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Adaptive Robust Model Predictive Control for Bilateral Teleoperation

Fadi Alyousef Almasalmah1, Hassan Omran1, Chao Liu2, Bernard Bayle1

Abstract— In this work, we use recent developments in
the field of adaptive robust Model Predictive Control (MPC)
to build a controller for bilateral teleoperation systems. To
guarantee robust constraint satisfaction, we incorporate poly-
topic tube controllers in the MPC design. In addition, we
use online learning methods to learn the environment model.
Namely, we use set membership learning to learn the parametric
uncertainty bounds and reduce the conservatism of the robust
controller, and we combine it with least mean square method to
learn a point estimate of the model parameters, which enhances
the controller performance. Our simulation demonstrates the
effectiveness of the proposed approach in maintaining robust
constraint satisfaction and enhancing performance by learning
during teleoperation tasks.

I. INTRODUCTION

Having force feedback in teleoperation enhances the hu-
man perception of the remote environment and makes the
process more safe and intuitive. Many control schemes
have been used to create safe controllers that maximize
the transparency of teleoperated systems. Such schemes
include robust control [1], adaptive control [2], time-domain
passivity [3], energy-tanks [4], and Model Predictive Control
(MPC) [5].

Recently, MPC has gained more attention in teleoperation
applications due to its success in solving practical problems,
namely the ability to respect constraints, which is essential
for guaranteeing safety. In addition, MPC is an online
optimization-based method, which has the potential to man-
age online the compromise between safety and transparency
in a better way than the controllers that separate those
two goals [5]. MPC has been used in various ways in the
literature of teleoperation; for example, in [6] the author used
the control sequence generated by an MPC to compensate
for large time delays in a unilateral teleoperation scenario.
The work in [7] built a single MPC on the operator side
that generates a reference velocity for the remote robot’s PI
controller, and combined the MPC with a Smith-predictor
to estimate the state of the remote robot and compensate
for communication delay. In a recent paper [5], the authors
designed a nonlinear MPC with energy tanks for both the
operator and remote robots, and used the MPC to reduce
the chattering that happens when the tank has low energy.
Later in [8], the authors used the same framework and
added a force constraint on the remote robot to prevent it
from damaging the environment. The method used recursive
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least square to learn the environment model, starting from
an overestimation of the model parameters. The authors
expanded their work in [9] by using a hybrid linear MPC
to reduce the number of switches between free motion and
contact state, which cause tool bouncing at the moment
of contact. However, a major limitation in the previously
mentioned works is that the controller is prone to violate the
constraints during the transient stage of parameters learning,
or if the parameters are not learned accurately. In addition,
the online optimization is not guaranteed to keep being
feasible during the execution, which means that the problem
might become infeasible at some point and the controller
might fail.

To overcome these issues, robust learning-based MPC
methods could be used. The idea of robust MPC methods is
to consider a range of uncertainty in the model parameters
and additive noise, and then to take cautious control actions
to account for all possible values of uncertainty. Such meth-
ods include min-max optimization [10], and tube controllers
[11]. The tube controller is the most widely used method
due to its simplicity and lower computation complexity. The
idea of this controller is to predict a nominal trajectory of
the system by neglecting the uncertainties, and then to find a
tube around the trajectory that contains all the possible values
of the near-future states under the effect of uncertainty.

Robust MPC methods are quite conservative in the case of
parametric uncertainty, which is the reason why many works
combine it with learning from observations to reduce the
conservatism. In [12], a tube controller was used for robust-
ness alongside with model learning. However, the uncertainty
model was fixed, so the method works only for small and
additive uncertainty. In [13], [14], a method that combines
tubes with Set Membership Learning (SML) is used to
learn a tighter uncertainty description from observations and
reduce the conservatism of the tubes. The method also uses
an additional Least Mean Square (LMS) parameter estimate
for boosting the performance. While the method in [14] is
more conservative than the one in [13], it requires a much
lower number of optimization variables, and hence, it is more
suitable for real-time teleoperation.

In this paper, we design an Adaptive Robust MPC (AR-
MPC) for bilateral teleoperation, which robustly and re-
cursively guarantees constraint satisfaction. The method,
which is based on the work in [14] learns the environment
model from observations and reduces the conservatism and
enhances the performance of the MPC.



II. SYSTEM MODELLING

A. Teleoperation system model

The teleoperation system consists of five components: the
human operator, the operator robot (the haptic device), the
communication channel, the remote robot, and the environ-
ment. We consider two single-axis linearized robots, as in
[5]. The dynamics of the operator robot is given by:

moao + bovo + koxo = fh + uo (1)

where ao, vo, xo are the acceleration, velocity, and position
of the operator robot, respectively; mo, bo, ko are the mass,
damping coefficient, and stiffness of the operator robot,
respectively; uo is the control force applied by the operator
robot motor; fh is the force applied by the human. The
dynamics of the remote robot and the environment during
the contact are described by:

fe = kexr + bevr

mrar + (be + br) vr + (ke + kr)xr = ur (2)

where ar, vr, xr are the acceleration, velocity, and position
of the remote robot, respectively; be, ke are the damping co-
efficient and stiffness of the environment; mr, br, kr are the
mass, damping coefficient, and stiffness of the remote robot,
respectively; ur is the control force applied by the remote
robot motor; fe is the force applied by the environment. We
assume that the environment model is Linear Time-Invariant
(LTI), and that the environment parameters are not precisely
known initially, so we consider the parametric uncertainty:

θ = [∆ke,∆be]
⊤ (3)

which is bounded by Θ0, a known compact polytopic set that
contains the true value of the parameters θ∗. The discrete
model of the system could be written in the state-space form
using (1) and (2) with the uncertainty from (3):

xt+1 = Aθxt +But +Bdfh,t + dt
yt = Cθxt +Dut +Ddfh,t

(4)

where (·)t refers to the discretized variable (·) at time
instant t; x = [xo, vo, xr, vr]

⊤ is the state vector; u =
[uo, ur]

⊤ is the control input vector; B,Bd, D,Dd are known
constant matrices; d ∈ D is the additive uncertainty which
is bounded by a known convex 4-dimensional polytope D;
y = [xo, vo, xr, vr, fe]

⊤ is the measured output vector. The
matrices Aθ, Cθ are affine in the parameter θ from (3):

Aθ = A0 +A1[θ]1 +A2[θ]2
Cθ = C0 + C1[θ]1 + C2[θ]2

(5)

with Ai, Ci are known constant matrices, and [·]i is the i−th
element of the vector.

One crucial aspect of MPC is the ability to respect
constraints on the state, output, and input signals. In tele-
operation, the constraints are chosen to ensure the safety
of the system and the users, such as limiting remote robot
position, which could represent a virtual fixture in surgical
teleoperation [15] or limiting the velocity of both robots
according to safety standards [16], [17]. Other works limit

the interaction force to prevent damaging the environment
[8]. We consider the joint state-input constraints as follows:

Fx+Gu ≤ 1 (6)

where F,G are constant matrices that define q constraints;
1 is a vector of ones with a suitable size.

III. BACKGROUND: ADAPTIVE ROBUST MPC

In this section, we will summarize the main concepts of
adaptive-robust MPC literature, and focus on the method
described in [14].

A. Robust tube controller

The main idea of tube controllers is to predict a nominal
trajectory (with no uncertainty) over a horizon N and to
build a tube around it that contains the future states under
all possible uncertainty realizations. Robust constraint satis-
faction is then guaranteed by ensuring that the whole tube
satisfies the constraints. The tube section is often a polytopic
set P0 = {x ∈ Rn : HPx ≤ 1}, which is found offline based
on invariant sets [14]. To build the online predicted tube, we
find a sequence of N sets Pk=1...N , by translating P0 to
each predicted state xk and scaling the set by a scalar sk. To
minimize the growth of the tube and guarantee the stability
of the system, a prestabilizing state feedback controller with
gain K, and a terminal cost matrix P are computed offline
using Linear Matrix Inequalities (LMIs). The MPC then
deals with prestabilized dynamics Acl,θ, where:

Acl,θ = Aθ +BK (7)

and computes an optimal additional control input.

B. Learning the model

1) Learning uncertainty bounds - Set Membership Learn-
ing: To reduce the conservatism of the robust tube con-
troller, the parametric uncertainty bounds can be learned
and reduced from measurements. Assuming the additive
disturbance is bounded by a known polytopic set d ∈ D
and that we have at time step t the following state and input
measurements: xt, xt−1, ut−1, fh,t−1, we can find a set that
contains the model true parameter θ∗:

∆t = {θ ∈ R2 : xt − (Aθxt−1 +But−1 +Bdfh,t−1) ∈ D}

In other words, ∆t is the set of all environment parameters
θ = [∆ke,∆be]

⊤ that could have caused the state to move
from xt−1 to xt under the influence of ut−1, fh,t−1, and
an additive disturbance bounded by D. ∆t can be found
by simple matrix operations. We then define the feasible
parameter set Θt as the polytopic set that robustly contains
the true parameters θ∗, which is given by:

Θt = Θ0

t⋂
i=0

∆i

If the bound D is tight enough, then Θt is likely to shrink
with time. However, the number of facets of Θt grows due to
the intersection, which becomes computationally expensive.
This is usually mitigated by limiting the number of facets



[18], or using a moving window algorithm [14] as we do
in the following. We overapproximate Θt by a hypercube
ΘHC

t , represented by the center θ̄t and a scalar cube size ηt:

ΘHC
t = θ̄t ⊕ ηtB2

where ⊕ is the Minkowski sum, and B2 = {ϵ ∈ R2 : |ϵ|∞ ≤
0.5} is the unit box in R2.

2) Least Mean Square parameter estimation: While SML
learns parametric uncertainty bounds, MPC performance re-
lies on having a good prediction model for the performance.
Hence, LMS is often used as a point estimate method in
conjunction with SML. LMS also ensures L2-stability of
the closed loop under some assumptions [14], [13]. The
estimated parameter θ̂ has to be projected on the set Θt since
the latter robustly contains the true parameter θ∗.

IV. ADAPTIVE ROBUST MPC FOR BILATERAL
TELEOPERATION

Fig.1 shows the general architecture of the teleoperation
system with the controller and the learning mechanisms. We
measure the forces, positions, and velocities of both robots
and send them to the centralized controller and learning
components. The SML uses these measurements to learn
the uncertainty bounds Θt and its overapproximation ΘHC

t ,
which is then used by the AR-MPC safety constraints. The
smaller ΘHC

t gets, the less conservative these constraints get.
The LMS-learning finds an estimate of θ∗ and projects it
on Θt, which is then used in the cost function for better
performance when the system is far from the constraints.
Finally, the optimizer calculates control inputs uo, ur for
both robots to synchronize them and robustly satisfy the
constraints. We consider negligible time delay, which is
usually the case in surgical teleoperation where both robots
are in the same room.

The future trajectories of the system are affected by the
additive and parametric uncertainty, along with the change
in fh. While a slowly-varying fh could be accounted for in
the prediction as an additive uncertainty, we will consider
a constant fh in the following and leave the extension for
future work.

A. The MPC optimization problem

We adapt the optimization problem in [14] for the teleop-
eration application. Assuming fh is constant, at each time
step t, we solve the following QP:

min
ζ.,w.

N−1∑
k=0

JQ,R(x̂k, ûk) + J f
P (x̂N ) (8a)

s.t. x̄0 = x̂0 = xt, s0 = 0, (8b)
x̂k+1 = Acl,θ̂t

x̂k +Bζk +Bdfh, (8c)

x̄k+1 = Acl,θ̄t x̄k +Bζk +Bdfh, (8d)

sk+1 = ρθ̄tsk + wk, (8e)
Fj x̄k +Gj ūk + cjsk ≤ 1, j = 1, . . . , q, (8f)
ūk = ζk +Kx̄k, ûk = ζk +Kx̂k, (8g)
(x̄N , sN ) ∈ Xf , (8h)

Fig. 1: Teleoperation system with the AR-MPC controller

where the subscript (·)k means the prediction of (·) at the
moment (t + k); N is the prediction horizon; JQ,R is a
stage cost with weight matrices Q,R; J f

P is a terminal
cost function with weight matrix P ; (̄·) are the variables
related to the SML method; (̂·) are the variables related
to the LMS method; matrices Acl,θ, B,Bd are the model
matrices defined in (4),(5) and (7); ζk is the additional
optimal control input; sk is the scale factor of the tube P
and it is computed by the solver; ρθ̄t is the contraction rate
of the tube at θ̄t, updated at each time step t; wk is an over-
approximation of the uncertainty effect computed online by
the solver (see [19] eq.(14e) for details); cj are constraint
tightening constants computed offline; Xf is the terminal
set calculated offline; q is the number of constraints from
(6). The previous optimization problem (8) has 3 types of
propagated trajectories:

• (8c) describes x̂k, the state trajectory propagated based
on the point-estimate θ̂, and it is used in the cost
function for performance;

• (8d) describes x̄k, the state trajectory based on SML-
learned θ̄, which is used for robustness guarantees;

• (8e) describes sk, the tube scaling parameter, propa-
gated based on the contraction rate of the tube ρθ̄ and
wk, which over-approximates the effect of parametric
and additive uncertainty. At each time step t, the solver
tries to build a tube by finding suitable trajectories of
x̄k, sk: P = {Pk = x̄k ⊕ skP0}k∈{1...N}.

The inequality (8f) describes the tightened version of the
constraints (6) to ensure that the whole predicted tube P
satisfies the constraints. Finally, equality (8g) describes the
control inputs, which consist of the precalculated state-
feedback part (Kxk) and the additional optimal input ζk.

B. The cost function and the terminal set

In [14], the cost function drives the system to the origin
of the state space, and it could be modified to drive it
to a different point. However, in teleoperation, the desired
reference point is not constant, and the goal is to achieve
system transparency by matching the positions and forces
of the operator and the remote sides. To adapt the original
algorithm to our application, we propose two solutions:



1) to calculate a virtual target point (x̃, ũ), which rep-
resents the target that the human is trying to reach,
calculated using the applied human force fh and the
estimated environment stiffness k̂e. The cost function
(8a) becomes:

N−1∑
k=0

(
∥x̂k − x̃∥2Q + ∥ûk − ũ∥2R

)
+ ∥x̂N − x̃∥2P

where x̃ =
[
fh
k̂e
, 0, fh

k̂e
, 0
]⊤

, ũ =
[
−fh,

fh(k̂e+kr)

k̂e

]⊤
.

2) to minimize the position and force matching errors
directly between the operator and remote sides. The
cost function (8a) then becomes:

N−1∑
k=0

(
∥ẑk∥2Qz

+ ∥ûk∥2R
)
+ ∥ẑN∥2Pz

where ẑ =
[
x̂o − x̂r, v̂o − v̂r, fh − f̂e

]⊤
.

Since x̃ could change due to the learning of the environ-
ment stiffness k̂e, the terminal set Xf is translated with its
center x̃. We need to guarantee that our predicted solution
(x̄N , sN ) will stay inside the new translated terminal set. In
order to achieve that, we replace the condition (8h) with the
following two conditions (for both proposed solutions):

(x̄N , sN ) ∈ x̃(ke,max)⊕Xf

(x̄N , sN ) ∈ x̃(ke,min)⊕Xf
(9)

We differentiate between both solutions in robustness as
follows: The first solution guarantees robustly both con-
straint satisfaction and L2-stability (assuming fh is constant),
which was proved in [19]. The second solution guarantees
constraint satisfaction, but the stability proof has to be
reformulated based on the specific matrices Qz, R, which we
leave for future work. It is worth noting that the performance
of both solutions is dependent on the tuning of the controller,
and studying the advantages of each solution is an interesting
topic for future research. In the simulation section, we will
adopt the second solution for its simplicity and intuitiveness.

Algorithm 1 describes the general steps of the controller
design and execution process.

V. SIMULATION RESULTS

The proposed method was validated in simulation in
MATLAB 2022a, using mpt3 Toolbox for polyhedrons [21],
yalmip for formulating the optimization problem [22], and
mosek as a solver [23]. We assume to have prior knowledge
about the possible range of the environment model parame-
ters, so the controller is initialized with the following values:

ke = 1000 N/m, be = 10 Ns/m

∆ke ∈ [−200,+200]N/m, ∆be ∈ [−3,+3]Ns/m

The values of operator and remote robots models are the
same as in [1] (converted from rotational to translational
values), as reported in Table I; the sampling period is Ts =

Algorithm 1 Controller design and execution

Offline:
1: Given: model; initial uncertainty Θ0; constraints F,G;

additive uncertainty bounds D; weights Q,R.
2: find K,P,P0 ▷ eq. (33) in [19], and [20]
3: initialize the optimizer: find ρθ̄0 , cj ,Xf . ▷ Alg. 2 [19]
4: if cond. (16) in [19] is false or no solution then
5: choose different (Q,R), or find tighter (Θ0,D).
6: go back to line 1.
7: end if

Online:
8: for each time step t > 1 do
9: measure fh, xt = [xo, vo, xr, vr]

⊤.
10: update Θt using the SML method.
11: overapproximate Θt to a hypercube ΘHC

t .
12: update LMS estimate θ̂t and project it on ΘHC

t .
13: update Acl,θ̂t

, Acl,θ̄t . ▷ eq. (5)
14: update ρθ̄t . ▷ eq. (6) in [19]
15: solve optimization problem (8),(9).
16: apply control input ut = ζ∗0 +Kxt. ▷ eq. (8g)
17: end for

0.005s; the prediction horizon is N = 20, and the weight
matrices Qz, R chosen experimentally as:

Qz =

5× 104 1 1
1 1011 1
1 1 105

 R =

(
2 1
1 10

)
× 10−5

TABLE I: Numerical parameters of robots

mo = 0.24 mr = 0.23 kg
bo = 1.34 br = 0.8 Ns/m
ko = 23.3 kr = 6.13 N/m

A. Offline calculations

First, we designed the prestabilizing feedback controller
K, and the terminal cost matrix P using the method in [19],
and we designed the tube section as a ρ−contractive set using
the method proposed in [20] with ρ = 0.6, and the result is
a 4-D polytope represented by 14 inequalities. The terminal
set Xf is found based on [19]. The additive noise bounds
are |d1| < 0.0001 × Ts; |d2| < 0.4 × Ts; |d3| < 0.0001 ×
Ts; |d4| < 0.01× Ts, where di is the ith component of d. It
is worth pointing out that having tight bounds on the additive
noise accelerates the SML. However, the learning might fail
if the noise exceeds the pre-specified bounds, which is why
we initialized the SML with 4 times the expected bounds as a
safety margin. We also note that scaling θ and x has a major
effect on how easily K,P , and the tube could be found. In
the following simulations, we use the second proposed cost
function of subsection IV-B.

B. Simulation 1: The effectiveness of SML and robust con-
straint satisfaction

The goal of this simulation is to demonstrate the controller
ability to robustly satisfy the constraints, and to show the role
of SML in reducing the controller conservatism. We set a
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Fig. 2: Simulation 1, soft contact with a position constraint on the remote
robot. The SML starts at t = 1.5. (a) The position of the operator (blue) and
environment (red); the virtual target position based on fh and ke (green); the
constraint on xr (violet); the predicted tube around xr at t ∈ {0.4, 1, 2}s
(dashed-red). (b) The human force (blue); the environment force (red).

position constraint on the remote robot as: xr ≤ 5×10−3m.
This type of constraint is usually used in medical robots as
a virtual fixture for the safety of the patient. The SML starts
only at t = 1.5s, while the LMS-learning starts from t = 0s.

First stage, before SML: At t = 0s, the remote robot
is in contact with the environment (i.e. x > 0). The human
operator applies a filtered step force, as shown in Fig. 2b
(blue line). This force moves the operator robot, and the
remote robot follows closely (red line) until the remote robot
gets close to the constraint limit, that is when the controller
prevents it from continuing the motion, and the operator
robot starts resisting the human hand to keep its position
matched with the remote robot. The green line represents the
virtual target position that the human is trying to reach (based
on fh and k̂e). In Fig. 2a, we show the boundaries of the
tube projected on xr (red-dashed lines) at t ∈ {0.4s, 1s, 2s}.
The tube is predicted over a horizon of 100 ms. All possible
state trajectories under the uncertainty are bounded between
the two red dashed lines of the tube. During this stage, the
position matching error is small, but the reflected force to
the human operator does not match the environment force as
shown in Fig. 2b because the remote robot is not allowed to
go deeper in the environment.

Second stage: SML At t = 1.5s, the SML starts, and
quickly, the bounds on the parametric uncertainty begin to
shrink as seen in Fig. 3 (black dashed lines). At t = 1.6s, the
operator increases the force to the same previous level, but
this time, both robots move very closely to the constraints,
since the uncertainty became much smaller. The tube shown
at t = 2s is much smaller than the one of t = 0.4s, which
means that the controller is now able to find a smaller tube
that lies inside the constrained set. At t = 2.6s, the human
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Fig. 3: Simulation 1, LMS and SML learning of the environment parametric
uncertainty. The figure shows the projection of ΘHC

t on each of the param-
eters (a) environment stiffness ke; (b) environment damping coefficient be.
On each figure, the estimated parameter by LMS is in blue; the boundaries
of the uncertainty are in black-dashed lines, learned by SML; the true value
of the parameter is in cyan. The SML starts at t = 1.5s

tries to violate the constraint with a bigger force, but the
remote robot stays inside the safe region, and the operator
robot resists the motion and keeps the positions matched.
Fig. 3 shows how the LMS-learning converges fast to the
true values of the parameters.

C. Simulation 2: The effect of LMS-learning

In case the bounds on the additive noise are not tight
enough, SML might be slow. For this case, the parameters
learned using the LMS method are used in the cost function
to enhance the performance. In this simulation, we remove
the position constraints and the SML. The controller is ini-
tialized with ke = 1000±200N/m, be = 10±3Ns/m. The
true parameters are k∗e = 1190N/m, b∗e = 12.7Ns/m. Fig.
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Fig. 4: Simulation 2, soft contact with LMS-learning and no constraints. (a)
Position of the operator robot (blue) and the remote robot (red). (b) Human
force (blue); environment force (red).
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Fig. 5: Simulation 2, LMS parameter learning without SML. (a) Learning
of environment stiffness uncertainty. (b) Learning of environment damping
coefficient uncertainty.

4 shows that before learning, the position matching errors
between both robots are large. At t = 0.5s, the LMS-learning
starts and the parameters start converging to their true values
as shown in Fig. 5. By t = 0.8s, the matching errors become
much smaller since the controller is using a good estimate of
the parameters in the cost function. This simulation shows
how LMS-learning can enhance performance even if the
bounds on parametric uncertainty are still wide, as long as
the system is far from the constraints. In practice, we found
that the damping coefficient be is more difficult to learn than
the stiffness ke, and it is learned only during the dynamic
motions. This can be observed in Fig. 5.

This version of the controller guarantees robust constraint
satisfaction and recursive feasibility after fh becomes con-
stant and the optimizer finds a first solution. This could be
mitigated by considering the change in fh as an additive
uncertainty and taking it into account in D, at the expense
of more conservatism in the control actions.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented an adaptive robust MPC
framework for bilateral teleoperation systems, which com-
bines tube controllers with two online learning mechanisms
to learn the environment model. The set membership method
learns the bounds of parametric uncertainty to reduce the
conservatism of the robust tube controller, and the least
mean square method improves the prediction model. The
framework ensures constraint satisfaction robustly and re-
cursively, which means that if the optimization problem
starts from a feasible point, it will be feasible in the future
even under the worst-case uncertainty. Our simulations have
shown that the proposed approach is effective in maintaining
constraints, enhancing performance, and reducing controller
conservatism during teleoperation tasks. A limitation of this
work is that human force is considered constant, and that the
tuning and offline calculations are not trivial. Future work
will focus on considering a time-varying human force, and
on the transition between free motion and contact states.
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