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Abstract

Prediction is one of the most important activities while working with time series. There are many
alternative ways to model the time series. Finding the right one is challenging to model them. Most
data-centric models (either statistical or machine learning) have hyperparameters to tune. Setting
them right is mandatory for good predictions. It is even more complex since time series prediction
also demands choosing a data preprocessing that complies with the chosen model. Many time series
frameworks, such as Scikit Learning, have features to build models and tune their hyperparameters.
However, only some works address tuning data preprocessing hyperparameters and model building.
TSPredIT addresses this issue in this scope by providing a framework that seamlessly integrates
data preprocessing activities with models’ hyperparameters. TSPredIT is made available as an R-
package, which provides functions for defining and conducting time series prediction, including data
pre(post)processing, decomposition, hyperparameter optimization, modeling, prediction, and accu-
racy assessment. Besides, TSPredIT is also extensible, which significantly expands the framework’s
applicability, especially with other languages such as Python.

Keywords time series · prediction · data preprocessing · machine learning · hyperparameter
optimization

1 Introduction

The prediction of time series has gained more attention in the last decades. Many time series prediction methods have
been developed and can be found in the literature [4]. An adequate prediction method is mandatory for building the
right model [31], especially for data-driven models. They are generally organized between statistical and machine
learning [20]. These types of methods usually have to set hyperparameters. In this sense, hyperparameter optimization
is a fundamental step since it can influence the predictive performance of the resulting models [19, 16].

Additionally, these models might be improved by adequate data preprocessing activities. Most of these methods tend
to be optimistic regarding their assumptions over the time series and are not ready to handle nonstationarity [4, 30].
They also suffer from the presence of concept drift [21] or lack of data [33]. These two cases are related. When
concept drift occurs, generally, there are few samples to support model building. Usually, nonstationarity demands
transformation methods to address this issue [30]. Besides, while working with small samples, data augmentation
techniques are also needed [23, 35, 33].
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For the algorithm to make predictions with greater accuracy, optimizing the hyperparameters is necessary [34]. Hy-
perparameters are values that make up the initial configuration of the learning algorithm [9]. Hyperparameters are also
present in data preprocessing methods. Several factors influence the predictive performance of time series models,
mainly choosing and tuning the right methods for data preprocessing and hyperparameters.

Regarding statistical learning, some methods seamlessly integrate hyperparameters optimization of data processing
techniques. It includes the autoregressive integrated moving average (ARIMA) algorithm that optimize parameters (p,
d, q) for ARIMA [12]. The d parameter represents the Integrated part of ARIMA and performs the differentiation
of observations internally as a preprocessing step for the series to be stationary. The p parameter corresponds to
the AR part of ARIMA, the number of autoregressive terms. The MA model works with the size of the moving
average window and is represented by the q parameter. This method tunes altogether differentiation, autoregressive,
and moving average models [3]. Conversely, there are many frameworks for machine learning, such as Scikit learn
[26, 11], which provides (i) a broad range of prediction methods, (ii) an extensive set of preprocessing methods,
(iii) hyperparameter optimization features for machine learning. However, directly optimizing data processing and
machine learning is left for users to program according to their needs.

In this context, this paper presents TSPredIT, an evolved version of TSPred [31] that seamlessly integrates the tuning
of data preprocessing and time series prediction models for univariate time series. It only concerns regression models
and is specialized integrating data transformation methods and data augmentation to aid in building machine learning
methods (MLM) prediction models. TSPredIT is made available as an R-package. It is the first tool to seamlessly
integrate a broad range of data transformation and preprocessing methods and state-of-the-art statistical and machine
learning prediction methods for addressing nonstationary time series. The package automates the time series prediction
process and parameterization while enabling user-defined prediction methods and data transformations, including code
built in other languages like Python. Due to that, the features provided by TSPredIT are shown to be competitive
regarding time series prediction accuracy.

Besides this introduction, the paper is organized into five more sections. Section 2 presents the background, while Sec-
tion 3 presents the related work. Section 4 presents the TSPredIT, which evolves from the previous version of TSPred
[31]. Section 5 provides a clear example of using TSPredIT’s main features. Conversely, Section 6 characterizes the
effect of choosing data preprocessing and different MLM during prediction. Finally, Section 7 concludes the work.

2 Background

Time series prediction is commonly associated with the scenario of regression. For simplicity, the paper may refer to
prediction and regression interchangeably. Relevant models adopted for time series prediction generally fall into the
categories of statistical or machine learning models [29]. The accuracy of the predictions depends on the quality of
the historical data, the appropriateness of the model, and the assumptions made about the underlying processes driving
the time series [14, 10].

Figure 1 presents a general time series prediction process. It encompasses five main activities. It provides a general
framework for predicting a time series based on a particular setup of preprocessing methods and prediction models.
They are briefly described here, and some parts are detailed in the following sections.

Figure 1: Time series prediction process [29]

Activity 1, depicted in Figure 1 in purple, refers to acquiring the time series and performing data preprocessing. It is
generally associated with data cleaning, normalization, and transformation but might include other techniques, such as
data augmentation. The transformations commonly change the time series domain values, and their parameters must
be stored to support later detransformation to the original domain. For time series prediction, splitting the time series
into a training and test set is also important during data preprocessing. All data preprocessing parameters should be
computed during training and reapplied from the tune-values of training during the test. The model is built using the
training slice and evaluated using the unseen test set, always ahead. However, when the goal is to adjust a model for
the time series, the model does not need to be partitioned into a training and test set.
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Activity 2, in blue, addresses model training. The prediction methods very often require hyperparameter optimization.
In such a case, the training slice is again split into a novel training and validation set. Alternative models exploring
hyperparameters values are built using the novel training and evaluated using the validation set. Once hyperparameters
are fixed, a single model is built using the entire training dataset. From this moment, the model is available for use.

Activity 3, also in blue, refers to the model prediction. It is worth mentioning that the predicted values are not in
the time series domain. In this sense, they can not be directly evaluated. Data postprocessing is needed in this case.
Activity 4, also in purple, corresponds to the postprocessing of predictions, reversing transformations applied to the
time series data in Activity 1. In a macro view, the data is normalized (scaled) and given as input to an algorithm.
After the forecast, a denormalization process maps back the predicted values into the original scale of the time series.
An example of postprocessing can be seen in previous work [24], where the data is denormalized to measure the error
in the same scale for comparison purposes.

Finally, Activity 5, in pink, is the evaluation of prediction errors yielded by the model, as well as model fitness
metrics. If the results are inadequate, this process can be revised and repeated to refine models. This process iteratively
improves the quality of predictions (for time series prediction) or model adjustment (for time series modeling). The
prediction can be evaluated in several ways, mostly measuring the errors between prediction and actual observation,
such as Mean Square Error (MSE) and symmetric MAPE (sMAPE) in a test set. Alternatively, they can be measured by
the level of model adjustment, such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
[31].

This process provides a systematic way of predicting a time series based on particular preprocessing and prediction
methods. It also focuses on prediction and model evaluation, that is, evaluating the accuracy of prediction and the
fitness of a model. Such evaluation may indicate a demand for refining and perfecting the preprocessing-modeling
setup and its parameters to obtain a more accurate model. This process may be repeated if the evaluated time series
prediction model does not reach the desired accuracy. This process enables benchmarking different preprocessing-
modeling setups.

3 Related Work

Several authors focused on the task of exploring different models. Ramey [27] and Lessmann et al. [18] developed
frameworks for evaluating classification models and algorithms. Moreover, Bischl et al. [2] and Eugster and Leisch [8]
developed the R-packages mlr and benchmark, respectively, which provide tools for executing automated experiments
when benchmarking a set of models for data mining tasks such as classification and regression. These packages are
designed to support tabular data and focus on benchmarking based on plot visualization.

Hyndman and Khandakar [12] and Hyndman et al. [13] present frameworks for automatic forecasting using mainly
statistical models such as ARIMA and exponential smoothing state space model (ETS). Hyndman and Khandakar [12]
produced the well-known R-package named forecast, which can be used for automatic time series prediction. The
R-package of Moreno, Rivas, and Godoy [22] also facilitates time series prediction using simple differencing (diff)
and Box-Cox transform (BCT). Furthermore, we observed three works worth mentioning. Diebold and Mariano [7]
propose various tests to compare the predictive accuracy of two different prediction models. Diebold and Lopez [6]
propose an ensemble approach using different prediction models. Kumar et al. [17] propose a class of analytics
systems to manage model selection using key ideas from data management research.

Besides, hyperparameters optimization is also a deeply studied subject [15, 16, 1]. The studies may focus on exploring
the hyperparameter search space using a certain heuristic. Conversely, some approaches target the right establishing
of the hyperparameters to explore using either grid search or a more advanced search strategy. The Grid Search
approach is commonly adopted to explore a broad range of hyperparameter settings. It consists of repeatedly training
the learning algorithm with different possible hyperparameter settings combinations. At the end of the process, the
hyperparameter setting that resulted in the lowest prediction errors (measured in a separate validation set) is chosen
[34]. Such optimized hyperparameter settings can then be used to fit the learning model [28]. All these approaches try
to lower global prediction error in machine learning but are resilient to the problem of data overfitting. Such an issue
occurs when the fitted model is too dependent on the training dataset. One consequence is the fitted model’s inability
to generalize to unseen data observations [32].

All in all, several works present frameworks and tools for MLM performance assessment. Nonetheless, to our knowl-
edge, no work proposes and implements a framework for the seamless integration of hyperparameter optimization of
data preprocessing and time series prediction methods.
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4 TSPredIT

The main modules of the TSPredIT framework are depicted in Figure 2 as a UML class diagram. TSPredIT has five
main functionality modules: Preprocessing (in purple), Modeling (in blue), Sampling (in yellow), Evaluating (in pink),
and Tuning (in green). Together, they are used to support the time series prediction process. The colors of the classes
are associated with their participation in the time series prediction process as depicted in Figure 1.

All classes are inherited from TSBase. It provides a basic fit method and some attributes for introspection (to support
provenance). It also includes a fit analysis of the data to adjust basic parameter values. A TSData class also provides a
uniform perspective for time series data and its transformation to sliding windows. These two types are a specialization
of TSData.

The first module is responsible for preprocessing (transform) and postprocessing (inverse transform) a time series.
The model groups two main features. The first is related to data transformation. Especially it includes the imple-
mentation of the main nonstationary time series transformation methods [30], being either mapping-based, namely the
logarithmic transform (LT), BCT, percentage change transform (PCT), moving average smoother (MAS), and diff, or
splitting-based, such as empirical mode decomposition (EMD) and wavelet transform (WT). All these methods are im-
plemented as a specialization of the Transformation class. The basic implements fit, transform, and inverse transform
to provide the desired behavior.

Furthermore, it also groups a set of methods related to data augmentation. All methods include warping, flipping, and
jittering [23, 33]. These methods are used during tuning, which is explained later.

The second module is related to Sampling. It is responsible for converting a time series to sliding windows. It is also
responsible for separating the data (TSData) into training and testing. The test size uses only recent observations to
avoid introducing new data during training. Like augmentation, sampling is used during tuning.

Other relevant preprocessing methods for time series prediction are specialized from Preprocessing class, in purple. It
includes support for handling missing values and data normalization such as Sliding Windows min-max normalization
(swminmax), Min-max normalization (gminmax), diff, and Adaptive normalization (an) methods [24].

Figure 2: TSPred-IT functionality modules and pre-implemented algorithms

The Modeling module, in blue, is responsible for modeling (fit) and predicting (predict) a time series based on a
particular time series prediction method. These tasks are specialized for either statistical or machine learning models.
For the latter, the framework is prepared to perform any necessary machine learning life-cycle tasks during the training
and prediction steps, including coercing data into sliding windows, normalizing and transforming the input data. This
module includes the implementation of the statistical models: ARIMA, Holt-Winter’s exponential smoothing (HW), theta
forecasting (TF), and ETS. MLM models include multilayer perceptron network (MLP), random forest regression (RFR),
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support vector machine (SVM), MLP, and extreme learning machines network (ELM). Furthermore, the module provides
deep learning models available in the PyTorch library, namely convolutional neural network (Conv1D) and long short-
term memory neural network (LSTM). Models are associated with zero or one data preprocessing transformation and
data augmentation technique. However, it might be set up with multiple candidate options chosen during tuning.

The Tuning module is designed to provide hyperparameter optimization. It is invoked during the fitting of a model.
Hyperparameter optimization occurs whenever the modeling of time series or preprocessing transformations has a
degree of freedom to adjust. The default Tuning applies time series cross-validation using the training set [14]. Data
augmentation might be applied in each partition, and the model is trained after applying the data transformation. The
fittest model and data preprocessing method were discovered using a grid-search, i.e., the one that leads to better
prediction during cross-validation, is chosen for training using the entire training set. Since this is not the only way
of conducting Hyperparameter optimization, the default Tuning class can be specialized to provide other ways of
enhancing this feature.

Finally, the Evaluating module, in pink, is responsible for assessing the model fitness and quality of predictions. These
tasks are specialized for computing either prediction accuracy (error) measures or model fitting criteria. The available
prediction accuracy measures include MSE, sMAPE, and maximal error. It also includes model fitness criteria such as
AIC, BIC, and log-likelihood [5].

TSPredIT can integrate the described modules in a workflow, connecting the five modules described. The package
provides the means to perform the benchmarking of several prediction models. It is important to remark that although
providing several pre-implemented options, TSPredIT design enables the user to define and apply customized time
series prediction methods.

Moreover, the package provides several automatized features for any time series prediction application. Among them,
some of the main features are (i) seamless recursive combination of two or more transformation methods; (ii) seamless
integration of transformation methods to the prediction process [30], which demands the combination of predictions
for each component resulting from data decomposition (first package to include this approach); (iii) transformation
and model parameter selection; (iv) multistep-ahead or one-step-ahead predictions; (v) rolling origin evaluation [14]
for both statistical and machine learning models, and (vi) machine-learning life-cycle tasks performed during training
and prediction steps. Data normalization and sliding window transformation are seamlessly conducted during machine
learning model training.

The framework is implemented in R using the S3 class system [36]. TSPredIT is currently available on GitHub1. It is
an ongoing evolution of TSPred [31], built on top of the DAL Toolbox2.

5 Usage of TSPredIT

This section gives examples of TSPredIT usage. The first example corresponds to a time series prediction using a
wrapper for the MLP model using sliding windows min-max normalization. The hyperparameter tuning applies a grid
search using time series cross-validation.

The Listing 1 the TSPredIT R-package processes a time series. The lines (1-3) of code target and load the installation
of TSPredIT. The components for the time series process can be defined separately to enable reuse. Besides, the dataset
used is made available in the R-package. It is loaded using the data function (line 6).

The time series is converted into sliding windows (line 8). All sliding windows are shifted with overlap with step 1 by
default. In the example, the size of the sliding windows is 8. Besides, the last 4 windows are reserved for testing (line
10), and the complement is used for testing in order to control more precisely which observations is being considered,
as a fine tuning. Finally, the training data is separated into input and output (line 12).

The hyperparameter setup is established in lines 15-17. It indicates the data preprocessing option of min-max sliding
windows. The input size for model building varies between 3 and 7. The base model is related to MLP. No data
augmentation method is used in this example: ts augment(). Also, some specific parameters for MLP are indicated in
lines 18-19. It provides ranges for the number of neurons in the hidden layer, the rate of decay during training, and the
maximum number of iterations (fixed). In lines 20-21, the actual tuning is executed using the training set. Internally,
it splits the data using time series cross-validation. The build model hyperparameters that work better during cross-
validation are used to build the final model using the entire training set. In this example, 500 configurations were
explored, each one ten times due to the default ten-fold cross-validation.

1https://github.com/cefet-rj-dal/tspredit
2https://cran.r-project.org/web/packages/daltoolbox/index.html
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Listing 1: Example of time series prediction process in TSPredIT
1 > l i b r a r y ( da l too lbox )
2 # h t t ps : / / cefe t − r j −da l . g i thub . i o / t s p r e d i t /
3 > l i b r a r y ( t s p r e d i t )
4
5 # Loading f e r t i l i z e r s dataset
6 > data ( f e r t i l i z e r s )
7 # Convert ing to s l i d i n g windows
8 > ts <− ts data ( f e r t i l i z e r s $ b r a z i l n , sw = 8)
9 # P a r t i t i o n i n g i n t o t r a i n i n g and t e s t i n g

10 > samp <− ts sample ( ts , t e s t s i ze = 4)
11 # Separet ing i npu t and output f o r t r a i n i n g
12 > i o t r a i n <− ts p r o j e c t i o n (samp$ t r a i n )
13
14 # Hyperpararameter
15 > tune <− ts maintune ( preprocess = l i s t (
16 ts norm swminmax ( ) ) , i npu t s ize = c ( 3 : 7 ) ,
17 base model = ts mlp ( ) , augment = l i s t ( ts aug none ( ) ) )
18 > ranges <− l i s t ( s i ze = 1:10 , decay = seq (0 , 1 , 1 / 9) ,
19 maxit = 10000)
20 > model <− f i t ( tune , x = i o t r a i n $ i nput ,
21 y = i o t r a i n $output , ranges )
22
23 # Measuring the l e v e l o f adjustment
24 > ad jus t <− predict ( model , i o t r a i n $ i npu t )
25 > ev ad jus t <− eva lua t i on . t s reg ( i o t r a i n $output , ad jus t )
26 > pr in t ( ev ad jus t $ met r ics $sMAPE)
27
28 # Obta in ing the p r e d i c t i o n
29 > i o t e s t <− ts p r o j e c t i o n (samp$ t e s t )
30 > p r e d i c t i o n <− predict ( model , x = i o t e s t $ i nput ,
31 steps ahead = 1)
32 > ev t e s t <− eva lua t i on . t s reg ( i o t e s t $output , p r e d i c t i o n )
33 > pr in t ( ev t e s t $ metr ics $sMAPE)

Listing 2: R example present the simplicity to explore different setups
1 # Hyperpararameter
2 > tune <− ts maintune ( preprocess = l i s t ( ts norm swminmax ( ) ) ,
3 i npu t s ize = c ( 3 : 7 ) , base model = ts elm ( ) ,
4 augment = l i s t ( ts aug none ( ) ) )
5 > ranges <− l i s t ( nhid = 1:20 ,
6 ac t fun=c ( ’ s i g ’ , ’ radbas ’ , ’ t r i b a s ’ , ’ r e l u ’ , ’ p u r e l i n ’ ) )
7 > model <− f i t ( tune , x = i o t r a i n $ i nput ,
8 y = i o t r a i n $output , ranges )

Lines 23-26 present the level of adjustment for the time series in the training set. This aspect is important since the
error level in training is commonly higher during testing. It provides an expected entry error. Lines 28-31 present
the prediction for testing. It applies a rolling origin with one step-ahead prediction, leading to four predictions from
previously known observations. The sMAPE is presented in line 33.

To clarify how extensible is TSPredIT in providing alternative MLM, Listing 2 changes four lines of code to switch the
MLP to ELM, with different ranges of hyperparameters to explore. This feature is possible due to the wrapper classes
provided by TSPredIT that integrate state-of-the-art methods. Additionally, novel methods can be wrapped. Writing
the fit and predict methods is needed to incorporate a novel method at TSPredIT.

6
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6 Features evaluation

TSPredIT was experimentally evaluated to expose the main features of the framework. For that, it was derived a time
series dataset from public data available at the International Fertilizer Association (IFA)3 as a proof of concept of the
present framework. This dataset of fertilizers was explored in deep in previous work [25]. It contains data on the
annual consumption of three fertilizers (K2O, N, P2O5) among the top ten main consumer countries. Each time series
contains 60 observations from 1961 to 2020. Observations from 1961-2016 are used for training, and observations
from 2017-2020 are used for testing. For the evaluation, we selected Brazil, the third major fertilizer consumer. All
coding for the experimental evaluation is available4.

The goal of this paper is to explore multiple facets of TSPredIT. The first experiment evaluated the effect of data
transformation (swminmax, diff, an, gminmax) during prediction using MLP as MLM. Figure 3 compares these methods
during testing for the three fertilizers K2O, N, and P2O5 in Brazil. It presents the sMAPE error during testing. The
swminmax outperformed other methods for K2O and N. However, in P2O5, anwas better followed close by swminmax.

Figure 3: Comparison of data transformations applied (swminmax, diff, an, gminmax)

A second evaluation explored the adoption of data augmentation techniques while fixing both MLP as MLM and
swminmax as a data preprocessing technique. Figure 4 compares the performance of not applying data augmenta-
tion (none), using jittering (jitter) and warping stretching (stretch). As it can be observed, none was better both in K2O
and P2O5. However, for N, both jitter and stretch were worth value. The prediction performance increased by more
than 1%. The data augmentation technique was seamlessly applied during time series cross-validation for training
during hyperparameter optimization.

Finally, the third evaluation studied the adoption of different MLM for predicting P2O5 using an. Figure 5 presents
the evaluation of using Conv1D, ELM, MLP, RFR, SVM, LSTM for this scenario. Table 1 presents the hyperparameters
explored.

All these methods, except for Conv1D and LSTM, explored a similar amount of hyperparameter combinations (about
250 options each). The methods mostly could not improve the performance of the MLP. The exception was LSTM,
which improved prediction by more than 1%.

As a proof of concept, these results can explore the capability of TSPredIT in combing a broad range of data pre-
processing techniques and state-of-the-art MLM. Besides, the framework can provide hyperparameter optimization
exploring both features, aiding the selection choice for these methods.

3http://www.fertilizer.org
4https://eic.cefet-rj.br/˜dal/tspredit/
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Figure 4: Comparison of data augmentation applied (none, jitter, stretch)

Figure 5: Comparison of evaluation of using different MLM for predicting P2O5 using an

7 Conclusions

This paper presented TSPredIT, which extends features presented in TSPred [31]. It automates the entire time se-
ries prediction process by supporting hyperparameter optimization that combines time series data preprocessing and
machine learning tuning. The architecture of TSPredIT provides five main modules. It includes data preprocess-
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Table 1: Used hyperparameters for each MLM
MLM Hyperparameters
Conv1D input size ∈ {3, . . . , 7}

ELM
input size ∈ {3, . . . , 7}, nhid ∈ {1, . . . , 20},
act f un ∈ {“sig”, “radbas”, “tribas”, “relu”, “purelin”}

LSTM input size ∈ {3, . . . , 7}

MLP
input size ∈ {3, . . . , 7}, size ∈ {1, . . . , 10},
decay ∈ seq(0, 1, 1/9)

RFR
input size ∈ {3, . . . , 7}, nodesize ∈ {5, . . . , 10},
ntree ∈ {1, . . . , 10}

SVM
input size ∈ {3, . . . , 7}, kernel =“radial”,
epsilon = seq(0, 1, 0.1), cost = seq(20, 100, 20)

ing, modeling support, prediction evaluation, and model tuning. Together, they are used to support the time series
prediction process. It is made available as an extended version of DAL Toolbox Package at GitHub5.

The combination of time series transformation methods in prediction with decomposed time series, transformation and
model parameter selection, multi-step or one-step-ahead prediction, rolling origin evaluation, and the management of
sliding windows is a key differentiation for TSPredIT. Several benchmark datasets from time series prediction com-
petitions come bundled with TSPredIT. This new version enables users to practice data transformation and prediction
methods, gaining confidence in the developed prediction models. Besides, the framework was designed to enable users
to implement their customized methods. For example, both LSTM and Conv1D were added to TSPredIT as customized
methods implemented in Python. Future updates will expand the range of implemented preprocessing methods, MLM,
and evaluation metrics, especially empowering the hyperparameter selection targeting choosing combinations of data
preprocessing and MLM that led to more stable models. This work leaves room for future implementation including
multivariate time series, cost of computation time, and short and long term prediction in classical problems.
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