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Abstract
We consider the issue of answering unions of conjunctive
queries (UCQs) with disjunctive existential rules and map-
pings. While this issue has already been well studied from a
chase perspective, query rewriting within UCQs has hardly
been addressed yet. We first propose a sound and com-
plete query rewriting operator, which has the advantage of
establishing a tight relationship between a chase step and a
rewriting step. The associated breadth-first query rewriting
algorithm outputs a minimal UCQ-rewriting when one exists.
Second, we show that for any “truly disjunctive” nonrecur-
sive rule, there exists a conjunctive query that has no UCQ-
rewriting. It follows that the notion of finite unification sets
(fus), which denotes sets of existential rules such that any
UCQ admits a UCQ-rewriting, seems to have little relevance
in this setting. Finally, turning our attention to mappings, we
show that the problem of determining whether a UCQ admits
a UCQ-rewriting through a disjunctive mapping is undecid-
able. We conclude with a number of open problems.

1 Introduction
Existential rules (Calı̀, Gottlob, and Kifer 2008; Baget et
al. 2009; Calı̀, Gottlob, and Lukasiewicz 2009), aka tuple
generating dependencies (Beeri and Vardi 1984), are an ex-
tension of datalog (i.e., first-order function-free Horn rules),
which allows for existentially quantified variables in the rule
heads, e.g., ∀x(human(x)→ ∃y isParent(y, x)). They have
become a popular language to model ontologies and do rea-
soning on data. Then, a key issue is ontology-mediated
query answering, which consists of computing the answers
to a query on a knowledge base (KB), composed of a set of
facts (or data) F and an ontology O. In this context, most
works focus on the prominent class of (unions of) conjunc-
tive queries ((U)CQs). There are two main dual techniques
to compute the answers to a query Q: the chase, which
enriches the facts F by performing a fixpoint computation
with the ontology O until a canonical model of F and O
is obtained (then Q is evaluated on this canonical model),
and query rewriting, where Q is rewritten using O into a
query Q′, such that for any set of facts F , the evaluation
of Q′ on F yields the answers to Q on the KB. Query an-
swering with general existential rules is undecidable, how-
ever a wide range of decidable subclasses have been defined,
based on syntactic restrictions that ensure the termination of
chase-like or query rewriting techniques. Tuple generating

dependencies (TGDs) are also the main formalism to repre-
sent schema mappings, which are high-level specifications
of the relationships between two database schemas (Fagin et
al. 2005). Schema mappings are at the core of many data in-
teroperability tasks, such as data exchange, data integration
or peer data management. More specifically, a mapping is
a set of TGDs, with bodies and heads expressed on disjoint
sets of predicates, namely S and T , called the source and
the target schemas. Given a database instance I on S and
a mapping M, a query expressed on T is posed on the set
of facts produced from I by triggeringM; again, query an-
swering can be solved by chasing I withM or rewriting Q
withM into a query that is evaluated on I . Since mappings
are inherently nonrecursive, both techniques always termi-
nate. Finally, in the Ontology-Based Data Access (OBDA)
framework (Poggi et al. 2008), mappings specify relation-
ships between a database schema and an ontology. Here,
existential rules can be used as a uniform language to ex-
press both the ontology and the mapping (Buron, Mugnier,
and Thomazo 2021).

Existential rules generalize popular description logics
(DLs) used to do reasoning on data, such as DL-Lite (Cal-
vanese et al. 2007), EL (Baader, Brandt, and Lutz 2005;
Lutz, Toman, and Wolter 2009) and more expressive Horn-
DLs (Krötzsch, Rudolph, and Hitzler 2006). However, they
do not capture nondeterministic features, as offered by some
key DLs such as ALC (Schmidt-Schauß and Smolka 1991)
or the Semantic Web ontology language OWL (W3C 2009).

In this paper, we consider the extension
of existential rules with disjunction, e.g.,
∀x∀y(isGrandParent(x, y) → ∃z1 (isParent(x, z1) ∧
isMother(z1, y)) ∨ ∃z2 (isParent(x, z2) ∧ isFather(z2, y))).
From a KR perspective, the usefulness of such rules
has long been acknowledged for ontology modeling, but
also for expressing nondeterministic guessing in problem
solving, see e.g., (Eiter, Gottlob, and Mannila 1997). From
a database perspective, disjunction in schema mappings
received considerable attention in the context of mapping
management, where mapping composition and inversion
emerged as fundamental operators (Bernstein and Ho 2007;
Arenas et al. 2010). Indeed, disjunction is required to ex-
press several kinds of inverse mappings, like so-called quasi-
inverses or maximum recovery mappings (Fagin et al. 2008;
Arenas, Pérez, and Riveros 2008). Beside the issue of
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constructing such mappings, the design of associated query
answering techniques is highly relevant. For instance, in a
peer data management system, a mappingM from peer P1

to peer P2 allows to rewrite a query on P2 in terms of P1,
while an inverse of M allows to rewrite a query on P1 in
terms of P2. As another example, consider a mapping M
from schema A to schema B, and assume that A evolves
into A′, which is expressed by a mappingM′; the relation
between A′ and B can be obtained by inverting M′ and
composing it withM; then, a query on B can be translated
into a query onA′ by rewriting it first withM, then with the
inverse ofM′ (Pérez 2013). Such scenario is also relevant
in OBDA, taking for B an ontology instead of a schema.

So far, reasoning with disjunctive existential rules has
been mainly studied through the chase. It was shown that
decidable classes of (conjunctive) existential rules, based on
the behavior of the chase, can be generalized to disjunctive
rules in a quite natural way, whether in relation to acyclic-
ity notions (Carral, Dragoste, and Krötzsch 2017) or based
on guardedness (Alviano et al. 2012; Gottlob et al. 2012;
Bourhis et al. 2016), although these generalizations come
with a huge increase in the complexity of query answering.

In contrast, query rewriting within UCQs has been barely
addressed yet. A notable exception is the work in (Alfonso,
Chortaras, and Stamou 2021), which provides a rewrit-
ing technique based on first-order resolution (see Section
3). A large body of work has studied the rewritability of
ontology-mediated queries, i.e., pairs of the form (Q,O)
with Q a (U)CQ and O an ontology, into query languages
of various expressivity. However, for ontologies expressed
in fragments of disjunctive existential rules, most studies
target expressive rewriting languages, like disjunctive dat-
alog (Bienvenu et al. 2014; Ahmetaj, Ortiz, and Simkus
2018). As far as we are aware, the only result directly rel-
evant to our purpose comes from the fine-grained complex-
ity study in (Gerasimova et al. 2020), which provides syn-
tactic rewritability conditions for ontology-mediated queries
where the ontology is composed of a single specific disjunc-
tive rule, called a covering axiom (see Section 4).

Our contributions are the following:

• We first define a sound and complete query rewriting op-
erator for UCQs and disjunctive existential rules, which
has the advantage of establishing a tight relationship be-
tween a chase step and a rewriting step (Theorem 3). The
associated breadth-first query rewriting algorithm outputs
a minimal UCQ-rewriting when one exists (Theorem 4).

• We then turn our attention to the notion of finite unifica-
tion sets (fus), which denotes sets of existential rules for
which any UCQ is UCQ-rewritable, i.e., admits a finite
sound and complete rewriting under the form of a UCQ.
Noting that the known fus classes for conjunctive exis-
tential rules do not seem to be generalizable to disjunc-
tive rules, we show that, in fact, for any “truly disjunc-
tive” nonrecursive rule, there is a CQ that is not UCQ-
rewritable (Theorem 5). This leads to question the rele-
vance of fus for disjunctive rules and to consider the prob-
lem of whether a specific UCQ is UCQ-rewritable.

• Finally, considering (disjunctive) mappings, we show that
the problem of determining whether a given UCQ on
the target schema admits a UCQ-rewriting on the source
schema is undecidable (Theorem 6).

Based on these results, we conclude with a number of open
problems. Detailed proofs are available in a technical report
(Leclère, Mugnier, and Pérution-Kihli 2023).

2 Preliminaries
Generalities. We consider logical vocabularies of the
form V = (P, C), where P is a finite set of predicates and C
is a (possibly infinite) set of constants. A term on V is a con-
stant from C or a variable. An atom on V has the form p(t)
where p ∈ P is a predicate of arity n and t is a tuple of terms
on V with |t| = n. An atom with predicate p is also called
a p-atom. Given a formula or set of formulas S, we denote
by vars(S), consts(S) and terms(S) its sets of variables,
constants and terms, respectively. We will often see a tuple
x of pairwise distinct variables as a set. We denote by |=
and ≡ classical logical entailment and equivalence, respec-
tively. Given two sets of atoms S1 and S2, a homomorphism
h from S1 to S2 is a substitution of vars(S1) by terms(S2)
such that h(S1) ⊆ S2 (we say that S1 maps to S2 by h). It
is well-known that, when we see S1 and S2 as existentially
closed conjunctions of atoms, S2 |= S1 iff S1 maps to S2.

A safe copy of an atom set S is obtained from S by a bijec-
tive renaming of its variables with fresh variables (i.e., that
do not occur elsewhere in the context of the computation).

Knowledge base. A set of facts F is a possibly infinite
set of atoms, logically seen as an existentially closed con-
junction. When this set is finite we call it a fact base. A
disjunctive existential rule R (or simply rule hereafter) is a
closed formula of the form

∀x∀y ( B[x,y]→
n∨
i=1

∃ziHi[xi, zi] )

where n ≥ 1, B and the Hi are non-empty finite conjunc-
tions of atoms with vars(B) = x ∪ y and vars(Hi) =

xi ∪ zi, x =
n⋃
i=1

xi and x,y and the zi are pairwise dis-

joint; B is the body of R, also denoted by body(R), and
{H1, . . . ,Hn} is the head of R, also denoted by head(R).
We also denote by headi(R) the i-th disjunct Hi of the head
ofR. The set x is the frontier ofR and is denoted by fr(R).
Its elements are called frontier variables. The set zi is the set
of existential variables of Hi, also denoted by exist(Hi),
and the union of all the exist(Hi) is the set of existen-
tial variables of R, also denoted by exist(R). Note that
constants may occur anywhere. For brevity, we often de-
note by B → H1 ∨ . . . ∨ Hn a rule with body B and head
{H1, . . . ,Hn}. A rule R is conjunctive if n = 1. A (dis-
junctive) rule R is (disjunctive) datalog if exist(R) = ∅.

A (disjunctive) knowledge base (KB) is a pair (F,R),
where F is a fact base and R is a finite set of (disjunctive)
existential rules. We assume w.l.o.g. that distinct rules in R
have disjoint sets of variables. In examples, we may reuse
variables for simplicity.
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Disjunctive chase. A rule R = B → H1 ∨ . . . ∨ Hn is
applicable on a fact base F if there is a homomorphism h
from body(R) to F . The pair (R, h) is called a trigger on F .
The application of (R, h) to F is denoted by α∨(F,R, h); it
produces a set of n fact bases, each obtained by adding to
F a set of atoms obtained from headi(R) by replacing each
frontier variable x by h(x) and each existential variable by
a fresh variable. We denote by hsafei the extension of h that
safely renames exist(headi(R)) by fresh variables. Then:

α∨(F,R, h) = {F ∪ hsafei(headi(R)) | 1 ≤ i ≤ n}

The disjunctive chase procedure iteratively applies triggers
towards a fixpoint. This procedure is often seen as the con-
struction of a tree, see in particular (Bourhis et al. 2016;
Carral, Dragoste, and Krötzsch 2017).
Definition 1 (Derivation tree). A derivation tree T of a KB
(F,R) is a (possibly infinite) rooted labeled tree (V,E, λ),
where V is the set of vertices, E the set of edges, and λ a
vertex labeling function inductively defined as follows:
• λ(r) = F for the root r of T ;
• For each vertex v with children {v1, ..., vn}, there is a

trigger (R, h) on λ(v) withR = B → H1∨. . .∨Hn ∈ R
and the restriction of λ to the domain {v1, ..., vn} is a
bijection to α∨(λ(v), R, h).
Note that we do not impose any criterion of trigger ap-

plicability, as we do not aim at studying a particular chase
strategy. A branch γ of a rooted tree is a maximal path from
the root; we denote by nodes(γ) its set of vertices. Given
a derivation tree T , we denote by Γ(T ) the set of all its
branches. A trigger (R, h) on F is satisfied (by F ) if there
is an extension h′ of h with h′(headi(R)) ⊆ F for some i.
A derivation tree (V,E, λ) is fair if, for each branch γ and
each vertex v ∈ nodes(γ), any trigger on λ(v) is satisfied in
a λ(v′) with v′ ∈ nodes(γ). Finally, a chase tree is a fair
derivation tree.
Definition 2 (Disjunctive chase result). The result of
a disjunctive chase of F by R is chase(F,R) =
{

⋃
v∈nodes(γ)

λ(v) | γ ∈ Γ(T )} where T is a chase tree and

λ its labeling function.
From a logical viewpoint, the chase result is a disjunction

of existentially closed conjunctions of atoms. Neither the
chase tree nor the chase result are unique, however all the
results entail the same queries (see next Theorem 1). Al-
though the degree of each vertex in a chase tree is bounded
by the maximal number of disjuncts in a rule head, the tree
may have infinite branches, and an infinite number of them.
When the chase tree is finite, the result of the chase is the
(finite) set of fact bases associated with its leaves.

It is sometimes convenient to consider a linearization of a
finite derivation tree, which we call a derivation. A deriva-
tion of ({F},R) is a finite sequence of sets of fact bases and
triggers D = (F0 = {F}) t1−→ F1

t2−→ . . .
tk−→ Fk where

ti = (R, h) is a trigger of R ∈ R on an Fj ∈ Fi−1 and
Fi = (Fi−1 \ {Fj}) ∪ α∨(Fj , R, h), for all 1 ≤ i ≤ k.
To each finite derivation tree can be assigned a derivation

obtained from any total ordering of the trigger applications
associated with the inner vertices in the tree, in a compatible
way with the parent-child partial order. When R is a set of
conjunctive rules, a derivation tree is a path and the Fi in a
derivation are singletons; then, a derivation can be seen as a
sequence of fact bases (instead of sets of fact bases).

Query Answering. A conjunctive query (CQ) Q takes the
form ∃y φ[x,y], where x and y are disjoint tuples of vari-
ables, and φ is a finite conjunction of atoms with vars(φ) =
x ∪ y. The variables in x are called answer variables.
A Boolean CQ has no answer variables. In a full CQ, all
variables are answer variables. An atomic CQ has a single
atom. A (Boolean) union of conjunctive queries (UCQ) is a
disjunction of (Boolean) CQs with the same tuple of answer
variables x. For clarity, we denote a UCQ by Q and a CQ
by Q. A set of facts F answers positively to a Boolean CQ
Q if F |= Q. More generally, a tuple of constants c is an
answer to a CQ Q on F if there is a substitution s such that
s(x) = c and F |= s(Q). This extends to a UCQ Q and a
set of sets of facts F : a tuple of constants c is an answer to
Q on F if for every Fi ∈ F , there is a CQ Qj ∈ Q such that
c is an answer to Qj on Fi.

W.l.o.g. we focus in this paper on Boolean queries, to
avoid technicalities related to answer variables. Hence, in
the following, by UCQ and CQ we refer to Boolean queries,
unless otherwise specified. We will often see a CQ as a set
of atoms, and a UCQ as a set of atoms sets.

The following theorem states that the disjunctive chase
provides a sound and complete procedure to decide whether
a UCQ is entailed by a disjunctive KB.

Theorem 1 (from (Bourhis et al. 2016)). Let Q be a
(Boolean) UCQ and (F,R) be a disjunctive KB. Then
F,R |= Q iff chase(F,R) |= Q (i.e., Fi |= Q for all
Fi ∈ chase(F,R)).

Example 1 (Colorability). Let F be a fact base on pred-
icates v (vertex) and e (edge) describing a graph G. Let
R = v(x) → g(x) ∨ r(x) (“Every vertex has color green
or red”). Then, chase(F, {R}) yields all ways of color-
ing each vertex. Let the UCQ Q = {Q1, Q2} with Q1 =
{g(u), e(u,w), g(w)} and Q2 = {r(u), e(u,w), r(w)}.
The KB (F, {R}) answers positively to Q iff G is not 2-
colorable.

Given UCQs Q1 and Q2, we say that Q1 is more specific
than Q2 if Q1 |= Q2. Note that Q1 |= Q2 iff for all Q1 ∈
Q1, there is Q2 ∈ Q2 such that Q1 |= Q2 (i.e., Q2 maps
to Q1 by homomorphism). A CQ Q is minimal if it has no
strict subset Q′ ( Q such that Q′ ≡ Q (i.e., Q′ |= Q). A
UCQ Q is minimal if it has no strict subset Q′ ( Q such
thatQ ≡ Q′ (whether each CQ in the UCQ is itself minimal
is not relevant for our results). A cover of a UCQ Q is a
minimal subset Q′ ⊆ Q such that Q ≡ Q′. It is known that,
given two equivalent UCQs Q1 and Q2, there is a bijection
from any cover of Q1 to any cover of Q2 that maps each
CQ inQ1 to an equivalent CQ inQ2 (see, e.g., (König et al.
2015)).
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Mappings. Given two disjoint sets of predicates S and T ,
respectively called the source and the target predicates, a
source-to-target (or S-to-T ) rule R is such that body(R)
uses predicates in S and head(R) uses predicates in T . A
(disjunctive) mappingM on (S, T ) is a finite set of S-to-T
(disjunctive) rules. In this setting, a fact base (or database
instance) is expressed on S and a query on T . Note that the
chase of a fact base with a mapping is always finite.

UCQ rewritability. In the following, by rewriting of a
UCQ Q with a set of rules R, we mean a possibly infinite
set of CQs Q′, such that for all fact base F , if F |= Q′
then F,R |= Q (in other words, a rewriting is by definition
sound). A rewriting Q′ of Q with R is complete if for all
fact base F , if F,R |= Q then F |= Q′. A finite complete
rewriting is called a UCQ-rewriting. A pair (Q,R) is called
UCQ-rewritable if it admits a UCQ-rewriting. The set R
itself is called UCQ-rewritable if for any UCQ Q, the pair
(Q,R) is UCQ-rewritable. In the framework of conjunctive
existential rules, a UCQ-rewritable set is also called a finite
unification set (fus) (Baget et al. 2011). We shall extend this
term to disjunctive rules.

Example 2 (Transitivity). Let R = p(x, y) ∧ p(y, z) →
p(x, z). The (Boolean) CQ Q1 = {p(a, b)}, where a and b
are constants, has no UCQ-rewriting with {R}, while the
(Boolean) CQ Q2 = {p(u, v)} has one, which is {Q2}.
Indeed, any complete rewriting of Q1 is infinite as it con-
tains all the “paths” of p-atoms from a to b, which are pair-
wise incomparable by homomorphism. In contrast, the atom
p(u, v) maps by homomorphism to any path of p-atoms.

Finally, we recall some fundamental notions on rewriting
with conjunctive existential rules. We will rely on these to
define rewriting with disjunctive rules.

Query rewriting with conjunctive existential rules In
the setting of conjunctive existential rules, query rewriting
can be performed using piece-unifiers; these are a general-
ization of classical unifiers that take care of existential vari-
ables in rule heads by unifying sets of atoms instead of sin-
gle atoms (Salvat and Mugnier 1996; Baget et al. 2009). In
short, a piece-unifier unifies a subset Q′ of a CQ Q and a
subset H ′ of a rule head, such that existential variables from
H ′ are unified only with variables of Q′ that do not occur
in Q \ Q′. Next, we call separating variables of Q′ (w.r.t.
Q) the variables of Q′ that also occur in Q \ Q′. It is con-
venient to represent a unifier as a partition of a set of terms
rather than a substitution. Hence, we say that a partition P
of a set of terms is admissible if no class of P contains two
constants; we associate a substitution u with an admissible
partition Pu by selecting one term in each class with prior-
ity given to constants: for each class C in Pu, let ti be the
selected term, then for every tj ∈ C, we set u(tj) = ti.

Definition 3 (Piece-unifier). 1 LetQ be a CQ andR = B →
H be a conjunctive existential rule such that vars(Q) ∩
vars(B ∪ H) = ∅. A piece-unifier of Q with R is a triple

1In non-Boolean queries, answer variables have to be treated as
separating variables.

µ = (Q′, H ′, Pu) with Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ H , and Pu
is an admissible partition on terms(Q′) ∪ terms(H ′) such
that:

1. u(Q′) = u(H ′), with u a substitution associated with Pu;
2. If a class C ∈ Pu contains an existential variable (from
H ′), then the other terms in C are non-separating vari-
ables from Q′.
Let µ = (Q′, H ′, Pu) be a piece-unifier of Q with R :

B → H and u a substitution associated with Pu. The appli-
cation of µ produces the following CQ:

β(Q,R, µ) = u(B) ∪ u(Q \Q′)
Example 3 (Piece-Unifier). Let R = p(x, y) →
∃z p1(x, z) ∧ p2(y, z) and Q1 = {p1(u, v), s(v)}. There
is no piece-unifier of Q1 with R since v is a separating vari-
able of Q′1 = {p1(u, v)}, hence cannot be unified with z.
Let Q2 = {p1(u, v), s(u)}: now, there is a piece-unifier
of Q2 with R, namely µ2 = ({p1(u, v)}, {p1(x, z)}, Pu2

)
with Pu2

= {{x, u}, {y}, {z, v}}. Taking the sub-
stitution u2 = {u 7→ x, v 7→ z}, we obtain
β(Q2, R, µ2) = {p(x, y), s(x)}. Finally, let Q3 =
{p1(u, v), p2(u,w), p1(t, v), s(t)}, and Q′3 = Q3 \ {s(t)}.
The triple µ3 = (Q′3, head(R), Pu3) with Pu3 =
{{x, y, t, u}, {z, v, w}} is a piece-unifier of Q3 with R. If
we select x and z in Pu3 , β(Q3, R, µ3) = {p(x, x), s(x)}.

A piece-rewriting of a UCQ Q with a (conjunctive) rule
set R is a UCQ Qk obtained by a finite sequence of piece-
unifier applications, i.e., (Q0 = Q), . . . ,Qk (k ≥ 0) such
that, for all 0 < i ≤ k, there is a piece-unifier µ ofQ ∈ Qi−1
with R ∈ R such that Qi = Qi−1 ∪ {β(Q,R, µ)}.

As stated below, piece-unifiers provide a sound and com-
plete query rewriting procedure:
Theorem 2 (from (Baget et al. 2011)). For any (conjunc-
tive) KB (F,R) and UCQQ, there is a derivation of (F,R)
leading to an Fi such that Fi |= Q iff there is a piece-
rewriting Qj of Q withR such that F |= Qj .

It follows that, when a pair (Q,R) is UCQ-rewritable, a
UCQ-rewriting can be obtained as a piece-rewriting. Let
us point out that a conjunctive mapping is always UCQ-
rewritable (or fus). Indeed, since it is made of S-to-T rules,
the application of a piece-unifier of a CQ Q produces a CQ
with strictly fewer atoms on T than Q. Also, CQs that con-
tain predicates on T are useless in a rewriting.

3 Query Rewriting with Disjunctive Rules
Our generalization of query rewriting to disjunctive rules re-
lies on a simple idea: a query Q can be rewritten with a rule
R = B → H1 ∨ · · · ∨Hn if each Hi contributes to partially
answer Q. Therefore, a unification step consists of unify-
ing each Hi (using a piece-unifier) with a safe copy Qi of
a CQ from Q ; safe copies ensure that the CQs involved in
the unification have pairwise disjoint sets of variables. Note
that several safe copies of the same CQ from Q can be in-
volved. This yields a new CQ made of body(R) and the
remaining parts of the unified CQs, according to some ag-
gregation of the piece-unifiers. We need a few auxiliary no-
tions to specify this aggregation. Let P be a set of partitions
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(not necessarily of the same set). The join of P , denoted
by join(P), is the partition obtained from P by making the
union of the partitions in P , then merging all non-disjoint
classes until fixed point. E.g., given P composed of par-
titions {{x, u}, {y, v}, {z, w}} and {{x, y, a}, {z′, t}}, we
obtain join(P) = {{x, u, y, v, a}, {z, w}, {z′, t}}. We say
that a set of partitions associated with piece-unifiers is ad-
missible if its join is an admissible partition (i.e., it does not
contain a class with two constants).
Definition 4 (Disjunctive Piece-Unifier and One-step
Piece-Rewriting). Let a rule R = B → H1 ∨ · · · ∨ Hn

and a UCQ Q. A disjunctive piece-unifier µ∨ of Q with R
is a set {µ1, . . . , µn} such that:
• for 1 ≤ i ≤ n, µi = (Q′i, H

′
i, Pui

) is a (conjunctive)
piece-unifier of Qi, a safe copy of a CQ from Q, with the
(conjunctive) rule B → Hi;

• and Pu∨ = {Pu1
, . . . , Pun

} is admissible.
Given a substitution u∨ associated with join(Pu∨), the ap-
plication of µ∨ produces the CQ

β∨(Q, R, µ∨) = u∨(B) ∪
⋃

1≤i≤n

u∨(Qi \Q′i)

The one-step piece-rewriting of Q w.r.t. µ∨ is

Q∪ {β∨(Q, R, µ∨)}
Example 4. LetR = p(x, y)→ ∃z1 r(x, z1) ∨ ∃z2 r(y, z2)
and the UCQ Q = {Q} with Q = {s(u), r(u, v)}. Let
Q1 = {s(u1), r(u1, v1)} and Q2 = {s(u2), r(u2, v2)}
be two safe copies of Q, and let µ∨ = {µ1, µ2} with
µ1 = ({r(u1, v1)}, {r(x, z1)}, {{u1, x}, {v1, z1}}) and
µ2 = ({r(u2, v2)}, {r(y, z2)}, {{u2, y}, {v2, z2}}). As-
sume we give priority to variables from R, i.e., we take the
substitution u∨ = {u1 7→ x, v1 7→ z1, u2 7→ y, v2 7→ z2}.
Then β∨(Q, R, µ∨) = {p(x, y), s(x), s(y)}.
Definition 5 (Piece-Rewriting). Given a disjunctive rule
set R, a UCQ Q′ is a piece-rewriting (or simply rewrit-
ing when clear from the context) of a UCQ Q with R if
there is a finite sequence (called rewriting sequence) Q =
Q0,Q1, . . . ,Qk = Q′ (k ≥ 0), such that for all 0 < i ≤ k,
there is a disjunctive piece-unifier µ∨ of Qi−1 with R ∈ R
such that Qi is the one-step rewriting of Qi−1 w.r.t. µ∨.

The following lemmas highlight fundamental properties
of α∨ and β∨.
Lemma 1 (Preservation of entailment by α∨ and β∨). Let
R be a disjunctive rule.
1. For any fact bases F1 and F2 such that F2 |= F1: if there

is a trigger (R, h1) on F1 then there is a trigger (R, h2)
on F2 such that α∨(F2, R, h2) |= α∨(F1, R, h1).

2. For any UCQs Q1 and Q2 such that Q2 |= Q1: if there
is a (disjunctive) piece-unifier µ2 of Q2 with R then ei-
ther β∨(Q2, R, µ2) |= Q1, or there is a (disjunctive)
piece-unifier µ1 ofQ1 with R such that β∨(Q2, R, µ2) |=
β∨(Q1, R, µ1).
The second lemma clarifies the tight relationship between

α∨ and β∨ (we recall that fact bases and CQs have the same
logical form; this is also true of finite sets of fact bases and
UCQs).

F α∨(F,R, h)

Qβ∨(Q, R, µ∨)

α∨

|=

β∨

|=

F α∨(F,R, h)

Qβ∨(Q, R, µ∨)

|=

α∨

|=

β∨

Figure 1: Correspondences between β∨ (in blue) and α∨ (in red)

Lemma 2 (Composition of α∨ and β∨). LetR be a disjunc-
tive rule.

1. For any fact base F : if there is a trigger (R, h) on F then
there is a (disjunctive) piece-unifier µ of α∨(F,R, h) with
R such that F |= β∨(α∨(F,R, h), R, µ).

2. For any UCQ Q: if there is a piece-unifier µ of Q with
R then there is a trigger (R, h) on β∨(Q, R, µ) such that
α∨(β∨(Q, R, µ), R, h) |= Q.

These two lemmas are keys to establish the soundness and
completeness of piece-rewriting, as stated next.
Theorem 3 (Soundness and completeness of piece-rewrit-
ing). Let R be a set of disjunctive rules and Q be a UCQ.
Then, for any fact base F , holds F,R |= Q iff there is a
piece-rewriting Q′ of Q such that F |= Q′.

Proof. (Sketch) We show that there is a derivation of
({F},R) leading to an Fi such that Fi |= Q iff there is
a rewriting Qj of Q with R such that F |= Qj (with more-
over j ≤ i). This equivalence relies on the following two
lemmas, which are corollaries of previous Lemmas 1 and 2.
Given any Boolean UCQQ, disjunctive ruleR and fact base
F , the following holds (see Figure 1):

• (Backward-forward Lemma) For any disjunctive piece-
unifier µ∨ of Q with R, if F |= β∨(Q, R, µ∨) then there
is a trigger (R, h) on F such that α∨(F,R, h) |= Q;

• (Forward-backward Lemma) For any trigger (R, h) on F ,
if α∨(F,R, h) |= Q then either F |= Q or there is a
disjunctive piece-unifier µ∨ of Q with R, such that F |=
β∨(Q, R, µ∨).

The (⇒) direction of the theorem is proved by induction
on the length k of a derivation from {F} to Fk such that
Fk |= Q, using forward-backward Lemma (which itself
follows from Lemma 2 (Point 1) and Lemma 1 (Point 2)).
The (⇐) direction is proved by induction on the length k
of a rewriting sequence from Q to Qk such that F |= Qk,
using backward-forward Lemma (which itself follows from
Lemma 2 (Point 2) and Lemma 1 (Point 1)).

To actually compute a UCQ-rewriting of Q when one ex-
ists, it is convenient to proceed in a breadth-first manner, i.e.,
extendQ at each step with all the CQs that can be generated
with (new) disjunctive piece-unifiers. More specifically, we
inductively define the following operator W , which takes as
input a UCQ Q and a disjunctive rule set R, and returns a
possibly infinite set of CQs:
• W0(Q,R) = Q
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• For i > 0, Wi(Q,R) = Wi−1(Q,R)∪
{β∨(Wi−1(Q,R), R, µ∨)|µ∨ piece-unifier with R ∈ R}

• Finally, W (Q,R) =
⋃
i∈N

Wi(Q,R).

Proposition 1 (Properties of W ). For any UCQ Q and dis-
junctive rule setR, the following holds:

1. W (Q,R) is a complete rewriting of (Q,R).
2. If (Q,R) admits a UCQ-rewriting Q′, then there is i ≥ 0

such that Q′ ≡Wi(Q,R).

Proof. (1) Each Wi(Q,R) is a piece-rewriting ofQ withR
and, for any piece-rewriting Q′ of Q with R, there is i such
that Q′ ⊆Wi(Q,R). Hence, the union of all the Wi(Q,R)
is a complete rewriting of Q. (2) If (Q,R) admits a UCQ-
rewritingQ′, then by Theorem 3 it admits a complete piece-
rewriting Q′′, and both are necessarily equivalent. Then,
Q′′ ⊆ Wi(Q,R) for some i and, since Q′′ is complete,
Q′′ ≡Wi(Q,R).

We propose a query rewriting algorithm (see Algorithm 1)
that mimics the computation of W (Q,R), while including
two optimizations at each step i > 0. First, it only considers
new disjunctive piece-unifiers, i.e., those that involve at least
one CQ generated at step i−1. Second, it removes redundant
CQs in the rewriting under construction, by the computation
of a cover. More specifically,Q? denotes the rewriting under
construction and Qnew the set of CQs generated at a given
step. The function cover (Lines 1 and 6) returns a cover
of the given set. The function generate (Line 5) takes as
input the current rewritingQ?, its subsetQprev of CQs gen-
erated at the previous step, as well as R, and returns the set
of generated CQs, i.e., all the β∨(Q?, R, µ∨) where µ∨ is
a new disjunctive piece-unifier. This yields the set Qnew.
To compute a cover of Q? ∪ Qnew, priority is given to Q?
in case of query equivalence, for termination reasons. The
function removeMoreSpecific takes as input two sets of
CQs and returns the first set minus its queries more specific
than a query of the second set. The computation of a cover
of Q? ∪ Qnew is decomposed into three steps (Lines 6-8):
compute a cover of Qnew; remove from Qnew the queries
more specific than a query from Q?; and remove from Q?
the queries more specific than a query from Qnew. Then,
Qnew is added to Q? (Line 9). We remind that a query may
have rewritings of unbounded size but still a UCQ-rewriting
(see Example 2), hence the role of the cover computation is
not only to remove redundancies but also to ensure that the
algorithm halts when a UCQ-rewriting has been found.

The correctness of the algorithm is based on the sound-
ness and completeness of the W operator, however attention
should be paid to the potential impact of query removal on
completeness (Lines 6 to 8). Indeed, when a CQ Q2 is re-
moved because it is more specific than another CQ Q1, we
have to ensure that any CQ that could be generated using
Q2 is more specific than another CQ already present in the
curent rewriting, or than a CQ that can be generated using
Q1. Fortunately, this property is ensured by Lemma 1 (Point
2), considering Q? and Qnew at the end of Line 5, then tak-
ing Q2 = Q? ∪Qnew and Q1 = Q2 \ {Q2}.

Algorithm 1: BREADTH-FIRST REWRITING

Data: UBCQ Q and set of disjunctive rulesR
Result: A sound and complete rewriting of Q

1 Qnew ← cover(Q); // new CQs
2 Q? ← Qnew; // result
3 while Qnew 6= ∅ do
4 Qprev ← Qnew // CQs from the preceding step
5 Qnew ← generate(Q?,Qprev,R); // new CQs
6 Qnew ← cover(Qnew)
7 Qnew ← removeMoreSpecific(Qnew,Q?)
8 Q? ← removeMoreSpecific(Q?,Qnew)
9 Q? ← Q? ∪Qnew

10 return Q?

Theorem 4. Algorithm 1 computes a sound and complete
rewriting. Moreover, it halts and outputs a minimal rewrit-
ing when (Q,R) is UCQ-rewritable.

Proof. By induction on the number of iterations of the while
loop, we prove the following invariant of the algorithm, us-
ing Lemma 1 (Point 2): after step i, Q? is equivalent to
Wi(Q,R). Then, soundness and completeness follow from
Proposition 1. Line 7 ensures that Qnew becomes empty
when Q? is a complete rewriting. Since a cover of Q? is
computed at each step, the output set is of minimal size.

Further remarks on completeness. When it comes to
practical implementations, one may find simpler to rely on
(conjunctive) piece-unifiers that unify the smallest possi-
ble subsets of a CQ. Such piece-unifiers are called single-
piece (König et al. 2015). In the specific case of datalog,
a single-piece unifier unifies a single atom of a CQ with a
rule head. Piece-rewriting restricted to single-piece unifiers
is complete for conjunctive rules (König et al. 2015), but it
is no longer so with disjunctive rules. This occurs already in
the case of disjunctive datalog, as illustrated next.

Example 5. Consider again the colorability example
(Ex. 1) with R = v(x) → g(x) ∨ r(x) and Q =
{Q1, Q2} with Q1 = {g(u), e(u,w), g(w)} and Q2 =
{r(u), e(u,w), r(w)}. With single-piece unifiers we obtain
CQs that have the shape of “chains” with a g-atom or an
r-atom at each extremity. However, there are also rewrit-
ings without any occurrence of g nor r, and the only way
of obtaining them is to unify two query atoms together. For
instance, the CQ {v(u), e(u, u)} is obtained by unifying, on
the one hand both g-atoms of a safe copy of Q1 with g(x),
and on the other hand both r-atoms of a safe copy of Q2

with r(x). More generally, using such piece-unifiers, one
can produce all the CQs that describe the odd-length cycles
in the graph. Note that these CQs are incomparable with the
CQs generated with single-piece unifiers. This example also
shows that a UCQ may have no UCQ-rewriting although
each of its CQs has one (which is here the CQ itself).
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Related work. To the best of our knowledge, (Alfonso,
Chortaras, and Stamou 2021) is the only previous work
proposing a UCQ rewriting technique for general disjunc-
tive existential rules. This technique is based on a restricted
form of first-order resolution, where at each step a CQ is
unified with a disjunct of a rule head (using a conjunctive
piece-unifier), which produces a new disjunctive rule with
fewer disjunctions; when the unified rule is conjunctive, (the
negation of) a CQ is produced. In comparison, the main ad-
vantages of our proposal are the following: (1) a rewriting
step directly produces a CQ and not a rule, (2) intermedi-
ate rules, which may not lead to a CQ, are avoided, and (3)
there is a direct correspondence between a chase step and a
rewriting step, which makes it easier to study the properties
of query rewriting, especially as the rule set is not updated.

4 What are fus Disjunctive Rules?
We now address the question of identifying classes of dis-
junctive rules that are UCQ-rewritable. By extension of the
term coined for conjunctive existential rules, we also call
them fus. To the best of our knowledge, the only fus class of
disjunctive rules mentioned in the literature (Alfonso, Chor-
taras, and Stamou 2021) is actually a slight extension of
fus conjunctive rules: this class consists of disjunctive rules
with an empty frontier and it is shown that such rules can
be safely added to a set of fus conjunctive rules. As a mat-
ter of fact, known fus classes of conjunctive rules do not
seem to be extensible to the disjunctive case. And worse,
the straightforward extension of syntactic criteria that un-
derlie fus in the conjunctive case seems to easily lead to un-
decidability of query answering, as shown for example in
(Morak 2021) for the syntactic restriction called stickiness
(Calı̀, Gottlob, and Pieris 2010).

At first glance, one may expect nonrecursive disjunctive
rule sets to be fus, as it happens for conjunctive rules. How-
ever, it is not the case, as shown by the next example: a
CQ (on unary predicates) may have no UCQ-rewriting even
with a single non-recursive body-atomic (disjunctive) data-
log rule.

Example 6. Let the rule R = p(x, y) → t1(x) ∨ t2(y) and
the BCQQ = {t1(u), t2(u)}. Then the pair ({Q}, {R}) has
no UCQ-rewriting. Indeed, a complete rewriting contains
all the CQs of the following shape for any n ∈ N:

t2(u0) ∧

(
n∧
i=1

p(ui−1, ui)

)
∧ t1(un)

All these queries are pairwise incomparable w.r.t. homo-
morphism. Let us detail the first rewriting step. To unify
{Q} with R, we have to make two safe copies of Q, let Q1

and Q2, which are respectively unified with t1(x) and t2(y).
This produces the CQ {t2(x), p(x, y), t1(y)}, isomorphic to
{t2(u0), p(u0, u1), t1(u1)}. If we switch the unified atoms
of head(R), we obtain an isomorphic CQ. All subsequent
rewriting steps lead to longer paths of p-atoms.

A similar observation follows from (Gerasimova et al.
2020), which focuses on a specific disjunctive rule of the
form A(x) → T (x) ∨ F (x), called a covering axiom and

denoted by covA; their complexity results imply that the sin-
gleton set {covA} is not fus,2 which can be checked for in-
stance by considering the queryQ = {T (u), p(u, v), F (v)}.

Next, we show that such observations can be generalized
to almost any source-to-target disjunctive rule. Evidently,
we have to exclude disjunctive rules that are equivalent to
a conjunctive rule, as classes of fus conjunctive rules are
known. We also exclude disconnected rules, i.e., rules R
such that body(R) ∪ head(R) is not a connected set of
atoms (where connectivity is defined in the obvious way
based on shared variables). Note that a rule with a head
Hi that has an empty frontier is disconnected, as well as a
rule whose body has a connected component with an empty
frontier. However, a rule with a disconnected body may not
be disconnected, since head atoms may connect several con-
nected components of the body (e.g., a “product” rule like
b1(x)∧b2(y)→ t1(x)∨t2(y)∨p(x, y) is not disconnected).
Example 7 (Fus disconnected rule). Let the disconnected
rule R = b(x) → t1(x) ∨ ∃z t2(z). R is not equivalent
to a conjunctive rule. Let us check that it is fus. Given any
UCQ Q, let Q2 be the subset of Q that contains all the CQs
that can be unified with ∃z t2(z). Any Q ∈ Q2 necessarily
contains a disconnected component of the form ∃u t2(u).
Moreover, it is useless to unify Q with t1(x): in such case,
let Q2 be the CQ unified with ∃z t2(z), then the obtained
rewriting is more specific than Q2. Hence, we can ignore
all the produced CQs that contain a connected component
of the form ∃u t2(u). Rewriting Q with {R} amounts to
rewritingQ\Q2 with the conjunctive rule setR = {b(x)∧
(Q2 \ {∃u t2(u)}) → t1(x) | Q2 ∈ Q2}, which belongs to
the fus class called domain restricted (Baget et al. 2011).

In the next theorem, we restrict the head of the rule to a
disjunction of two atom sets, to keep the proof simple.
Theorem 5. Let R = B → H1 ∨H2 be a source-to-target
rule that is not disconnected nor equivalent to a conjunctive
rule. Then, there is a CQ Q such that ({Q}, {R}) is not
UCQ-rewritable.

Proof. (Sketch) Let R = B[x1,x2,y]→ ∃z1 H1[x1, z1]∨
∃z2 H2[x2, z2)], where:

• fr(R) = x1 ∪ x2; x1 and x2 may share variables;
• xi 6= ∅ (i = 1, 2) since R is not disconnected.

We build the following (Boolean) CQ:

Q = {Hs
1 [v1,w1], p(v1,v2), Hs

2 [v2,w2]}
where eachHs

i [vi,wi] is a safe copy ofHi[xi, zi] and p is
a fresh predicate. Note that, since R is connected, both H1

2That paper studies syntactic conditions on ontology-mediated
CQs of the form (Q, covA) that determine the data complexity of
query answering and the rewritability in some target query lan-
guage. In particular, it is shown that if a (connected) CQ Q has
no term x with both atoms T (x) and F (x) and contains at least
one F -atom and one T -atom then answering (Q, covA) is L-hard
for data complexity. Since answering a UCQ-rewritable ontology-
mediated query is in AC0 for data complexity, and AC0 ⊂ L, it
follows that no covA is fus.
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and H2 have a frontier variable, and frontier variables being
renamed in each Hs

i , the arity of p is at least 2. In p(v1,v2)
the order on the variables is important: a fixed order is cho-
sen on xi (hence, vi) and the tuple v1 comes before the tuple
v2. Hence, p(v1,v2) can be seen as “directed” from v1 to
v2. We then proceed in two steps.

1. We show that we can produce an infinite setQ whose ele-
ment CQs are pairwise incomparable by homomorphism.
Let Q0 = Q. At each step i ≥ 1, Qi is produced from a
safe copy of Q unified with H1 and a safe copy of Qi−1
unified with H2. The piece-unifiers unify Hs

1 (resp. Hs
2 )

in Q (resp. Qi−1) according to the isomorphism from Hs
1

(resp. Hs
2 ) to H1 (resp. H2). Any CQ Qk in Q is con-

nected and follows the “pattern” Hs
2 .p.(B.p)

k.Hs
1 , where

occurrences of p-atoms all have the same direction; hence,
two “adjacent” p-atoms, i.e., that share variables with the
same copy Bi of a B, cannot be mapped one onto the
other (by a homomorphism that maps Bi to itself).

2. We show that no CQ Q′ that can be produced by piece-
rewriting maps by homomorphism to a CQ from Q,
except by isomorphism. When there is no (conjunc-
tive) piece-unifier that unifies H1[v1,w1] in Q with
H2[x2, z2] (the same holds if we exchange H1 and H2),
all the produced Q′ are more specific than (including iso-
morphic to) CQs from Q. Otherwise, assume that a CQ
Q′ is produced by unifying H1[v1,w1] with H2[x2, z2].
If Q′ can be mapped by homomorphism to a Qn ∈ Q, the
arguments of any p-atom in Q′ must be pairwise distinct
variables. We show that it leads to have R equivalent to
the conjunctive ruleB → Hi (with i = 1 or i = 2), which
contradicts the hypothesis on R.

It follows that Q is a subset of any sound and complete
rewriting of {Q} with {R}, hence the pair ({Q}, {R}) does
not admit a UCQ-rewriting.

One interest of the above proof is to provide a general
construction that applies to any rule (fulfilling the conditions
of the theorem). Also, the proof can be generalized to a rule
head with k disjuncts, taking Q containing a safe copy of
each Hi plus a p-atom that connects these copies through
their frontier variables.

Given this result, the notion of fus disjunctive rules does
not seem to be particularly relevant. Studying the problem
of deciding whether a pair (Q,R) is UCQ-rewritable seems
more interesting, although it is known to be undecidable al-
ready for (conjunctive) datalog rules.3 Again, little is known
about classes of disjunctive rules and UCQs for which this
problem would be decidable. Let us point out a few imme-
diate cases of UCQ-rewritable pairs (Q,R):

• Q is composed of atomic CQs andR is a set of disjunctive
linear existential rules (i.e., rules with an atomic body).

3This follows from the undecidability of determining whether
a datalog program is uniformly bounded (Gaifman et al. 1993).
Indeed, a datalog program R is uniformly bounded iff the pair
(Q,R) is UCQ-rewritable for any full atomic query Q. In turn,
UCQ-rewritability of (Q,R) can be reduced to UCQ-rewritability
of (Q′,R) with Q′ a Boolean CQ.

Indeed, only atomic CQs can be produced, and there is a
finite number of them on a given set of predicates. This
case was already noticed in (Bourhis et al. 2016).

• Q is composed of atomic queries andR is a set of S-to-T
rules. The produced CQs are obtained from the rule bod-
ies by specializing their frontier (i.e., merging variables
and replacing them by constants occurring in Q and rule
heads). Hence, there is a finite number of them.

• Q is composed of variable-free CQs4 and R is a set of
lossless existential rules (i.e., such that all the variables
in a rule body are frontier). Then, no variable is intro-
duced by rewriting, hence the number of terms in a CQ is
bounded by |consts(Q) ∪ consts(R)|.

5 Disjunctive Mappings
We now consider UCQ-rewritability with (disjunctive) map-
pings. Let S and T be the sets of source and target pred-
icates, respectively, and let M be a mapping on (S, T ).
Given a query on T , the aim is to obtain a complete rewrit-
ing w.r.t. fact bases on S . Because S and T are disjoint, CQs
that contain atoms on T are useless in a rewriting. Hence,
we define a mapping rewriting as a rewriting on S and use
the notation S-rewriting to distinguish it from a rewriting on
S ∪ T . An S-rewritingQ′ of a UCQQ withM is complete
if, for all fact base F on S , if F,M |= Q then F |= Q′. A
finite complete S-rewriting is called a UCQ-S-rewriting.
Example 8 (Colorability). We adapt Example 5 to transform
the rule into a mapping. Let S = {v, e}, T = {ê, g, r} and
M = {m1,m2}, with:
m1 = e(x, y)→ ê(x, y)
m2 = v(x)→ g(x) ∨ r(x).
Let Q = {Q1, Q2} with Q1 = {g(u), ê(u,w), g(w)} and

Q2 = {r(u), ê(u,w), r(w)}. Any complete S-rewriting of
Q contains CQs that describe all the cycles of odd length (in
other words, it defines non-2-colorability). All the other CQs
that can be produced by piece-rewriting contain predicates
g and r, hence are discarded.

Note that a query may have a UCQ-S-rewriting, while it
does not have any UCQ-rewriting (on S ∪ T ), as illustrated
by the next example.
Example 9. Let S = {p} and T = {t1, t2}. Con-
sider the (Boolean) CQ Q = {t1(u), t2(u)} and the rule
R = p(x, y) → t1(x) ∨ t2(y) from Example 6. While the
pair ({Q}, {R}) has no UCQ-rewriting, it has a UCQ-S-
rewriting, which is empty. Indeed, all the CQs that can be
obtained by piece-rewriting contain an atom on T .

Let disjunctive mapping rewritability be the following
problem: Given a disjunctive mapping M on (S, T ) and
a UCQ Q on T , does (Q,M) have a UCQ-S-rewriting ?
Theorem 6. Disjunctive mapping rewritability is undecid-
able.

Proof. (Sketch) We build a reduction from the following un-
decidable problem: Given a (Boolean) CQ Q and a set of

4If non-Boolean CQs are considered, Q can be extended to a
set of full CQs.
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(conjunctive) datalog rules R, is the pair ({Q},R) UCQ-
rewritable? W.l.o.g. we assume that rules in R have no
constants (and an atomic head). The reduction translates
each instance (Q,R) defined on a set of predicates P ,
into an instance (QQ,R,MQ,R) of the disjunctive mapping
rewritability problem, defined on a pair of predicats sets
(S, T ) such that:

• S = P ∪ {T}, where T is a fresh unary predicate,
• T is the union of: (1) a set of predicates in bijection with
S , where p̂ denotes the predicate obtained from p ∈ S ,
and (2) a set of fresh predicates in bijection withR, where
pRi

denotes the predicate associated with the rule Ri; the
arity of each pRi is |fr(Ri)|.

Given a conjunction Q (on P), we denote by QT the con-
junction (on S) obtained from Q by adding a T -atom on
each term; given a conjunction Q (on S), we denote by Q̂
the conjunction (on T ) obtained from Q by renaming all the
predicates p into p̂. Hence, Q̂T is obtained by performing
the first operation, then the second. Given x = x1, . . . , xn,
T [x] denotes the conjunction T (x1)∧· · ·∧T (xn). Similarly,
T̂ [x] = T̂ (x1) ∧ · · · ∧ T̂ (xn).

Let Q andR = {R1, . . . , Rn}, where Ri = Bi[xi,yi]→
Hi[xi]. The instance (QQ,R,MQ,R) is defined as follows:

• QQ,R = {QQ} ∪ QR with:
QQ = Q̂T ,

QR = {QRi
= ∃xi,yi (̂Bi)

T
[xi,yi]∧ pRi

(xi)|Ri ∈ R}
• MQ,R =MR ∪Mtrans with:
MR = {mRi

= T [xi]→ pRi
(xi) ∨ Ĥi(xi) | Ri ∈ R}

Mtrans = {p(x)→ p̂(x) | p ∈ S}

Based on the natural bijection between the CQs QP de-
fined on P and the CQs (QP)T defined on S , we prove that
QP belongs to a rewriting of {Q}withR iff (QP)T belongs
to a rewriting of QQ,R with MQ,R. Note that set mem-
bership is up to isomorphism throughout the proof. More
specifically, we first prove the following lemmas:

1. For any CQ Qw in a piece-rewriting of {Q} with R,
(Qw)T belongs to a piece-rewriting ofQQ,R withMQ,R.
Indeed, to each Ri are associated a CQ QRi

and a rule
mRi

that allow to simulate any rewriting step performed
with Ri, using fresh predicate pRi

.
2. Any CQ QS in an S-rewriting of QQ,R withMQ,R is of

the form QS = (QP)T , with QP the subset of QS on P .
3. For any CQ of the form (QP)T , with QP on P , that be-

longs a piece-rewriting ofQQ,R withMQ,R,QP belongs
to a piece-rewriting of {Q} with R?, where R? is the re-
flexive and transitive closure of R by unfolding (i.e., rule
composition). Note thatR? is logically equivalent toR.

We rely on these lemmas to prove the following: if there
is a UCQ-rewriting of ({Q},R) then there is a UCQ-S-
rewriting of (QQ,R,MQ,R). The proof of the opposite di-
rection is similar. Let Q be a UCQ-rewriting of ({Q},R).
Then there is a piece-rewriting Qi of {Q} with R such
that Qi ≡ Q. By Lemma 1, there is a piece-rewriting

Qj of QQ,R with MQ,R that contains all the CQs of the
form (Qw)T in bijection with the Qw in Qi. By defini-
tion, Qj is a finite rewriting of (QQ,R,MQ,R) and the
subset QSj of Qj that contains only the CQs on S is a fi-
nite S-rewriting of (QQ,R,MQ,R). Now, assume QSj is
not complete, i.e., there is a CQ that belongs to an S-
rewriting of (QQ,R,MQ,R) but that is not more specific
than a CQ in QSj ; by Lemma 2, such CQ is of the form
(QP)T . Then there is a piece-rewriting Q′j of QQ,R with
MQ,R that contains a CQ entailed by (QP)T ; hence such
CQ is also on S , and by Lemma 2 it is of the form (Q′P)T .
By Lemma 3, Q′P belongs to a piece-rewriting of {Q} with
R?. Since R? ≡ R, there is a CQ equivalent to Q′P in
some rewriting of ({Q},R). Since Qi is complete, there is
Qc ∈ Qi such that Q′P |= Qc. Hence, (Q′P)T |= (Qc)

T ,
so (QP)T |= (Qc)

T ; by Lemma 1, (Qc)
T ∈ Qj , hence

(Qc)
T ∈ QSj , which contradicts the fact that (QP)T is not

more specific than a CQ in QSj .

6 Perspectives
In conclusion, UCQ rewriting with disjunctive existential

rules appears to be extremely challenging. The main classes
that ensure termination for conjunctive rules fail to be gen-
eralized. As suggested by previous work in (Gerasimova et
al. 2020) and our Theorem 5, the fus notion applied to dis-
junctive rules does not seem to add much w.r.t. fus conjunc-
tive rules. However, it might be more relevant in the context
of mappings (when it becomes UCQ-S-rewritability), which
still has to be studied. Beside, a number of interesting issues
remain open, in relationship with the finite rewritability of a
pair (Q,R). We list here some of them:

1. Clarify the boundary between decidability and undecid-
ability for the problem of determining whether a pair
(Q,R) is UCQ-rewritable, according to specific classes
of rules (and queries). In particular, UCQ-rewritability is
decidable for guarded conjunctive rules and some of their
generalizations (Barceló et al. 2018), does this extend to
the disjunctive case?

2. We have shown that the UCQ-S-rewritability of a pair
(Q,M) is undecidable (Theorem 6). Is it still the case
for a pair ({Q},M) where Q is a CQ?

3. Our undecidability proof for UCQ-S-rewritability (The-
orem 6) exploits the fact that rewritings are restricted to
predicates in S . If we consider instead UCQ-rewritings
with source-to-target rules, we know that the problem can
only be simpler, as there is an easy reduction from UCQ-
rewritability with S-to-T -rules to UCQ-S-rewritability
with mappings (one simply has to add a mapping rule per
target predicate to give it an existence at the source level).
Is the UCQ-rewritability of a pair (Q,R) decidable when
R is a set of S-to-T rules?

4. Design an algorithm that, given a pair (Q,M), outputs a
UCQ-S-rewriting for this pair when one exists.
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