Rebecca Salles
email: rebeccapsalles@acm.org

Esther Pacitti
email: esther.pacitti@lirmm.fr

Eduardo Bezerra
email: ebezerra@cefet-rj.br

Celso Marques

Carla Pacheco
email: carla.pacheco@eic.cefet-rj.br

Carla Oliveira
email: carla.oliveira@ibge.gov.br

Fábio André

Machado Porto
email: fporto@lncc.br

Eduardo Ogasawara
email: eogasawara@ieee.org

Cefet / Rj

Carla Olveira

Fabio Porto

TSPredIT: Integrated Tuning of Data Preprocessing and

Keywords: Time Series Prediction Models time series, prediction, data preprocessing, machine learning, hyperparameter optimization

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The prediction of time series has gained more attention in the last decades. Many time series prediction methods have been developed and can be found in the literature [START_REF] Cheng | Time series forecasting for nonlinear and non-stationary processes: A review and comparative study[END_REF]. An adequate prediction method is mandatory for building the right model [START_REF] Salles | TSPred: A framework for nonstationary time series prediction[END_REF], especially for data-driven models. They are generally organized between statistical and machine learning [START_REF] Lindemann | A survey on long short-term memory networks for time series prediction[END_REF]. These types of methods usually have to set hyperparameters. In this sense, hyperparameter optimization is a fundamental step since it can influence the predictive performance of the resulting models [START_REF] Lim | Time-series forecasting with deep learning: A survey[END_REF][START_REF] Khalid | A survey on hyperparameters optimization algorithms of forecasting models in smart grid[END_REF].

Additionally, these models might be improved by adequate data preprocessing activities. Most of these methods tend to be optimistic regarding their assumptions over the time series and are not ready to handle nonstationarity [START_REF] Cheng | Time series forecasting for nonlinear and non-stationary processes: A review and comparative study[END_REF][START_REF] Salles | Nonstationary time series transformation methods: An experimental review[END_REF]. They also suffer from the presence of concept drift [START_REF] Lu | Learning under Concept Drift: A Review[END_REF] or lack of data [START_REF] Talavera | Data Augmentation techniques in time series domain: A survey and taxonomy[END_REF]. These two cases are related. When concept drift occurs, generally, there are few samples to support model building. Usually, nonstationarity demands transformation methods to address this issue [START_REF] Salles | Nonstationary time series transformation methods: An experimental review[END_REF]. Besides, while working with small samples, data augmentation techniques are also needed [START_REF] Mumuni | Data augmentation: A comprehensive survey of modern approaches[END_REF][START_REF] Wen | Time Series Data Augmentation for Deep Learning: A Survey[END_REF][START_REF] Talavera | Data Augmentation techniques in time series domain: A survey and taxonomy[END_REF].

preprint For the algorithm to make predictions with greater accuracy, optimizing the hyperparameters is necessary [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. Hyperparameters are values that make up the initial configuration of the learning algorithm [START_REF] Garcia | Data Preprocessing in Data Mining[END_REF]. Hyperparameters are also present in data preprocessing methods. Several factors influence the predictive performance of time series models, mainly choosing and tuning the right methods for data preprocessing and hyperparameters.

Regarding statistical learning, some methods seamlessly integrate hyperparameters optimization of data processing techniques. It includes the autoregressive integrated moving average (ARIMA) algorithm that optimize parameters (p, d, q) for ARIMA [START_REF] Hyndman | Automatic time series forecasting: The forecast package for R[END_REF]. The d parameter represents the Integrated part of ARIMA and performs the differentiation of observations internally as a preprocessing step for the series to be stationary. The p parameter corresponds to the AR part of ARIMA, the number of autoregressive terms. The MA model works with the size of the moving average window and is represented by the q parameter. This method tunes altogether differentiation, autoregressive, and moving average models [START_REF] Box | Time Series Analysis: Forecasting and Control[END_REF]. Conversely, there are many frameworks for machine learning, such as Scikit learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF][START_REF] Hao | Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language[END_REF], which provides (i) a broad range of prediction methods, (ii) an extensive set of preprocessing methods, (iii) hyperparameter optimization features for machine learning. However, directly optimizing data processing and machine learning is left for users to program according to their needs.

In this context, this paper presents TSPredIT, an evolved version of TSPred [START_REF] Salles | TSPred: A framework for nonstationary time series prediction[END_REF] that seamlessly integrates the tuning of data preprocessing and time series prediction models for univariate time series. It only concerns regression models and is specialized integrating data transformation methods and data augmentation to aid in building machine learning methods (MLM) prediction models. TSPredIT is made available as an R-package. It is the first tool to seamlessly integrate a broad range of data transformation and preprocessing methods and state-of-the-art statistical and machine learning prediction methods for addressing nonstationary time series. The package automates the time series prediction process and parameterization while enabling user-defined prediction methods and data transformations, including code built in other languages like Python. Due to that, the features provided by TSPredIT are shown to be competitive regarding time series prediction accuracy.

Besides this introduction, the paper is organized into five more sections. Section 2 presents the background, while Section 3 presents the related work. Section 4 presents the TSPredIT, which evolves from the previous version of TSPred [START_REF] Salles | TSPred: A framework for nonstationary time series prediction[END_REF]. Section 5 provides a clear example of using TSPredIT's main features. Conversely, Section 6 characterizes the effect of choosing data preprocessing and different MLM during prediction. Finally, Section 7 concludes the work.

Background

Time series prediction is commonly associated with the scenario of regression. For simplicity, the paper may refer to prediction and regression interchangeably. Relevant models adopted for time series prediction generally fall into the categories of statistical or machine learning models [START_REF] Salles | A framework for benchmarking machine learning methods using linear models for univariate time series prediction[END_REF]. The accuracy of the predictions depends on the quality of the historical data, the appropriateness of the model, and the assumptions made about the underlying processes driving the time series [START_REF] Hyndman | Forecasting: principles and practice[END_REF][START_REF] Gujarati | Essentials of Econometrics[END_REF]. Figure 1 presents a general time series prediction process. It encompasses five main activities. It provides a general framework for predicting a time series based on a particular setup of preprocessing methods and prediction models. They are briefly described here, and some parts are detailed in the following sections. In such a case, the training slice is again split into a novel training and validation set. Alternative models exploring hyperparameters values are built using the novel training and evaluated using the validation set. Once hyperparameters are fixed, a single model is built using the entire training dataset. From this moment, the model is available for use. Activity 3, also in blue, refers to the model prediction. It is worth mentioning that the predicted values are not in the time series domain. In this sense, they can not be directly evaluated. Data postprocessing is needed in this case. Activity 4, also in purple, corresponds to the postprocessing of predictions, reversing transformations applied to the time series data in Activity 1. In a macro view, the data is normalized (scaled) and given as input to an algorithm. After the forecast, a denormalization process maps back the predicted values into the original scale of the time series. An example of postprocessing can be seen in previous work [START_REF] Ogasawara | Adaptive Normalization: A novel data normalization approach for non-stationary time series[END_REF], where the data is denormalized to measure the error in the same scale for comparison purposes.

Finally, Activity 5, in pink, is the evaluation of prediction errors yielded by the model, as well as model fitness metrics. If the results are inadequate, this process can be revised and repeated to refine models. This process iteratively improves the quality of predictions (for time series prediction) or model adjustment (for time series modeling). The prediction can be evaluated in several ways, mostly measuring the errors between prediction and actual observation, such as Mean Square Error (MSE) and symmetric MAPE (sMAPE) in a test set. Alternatively, they can be measured by the level of model adjustment, such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [START_REF] Salles | TSPred: A framework for nonstationary time series prediction[END_REF].

This process provides a systematic way of predicting a time series based on particular preprocessing and prediction methods. It also focuses on prediction and model evaluation, that is, evaluating the accuracy of prediction and the fitness of a model. Such evaluation may indicate a demand for refining and perfecting the preprocessing-modeling setup and its parameters to obtain a more accurate model. This process may be repeated if the evaluated time series prediction model does not reach the desired accuracy. This process enables benchmarking different preprocessingmodeling setups.

Related Work

Several authors focused on the task of exploring different models. Ramey [START_REF] Ramey | sortinghat: sortinghat[END_REF] and Lessmann et al. [START_REF] Lessmann | Benchmarking classification models for software defect prediction: A proposed framework and novel findings[END_REF] developed frameworks for evaluating classification models and algorithms. Moreover, Bischl et al. [START_REF] Bischl | Mlr: Machine learning in R[END_REF] and Eugster and Leisch [START_REF] Eugster | Bench Plot and Mixed Effects Models: First Steps toward a Comprehensive Benchmark Analysis Toolbox[END_REF] developed the R-packages mlr and benchmark, respectively, which provide tools for executing automated experiments when benchmarking a set of models for data mining tasks such as classification and regression. These packages are designed to support tabular data and focus on benchmarking based on plot visualization.

Hyndman and Khandakar [START_REF] Hyndman | Automatic time series forecasting: The forecast package for R[END_REF] and Hyndman et al. [START_REF] Hyndman | A state space framework for automatic forecasting using exponential smoothing methods[END_REF] present frameworks for automatic forecasting using mainly statistical models such as ARIMA and exponential smoothing state space model (ETS). Hyndman and Khandakar [START_REF] Hyndman | Automatic time series forecasting: The forecast package for R[END_REF] produced the well-known R-package named forecast, which can be used for automatic time series prediction. The R-package of Moreno, Rivas, and Godoy [START_REF] Moreno | predtoolsTS: Time Series Prediction Tools[END_REF] also facilitates time series prediction using simple differencing (diff) and Box-Cox transform (BCT). Furthermore, we observed three works worth mentioning. Diebold and Mariano [START_REF] Diebold | Comparing predictive accuracy[END_REF] propose various tests to compare the predictive accuracy of two different prediction models. Diebold and Lopez [START_REF] Diebold | 8 Forecast evaluation and combination[END_REF] propose an ensemble approach using different prediction models. Kumar et al. [START_REF] Kumar | Model Selection Management Systems: The Next Frontier of Advanced Analytics[END_REF] propose a class of analytics systems to manage model selection using key ideas from data management research.

Besides, hyperparameters optimization is also a deeply studied subject [START_REF] Izaú | Towards Robust Cluster-Based Hyperparameter Optimization[END_REF][START_REF] Khalid | A survey on hyperparameters optimization algorithms of forecasting models in smart grid[END_REF][START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF]. The studies may focus on exploring the hyperparameter search space using a certain heuristic. Conversely, some approaches target the right establishing of the hyperparameters to explore using either grid search or a more advanced search strategy. The Grid Search approach is commonly adopted to explore a broad range of hyperparameter settings. It consists of repeatedly training the learning algorithm with different possible hyperparameter settings combinations. At the end of the process, the hyperparameter setting that resulted in the lowest prediction errors (measured in a separate validation set) is chosen [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. Such optimized hyperparameter settings can then be used to fit the learning model [START_REF] Ran | Parameter identifiability in statistical machine learning: A review[END_REF]. All these approaches try to lower global prediction error in machine learning but are resilient to the problem of data overfitting. Such an issue occurs when the fitted model is too dependent on the training dataset. One consequence is the fitted model's inability to generalize to unseen data observations [START_REF] Sarwar Murshed | Machine Learning at the Network Edge: A Survey[END_REF].

All in all, several works present frameworks and tools for MLM performance assessment. Nonetheless, to our knowledge, no work proposes and implements a framework for the seamless integration of hyperparameter optimization of data preprocessing and time series prediction methods.

The main modules of the TSPredIT framework are depicted in Figure 2 as a UML class diagram. TSPredIT has five main functionality modules: Preprocessing (in purple), Modeling (in blue), Sampling (in yellow), Evaluating (in pink), and Tuning (in green). Together, they are used to support the time series prediction process. The colors of the classes are associated with their participation in the time series prediction process as depicted in Figure 1.

All classes are inherited from TSBase. It provides a basic fit method and some attributes for introspection (to support provenance). It also includes a fit analysis of the data to adjust basic parameter values. A TSData class also provides a uniform perspective for time series data and its transformation to sliding windows. These two types are a specialization of TSData.

The first module is responsible for preprocessing (transform) and postprocessing (inverse transform) a time series. The model groups two main features. The first is related to data transformation. Especially it includes the implementation of the main nonstationary time series transformation methods [START_REF] Salles | Nonstationary time series transformation methods: An experimental review[END_REF], being either mapping-based, namely the logarithmic transform (LT), BCT, percentage change transform (PCT), moving average smoother (MAS), and diff, or splitting-based, such as empirical mode decomposition (EMD) and wavelet transform (WT). All these methods are implemented as a specialization of the Transformation class. The basic implements fit, transform, and inverse transform to provide the desired behavior.

Furthermore, it also groups a set of methods related to data augmentation. All methods include warping, flipping, and jittering [START_REF] Mumuni | Data augmentation: A comprehensive survey of modern approaches[END_REF][START_REF] Talavera | Data Augmentation techniques in time series domain: A survey and taxonomy[END_REF]. These methods are used during tuning, which is explained later. The Modeling module, in blue, is responsible for modeling (fit) and predicting (predict) a time series based on a particular time series prediction method. These tasks are specialized for either statistical or machine learning models. For the latter, the framework is prepared to perform any necessary machine learning life-cycle tasks during the training and prediction steps, including coercing data into sliding windows, normalizing and transforming the input data. This module includes the implementation of the statistical models: ARIMA, Holt-Winter's exponential smoothing (HW), theta forecasting (TF), and ETS. MLM models include multilayer perceptron network (MLP), random forest regression (RFR), preprint support vector machine (SVM), MLP, and extreme learning machines network (ELM). Furthermore, the module provides deep learning models available in the PyTorch library, namely convolutional neural network (Conv1D) and long shortterm memory neural network (LSTM). Models are associated with zero or one data preprocessing transformation and data augmentation technique. However, it might be set up with multiple candidate options chosen during tuning.

The Tuning module is designed to provide hyperparameter optimization. It is invoked during the fitting of a model. Hyperparameter optimization occurs whenever the modeling of time series or preprocessing transformations has a degree of freedom to adjust. The default Tuning applies time series cross-validation using the training set [START_REF] Hyndman | Forecasting: principles and practice[END_REF]. Data augmentation might be applied in each partition, and the model is trained after applying the data transformation. The fittest model and data preprocessing method were discovered using a grid-search, i.e., the one that leads to better prediction during cross-validation, is chosen for training using the entire training set. Since this is not the only way of conducting Hyperparameter optimization, the default Tuning class can be specialized to provide other ways of enhancing this feature.

Finally, the Evaluating module, in pink, is responsible for assessing the model fitness and quality of predictions. These tasks are specialized for computing either prediction accuracy (error) measures or model fitting criteria. The available prediction accuracy measures include MSE, sMAPE, and maximal error. It also includes model fitness criteria such as AIC, BIC, and log-likelihood [START_REF] Davydenko | Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To Sku-Level Demand Forecasts[END_REF].

TSPredIT can integrate the described modules in a workflow, connecting the five modules described. The package provides the means to perform the benchmarking of several prediction models. It is important to remark that although providing several pre-implemented options, TSPredIT design enables the user to define and apply customized time series prediction methods.

Moreover, the package provides several automatized features for any time series prediction application. Among them, some of the main features are (i) seamless recursive combination of two or more transformation methods; (ii) seamless integration of transformation methods to the prediction process [START_REF] Salles | Nonstationary time series transformation methods: An experimental review[END_REF], which demands the combination of predictions for each component resulting from data decomposition (first package to include this approach); (iii) transformation and model parameter selection; (iv) multistep-ahead or one-step-ahead predictions; (v) rolling origin evaluation [START_REF] Hyndman | Forecasting: principles and practice[END_REF] for both statistical and machine learning models, and (vi) machine-learning life-cycle tasks performed during training and prediction steps. Data normalization and sliding window transformation are seamlessly conducted during machine learning model training.

The framework is implemented in R using the S3 class system [START_REF] Wickham | Advanced R[END_REF]. TSPredIT is currently available on GitHub1 . It is an ongoing evolution of TSPred [START_REF] Salles | TSPred: A framework for nonstationary time series prediction[END_REF], built on top of the DAL Toolbox2 .

Usage of TSPredIT

This section gives examples of TSPredIT usage. The first example corresponds to a time series prediction using a wrapper for the MLP model using sliding windows min-max normalization. The hyperparameter tuning applies a grid search using time series cross-validation.

The Listing 1 the TSPredIT R-package processes a time series. The lines (1-3) of code target and load the installation of TSPredIT. The components for the time series process can be defined separately to enable reuse. Besides, the dataset used is made available in the R-package. It is loaded using the data function (line 6).

The time series is converted into sliding windows (line 8). All sliding windows are shifted with overlap with step 1 by default. In the example, the size of the sliding windows is 8. Besides, the last 4 windows are reserved for testing (line 10), and the complement is used for testing in order to control more precisely which observations is being considered, as a fine tuning. Finally, the training data is separated into input and output (line 12).

The hyperparameter setup is established in lines 15-17. It indicates the data preprocessing option of min-max sliding windows. The input size for model building varies between 3 and 7. The base model is related to MLP. No data augmentation method is used in this example: ts augment(). Also, some specific parameters for MLP are indicated in lines 18-19. It provides ranges for the number of neurons in the hidden layer, the rate of decay during training, and the maximum number of iterations (fixed). In lines 20-21, the actual tuning is executed using the training set. Internally, it splits the data using time series cross-validation. The build model hyperparameters that work better during crossvalidation are used to build the final model using the entire training set. In this example, 500 configurations were explored, each one ten times due to the default ten-fold cross-validation. # Loading f e r t i l i z e r s d a t a s e t

6

> data (f e r t i l i z e r s) 7 # C o n v e r t i n g t o s l i d i n g windows

8

> t s <t s data (f e r t i l i z e r s $ b r a z i l n , sw = 8) 9 # P a r t i t i o n i n g i n t o t r a i n i n g and t e s t i n g 10 > samp <t s sample (ts , t e s t s i z e = 4) 11

S e p a r e t i n g i n p u t and o u t p u t f o r t r a i n i n g

12 > i o t

5

> ranges <l i s t (n h i d = 1 : 2 0 , 6 a c t f u n =c (' s i g ' , ' radbas ' , ' t r i b a s ' , ' r e l u ' , ' p u r e l i n '))

7 > model <-f i t (tune , x = i o t r a i n $ i n p u t , 8 y = i o t r a i n $ o u t p u t , ranges)
Lines 23-26 present the level of adjustment for the time series in the training set. This aspect is important since the error level in training is commonly higher during testing. It provides an expected entry error. Lines 28-31 present the prediction for testing. It applies a rolling origin with one step-ahead prediction, leading to four predictions from previously known observations. The sMAPE is presented in line 33.

To clarify how extensible is TSPredIT in providing alternative MLM, Listing 2 changes four lines of code to switch the MLP to ELM, with different ranges of hyperparameters to explore. This feature is possible due to the wrapper classes provided by TSPredIT that integrate state-of-the-art methods. Additionally, novel methods can be wrapped. Writing the fit and predict methods is needed to incorporate a novel method at TSPredIT. TSPredIT was experimentally evaluated to expose the main features of the framework. For that, it was derived a time series dataset from public data available at the International Fertilizer Association (IFA)3 as a proof of concept of the present framework. This dataset of fertilizers was explored in deep in previous work [START_REF] Pacheco | Exploring Data Preprocessing and Machine Learning Methods for Forecasting Worldwide Fertilizers Consumption[END_REF]. It contains data on the annual consumption of three fertilizers (K 2 O, N, P 2 O 5) among the top ten main consumer countries. Each time series contains 60 observations from 1961 to 2020. Observations from 1961-2016 are used for training, and observations from 2017-2020 are used for testing. For the evaluation, we selected Brazil, the third major fertilizer consumer. All coding for the experimental evaluation is available 4 .

The goal of this paper is to explore multiple facets of TSPredIT. The first experiment evaluated the effect of data transformation (swminmax, diff, an, gminmax) during prediction using MLP as MLM. A second evaluation explored the adoption of data augmentation techniques while fixing both MLP as MLM and swminmax as a data preprocessing technique. Figure 4 compares the performance of not applying data augmentation (none), using jittering (jitter) and warping stretching (stretch). As it can be observed, none was better both in K 2 O and P 2 O 5 . However, for N, both jitter and stretch were worth value. The prediction performance increased by more than 1%. The data augmentation technique was seamlessly applied during time series cross-validation for training during hyperparameter optimization.

Finally, the third evaluation studied the adoption of different MLM for predicting P 2 O 5 using an. Figure 5 presents the evaluation of using Conv1D, ELM, MLP, RFR, SVM, LSTM for this scenario. Table 1 presents the hyperparameters explored.

All these methods, except for Conv1D and LSTM, explored a similar amount of hyperparameter combinations (about 250 options each). The methods mostly could not improve the performance of the MLP. The exception was LSTM, which improved prediction by more than 1%.

As a proof of concept, these results can explore the capability of TSPredIT in combing a broad range of data preprocessing techniques and state-of-the-art MLM. Besides, the framework can provide hyperparameter optimization exploring both features, aiding the selection choice for these methods.

Figure 1 :

 1 Figure 1: Time series prediction process [29] Activity 1, depicted in Figure 1 in purple, refers to acquiring the time series and performing data preprocessing. It is generally associated with data cleaning, normalization, and transformation but might include other techniques, such as data augmentation. The transformations commonly change the time series domain values, and their parameters must be stored to support later detransformation to the original domain. For time series prediction, splitting the time series into a training and test set is also important during data preprocessing. All data preprocessing parameters should be computed during training and reapplied from the tune-values of training during the test. The model is built using the training slice and evaluated using the unseen test set, always ahead. However, when the goal is to adjust a model for the time series, the model does not need to be partitioned into a training and test set.

 The second module is related to Sampling. It is responsible for converting a time series to sliding windows. It is also responsible for separating the data (TSData) into training and testing. The test size uses only recent observations to avoid introducing new data during training. Like augmentation, sampling is used during tuning. Other relevant preprocessing methods for time series prediction are specialized from Preprocessing class, in purple. It includes support for handling missing values and data normalization such as Sliding Windows min-max normalization (swminmax), Min-max normalization (gminmax), diff, and Adaptive normalization (an) methods [24].

Figure 2 :

 2 Figure 2: TSPred-IT functionality modules and pre-implemented algorithms

preprint Listing 1 : 1 > l i b r a r y (d a l t o o l b o x) 2 #

 112 Example of time series prediction process in TSPredIT h t t p s : / / c e f e t -r j -d a l . g i t h u b . i o / t s p r e d i t /3> l i b r a r y (t s p r e d i t) 4 5

Figure 3

 3 compares these methods during testing for the three fertilizers K 2 O, N, and P 2 O 5 in Brazil. It presents the sMAPE error during testing. The swminmax outperformed other methods for K 2 O and N. However, in P 2 O 5 , an was better followed close by swminmax.

Figure 3 :

 3 Figure 3: Comparison of data transformations applied (swminmax, diff, an, gminmax)

 preprint

Figure 4 :

 4 Figure 4: Comparison of data augmentation applied (none, jitter, stretch)

Figure 5 :

 5 Figure 5: Comparison of evaluation of using different MLM for predicting P 2 O 5 using an

https://github.com/cefet-rj-dal/tspredit

https://cran.r-project.org/web/packages/daltoolbox/index.html

http://www.fertilizer.org

https://eic.cefet-rj.br/ ˜dal/tspredit/

Acknowledgements

The authors thank CNPq, CAPES (finance code 001), and FAPERJ for partially sponsoring this research.

The combination of time series transformation methods in prediction with decomposed time series, transformation and model parameter selection, multi-step or one-step-ahead prediction, rolling origin evaluation, and the management of sliding windows is a key differentiation for TSPredIT. Several benchmark datasets from time series prediction competitions come bundled with TSPredIT. This new version enables users to practice data transformation and prediction methods, gaining confidence in the developed prediction models. Besides, the framework was designed to enable users to implement their customized methods. For example, both LSTM and Conv1D were added to TSPredIT as customized methods implemented in Python. Future updates will expand the range of implemented preprocessing methods, MLM, and evaluation metrics, especially empowering the hyperparameter selection targeting choosing combinations of data preprocessing and MLM that led to more stable models. This work leaves room for future implementation including multivariate time series, cost of computation time, and short and long term prediction in classical problems.