predict epigenetic
marks.

Predicting epigenetic marks

Support vector machines One of the first studies dedicated
to the prediction of ChIP-seq signal based on long regulatory
sequences was the kmer-SVM approach12, latter upgraded in
gkm-SVM13. Support vector machines (SVMs) are among
the most successful methods of ML27. They work by
searching for an hyperplane that best separates the training
examples according to their classes. However, rather than
searching for an hyperplane in the original space of the data,
SVMs work in a usually much higher dimensional space
(with possibly infinite dimension). As a result, while the
separating hyperplane is by definition linear in the enlarged
space, it can define non linear boundaries in the original
space. The beauty of SVMs is that we do not need to define
the enlarged space. The only thing we have to define is a
kernel function that measure the similarity of any pair of
examples. The ”trick” is that the position of a new example
relative to the separating hyperplane can be computed by a
linear combination of the similarity of this new example with
all training examples, i.e.

f(x) = b+

N∑
i=1

αi y
i K(x, xi), (1)

with b and αi the parameters of the SVM estimated by the
learning algorithm, yi (-1/+1) the class of the i-th sample of
the training set, and K(x, xi) the result of the kernel function
between sample x and the i-th example of the training set.
The sign of f(x) gives us the position of x relative to
the hyperplane (up or down) and hence the predicted class
of the sample. Moreover, only some training examples are
associated with a αi different from 0 (the so-called support

vectors), so in practice Expression (1) is computed without
the need to compute the kernel function for all training
examples.

Thus, the accuracy of the approach all depends on the
chosen kernel function K(x, x′) which must be meaningful
for the problem at hand. The authors of kmer-SVM12

proposed a kernel function based on the similarity of the k-
mers present in the sequences. More formally, each sequence
x is encoded by a vector that reports the number of
occurrences of each of the 4k k-mers in x (for a given k-mer
size k). Sequence pairs that have the same relative frequency
for each k-mer have K(x, x′) = 1, while sequences that
have not any k-mer in common have K(x, x′) = 0. The
method has been improved a few years later by the gkm-SVM
approach that uses gapped k-mers (i.e. k-mers with a
certain number of non-informative positions for which any
nucleotide is possible)13, but the principle remains the same:
training sequences that most resemble the new sequence x

in terms of (gapped) k-mers composition have more weight
in Expression (1), and drive the predicted class toward their
own class. The gkm-SVM approach has been applied to 467
human ChIP-seq experiments from the ENCODE project28.
For each ChIP-seq experiment, sequences associated with
a ChIP-seq peak were extracted and used as positive
sequences (authors report an average sequence length of
around 300bps), while the same number of random genomic
sequences were used as negative sequences. Then, an
SVM (one for each ChIP-seq experiment) was learned to
discriminate between these two sets, and the accuracy of
each of these 467 SVMs was estimated by the Area Under
the Receiver Operating Curve (AUROC). The approach
showed very good results, with AUROC above 80% for most
datasets. As for any ML method, to avoid any optimistic
bias the accuracy estimate must be computed on left-out
sequences, i.e. positive and negative sequences that have not
been used to train the model.

Random forests Another method that has been proposed for
the prediction of ChIP-seq signal is random forests (RFs)11.
RFs29 got considerable success and attention in the ML
literature in the last twenty years. RFs are an extension
of decision trees, which are certainly among the oldest
approach in ML30. A decision tree encodes a set of tests that
can be done on the features of a given example to predict
its class (see Figure 1). As the name suggests, these tests
are organized in a tree structure that provides the order in
which the tests are done (from the root to the leaves). Each
node corresponds to a binary test on a specific feature of the
samples (for example, “is feature #3 > 0.66?”), and the two
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edges that follow the node correspond to the two possible
outcomes of the test. Thus, each path from the root to a leaf
corresponds to a series of tests that lead to the prediction of
the class associated with that leaf (which is the majority class
of the training examples that belong to this leaf). Learning
a decision tree involves deciding the tests associated with
each node (typically which feature and which threshold on
this feature?), and several algorithms have been proposed to
build trees with minimum prediction error. Decision trees are
accurate on certain problems and have the great advantage
of being simple to understand and interpret. However, they
are known to be quite unstable (a slight change in the
training data can lead to very different trees) and they
can be relatively inaccurate on some problems29. Random
forests have been proposed to overcome these issues, at
the price however of an indubitable loss of readability. A
RF is a combination of many (sometimes hundreds or even
thousands) decision trees. All these trees are independently
learned on the same problem, with a dedicated algorithm that
integrates a stochastic procedure to ensure that all trees are
different. Once learned, the RF can be used to predict the
class of a new sample with a very simple procedure: each
tree is used to predict the class, and the most popular class
is proposed by the forest. This voting scheme removes the
instability problem, and, if the learned trees are sufficiently
independent, the accuracy of the forest can be much higher
than that of single trees29. The independence is ensured
by two stochastic components of the learning algorithm: 1)
each tree is learned on a different bootstrap sample of the
original data, which means that the learning set is obtained
by randomly sampling with replacement the original learning
set (in this way, some samples may appear several times
in the bootstrap sample, while others are absent); 2) at
each node, only a randomly chosen subset of features are
considered to determine the exact test associated with the
node.

The Epigram approach11 uses RFs to predict the
presence of six histone marks in different human cell types
from DNA sequence. A RF is learned for each mark based
on the peaks identified by dedicated ChIP-seq experiments.
Sequences associated with the peaks were used as positive
sequences (sequence length is around 1000bp). Negative
sequences were genomic regions not covered by a peak.
Before learning a RF, a de novo motif finding algorithm was
used to identify motifs that are more present in one class
than in the other. Then, each sequence was described by the
score obtained by the different motifs, and the RF learning
algorithm was run on these data. As for SVM, the accuracy

y pwm#1 pwm#2 pwm#3 pwm#4 . . . pwm#50
seq. 1 1 15 24 17 24 . . . 26
seq. 2 0 9 21 20 19 . . . 12
seq. 3 0 17 19 16 18 . . . 24
. . . . . . . . . . . . . . . . . . . . .
seq. 1000 1 18 18 17 20 . . . 15

500 / 500
score PWM #5 > 80

310 / 85
positive

190 / 415
score PWM #12 > 70

180 / 200
score PWM #21 > 85

150 / 20
positive

30 / 180
negative

10 / 215
negative

Figure 1. A toy decision-tree inspired from the Epigram
method 11. The learning set involves 1000 sequences (500
positive + 500 negative, see top table). Each sequence is
described by the score of 50 PWMs. The decision tree learned
from these sequences encodes a set of rules that classify a
sequence as positive if the score of PWM#5 is > 80, or if the
score of PWM#12 and #21 are > 70 and 85, respectively.
Numbers at the top of each node provide the repartition of
training sequences in the two classes.

of the approach was measured by the AUROC and showed
very good results above 80% for most histone marks and cell
types.

Convolutional neural networks After SVMs and RFs,
several authors proposed to predict TF binding and histone
marks with deep neural networks14,15. The simplest form
of neural networks is the feedforward neural networks (see
Figure 2.A). These networks are defined by a (potentially
very large) set of neurons, inter-connected and organized in
layers. The first layer is connected to the input values of
the network, while the last layer encodes its output. In the
classical feedforward network, each neuron takes in input the
output of the neurons of the previous layer. It then computes
a weighted sum of these values using its own set of weights,
applies a simple activation function that realizes a non-linear
transformation of this sum, and dispatches the computed
value to the neurons of the following layer. When new values
are applied to the input layer of the network, the outputs
of all neurons are computed iteratively layer by layer until
reaching the last one. For classification problems, the last
layer is usually composed of a single neuron that produces a
value in between 0 and 1 representing the probability that the
example provided in input belongs to the positive class. The
architecture of the network (the number of layers, neurons,
and all the connections between them) as well as the set of
weights associated with each neuron and the form of the
activation functions define the parameters of the network.
As for RFs and SVMs, specialized learning algorithms
can be used to train a neural network by minimizing its
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prediction error on learning examples. Deep learning has
shown considerable success in image recognition and many
other domains, including biology and regulatory genomics. It
has also led to very interesting developments in ML theory,
by showing that models with a number of parameters largely
exceeding the number of learning examples can be trained
in certain conditions without being affected by the so-called
over-fitting problem31,32.

In regulatory genomics, most neural networks are
convolutional neural networks (CNNs). Contrary to simple
feedforward networks, CNNs also embed specific neurons
called filters, that realize convolutional operations (see
Figure 2.B). This operation is very similar to the weighted
sum of classical neurons, except that the sum does not
involve all outputs of the previous layer but only a small
group of adjacent outputs. Moreover, this computation is
repeated at every position of the previous layer. Hence,
one filter produces a number of outputs that is roughly
equal to the size of the previous layer (modulo the few
positions on the edges of the layer that correspond to
the filter size). As for classical neurons, the parameters
of the filters, i.e. their sizes, forms and weights, must be
inferred by the learning algorithm. However, because the
same filter is applied to every position of the previous layer,
convolution filters effectively constitute a way to reduce
the number of parameters of the model when the same
local operations is applied to different regions of a layer.
CNNs typically possess one or several convolutional layers.
Each layer involves several convolutional filters that are
applied in parallel. As for classical neurons, all outputs of
a convolutional filter are run through a non-linear activation
function. Contrary to classical neurons, however, this step is
often followed by a pooling function that summarizes (pools)
several adjacent outputs. One of the most common pooling
functions is max pooling, which simply takes in input a
number N of adjacent outputs of the filter, and returns a
single value corresponding to the maximum of these values.

The big interest of CNNs is that, contrary to other ML
approaches, the network takes raw data in input and directly
learns the most interesting features for discriminating the
two classes by way of the filters of the convolutional layers.
In regulatory genomics, the raw data is the DNA sequence.
As CNNs only work on numbers, the sequence is one hot

encoded by replacing each nucleotide with a boolean vector
of size 4 (for example A, T, G and C are encoded as 1000,
0100, 0010 and 0001, respectively). Hence, a DNA sequence
of length M is encoded as a 4×M boolean matrix (see
Figure 2.B). The CNNs used for regulatory genomics have
usually one or more convolutional layers, followed by several

fully connected feedforward layers. The filters associated
with the first layer are thus directly applied to the sequence
and can be viewed as models of DNA motifs. Actually, the
weighted sum of a filter defines exactly the same operation
as the function used to compute the score of a sequence for
a given PWM. Hence, the filters of the first layer are nothing
more than a set of PWMs that are applied at each position
of the sequence. All these scores are then combined in
the following layers, which allows the network to represent
potentially any motif combination.

One of the first CNN approaches proposed for regulatory
genomics was DeepBind14. The authors designed a CNN
with one convolutional layer, followed by a pooling layer
and a feedforward network that combines the scores of the
different filters. The network was trained on many datasets
measuring the binding of various DNA and RNA-binding
proteins (PBM, SELEX, ChIP/CLIP). Notably, it was trained
on 506 ChIP-seq data from the ENCODE project33. Positive
sequences were 101bp sequences associated with a ChIP-
seq peak, while the negative sequences were obtained
by randomly shuffling the dinucleotide of the positive
sequences. As for SVMs and RFs, the accuracy of the CNNs
was estimated by the AUROC.

The same year, Zhou & Troyanskaya proposed another
CNN approach named DeepSEA15. DeepSEA has three
convolutional/pooling layers followed by a fully connected
layer. It was applied to 690 TF binding profiles, 125 DHS
profiles and 104 histone-mark profiles from ENCODE and
the Roadmap Epigenomic projects33,34. For each predictor,
the positive sequences were the sequence associated with
the mark, while the negative sequences were randomly
selected among the sequences that are not associated with
the mark but that are associated with another mark in another
data. CNN accuracies were estimated by the AUROCs.
DeepSEA takes input sequences of 1kb length, much longer
than DeepBind (100bp) but very similar to the size of
the sequences used by Epigram (see above). While a
direct comparison of DeepSEA and Epigram has not been
explicitly done, both approaches report an AUROC of ∼
85% on average for predicting histone marks on comparable
positive and negative sequences.

Following DeepSEA, Quang & Xie proposed DanQ16.
DanQ has a single layer of convolutions that identify the
motifs present in the input sequence, but this convolution
is followed by a layer of recurrent neural network known
as long short term memory (LSTM). As for convolutional
filters, in a recurrent network the same function is applied
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Input

Output

(A) (B)

Figure 2. Neural networks.(A) An example of feedforward network with 4 layers. The first layer is connected to 9 input values (in
black). The last layer involves a single neuron that outputs a value between 0 and 1. The width and color of the lines represent the
weights and signs associated with the inputs to each neuron. (B) An extract of a convolutional neural network that scans DNA
sequences. The input sequence is encoded as a one-hot matrix. A filter of length 5 scans the inputs and computes a convolution at
each position. A non-linear activation function then filters these values by removing all values below a given threshold. Finally, the
results of these operations are pooled by groups of 4, reducing the output of the convolution to only 4 values. On the figure, only
one filter is represented, although each convolution layer usually involves dozens or hundreds filters with their own activation and
pooling operations. The results of all filters are then combined in the following layers of the network (not represented here).

to every input. However, contrary to CNN, this function
also has a memory of its previous outputs. In this way, the
computed output value depends both on the current input
and on the previous outputs. In DanQ the LSTMs take in
input the result of the convolution filters at every position
of the sequence. Hence, the output of the LSTM depends
both on the value of the filters at the current position and on
the output of the LSTM at the previous positions. Moreover,
DanQ implements two LSTMs: one that reads the sequence
forward, and one that reads the sequence backward. The
LSTM layer is then followed by a fully connected layer.
DanQ was applied exactly to the same data as DeepSea.
Its accuracy, measured by AUROC and by the area under
the precision-recall curve (AUPRC), showed a slight but
constant improvement over DeepSea.

Other CNN approaches have been proposed in the
following years for predicting TFBS and chromatin marks.
For example, the authors of BPNet slightly change the
goal of the approach35. Rather than addressing a simple
classification problem where the aim is to predict whether
or not a sequence has a specific mark/TF, the goal of BPNet
is to predict the ChIP-seq profile of the sequence, i.e. the
expected number of reads at each base pair. According to the
authors, training the model on the profile enables them to

capture subtle regulatory features that are not captured when
training on binary signal, a behavior also reported in36.

Logistic models Following the former CNN approaches,
our group proposed to predict TF binding with an approach
based on a logistic model named TFcoop10. Logistic models
are one of the oldest and most used approaches for
binary classification problems. For a given example x =

(x1, . . . , xM ) described by M variables, a logistic model
expresses the probability that x belongs to the first class with
a linear expression

P (1|x) = S

(
a+

M∑
i=1

bi · xi

)
, (2)

where P (1|x) is the probability that example x belongs to
the first class, S is the sigmoid function, and a and bi are
the regression coefficients which constitute the parameters
of the model. While being quite simple, logistic and
generalized linear models have gain considerable interest in
domains with high-throughput data (like genomics), thanks
to the development of modern regularization methods37. For
problems with high amount of data, and in situations where
the number of variables (i.e. M in Expression (2)) may be
larger than the number of examples, these models can be
trained very quickly and without being much affected by
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over-fitting. The LASSO penalty especially38, is a powerful
regularization technique that allows one to train a model
and select the most important features at the same time—
i.e. many regression coefficients of Expression (2) (a and
bi) are set to zero by the learning algorithm—, which is of
obvious interest when we are also interested to understand
how a predictor works39.

As for SVMs and RFs (and contrary to CNNs) the
accuracy of the approach essentially depends on our ability
to provide to the learning algorithm a set of variables
that contains meaningful information for the discrimination
problem. In TFcoop10, each sequence was described
by the affinity scores of all PWMs of the vertebrate
JASPAR database8, and by the relative frequency of every
dinucleotide. Affinity scores and dinucleotide frequencies
were computed on the entire sequences. The data thus
resembles that used in Epigram11, except that in this latter
the PWMs were trained de novo and the dinucleotides were
not used as predictive variables. TFcoop was applied on
409 ChIP-seq experiments from ENCODE. The positive
sequences were either the promoters (+/- 500bp around the
TSS) or the enhancers (+/- 500bp around the peaks defined
by the FANTOM5 project40) with a peak in the studied
ChIP-seq experiment, while the negative sequences were
the promoters or enhancers without a peak. The goal of
TFcoop was to study the rules governing TF combinations
in promoters and in enhancers, as well as for different gene
categories. The accuracy of TFcoop was assessed by the
AUROC. Our experiments on the same sequence sets showed
that its accuracy was close to that of DeepSea.

Recently, we proposed another logistic+LASSO model
named TFscope whose aim is to identify the key regulatory
elements that differentiate two ChIP-seq experiments41.
TFscope is used to analyze the binding differences of one
TF in two conditions (two cell types or two treatments),
or of two paralogous TFs with similar PWMs. Contrary to
the above approaches, in TFscope the positive and negative
sequences are the sequences associated with a peak in
the first and second ChIP-seq experiments, respectively.
As in TFcoop, the logistic model integrates affinity scores
of JASPAR PWMs as well as the nucleotide environment
of the sequence. However, these variables are not simply
computed on the entire sequences but on different regions of
interest identified by TFscope. Moreover, the logistic model
also integrates the score of a discriminative PWM which is
directly learned from the sequences, in order to identify the
subtle differences that may exist between the binding sites
of the target TF in the two experiments. With this model, we

were able to discriminate the binding sites of the same TF
in different cell types with often good accuracy (AUROC
¿ 80%), and to identify the genomic features the were
associated with these binding differences (see last section).

Predicting expression signal

Following the prediction of TF binding and chromatin marks,
several approaches have been proposed to directly predict
gene expression from the sequence. While for the former
problem the sequence length rarely exceeds 1000 bp, for
expression signals there is a clear tendency to propose
new approaches that can handle increasing sequence lengths
to capture long-range interactions with distant regulatory
sequences (enhancers/silencers).

Linear models In 2018, our group proposed a linear
regression model42, for predicting the RNA-seq signal
associated with a gene from the nucleotide and dinucleotide
frequencies computed on different DNA regions of the gene:
its core promoter (+/- 500bp around TSS), distal upstream
(-2000bp before TSS) and downstream (2000bp after TSS)
promoter regions, 5’ and 3’ UTRs, exons, and introns. The
aim was to study the links between gene expression and the
nucleotidic/dinucleotidic composition of specific parts of the
genes. With this approach, each gene is described by a vector
of ∼150 variables, and a linear model with LASSO penalty
is trained to predict the expression signal (hence, each model
involves ∼ 150 parameters). This approach was applied to
241 human RNA-seq datasets from the TCGA database43,
and each model was assessed by computing the correlation
between the measured and predicted expression signal. This
approach showed modest accuracy (50-60% correlation) but
still very surprising given the simplicity of the features used
for prediction, and questioned our understanding of the role
that simple nucleotidic and dinucleotidic enrichments may
have on the control of gene expression.

In 2021, we proposed a second method named DExTER

that aimed to predict gene expression from the presence of
low complexity sequences in promoters44. DExTER takes
4Kb sequences centered on the TSS (or gene start) and
identifies long regulatory elements defined by a specific
region (for example -500/+300 around the TSS) and a
specific short k-mer (for example TAA). For this, DExTER
computes the correlation between gene expression and the
frequency of the k-mer in the region, and searches for
pairs of (k-mer, regions) that show the highest correlation
with gene expression. All identified pairs are then used as
predictive variables of a linear model trained to predict gene
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expression with LASSO penalty (each model involves a few
dozens parameters). The approach was applied to various
organisms (malaria parasite, yeast, worm, human, plant, . . . )
in various conditions (cell types or development stages)
and still showed a surprising accuracy of 60% correlation
between measured and predicted expression in average. For
the malaria parasite, the accuracy even increases above 70%
in several life-cycle stages, indicating that low complexity
sequences could have a predominant role in the control of
gene expression for this organism.

Deep learning approaches In 2018, Zhou et al.45 proposed
the ExPecto approach, which capitalizes on the DeepSea
method that the same group previously published (see above
section)15. The approach involves 3 steps. 1) A CNN
model similar to that used in DeepSea is learned on 2,002
genome-wide histone marks, transcription factor binding and
chromatin accessibility profiles (data from ENCODE and
Roadmap Epigenomics projects). 2) These 2,002 models are
used to scan 40kb regions centered on gene TSSs. The score
of these CNNs at 200 positions along the 40kb sequences
provide a very large set of 200× 2, 002 features describing
each gene. This set is reduced to 10× 2, 002 features by a
spatial transformation that uses exponential decay functions.
3) These features are used as input to train different linear
models that predict the RNA-seq signal associated with each
gene in 218 tissues and cell types (selected from GTEX46,
ENCODE and Roadmap Epigenomics projects). In each
experiment, the accuracy of the model was measured by
the correlation between the predicted and measured RNA-
seq signal. Expecto shows impressive prediction accuracy,
with a median 81.9% correlation across the 218 models. The
linear model involves around 20K trainable parameters, but
the improved DeepSea model used to build the features of
the linear model is around 200M according to our estimate.

Another CNN approach proposed in 2018 was
Bassenji47. The model takes very large sequences
of 131kb in input. The network uses standard
convolution/pooling layers, followed by dilated convolution
layers. Contrary to standard convolutions which realize
a weighted sum on the output of adjacent neurons of the
previous layer, in the dilated convolution the sum involves
neurons spaced by several positions. In practice, this allows
modeling motif combinations separated by several bps.
Moreover, the network involves several dilated layers with
gaps increasing by a factor of two, which enables the
model to potentially capture combinations spanning an
exponential number of bps. The approach was applied to

various DNase-seq and histone modification ChIP-seq,
but also to 973 FANTOM5 CAGE experiments. For these
latter, the goal was to predict the CAGE signal measured
on 128 bp sequences associated with a TSS. The accuracy
was measured by the correlation between the measured and
predicted signal and the authors report an average correlation
of 85%.

Another interesting CNN study was the Xpresso

approach48, whose aim was to study the link between mRNA
expression level on one side, and promoter sequence and
mRNA features related to mRNA stability on the other
side. The authors proposed a CNN model that takes in
input sequences -7Kb/+3.5Kb centered on the TSS. The
architecture was comprised of two sequential convolutional
and max-pooling layers, followed by two fully connected
layers preceding the output neuron. In addition to the output
of the second convolutional layers, the first fully connected
layer takes in input sequences features commonly associated
with mRNA stability, i.e. exon density and length, and G/C
content of 5’UTR, 3’UTR and ORF. The authors reported
a correlation between measured and predicted expression
signal around 71% in human K562 and up to 77% in mouse
mESC.

Several other CNN approaches have been proposed in
the last years. For example, Grapotte et al.49 proposed
the deepSTR model to study the regulation of the
CAGE signal that specifically initiates at microsatellites.
deepSTR uses 50bp sequences centered on the 3’end of the
microsatellite and shows a correlation between predicted and
measured CAGE signals up to 80% for certain classes of
microsatellites. Besides pure CNN approaches, one of the
most recent developments in the field was the Enformer
approach50 that uses self-attention techniques developed for
natural language processing17. The Enformer model uses
several standard convolutional layers to identify motifs in the
input sequence. The output of these convolutional layers then
goes trough several multi-head attention layers that share
information across the motifs and can model long-range
interactions, such as those between promoters and enhancers.
Enformer uses very long input sequences of 196K bp and
predicts 5, 313 and 1, 643 different genomic signals (DNAse,
ChIP-seq and CAGE expression data) for the human and
mouse genome, respectively.

Identifying and prioritizing genomic variants

Maybe one of the most common applications of machine
learning, and especially deep learning, for regulatory
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genomics has been the identification and prioritization of
genomic variants from genome-wide association studies
(GWAS) and expression quantitative trait loci (eQTL)
studies. GWAS use statistical methods to identify genetic
loci associated with common diseases and traits. This
involves the analysis of thousands of variants in large
cohorts of individuals, often split into cases and controls,
to identify variants associated with the trait of interest (i.e.

genomes with this variant have often this trait/pathology).
Similarly, eQTL studies identify associations between
genomic variants and the expression of specific genes
(genomes with this variant often show over-expression of
gene X). GWAS and eQTL studies have identified thousands
of variants statistically-associated with a physiological
trait or an expression profile, which are available in
dedicated databases51,52. However, because variants are not
independent (an effect called linkage disequilibrium), many
variants are often present together in the same genomes. As
a consequence, it is widely believed that only a few GWAS
or eQTL variants are truly functional52. In these conditions,
an interesting idea is to use the ML models described above
for the identification and prioritization of functional variants.
In its simplest form, the procedure involves taking a specific
model—predicting for example if a sequence is bound by a
given TF—and computing the prediction of this model at a
given locus using i) the reference genome and ii) the mutated
genome associated with a specific variant (for example a
specific SNP). Variants that increase or decrease significantly
the predicted signal are more likely to have a strong effect
on the cell and hence to be functional14–16,45. Using this
principle, the authors of DeepBind proposed a new genomic
representation called mutation maps to visualize the effect
that every possible point mutation in a sequence may have
on binding affinity14.

More sophisticated approaches have also been proposed
to identify variants using a combination of ML models.
For example, a deep learning model that uses the score
of ∼ 600 DeepBind transcription factor models has been
trained to discriminate between high-frequency variants
(assumed as neutral) and putatively deleterious variants
from GWAS studies14. This model takes in input the score
of the ∼ 600 DeepBind models both for the wild type
sequence (reference genome) and the mutant sequence.
Similarly, a boosted logistic regression classifier and a
boosted ensemble classifier have been trained to discriminate
between high-frequency SNPs and putatively deleterious
variants from GWAS and eQTL studies using the epigenetic-
mark predictions of DeepSea and DanQ, respectively15,16.

Assessing regulatory hypotheses with ML
models

Besides the prioritization of genomic variants, the ML
approaches presented here, along with many others and
the concordant development and availability of various
omics data, have enabled several advances in regulatory
genomics over the past decade. For this, the supervised
framework offers the possibility to test various hypotheses
by simply training a model and estimating its accuracy on
specific problems. This can be done in various ways. One
approach is to directly control the nature of the input of
the model. For example, with Xpresso, Agarwal & Shendure
studied the impact of sequence length on model accuracy48.
They showed that although the large promoter sequence -
7Kb/+3.5Kb around the TSS provides the best accuracy,
most of the information for the control of mRNA expression
lies in -1.5Kb/+1.5Kb because these sequences provide
approximately the same accuracy as the longer -7Kb/+3.5Kb.
Similar results were obtained with the deepSTR model for
studying the regulation of the transcriptomic signal that
initiates at microsatellites49. Specifically, the analyses shown
that the 50bp sequence centered on the 3’ end of the
microsatellites is sufficient to predict the CAGE signal with
often good accuracy. Similarly, by limiting the input features
to the frequency of short kmers on specific long DNA
regions, we have shown with DExTER that low complexity
regions may play an unsuspected role in gene expression
regulation of P. falciparum and several other eukaryotes44.

Another procedure to test different hypotheses is to control
the way positive and negative examples are selected. For
example, in reference53 the authors study TF binding with
a CNN. The originality of this study is that the sequences
are selected in a way that insures that the TF motif is
present both in the positive (bound) and negative (unbound)
sequences. In this way, the predictive model cannot simply
use the presence/absence of the target motif to discriminate
the sequences, and the good accuracy of the approach
showed that other features are likely involved in the binding
site recognition mechanism of the studied TFs. To go
one step further, the authors restricted all sequences to be
within DNaseI hypersensitive sites (a mark of accessible
chromatin). They trained a new model and observed a drop
in the accuracy, suggesting that DNA features related to open
chromatin are likely involved in this recognition process.

Rather than controlling the sequences used for learning
the model, another simple technique that can be used to test
some hypotheses is to compare the accuracy achieved by a
given model on different sets of sequences. For example,
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Agarwal & Shendure studied the impact of enhancers on
the prediction of Xpresso48. Xpresso only uses the sequence
located around the TSS for the prediction and hence cannot
handle distal regulatory elements. Given that enhancers
are frequently associated with large domains of H3K27Ac
activity, the authors identified a set of 4,277 genes that
overlap H3K27Ac marks and observed that the predicted
expression level on these genes is markedly smaller than the
measured expression, a trend that was not observed for the
other genes. Hence, the expression of genes under enhancer
control seems to be underestimated by the Xpresso model,
which provides a practical way for identifying these genes.

Finally, a very useful tool available in the ML toolbox
is swap experiments. Model swapping is used to test
hypotheses related to the specificity of a regulation
mechanism. The procedure involves learning different
models on different conditions (says conditions A and B),
and to compare the accuracy of the model learned on A
when it is applied to B, to the accuracy of the model
learned and applied on B. In practice, an important point
to which practitioners must pay close attention is that
the sequences used for testing in one condition were not
used for training in another one, to avoid any bias in
the accuracy estimates during swaps. This technique was
extensively used in the TFcoop analyses10. Given two ChIP-
seq experiments targeting the same TF in two cell types, a
TFcoop model predicting the binding was learned for each
cell type. Then the two models were swapped. In some
cases, both models got the same accuracy, but for some
TFs the model learned on cell type A was not as good on
cell type B as the model directly learned on cell type B,
meaning that the co-factors of the TF were likely not the
same in the two cell types. Similarly, for a given ChIP-seq
experiment, a model was learned for enhancer sequences and
another model for promoter sequences. The swap experiment
revealed that the two models are not interchangeable, and
hence that the co-factors of a TF may vary depending
on the nature of the regulatory sequence (promoters vs.

enhancers). On the contrary, models for mRNA promoters,
lncRNA promoters and pre-miRNA promoters appeared to
be perfectly interchangeable. Agarwal & Shendure also did
swap experiments between human and mouse48. Namely,
they trained one Xpresso model on mouse and one on human
using comparable RNA-seq experiments, and observed on a
set of orthologous genes that the model learned on mouse has
the same accuracy on human as the model directly learned
on human (and conversely), meaning that the regulatory
principles are likely very close in both organisms.

Breaking the regulatory code: Interpreting
ML models

Finally, the most ambitious application of ML is obviously
to break the regulatory code and determine the rules used by
the cell to regulate expression. A first step toward this goal is
to identify all regulatory elements involved in the regulation
process in question. Note that the term regulatory element

has to be understood in its broadest sense here. It may stand
for standard motifs of TF binding sites, but it can also refer
to low complexity regions such as CpG islands54 or short
tandem repeat55 that are also involved in gene regulation, as
well as any other kind of “sequence patterns” that we can
think of, such as, for example, the DNA shapes56. In addition
to the regulatory elements, breaking the regulatory code
also means determining how these elements are combined,
and what rules they follow in terms of repetition, position,
and orientation on the DNA sequence. Getting down to
this level of detail involves analyzing the learned model
to understand how it works. This is referred to as model

interpretation in the ML community. There are several
definitions of interpretability in the ML literature, and these
definitions are often considered as domain-specific24,25,57,58.
In the context of regulatory genomics, model interpretation
has also several meanings, and we will see that the term
covers different approaches that do not provide the same
kind of information. The general problem is as follows: we
have a predictive model that has been learned for a specific
problem, and we want to understand how it works. There
are at least three different ways to attempt this. The first and
more direct approach is to explain the model by analyzing
its different components and extracting the rules used to
make its predictions. A second approach is to explain the
predictions of the model rather than the model itself, i.e.

given a sequence and a prediction, we want to explain why
the model predicted this value for this sequence. A third
alternative is to try to explain the model by exploring its
behavior on synthetic sequences. Theoretically, the three
approaches are possible for any kind of model. However, as
we will see, linear models and random forests can often be
partly explained by a direct analysis of their components. On
the contrary, this is more difficult to do for models based
on CNNs, so different methods belonging to the second and
third categories have been developed for these laters.

Explaining model components

In some cases, the model may be simple enough to be
directly analysed as a whole. This view of interpretability
argues for simple and sparse models (i.e. with few
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parameters). This may be possible for some very small
decision trees and linear models, but this is generally not the
case for the regulatory models described above. Moreover,
even for a simple linear model, it is known that interpretation
is not obvious, as the sign of the coefficient associated with a
specific variable (which is tempting to interpret as the sign
of the association between this variable and the predicted
signal) may change depending on the identity of the other
variables included in the model.

A less stringent view of interpretability corresponds to
models that can be broken down into different modules
that are further analyzed24,25. For regulatory genomics, this
corresponds to the case where we can extract the DNA
features used by the model for its predictions. Note that a
DNA feature may be more complex than simply the identity
of a regulatory element. For example, in the DExTER
method, the predictive features also encode information
about the position of the regulatory elements on the DNA
sequence44. Hence, DNA features may potentially encode
complex information related to the number of repetitions,
position, and orientation of regulatory elements on the DNA
sequence. Obviously, extracting the DNA features used by a
model is relatively easy to do for all models that directly take
these DNA features in input, such as logistic/linear models
and random forests. On the contrary, for CNN approaches
the task is more difficult as we will see below.

Random forests and linear models In these models,
extracting the DNA features involves identifying which
variables provided in the input are the most important for the
predictions. ExPecto is an example of linear model where
such interpretation is quite easy45. In this paper, the authors
observed for example that, in most cases, the ExPecto models
predict expression with features related to transcription
factors and histone marks, but not with DNase I sequence
features. Note that the DNA features extraction may be
further facilitated if the learning algorithm directly includes
a feature selection procedure such as the LASSO38,39, which
drastically decreases the number of predictive features used
by the model.

Rather than simply providing the list of features used
by the model, it is much more useful to also provide a
measure of importance associated with each feature59–61. For
random forests, this is usually done by shuffling the values
of each variable. Namely, the accuracy of the model is first
estimated on the test set. Then, the values of the ith variable
are randomly shuffled, and the loss of accuracy induced by
this noise is used as a measure of the importance of the
ith variable in the model29,61. By repeating this process, the

relative importance of each variable is estimated. A very
similar procedure also exists for linear/logistic models. In
this procedure, the value of the coefficient associated with
the ith variable is set to zero (which is equivalent to simply
removing this variable from the model) and, as for random
forests, the loss of accuracy induced by this operation is
used as a measure of variable importance. In both cases,
this measure can be considered as objective, as it is based
on the loss of accuracy when removing information carried
by each variable. This approach was extensively used in
TFscope for analyzing the binding differences of one TF
in two conditions (two cell types or two treatments), or
of two paralogous TFs with similar PWMs41. For this, the
TFscope model integrates three kinds of variables that model
i) the core motif, ii) the nature and position of binding
sites of co-factors, and iii) the nucleotidic environment of
specific regions around the core motif. The importance of
each feature in the different comparisons was assessed with
the importance measure described above. For comparisons
involving one TF in two conditions, the co-factors, and
to a lesser extent the nucleotidic environment, were often
(but not always) the most important features explaining the
differences of binding sites. For paralogous TFs (two TFs
in the same cell type) the picture is different, and subtle
differences in the core motif often explained most binding-
site differences.

CNNs Approaches based on CNNs take raw sequences in
input, so the DNA features are not directly provided to the
model. However, as we have seen, the filters of the first
convolutional layer correspond to PWMs modeling DNA
motifs. Hence, we could think that the DNA features used by
the model are actually encoded in the first convolutional layer
and that we could extract these filters to get the information.
It is however not so simple in practice. Koo & Eddy studied
the way CNNs build representations of regulatory genomic
sequences62. They showed that the filters of the first layer
actually encode partial motifs which are then assembled into
whole DNA features in the deeper layers of the CNN. Hence,
extracting the DNA feature associated with a specific filter
is not as immediate. However, some attempts have been
made in this direction. The authors of DeepBind proposed
an interesting approach where all sequences that pass the
activation threshold of the filter of interest are extracted and
aligned on the position producing the maximum activation
signal for this filter14. Then a PWM of predefined length
m is learned from this alignment using standard PWM-
learning methods63. The same approach was also used for
the DanQ model16. The reconstructed PWMs were then
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aligned to motifs available in known-motif databases8 using
the TOMTOM algorithm64. Of the 320 filters learned by
the DanQ model, 166 significantly matched known motifs.
Hence, extracting the PWMs learned by a CNN seems
possible at least partly, although the above approach does
not completely warrant against the “partial motif” problem.
An open question that remains is how to associate a measure
of importance to these PWMs? Theoretically, a CNN filter
can be easily turned off, so it could be possible to estimate
the accuracy of the CNN with and without the filter to
have a measure of the importance of this filter for the
predictions. However, as the CNN may model the same motif
using different filters (or even using several filters that are
combined in the deeper layers), turning a filter off does not
warrant that the associated motif is also off, which may lead
to underestimating its importance.

Explaining model predictions

Because of the partial motif problem, directly explaining a
CNN remains a difficult question. Hence several methods
have been proposed to explain the predictions of the model
rather than directly explaining the model. This involves
using the model on a specific sequence and identifying the
nucleotides that have the highest weight for the computation
of the predicted value. The simplest method (known as
input perturbation or in silico mutagenesis) is similar to
the mutation maps proposed for variant identifications. It
involves systematically simulating every single-nucleotide
perturbation of the input sequence, and recording the effect
induced on the predicted value14,15,53. Computing model
prediction on every variant that can be obtained from single-
nucleotide perturbations of a sequence may however induce
high computational cost, specifically if the sequence is
long, or if the analysis is repeated over many sequences.
Backpropagation-based approaches have been proposed as
more computationally efficient alternatives. The idea is to
propagate an importance signal from the output neurons to
the inputs through the different layers of the model using
a backpropagation algorithm. In this way, a single pass is
sufficient to compute the contribution of each nucleotide for
the computation of the output value (these contributions can
then visualize using saliency maps). Several approaches have
been proposed on this idea (e.g. references65–67). In Zheng et
al.53, a simulation-based study is used to benchmark these
different approaches in the context of regulatory genomics.

By looking at the contribution scores of each nucleotide,
one can identify the sub-sequences and regions that appear
to be the most important for the prediction. Moreover, these
sub-sequences can be further compared to known motifs

to identify potential TFs involved in the regulation of the
predicted signal. Hence, these approaches may highlight
potentially interesting genomic information hidden into a
specific sequence. However, it is important to note that
because contribution scores are computed independently for
each nucleotide, there is no warranty that the most important
regions identified this way are really the most important
regions for CNN prediction. Moreover, these analyses are
restricted to some specific sequences and are not sufficient
to understand the general mechanisms used by the cell to
regulate gene expression at different loci. For this, further
analyses are needed. A possible approach is to compute the
contribution of every nucleotide of all positive sequences and
to extract the recurrent DNA motifs from these contribution
maps. A first method is to use these maps to compute the
average importance of every k-mer of a fixed length. The
most important k-mers are then identified and compared to
known TF motifs using approaches like TOMTOM64. This
is for example the approach used in Zheng et al.53 to identify
several co-factors that likely explain the binding differences
between positive and negative sequences of 38 TFs. Another
more sophisticated approach is to directly learn DNA motifs
(using PWMs or close models) from the contribution maps.
This is the aim of the TF-MoDISco method that segments
the contribution maps into seqlets (a kind of weighted k-
mers), and then clusters the seqlets in different motifs68. This
approach has been used in Avsec et al.35 to identify core
motifs and potential co-factors in four ChIP-seq experiments.

Thus, different approaches based on prediction expla-
nation can also be used to identify motifs that are likely
encoded into the structure of the CNN. However, in our
opinion an important difference with approaches based on
the analysis of model components is that these methods lack
an objective measure of importance associated with each
motif. Indeed, it is not possible to turn the discovered motifs
off in the CNN, and thus we cannot measure the accuracy
of the model with and without a motif. Another problem is
that there is no warranty that all important motifs used by the
CNN were identified by the extraction procedure. Actually, it
is even possible that some regulatory elements learned by the
CNN but which were not identified by the motif extraction
approach—for example because these elements do not fit
the kind of motifs searched by the extraction procedure—
are actually more important for model predictions than the
identified motifs.
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Exploring model behavior on synthetic
sequences

In the above sections, we have seen methods to extract
some of the motifs that have been learned by a CNN
for predicting a given signal. However, these interpretation
methods are limited to the identification of simple motifs and
cannot handle more sophisticated DNA features, such as the
number of repetitions of a motif, the combination of several
motifs, or their relative position on the sequence. For this,
other approaches based on synthetic sequences have been
proposed.

The first approach for this was the DeMo dashboard66,
which was inspired by the work of Simonyan et al.65 to
interpret CNNs in the context of image recognition. DeMo
aimed to predict TF binding with a CNN. To identify the
genomic features captured by the CNN, the authors proposed
to construct the best synthetic sequence that would maximize
the binding probability according to the CNN. The idea was
to provide the users with an archetype of the sequences
with the highest binding probability, which supposedly bears
the DNA features required for the binding. The idea was
interesting but may miss certain features, especially if several
(exclusive) rules govern the binding.

To go one step forward, Koo et al.69 proposed an approach
named global importance analysis that samples a large
number of synthetic sequences with and without a specific
DNA feature, and uses the learned CNN as an oracle
to predict the binding associated with each sequence. If
the predicted binding signal is statistically higher for the
sequences that embed the studied DNA feature than for the
others, the feature is considered important. The approach
is interesting in that it can be used to assess any feature.
For example, Koo et al.69 used it to show that increasing
the number of repeats of the RBFOX1 motif increases the
binding probability of the sequence according to their model.
Similarly, they also showed that including some GC bias in
sequence 3’end also increases this probability. The approach
was also used in Avsec et al.35 to study the sinusoidal pattern
that seems to regulate the distribution of the binding sites of
the Nanog TF and its co-factors along the DNA sequence.
It is important to understand that this approach is not a
fully automatic method that would extract all DNA features
captured by a CNN. Rather, specific hypotheses have to be
constructed before being assessed by generating appropriate
synthetic sequences. In this sense, the approach is similar to
that of the ML models that directly take meaningful DNA
features in input: in both cases, one can discover solely what
has been formerly hypothesized.

One advantage of this approach is that it can be used
to estimate the relative importance of different features.
Note however that this measure of importance is somewhat
subjective, as it is only dictated by the model, with no link
with its accuracy. One issue is that the approach does not
comply with a fundamental assumptions in ML, which states
that the training and test sets must be representative of the
samples to classify. Here, the synthetic sequences do not
follow exactly the same distribution as the sequences used
to train the model and to estimate its accuracy. As a result,
this accuracy may be an optimistic estimate of the accuracy
of the model on the synthetic data. Say differently: even
if the model is quite good on the test sequences, it may
be inaccurate on the synthetic sequences. This is related
to the notions of extrapolation vs. interpolation. While ML
models can be good at predicting a signal associated with a
sequence that is close to other sequences in the training set
(interpolation problem), when the sequence is far from any
example of the training set (as the synthetic sequences can
be) the problem is obviously more difficult, even if CNNs
seem to be able to handle a certain level of extrapolation70.
Note that the approach can nonetheless propose interesting
hypotheses, which then need to be validated experimentally;
however, users/experimentalists should be aware that the
probability that these hypotheses holds can be lower than the
model accuracy may lead one to believe.

Conclusions

Over the past decade, several ML models have been
applied to the modeling of long regulatory sequences and
have led to substantial advances in our understanding of
regulatory genomics. These studies take place in a supervised
framework, which enables, among other advantages, a fair
comparison of model performance in terms of accuracy.
From this perspective, deep learning approaches based on
CNNs often show substantial improvement over simpler
methods. This is especially true for the prediction of gene
expression signal, where many efforts have been made to
allow CNNs to handle very long sequences to capture the
effect of potential distant enhancers.

Besides model accuracy, we have seen that different
level of knowledge can be gained by these studies. The
prioritization of nucleotide variants, which is of great
interest in medical and therapeutic studies, can be deduced
from model predictions without the need for sophisticated
procedures of model interpretation. Similarly, general
hypotheses about the specificity or the extent of a regulatory
mechanism can often be tested by training and swapping
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different models, or by changing the training or the test sets.
On the contrary, identifying complex DNA features requires
knowledge-extraction procedures that must be specifically
adapted to the model at hand. The task is obviously easier
for ML models that directly take these features in input than
for CNN-based models that learn the predictive features from
raw sequences. However, it would be inaccurate to consider
these latter as complete black boxes, as several approaches
are now available to extract such information. Notably, the
oracle approach based on synthetic sequences looks like a
promising avenue69, provided that the generated sequences
remain close to the training sequences to avoid misleading
conclusions. Actually, in our opinion, the main limitation of
CNN models lies in the difficulty to globally and objectively
assess the importance of the extracted features. A related
issue is the fact that we do not know with precision whether
all important features have been extracted or if the CNN
actually uses additional important features that were not
identified59.

We have presented in this review some approaches for
identifying the DNA features used by a specific model to
make its predictions. A question that is rarely addressed in
these studies is the stability of the model. DNA features
are often highly correlated. For example, motifs of TFs of
the same family are often very close. Moreover, motifs of
co-factors often appear together at the same loci. Similarly,
certain motifs are strongly enriched in DNA sequences with
specific nucleotide or dinucleotide content. These strong
correlations induce that different models with different DNA
features may have close accuracy. As a result, the model that
has been learned is not necessarily the only “good” model,
a problem sometimes referred to as the Rashomon effect

in ML (after the 1950 japanese movie directed by Akira
Kurosawa)71,72. From this perspective, by aggregating the
predictions of many models, ensemble ML approaches—
and hence random forests—are less prone to this issue71.
For other methods, analysis of model stability can help73–75.
However, this requires repeating the learning procedure
several times using slightly different learning sets, which
can involve prohibitive computing time for very complex
models.
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Michel, Lèbre Sophie, Lecellier Charles-Henri, Bréhélin
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