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Abstract
Digital electronics based on von Neumann’s architecture is reaching its limits to solve large-scale
problems essentially due to the memory fetching. Instead, recent efforts to bring the memory near
the computation have enabled highly parallel computations at low energy costs. Oscillatory neural
network (ONN) is one example of in-memory analog computing paradigm consisting of coupled
oscillating neurons. When implemented in hardware, ONNs naturally perform gradient descent of
an energy landscape which makes them particularly suited for solving optimization problems.
Although the ONN computational capability and its link with the Ising model are known for
decades, implementing a large-scale ONN remains difficult. Beyond the oscillators’ variations,
there are still design challenges such as having compact, programmable synapses and a modular
architecture for solving large problem instances. In this paper, we propose a mixed-signal
architecture named Saturated Kuramoto ONN (SKONN) that leverages both analog and digital
domains for efficient ONN hardware implementation. SKONN computes in the analog phase
domain while propagating the information digitally to facilitate scaling up the ONN size. SKONN’s
separation between computation and propagation enhances the robustness and enables a
feed-forward phase propagation that is showcased for the first time. Moreover, the SKONN
architecture leads to unique binarizing dynamics that are particularly suitable for solving NP-hard
combinatorial optimization problems such as finding the weighted Max-cut of a graph. We find
that SKONN’s accuracy is as good as the Goemans–Williamson 0.878-approximation algorithm for
Max-cut; whereas SKONN’s computation time only grows logarithmically. We report on Weighted
Max-cut experiments using a 9-neuron SKONN proof-of-concept on a printed circuit board
(PCB). Finally, we present a low-power 16-neuron SKONN integrated circuit and illustrate
SKONN’s feed-forward ability while computing the XOR function.

1. Introduction

1.1. Oscillatory neural networks (ONNs)
The synchronization of oscillators is a fascinating phenomenon studied for a long time. In the XVII century,
Huygens noticed that two identical clocks attached to the same beam synchronize to an anti-phase state
where the two pendulums have the same frequency and move in opposite directions [1]. It is in the 1950s
that scientists imagined computing with coupled oscillators. The main motivation at that time was to replace
the bulky and slow vacuum tubes used for digital computations. In 1954, von Neumann proposed in a patent
to use LC resonant circuits driven by a harmonic signal to compute digital functions [2]. At the same time in
Japan, Goto developed a similar paradigm called the parametron, which consists of an LC resonant circuit
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oscillating at one-half the driving frequency. Using transformers as coupling elements, Goto was able to build
multiple large-scale digital computers with up to 9600 parametrons in 1958 [3]. However, parametrons
became obsolete in the 1960s due to the advent of transistors that were faster and more scalable [4].

With the emergence of artificial intelligence and neural networks, researchers brought back the idea of
phase computing to solve complex tasks like pattern recognition [5–8] and NP-hard combinatorial
optimization problems (COPs) [9–12] that are challenging for conventional digital electronics. Inspired by
Hopfield neural networks [13] and by the Kuramoto model [14], Aoyagi [15], Hoppensteadt and Izhikevich
[16] have proposed a computing paradigm called ONN that models the phase dynamics of coupled
oscillators. ONNs are particularly interesting for solving COPs as they are dynamical systems that converge
naturally to fixed points corresponding to the minima of some energy landscape. In other words, there is no
external control that makes the neuron state evolve. Instead, all the phases evolve in parallel and in
continuous time, enabling fast and energy-efficient inferences in the analog domain [17].

1.2. State-of-the-art ONNs
Recently, a new interest in ONN has risen thanks to the emergence of novel oscillating devices that enable
the fabrication of efficient ONNs [22]. Such as, spin-torque and spin Hall devices [23, 24], micro-
electromechanical systems [25, 26], and transition metal oxide devices are all candidates for implementing
ONNs using their oscillatory behavior and synchronization properties [6, 10, 27–29]. Beyond-CMOS devices
are promising as they generally allow a compact oscillator design using a single device that could be scaled
down to the nanoscale. Nevertheless, CMOS-based ONNs benefit from the mature CMOS technology which
enables rapid ONN development and facilitates its co-integration with conventional digital circuits [5, 12,
20, 21]. In this work, we focus on ONNs that compute in phase domain, i.e. with neurons that oscillate at the
same frequency. However, note that it is also possible to compute with various frequencies [30, 31].
Regardless of the technology, we identify three important criteria for designing a competitive ONN that
computes in phase domain. It should have:

(1) Homogeneous oscillating frequencies
(2) Compact and linearly programmable signed synapses
(3) A scalable architecture

Even with the mature CMOS technology, achieving perfect matching between hundreds of oscillators is
unfeasible for small-scale oscillators due to device-to-device variations. Hopefully, some techniques can
overcome frequency mismatches such as calibration or sub harmonic injection locking (SHIL). SHIL consists
in driving the oscillators with a harmonic signal that can lock to a Fourier harmonic of the oscillating signal
[32]. In case of large frequency mismatches, the injection of a strong SHIL signal ensures phase locking
among the oscillators [33, 34]. The second criterion promotes synapses that are compact, programmable
with signed weights, and have a value proportional to their conceptual weight. Some architectures can lead to
a non-linear mapping between the conceptual weights and their hardware implementation [35], or even be
unknown due to the high complexity of the dynamics. Finally, the ONN architecture must be scalable to
compete with conventional computing and solve large-scale problems involving thousands or millions of
synapses. For this reason, we believe that the ONN architecture should be modular, i.e. to support the
interconnection of smaller sub-ONNs to build a larger system and avoid the implementation of a
fully-connected network.

Table 1 presents the state-of-the-art ONN architectures and their features. We only consider ONN
computing in the phase domain and based on electrical oscillators. For solving COPs, a general approach is
to map the input graph to the ONN where vertices are oscillators, and edges are synapses. Some architectures
such as [10, 20] are dedicated to finding the maximum cut of a graph with weights of the same sign, as the
synapses only implement negative weights. The main drawback is that both coupling capacitors and resistors
are required to program negative and positive weights, respectively. Other architectures using differential LC
oscillators enable signed weights using resistors only [18, 19] but are not scalable on chip due to the bulky LC
tanks and resistors. Digital ONNs are promising as they are scalable and modular, as demonstrated by Moy
et al with their 1968 ring oscillators chip [12]. A recent promising fully-analog architecture for solving COPs
has also been proposed by Graber et al [21] that consists of 400 oscillators coupled with nearest neighbors.

1.3. A mixed-signal approach
In this work, we introduce a new mixed-signal ONN architecture, named Saturated Kuramoto ONN
(SKONN) that leverages both analog and digital domains to satisfy the three ONN design criteria. SKONN
takes inspiration from the state-of-the-art analog ONN architectures for which the dynamics evolve naturally
in continuous time and can easily be described by phase models like Kuramoto’s or Izhikevich’s [14], thus

2



Neuromorph. Comput. Eng. 3 (2023) 034004 C Delacour et al

Table 1. State-of-the-art ONN architectures.

Goto [3]
Jackson
et al [5]

Wang
et al [18]

Chou
et al [19]

Bashar
et al [20]

Dutta
et al [10]

Moy
et al [12]

Graber
et al [21] This work

Size 9600 100 240 4 30 8 1968 400 16

Oscillator Analog LC Digital Analog LC Analog LC Analog
relaxation

Analog
relaxation
(PTNO)

Ring
Oscillator

Analog
differen-
tial

Analog
relaxation

SHIL or
Calibration

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Coupling Transformers Resistors Resistors Resistors Capacitors Capacitors
Resistors

Transmission
gates

Current
sources
with
DACs

Capacitors

Signed
weights

No Yes Yes Yes No No Yes Yes Yes

Weight
precision

1 bit 5 bits 8 bits 5 bits 1 bit — 5 levels 6 bits 5 bits

Modular Yes — Yes — — — Yes Yes Yes

Feedforward Yes Yes — Yes No No No Yes Yes

Initial
phase
control

Yes Yes — — — — — No Yes

Application Digital logic Pattern
recognition

COP COP COP COP COP COP COP Image
processing

facilitating the exploration of potential applications. SKONN’s main novelty consists in setting the
computation and propagation in the analog and digital domains, respectively. Figure 1 illustrates SKONN
with 4 fully-coupled neurons. Digital propagation has several advantages such as greater noise immunity, a
higher fan-out, and smoother interfacing with other digital circuits. Moreover, the separation between the
computation and propagation induces a natural implementation of feed-forward synapses that have never
been implemented in literature, to the best of our knowledge.

The paper is organized as follows. First, SKONN architecture is described and its dynamics are derived,
highlighting the link between the Kuramoto model and SKONN, and its ability to solve NP-hard weighted
Max-cut problems. Then, we introduce a SKONN-printed circuit board (PCB) proof-of-concept that solves
weighted Max-cut problems with nine nodes. A 16-neuron 65 nm-ASIC chip recently taped out is also
presented, demonstrating SKONN feed-forward ability with a XOR example. Finally, we report on SKONN’s
performance scaling in solving the weighted Max-cut problem, and benchmark with state-of-the-art solvers
on G-SET instances.

2. Methods

2.1. SKONN architecture overview
2.1.1. A mixed-signal oscillating neuron
A SKONN neuron consists of a relaxation oscillator producing analog and digital oscillations with period T
at its input and output nodes, respectively. Figure 2(a) shows the block diagram of the oscillating neuron. It
consists of a hysteresis circuit that commands a shaper block to charge and discharge a capacitor CL with
constant current Ibias. The voltage across the capacitor Vini is fed back to the hysteresis comparator that
switches between VDD and 0 when Vini reaches the thresholds VH and VL, thus producing oscillations. Vouti

holds the phase state in the digital domain, whereas Vini is the analog evolution of the oscillation. Note that
the input impedance of the oscillator is purely capacitive in the ideal case so that any charge sent to the input
node causes an instantaneous phase shift. The analog waveform Vini supports the computation and is
separated from the digital propagation Vouti , enabling a feed-forward propagation of the phase information.

Figure 2(c) shows an example of feed-forward propagation between two oscillators. The computation
occurs in the analog domain at the input node of neuron i that gathers the output signals from neuron j. The
oscillator output signal is a square digital-like signal that carries the oscillator state and evolves until the
phase dynamics settle to a fixed point. Choosing a triangular waveform at the analog input leads to simple yet
rich phase dynamics that are similar to the Kuramoto model, which is known to have interesting
computational properties [14]. Moreover, it skips the use of bulky LC tanks needed for producing sinusoidal
oscillations. The neuron voltage dynamics are expressed in appendix A for completeness, although this work
rather focuses on phase dynamics that are more suitable to study phase-based ONNs. The comparison
between SKONN circuit dynamics and phase dynamics is presented in appendix D.
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Figure 1. Illustration of a SKONN architecture composed of 4 oscillators and 16 synapses. Neuronal input and output lines are
laid out vertically and horizontally, respectively. For neuron i, the input Vini (t) and output V

out
i (t) are synchronized such that

Vouti (t) commands the generation of Vini (t). A synapse Sij consists of a capacitor Cij that converts the digital signal Voutj (t) in

current spikes sent to the input node i. The multiplexer sets the weight sign by selecting Voutj (t) or Voutj (t) = Voutj (t−T/2). The

triangular analog input oscillation Vini (t) receives the synaptic current spikes, i.e. the charges Qij, that shift the phase ϕi.

2.1.2. Synaptic design and weight sign
A SKONN synapse Sij consists of a capacitor Cij that transmits current pulses, i.e. charges Qij, from the
output of oscillator j to the input of oscillator i. Cij can easily be programmed using a capacitor bank and a
register, as shown in figure 2(b). Instead of propagating the sensitive analog signal, SKONN only transmits
the oscillator phase information in a robust manner. The digital output voltage Voutj is applied to Cij that
creates current spikes holding the phase information ϕj. The synaptic spike train can be expressed as follows:

Iij = Cij

(
dVoutj

dt
− dV ini

dt

)
(1)

The synaptic capacitor can be thought of as a digital-to-analog phase converter. The synaptic weight consists
of the capacitance value Cij that linearly modulates the charge sent to the oscillating input node i as
Qij = CijVDD, thus inducing phase shifts in the oscillation i as shown in figure 2(c). To implement a negative

weight, the complementary of Voutj defined as Voutj (t) = Voutj (t−T/2) is selected using a multiplexer and
applied to Cij. Compared to resistors, synaptic capacitors have several advantages for upscaling the ONN:

4
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Figure 2. (a) A SKONN neuron is a relaxation oscillator composed of two blocks: the hysteresis circuit that holds the neuron state
and drives the shaper stage. The latter produces an analog triangular waveform at the input whereas the hysteresis block outputs a
digital waveform. (b) A SKONN synapse consists of a capacitor bank setting the weight amplitude. A multiplexer selects Voutj or

Voutj to set the weight sign. (c) SKONN principle of computation illustrated with a negative weight. The multiplexer selects Voutj

that is fed into Cij, creating current spikes Iij aligned with the rising and falling edges of Voutj . The injected charges±Qij to Vini
induce voltage jumps±δV that cause time shifts δt. After a few cycles, the two oscillators lock to∆ϕij = π.

(1) ONN computation models are generally based on the weak coupling assumption [9, 14] and necessitate
weak synaptic signals. This means the ONN needs either large coupling resistors or small capacitors, the
latter being much more scalable in a chip.

(2) For a limited neuron output strength, the only way of increasing the synaptic fan-out is to reduce the
synaptic current, which again would lead to bulky resistors or smaller capacitors in the case of SKONN.

2.2. SKONN phase dynamics
2.2.1. 2 coupled oscillators
SKONN computing mechanism is illustrated in figure 2(c) with the case of a neuron j feeding its phase to
another neuron i in a feed-forward manner with a negative weight. This means that Voutj is selected by the
multiplexer and applied to Cij, thus creating current spikes+Qijδ(t) and−Qijδ(t−T/2) that are aligned

with the rising and falling edges of Voutj , respectively. Each injected charge±Qij induces a voltage jump

δV=±Qij/Ceq at the input node, with Ceq = CL +Cij. As Vini is a triangular waveform, δV provokes a time
shift δt=±CeqδV/Ibias, where± indicates here the sign of Vini ’s slope. Knowing the period of the triangular
oscillation T= 2Ceq∆V/Ibias where∆V is Vini ’s peak-to-peak amplitude, we can then express the phase shift
related to a single current spike:

δϕ= 2π
δt

T

= π
±Qij

Ceq∆V

= π
±Cij

Ceq

VDD

∆V

≈ π
±Cij

CL

VDD

∆V
if CL >> Cij. (2)

SKONN’s unique feature consists of this simple relation (2) between coupling capacitors and phase shift,
thus enabling well-controlled phase dynamics and a precise weight mapping to the coupling capacitor Cij. As
we will see later, the quantity β0 = |δϕ/Qij| provides the neuron phase sensitivity with respect to the charge
perturbation. It is linked to the phase perturbation vector (PPV) of the oscillator which is key for deriving
SKONN’s phase dynamics [33]. SKONN’s PPV is defined and derived in appendix B.

Two coupled oscillators converge either in- or out-of-phase, depending on the synaptic sign. To show this
property, we use SKONN’s phase dynamics that are derived in appendix C using the PPV formalism [33].
Under the weak coupling assumption (Cij << CL), the phase dynamics of oscillator i can be expressed as
follows:

d

dt
ϕi = 2β0

Qij

T
square(ϕi −ϕj). (3)

5
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Figure 3. (a) Illustration of a neuron that drives a second neuron in a feed-forward manner. The multiplexer sets the weight sign
and the capacitor Cij converts the digital signal Voutj (t) into current spikes Iij(t) that induce phase shifts of the input Vini (t). (b)
Transistor-level transient simulation with a positive weightWij > 0. The second phase catches up the first one after few cycles
such that∆ϕij ≈ 0◦. (c) Simulated dynamics with a negative weightWij < 0. The second phase is pushed such that∆ϕij ≈ 180◦

after few cycles.

With the 2π-periodic function

square(θ) =

{
−1, if 0< θ < π

+1, if π < θ < 2π
. (4)

The phase fixed points can be derived from (3) and are expressed in the next proposition.

Proposition 1. If the injected charge Qij ̸= 0 then the two SKONN oscillators admit a unique stable fixed-point
∆ϕ∗ = (ϕi −ϕj)

∗ such that

∆ϕ∗ =

{
0, if Qij > 0

π, if Qij < 0
. (5)

The proof is shown in appendix C. In other words, propagating a spike train defined as (1) induces an
in-phase or out-of-phase locking, depending on the polarity of Qij. Each current spike produces a local phase
shift to the analog input oscillation, resulting in an average phase shift∆ϕ =±2β0Qij after each cycle (3).
Figure 3(b) shows a transistor-level simulation of the positive weight case. Iij perturbs Vini until the oscillators
converge in phase. Similarly, figure 3(c) shows the same configuration with a negative weight and the
oscillators are out-of-phase.

Note that the phases measured from the rising edges of Vouti and Voutj are slightly shifted from the
theoretical fixed points (5). This is mainly due to the limited bandwidth of the hysteresis block which does
not switch instantaneously when reaching its thresholds. This non-ideality can be compensated and is
further discussed in appendix F. Interestingly, this phase shift disappears with symmetric synapses as both
oscillators are equally delayed (see figure 5(c)).
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2.2.2. N coupled oscillators
The phase dynamics of N sinusoidal coupled oscillators are often expressed using the Kuramoto model
[9, 14, 16]:

d

dt
ϕi =−ω0

N∑
j=1

Kij sin
(
ϕi −ϕj

)
(6)

where ω0 is the frequency in rad/s−1 and K ij the coupling coefficients. Similarly, we derive SKONN’s phase
dynamics for N oscillators as follows:

d

dt
ϕi = ω0

VDD

∆V

N∑
j=1

Cij

CL
square

(
ϕi −ϕj

)
(7)

where we replaced β0 and Qij from (3) by their expressions β0 = π/(∆VCL) and Qij = CijVDD. The
derivation is detailed in appendix C. VDD is the digital voltage swing,∆V is the peak-to-peak triangular
voltage amplitude at the input, Cij is the synaptic capacitance value, and CL is the neuron input capacitance.

SKONN’s phase dynamics are very similar to the Kuramoto model (6) except for its sinusoidal function
replaced by a saturated square function in this work. It induces a binarization behavior that is useful for
solving some optimization problems as shown next. Note that similar dynamics have already been explored
in simulation by Wang et al in their work about oscillatory Ising machines (OIMs) [9]. The authors studied
the case where the sinusoidal term sin(∆ϕ) from Kuramoto (6) is replaced by tanh(α sin∆ϕ) with α= 10.
As SKONN’s square interaction can be thought as square(∆ϕ)≈− tanh(α sin∆ϕ) for α >> 1, we expect
SKONN to have good performances when solving NP-hard COPs.

2.3. SKONN fixed points
2.3.1. Energy landscape
SKONN stability can be proved by applying the convergence theorem for ONNs derived by Hoppensteadt
and Izhikevich [36]. With an odd coupling function (4) and symmetric coupling Qij = Qji, the theorem
ensures that the phase differences converge to a stable fixed point. The proof consists of finding a Lyapunov
function for the dynamics (7) that is bounded below and minimized through time. A candidate for the
SKONN Lyapunov function is:

E=
β0
T

N∑
i,j

Qij triangle
(
ϕi −ϕj

)
. (8)

With:

triangle(θ) =

{
θ−π/2, if 0⩽ θ ⩽ π

3π/2− θ, if π ⩽ θ ⩽ 2π
. (9)

Under the assumption that Qij = Qji, one can check that:

∂E

∂ϕk
=

β0
T

−
N∑

j=1

Qkj square
(
ϕk −ϕj

)
+

N∑
i=1

Qik square(ϕi −ϕk)


=−dϕk

dt
(10)

Thus, SKONNminimizes E over time:

dE

dt
=

N∑
k=1

∂E

∂ϕk

dϕk

dt

=−
N∑

k=1

(
dϕk

dt

)2
⩽ 0.

(11)

SKONN’s and Kuramoto’s energy landscapes are represented for the three fully-coupled oscillators case in
figure 4(a). In this simulation, we randomly initialized the phases, numerically solved (6), (7), and measured
the final phases with respect to the reference ϕ1. It can be seen from the distribution of final phases for 1000
trials that SKONN can settle to arbitrary analog phases, whereas the Kuramoto-ONN always converges to a

7
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Figure 4. (a) Three oscillators coupled by negative weights. The right hand side shows the Kuramoto and SKONN distributions of
the final phases for 1000 random initializations (uniform distribution) and the corresponding Kuramoto and SKONN energy
landscapes. The arrows represent three examples of trajectories with various initializations, highlighting Kuramoto’s minima and
saddle point. In this example, SKONN’s energy minima consist of plateaus that are linked to the even-degree property
(proposition 2). (b) Five coupled oscillators where D1, D3 and D2, D4, D5 are odd and even, respectively. SKONN tends to
binarize phases except for ϕ2 which can rather converge to any phase value (proposition 2).

single phase fixed point ϕ∗ = (0◦, 120◦, 240◦). Moreover, we observe that SKONN’s energy landscape has
two plateaus where the phases can settle and remain stable, which is consistent with the associated phase
distribution extracted from simulations. Whereas the Kuramoto energy landscape consists of two minima
and a saddle point, as highlighted by the three simulated trajectories of figure 4(a). Unfortunately, we cannot
visualize the energy landscape for larger networks but a local analysis around a phase fixed point can reveal
the landscape around it (discussed in the supplementary material). There can be sharp hills in some
directions and plateaus in others. For instance in the five-node case of figure 4(b), most of the fixed points
are surrounded by hills in all directions except for the direction ϕ2 which consists of a trench with constant E.

2.3.2. Link between graph degree and SKONN fixed points
The three-node case of figure 4(a) revealed a different distribution of SKONN’s phase fixed points compared
to Kuramoto. A simple analysis of the dynamics for N oscillators gives a relationship between the
connectivity of the network and the phase fixed points. Specifically, the next proposition links the degree of a
SKONN neuron, i.e. the number of synaptic inputs, with the value of its phase fixed point.

Proposition 2. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted charges
Qij ∈ {−q,+q} q ̸= 0.

(1) If D is odd and dϕi/dt= 0, then there is at least one input neuron j such that (ϕi −ϕj) is a multiple of π.
(2) If D is even, then there is at least one ϕi and one set of input phase ϕj such that dϕi/dt= 0 and ∀j(ϕi −ϕj) is

not a multiple of π.

The proof is shown in appendix C. Interestingly, odd-degree neurons will phase-lock in- or out-of-phase
with at least one input phase. The odd-degree property will be advantageous for solving some optimization
problems (COPs) on graphs as it can prevent the use of sub-harmonic injection to binarize phases. SKONN
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for COPs is further discussed in section 3.4. On another hand, an even number of inputs instead leads to a
relaxed scenario where the neuron can settle into an infinite number of phases as seen in the 3-node case of
figure 4(a). When SKONN has both odd and even numbers of input synapses, we heuristically find that most
of phases tend to binarize as illustrated with the five-node graph in figure 4(b), although some phases (such
as ϕ2) can still converge to fixed points with arbitrary phase values. This aspect will be further discussed
when solving larger graphs in section 3.4.

So far, we have seen that SKONN has simple yet rich phase dynamics with unique phase binarization
properties resumed in proposition 2. Moreover, SKONN’s phase evolution can be interpreted as the
minimization of aN-dimensional energy landscape E (8) and thus naturally performs the gradient descent of
E through time. One can harness this concept for solving optimization problems that consist in finding
minima of a cost function. In the next sections, we focus on the NP-hard Max-cut problem and present two
approaches for solving Max-cut with SKONN.

2.4. SKONN for solving the NP-hardMax-cut problem
Given a graph with a set V of N vertices connected by weighted edgesWij =Wji, the Max-cut problem
consists in cutting the graph in two complementary subsets of vertices V1 and V2 such that the sum of
weights between V1 and V2 is maximum. The Max-cut problem can be formulated as follows [37]:

Max
1

2

∑
i,j

Wij(1− SiSj)

subject to:

Si ∈ {−1,+1} ∀ i ∈ V. (12)

Solving the Max-cut problem is NP-hard and the best-known approximation algorithm is the semidefinite
programming (SDP) algorithm found by Goemans and Williamson [37] and denoted GW throughout the
paper. By relaxing the binary spins Si to unit vectors vi in RN, GW relaxes the NP-hard Max-cut problem to
an SDP convex problem for which optimality can be found in polynomial time:

Max
1

2

∑
i,j

Wij(1− vi.vj)

subject to:

vi ∈ RN

|vi |= 1 ∀ i ∈ V. (13)

To compute the cut, the vectors are finally assigned to binary spins by splitting in two the N-dimensional
sphere with a random hyper plan. Repeating this final rounding step provides a cut whose expectation is:

E[cut] =
1

π

∑
i,j

Wij arccos(vi.vj)> 0.878Max-cut. (14)

However, due to the high dimension of the problem relaxation (RN), GW is costly for large instances
[38, 39] and alternative approaches using physical systems such as quantum annealers [40], coherent Ising
machines [39], memristors [41] or coupled oscillators are being investigated [9, 10, 12, 20].

2.4.1. The Ising approach
One of the most studied formalisms applied to ONN is from Ising which was initially derived to study
magnetism in materials [42]. Given interaction coefficients Jij ∈ R between particles that can have two spins
Si ∈ {−1;+1}, the particles relax to a state that minimizes the Ising Hamiltonian (we skip the external fields
for simplicity):

H=−1
2

N∑
i,j

JijSiSj. (15)

Thanks to Lucas’ seminal work [43], all Karp’s 21 NP-complete problems can be mapped to the Ising
formalism and the solutions can be approximated by any physical machine that minimizes the Ising
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Hamiltonian (15). If SKONN phases take binary values ϕi = (1− Si)π/2 ∈ {0,π}, its Lyapunov function (8)
becomes:

E=
β0
T

N∑
i,j

Qij triangle
(π
2
(Sj − Si)

)

=− πβ0
2T

N∑
i,j

QijSiSj

∝H.

(16)

Each synaptic current spike can be thought of as a downward step (due to equation (11)) in the energy
landscape (8) which corresponds to the Ising Hamiltonian (16) if the final phases are binary. However,
having binary phases is not guaranteed in general. To force phase binarization, it is common practice to
inject into the oscillators a SHIL periodic signal at twice the oscillating frequency [9] and described in
appendix E for SKONN.

The Max-cut problem can easily be mapped to an OIM with spins corresponding to the graph vertices by
setting Jij =−Wij withW ij the graph weights [43]. Then, the OIM performs the following minimization
which is equivalent to the Max-cut (12):

MinH=Max

−1
2

∑
i,j

WijSiSj


subject to: (17)

Si ∈ {−1,+1} ∀ i ∈ V.

The general strategy is to (1) map the graph to the OIM, (2) start the OIM while ramping up a 2-SHIL signal
to binarize the phases, and (3) read the stable phase state [9]. Forcing phase binarization is common practice
as it maps the OIM Lyapunov function to the Ising Hamiltonian (16). However, how to binarize is not
straightforward. If the injected signal is too strong, it may ‘freeze’ the phases to sub-optimal local minima
[9]. Whereas if the signal is too weak, it might increase the OIM computation time. As described next, we
rather harness the free SKONN dynamics without SHIL to compute the Max-cut in this work.

2.4.2. A Rank-2 relaxation approach
Erementchouk et al [44] have recently shown that the free OIM relaxation can be harnessed to solve the
Max-cut problem. Their recent results demonstrate that letting a Kuramoto-ONN settle to analog phase
values is equivalent to solving a rank-2 relaxation problem for the NP-hard Max-cut problem. Such phase
dynamics are used in the CirCut solver [38]. Similarly to GW, the CirCut algorithm relaxes spins Si to 2D
unit vectors xi ∈ R2 such that xi = (cos(ϕi) sin(ϕi)) that can take arbitrary values on the unit circle. The
objective of the rank-2 relaxation is:

Max
1

2

∑
i,j

Wij(1− xi.xj) =Max
1

2

∑
i,j

Wij(1− cos(ϕi −ϕj))

subject to:

xi ∈ R2

|xi |= 1 ∀ i ∈ V. (18)

Then, a rounding procedure produces spins to compute the graph cut. Unfortunately, this rank-2 algorithm
cannot guarantee a lower bound on the cut as it remains a non-convex optimization problem. Nevertheless,
its accuracy is comparable to the GW algorithm in practical use [38].

2.4.3. SKONN’s approach and link with GW
In this paper, we only explore the relaxation approach where we let SKONN settle without forcing
binarization. We will see that SKONN’s phase binarization property (proposition 2.1) is particularly useful in
this case. For the Ising approach, we invite the reader to consult the excellent work fromWang and
Roychowdhury [9] as the reported dynamics are equivalent to SKONN’s.

Moreover, it is worth mentioning that SKONN’s energy landscape can be linked to the GW algorithm
restricted to vectors of dimension 2 (GW2), as recently noticed in [45]. Indeed, SKONN’s triangular
interaction can be written as:
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triangle(ϕi −ϕj)+π/2= arccos(xi.xj). (19)

By setting SKONN’s synapses as the negative of the graph weights Jij =−Wij, the energy becomes:

E∝−
∑
i,j

Wij arccos(xi.xj)+C. (20)

With C a real constant. Hence, SKONN’s energy minimization is equivalent to GW2’s maximization
task (14) as:

MinE=Max
∑
ij

Wij arccos(xi.xj)

subject to:

xi ∈ R2

|xi |= 1 ∀ i ∈ V. (21)

3. Results

3.1. 3×3 SKONN PCB
We designed a 3×3 SKONN on PCB with fully-connected capability and 81 synapses (figure 5(a)) as a proof
of concept for the SKONN architecture. Due to area constraints, we only implemented negative weights that
we program by placing discrete capacitors Cij manually. Figure 5(b) shows the oscillating neuron based on a
Schmitt trigger (U1) with feedback resistor R3 that charges/discharges a load capacitor CL, producing a
triangular-like waveform with 720 mVpp amplitude. The neuron output is a square-like waveform oscillating
between VDD =+0.9V and VSS =−0.9V. Using an FPGA, we set the initial phase state by delaying the
oscillator’s starting time (Q1). The FPGA measures the neurons’ output voltages and allows phase
post-processing with a maximum precision of ϵ= 360◦ f0/fFPGA. In our experiments we set f0 = 4kHz,
fFPGA =50 MHz and ϵ≈ 0.03◦.

Figure 5(c) shows an experiment of two oscillators weakly coupled by C12 = C21 = 1%CL whereas
figure 5(d) is a strong coupling with C12 = C21 = 10%CL. In both experiments, the oscillators are
out-of-phase but the strong coupling case leads to a frequency reduction of−34% as the voltage jumps
∆V= (VDD −VSS)C12/CL produced by each current spike are too large with respect to the analog amplitude.
This phenomenon can induce frequency mismatches between groups of strongly coupled oscillators and
groups of weakly coupled oscillators. Frequency mismatches still need to be investigated and here we
empirically choose Cij < 5%CL to guarantee phase locking among oscillators.

3.2. WeightedMax-cut on PCB
The test case consists of the Max-cut problem with 2-bit positive weights. We generate random instances of
Erdos–Rényi graphs G(N,p) [46] with N = 9 nodes and p is the probability to have an edge between a pair of
vertices such that the total number of edgesm= pN(N− 1)/2. For each graph edge, the weight is randomly
selected from the list [0 10 22 47]/47 that corresponds to discrete capacitors used experimentally.

Figure 6(a) shows an example of a dense random graph instance with p= 0.75. We map the graph edges
to the synaptic matrix and run 100 trials with random phase initializations. For each trial, the nine phases are
sampled every oscillation period during 1000 oscillation cycles. Figure 6(e) shows the final phases
ϕi(t= 1000T)measured for each trial, the latter indicated as the amplitude in the polar plot. The right-hand
side of the polar plot corresponds to positive spins, whereas the left-hand side corresponds to negative spins.
It appears that some phases such as ϕ2, ϕ4 and ϕ6 are always assigned to the same spin polarity whereas most
of the phases can end up in both half-circles, depending on the phase initialization. Hence, SKONN final
states depend on the initialization and several trials ensure obtaining a good solution. Figure 6(d) shows the
histogram of solution and the settling time. SKONN finds the graph Max-cut with 75% probability in less
than 100 oscillation cycles on average. Figure 7 presents another Max-cut problem with G(9,0.5). This
instance is easier to solve as there are two optimal spin states as seen in figure 7(a) and SKONN reaches 97%
accuracy. Whereas Kuramoto simulations led to a lower accuracy due to the large phase distribution causing
errors when rounding phases to spin values. Surprisingly, SKONN favors a single optimal state and never
finds the second one. We observed a similar behavior even for graph instances with three optimal states. This
suggests there are optimal critical points that are unstable (such as saddle points) as recently highlighted by
Bashar et al [47].
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Figure 5. (a) SKONN on PCB with 9 oscillators and 81 synapses. We set the weight amplitude with the synaptic capacitance value
Cij. The FPGA initializes the phases by delaying the oscillators’ starting time by switching Q1 and measures the digital oscillations
buffered by the output stage (U2 and Q2). (b) The oscillator consists of a OP-amp Schmidt trigger feedback by the resistor R3 to
produce self-oscillations. R1//R2 sets the analog oscillation amplitude. (c) Two coupled oscillators with C12/CL = C21/CL = 1%.
(d) Two coupled oscillators with C12/CL = C21/CL = 10%.

Figure 6. (a) Random instance of G(9,0.75) with 2-bit weighted edges. (b) Cut value vs spin configuration. (c) SKONN phases
measured after 1000 oscillation cycles and compared with Kuramoto simulations. (d) Histogram of Max-cut solutions for 100
trials and measured settling time (e) SKONN experimental phase distribution. The polar amplitude represents the trial number
(100 trials). We assign−90◦ < ϕi < 90◦ → Si =+1 and Si =−1 otherwise. (f) Example of phase dynamics and cut evolution.
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Figure 7. (a) Random instance of G(9,0.5) with 1-bit weighted edges and the two optimal states. (b) Cut value vs spin
configuration. (c) SKONN phases measured after 1000 oscillation cycles and compared with Kuramoto simulations.
(d) Histogram of Max-cut solutions for 100 trials and measured settling time (e) SKONN experimental phase distribution. The
polar amplitude represents the trial number (100 trials). We assign−90◦ < ϕi < 90◦ → Si =+1 and Si =−1 otherwise. (f)
Example of phase dynamics and cut evolution.

3.3. 4x4 SKONNCMOS design
3.3.1. SKONN integrated circuit
To further assess SKONN performances, we taped out an ASIC chip using a 65 nm technology. Figure 8(a)
shows the chip layout view and table 2 contains the chip specifications. For this first ASIC version, we have
focused on transistor matching to minimize the variations among oscillators and enhance the robustness.
The second main objective was a low power consumption (160 µWwithout IOs). Although there are 16×
more synapses than neurons, the synapses represent only 20% of the power consumption and are promising
for solving dense networks. The constraint on the oscillator matching led to a large oscillator area (5000
µm2) but could be overcome with some calibration technique. Although the total chip area is 3.9 mm2, there
is room for improvement as the core area is 1.1 mm2, and 71% of the total area consists of routing lines from
the core to the high number of IOs and test pads (90).

Similarly to the SKONN design on PCB, the oscillating neuron consists of a hysteresis regenerative
comparator whose digital output drives the charge and discharge of the capacitor CL = 500 fF in the shaper
block (figure 8(d)). The comparator switches whenever the input voltage Vin

i reaches one of the two voltage
thresholds VH and VL that define the analog voltage amplitude as∆V= VH −VL =120 mV and
(VH +VL)/2= VREF = 600 mV. The synaptic block consists of a capacitor bank ranging from 0 to 37.5 fF
that linearly maps the weight amplitude from 0 to 15 (C0 = C1/2= C2/4= C3/8= 2.5 fF). The weight sign
is selected by the multiplexer commanded by the sign bit BS. The synaptic matrix is programmed by sending
serially the 5×256= 1280 bits through the registers.

Table 3 presents the specifications of the state-of-the-art ONNs designed using CMOS technology,
transition metal oxide, and spintronic devices. The connectivity scheme can be all-to-all for small-sized
ONNs (N⩽100) but is obviously reduced to nearest neighbor connections for larger ONNs such as in [12]
and [21] that both chose 8 neighbors (King’s graph). SKONN’s input/output separation allows any type of
modular connectivity in a robust manner as the synaptic signal from 2-coupled oscillators cannot leak to any
other oscillator. This contrasts with fully-analog architectures such as [10, 20] that merge input/output
nodes, resulting in undesired current paths between non-adjacent oscillators. It appears that digital ONNs
such as [5] and [12] are very energy-efficient as they produce a single oscillation with only 300 fJ and 21 fJ. In
contrast, analog oscillators found in [21] and this work consume 2.3 pJ and 10 pJ per oscillation, respectively.
However, we believe that SKONN’s energy could be reduced by relaxing the constraints on the analog
oscillator matching and using a calibration scheme instead, as proposed by Graber et al [21]. Finally, novel
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Figure 8. (a) Photography of SKONN ASIC. There are 16 neurons and 256 synapses laid out as in figure 1. (b) SKONN synapse
with 5 bits precision. The four parallel capacitors set the weight amplitude from 0 to 15. The bit BS selects the weight sign from
the multiplexer. (c) Shaper circuit producing the input triangular oscillation. (d) Regenerative comparator that holds the neuron
state and commands the shaper stage. An hysteresis behavior is obtained by setting the feedback transistors Q7 and Q8 such that
WQ7/WQ6 =WQ8/WQ9 > 1 for the same transistor length.

Table 2. SKONN ASIC specifications.

Technology Neurons Synapses
Synaptic
precision fosc SHIL inputs Area Power (core@1.2V)

65 nm 16 256 5 bits 1–4 MHz 16

3.9 mm2 160 µW@1MHz
Neurons: 2% Neurons: 75%
Synapses: 24% Synapses: 20%
Biasing: 3% Biasing: 5%
Routing, IOs: 71%

devices such as vanadium dioxide (VO2 [10]) and spin-torque oscillators [48] are promising for future ONN
implementation thanks to their potential dense integration and high frequency.

3.3.2. Feed-forward network with SKONN
Propagating the information in a feed-forward manner is useful in some applications that require driving
neurons. For instance, when training an ONN with the equilibrium propagation method [49, 50], one must
nudge the output oscillators toward the desired value which is challenging to obtain with recurrent synapses.
Instead, teaching oscillators could drive the output oscillators using feed-forward connections without being
impacted during the learning phase.

To demonstrate SKONN’s feed-forward ability, we program the ASIC to solve a simple 2-input XOR
operation. Inspired by the Parametron built by Goto in the 1950s [3], we use a 3-input SKONN neuron as a
majority gate

ϕM = (ϕX.ϕY)+ (ϕX.ϕZ)+ (ϕY.ϕZ) (22)

where ϕX , ϕY , ϕZ ∈ {0◦;180◦} are the input binary phases thought as Boolean variables; i.e. ϕM is true when
ϕM = 180◦. Interestingly, SKONN’s odd-degree property (proposition 2) ensures that ϕM is binary when its
inputs are also binary.
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Table 3. Comparison between state-of-the-art ONNs.

Jackson
et al [5]

Moy et al
[12]

Bashar
et al [20] Graber et al [21]

Dutta
et al [10]

Romera
et al [48] This work

Technology 28 nm 65 nm 65 nm 28 nm Simulations:
28 nm CMOS+
PTNO (VO2)

Spin-torque 65 nm

Neurons 100 1968 30 400 100 4 16

Connectivity all-to-all King’s
graph

all-to-all King’s graph all-to-all all-to-all all-to-all

Power 303 mW 42 mW 1.76 mW 182 mW 2.56 mW 4 mW 160 µW (core)

Frequency 1 GHz 1 GHz 45 kHz 200 MHz 87 MHz 300 MHz 1 MHz

Energy/osc 300 fJ 21 fJ 1.3 nJ 2.3 pJ 300 fJ 3.3 pJ 10 pJ

Chip area 3.24mm2 2.1 mm2 — 2.2 mm2 — — 3.9 mm2

Figure 9. (a) XOR(X), (Y) circuit using SKONN and feed-forward synapses. Neuron Z is the reference oscillator and can be
thought of as the neurons’ bias, similar to perceptrons. The weightsWXZ andWYZ are the inputs and set the initial phases ϕX and
ϕY . (b) ASIC experimental results whenWXZ =WXZ =−1 which set ϕX ≈ ϕY ≈ 180◦ and corresponds to the Boolean case
where X = Y = 1.

The XOR(X,Y) circuit is implemented by writing the XOR Boolean expression ϕXOR = (ϕX.ϕY)+
(ϕY.ϕX). Considering ϕZ as the reference oscillator, AND and OR gates are obtained when feeding ϕZ or ϕZ

to the majority gates, respectively. Figure 9(a) shows the obtained network with two hidden neurons
(H1,H2), one neuron acting as a bias unit (Z), and one output neuron. The reference oscillator Z sets the two
input phases ϕX and ϕY by feeding its output signal in a feed-forward manner. When the weightWXZ is -1 or
+1, it sets ϕX ≈ 0◦ or ϕX ≈ 180◦, respectively, and the same rule applies for ϕY andWYZ . The oscillators are
randomly initialized before the input phases ϕX and ϕY settle to the desired inputs. Then, the network
further relaxes to a stable phase state after a few oscillations and we read the output phase ϕXOR. Figure 9(b)
shows the ASIC measurement in the case ϕXOR(180◦,180◦) = 0◦. The three other cases are shown in the
supplementary material. Table 4 summarizes the results for the 4 possible inputsWXZ andWYZ . By assigning
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Table 4. Solving XOR(X,Y) with SKONN ASIC.

WXZ WYZ ϕX ϕY ϕXOR XOR(X,Y)

+1 +1 359◦ 56◦ 342◦ 0
+1 −1 358◦ 195◦ 161◦ 1
−1 +1 203◦ 0◦ 187◦ 1
−1 −1 199◦ 203◦ 344◦ 0

the bit 0 when−90◦ ⩽ ϕi ⩽90◦ and 1 otherwise, it can be seen that the proposed network computes
XOR(X,Y) in a feed-forward manner.

3.4. SKONN scaling and benchmarking
3.4.1. Weighted Max-cut of random graphs
To assess how SKONN’s computational performances scale, we run large-scale simulations of random
Weighted Max-cut problems for N = 8, 16, 32, 64, 128, 256, 512, and 1024 nodes. For each graph density
d = 0.25, 0.5, and 0.75, 10 random graphs G(N,d) are generated such that the total number of edges
m= d N(N− 1)/2. The graph edges are randomly weighted with positive values from 0 to 15 that
correspond to the ASIC synaptic range. We use the ASIC parameters and solve SKONN’s dynamics (7) with
MATLAB using the built-in ODE solver ode15s (see supplementary material). For each graph instance, we
run 10 trials with random phase initialization, for a total of 100 trials per graph size and density. As a ground
truth, we consider the best solution CutGW provided by the Goemans–Williamson algorithm, out of 100
random projections defining the cut [37] and computed with the CVX solver on MATLAB [51]. The distance
between the SDP cut CutSDP and CutGW is represented in figure 10(a). As CutSDP ⩾Max-cut, the ratio
CutGW/CutSDP gives a lower bound on the chosen GW cut. For all the trials, the results are compared with
Kuramoto dynamics with the same parameters and initializations.

Figure 10(b) shows SKONN’s and Kuramoto’s phase distributions for each ONN size. Here again, it
appears that SKONN phases tend to be clustered near 0◦ and 180◦ whereas Kuramoto phases seem more
uniformly distributed. Figure 10(c) present the obtained cuts when considering the first oscillator as the
reference, and normalized by CutGW. We first notice that the results are quite homogeneous with respect to
the graph densities. Secondly, it appears that SKONN produces high-quality cuts as Cut/CutGW ≈ 1 for all
ONN sizes. In contrast, Kuramoto-ONNs have a lower accuracy for sizes between N = 16 and N = 256.
Interestingly, the settling time (time to reach a steady phase state) seems to grow according to a logarithmic
law with the ONN size. This result refines some previous scaling observations mentioning a quasi-constant
settling time [9, 17]. It also confirms the high ONN parallelism and ability to compute in a few tens of cycles,
even for large graphs.

Similarly to the CirCut algorithm [38] (rank-2 relaxation approach), we also investigate the Kuramoto
accuracy when changing the reference oscillator and name it the ‘Kuramoto-CirCut’ scheme. Figure 10(d)
presents the case where the best Kuramoto cut is chosen out of N possible cuts, whereas the SKONN
reference oscillator remains the first one. It can be seen that SKONN provides the same quality cut as GW
and Kuramoto-CirCut. However, compared to GW and Kuramoto-CirCut, SKONN’s cut is solely obtained
by reading out the phases with respect to a single oscillator and does not need N different cut evaluations
that linearly increase the time to solution.

3.4.2. G-set benchmark
The previous study concerned random graphs. Here, we benchmark SKONN for solving Max-cut using the
G-set benchmark that includes various graph topologies [52]. Table 5 shows the cuts obtained for a single
trial with SKONN and Kuramoto using the same random phase initialization, and considering the first
oscillator as the phase reference. The cuts are compared against the state-of-the-art GW [37] and the
Kuramoto-CirCut scheme [38]. GW’s cut is the best cut obtained out of 100 random projections and
computed with the CVX solver on MATLAB [51]. For graphs with N> 3000, GW values are taken from
another state-of-the-art SDP solver [53] due to memory constraints. The Kuramoto-CirCut values
correspond to the best cut extracted from the Kuramoto dynamics, out of N possible reference oscillators.

With a single run, Kuramoto-CirCut and SKONN solvers produce, on average, better results than the
GW algorithm which picks up the best spin configuration out of 100 random projections. The average
SKONN cut value is 94.6% of the best-known cuts [52] and the highest among the four methods. The
accuracy obtained by simulating SKONNmotivates its real hardware implementation as the time-to-solution
could be drastically reduced compared to a CPU. For instance, solving the smallest graph G11 requires 12 s of
GW runtime on a laptop (i7 Intel core @1.6 GHz and 32 GB of RAM). In contrast, SKONN’s settling time
does not vary much with the ONN size and could enable a large-scale cut computation in less than 431 cycles
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Figure 10. (a) Ratio between CutGW and CutSDP that gives a lower bound on CutGW as CutSDP ⩾Max-cut. (b) Phase distribution
at steady state for SKONN (left) and Kuramoto (right) for various ONN sizes. (c) Cuts obtained by SKONN and Kuramoto when
the first oscillator is the phase reference and for various graph densities. (d) Cut obtained when SKONN’s reference is the first
oscillator, compared to the case where the Kuramoto reference is changed N times, similarly to the CirCut algorithm [38].

on average. With oscillators running at 1 MHz, the runtime per trial would only be 431 µs which is 2.8 104×
faster than GW’s execution. However, reaching excellent cuts such as 99.9% of the best-known cut requires
more trials and annealing the ONN to escape local minima. For more results using SHIL and various
annealing schemes, please refer to [9].
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Figure 11. (a) Schematic of the shaper stage with current noise sources. Bottom figure shows 10 stochastic transient simulations
with σN = 2.5 pA. (b) Example of phase dynamics with and without noise for a 12-node graph with 50% density. The Y-axis
show the output voltages Vf of each analog filter measuring the phases (see figure 14). (c) Left: cut-value vs standard deviation of
noise σN . Right: measure of unstability vs σN .

3.5. Impact of noise
Here, we study the impact of noise at the hardware level when solving the Max-cut task for various graph
sizes. The objective is twofold: (1) assess whether SKONN is robust to noise and (2) quantify the maximum
tolerated noise for practical implementation. Due to resource constraints during transient simulations, this
study does not include every single noise source from each transistor. As an approximation, we perform
stochastic simulations at the level of circuit equations by including the main thermal noise contributions at
the oscillating input node (equation (32) derived in the appendix A). To compensate for this approximation,
the level of input noise is swept to 70× larger values than the calculated ASIC input noise. Note that the
input noise also contributes to jitter noise at the output due to the stochasticity on the oscillator transition
times, as shown by the 10 stochastic oscillator trajectories in figure 11(a).

Figure 11(a) presents the main thermal noise sources of the shaper block that perturb the analog input
waveform. Assuming the noise amplitude is small (small-signal calculation [54]), we find that the main
source of thermal noise originates from the current source transistors in our design that also carry noise
from biasing stages. During the load capacitor charge, four transistors acting as current sources and four
diode-connected transistors contribute to current noise at the input. Further assuming transistor noises are
uncorrelated, the current noise power spectral density (PSD) at the input is expressed as:

S2N = 4S2S + 4S
2
D + S2B = σ2N (23)

where S2S, S
2
D, and S

2
B are the PSDs of the current source, diode-connected, and bias transistors, respectively.

Note that the noise contribution from the switches is negligible as their PSDs are divided by the high output
impedance of the current sources. The transistor parameters used to compute the noise variance are listed in
table 6. The small-signal parameters are evaluated using the model from Enz, Krummenacher and Vittoz
(EKV) [55] where the inversion factor is defined as IF = Ibias/IS with IS = 2µCox(W/L)U2T the specific
current of the transistor, and UT = kBT/q is the thermal voltage. The transconductance gm is calculated as:

gm
Ibias

=
1

UT

2

1+
√
4IF + 1

. (24)

As the 1/f noise PSD is inversely proportional to the transistor dimensions, we assume that thermal noise is
dominant and express the current PSD of each transistor i as:

S2i ≈ 4kBTgmγ. (25)

With γ = 1/2 or γ = 2/3 when the transistor is in saturation and weak or strong inversion [55].
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Table 6. ASIC transistor parameters used in the stochastic simulations.

Transistor Length Width IF gm or R Noise standard deviation

Current source 6µm 12µm 0.5 gmS = 5.6µA/V σS = 0.25 pA
Diode-connected 6µm 12µm 0.5 gmD = 5.6µA/V σD = 0.25 pA
Chip current mirror 16µm 2µm 8 gmC = 2.3µA/V σC = 0.16 pA
External resistor NA NA NA R= 1MΩ σR = 0.13 pA
Shaper bias 20 µm 10 µm 2 gmB = 3.8µA/V σ2B = σ2R + 4σ

2
C + 0.18

2σB =0.4 pA
Total input current noise σ2N = 4σ2S + 4σ

2
D +σ2B

σN = 0.8 pA

To model noise in time domain, we consider Gaussian white noise (GWN) which also has a similar PSD,
i.e. a constant spectrum, with the additional assumption that the current noise samples follow a Gaussian
distribution [56, 57]. Hence, we express the current noise in time domain as:

IN(t) = σNξ (t) (26)

where ξ(t) is a GWN with E[ξ(t)] = 0, and correlation E[ξ(t+ τ)ξ(t)] = δ(τ) with δ(t) the Dirac delta
function. It follows that E[IN(t+ τ)IN(t)] = σ2Nδ(τ) and the PSD is:

S2N = σ2N. (27)

This relation enables the numerical evaluation of the σN-values using the ASIC transistor parameters of
table 6 while running stochastic transient simulations. From the circuit of figure 11(a), we see that the
current noise is integrated by the capacitor CL during the dynamics. Overall, the addition of GWN turns the
ODE system into a stochastic differential equation (SDE) system that is integrated by a dedicated Julia solver
[58]. Especially, the ODE for the input voltage Vin

i of neuron i becomes the following SDE:

CLdV
in
i = Ibias

(
1− 2

Vouti

Vdd

)
dt+

∑
j

CijdV
out
j +σNdW (28)

where dW is a Wiener process defined as ξ(t) = dW/dt [57].
Figure 11(c) shows the cut values obtained for 10 random graphs G(N,d) of sizes N ∈ {12,16,24,32,48},

densities d ∈ {0.1,0.2 . . .0.9,1} and various noise variances. For all graph instances, the cut value is
evaluated after 100 oscillation cycles and normalized by the cut value obtained in the noiseless case. Note that
from table 6 we calculate the input current noise in the ASIC as σN ≈0.8 pA, which does not include the
output noise from the hysteresis block. However, the simulations suggest robustness to larger input noise up
to σN = 15 pA which also contributes to output noise. For lower noise levels, noise can sometimes increase
the accuracy as shown in the example of figure 11(b) where a noisy SKONN with σN = 2.5 pA finds a larger
cut compared to the noiseless case. Furthermore, the stability of the system is estimated by analyzing the time
evolution of the spin signals expressed as Si(t) = cosϕi (t). Computing the standard deviation std[Si(t)] over
time from t= 0 to t= 100/fosc indicates whether the spins settle or not. In the ideal case, std[Si(t)]≈ 0
whereas in the worst case, the spin varies between -1 and+1 with std[Si(t)]≈ 1. Note that the transient
dynamics are also included in the metric std[Si(t)] which hence never reaches 0 in practice. Figure 11(c)
shows a correlation between the decrease of cut value and the decrease of stability for σN ⩾ 15 pA for all
SKONN sizes.

From this study, we conclude that only large levels of noise have detrimental effects on SKONN
performances. Moreover, moderate levels of noise can slightly increase the accuracy which we believe is
linked to the escape from local minima, as already observed by Wang et al [9] at the level of phase modeling.

4. Discussion

SKONNmixed-signal architecture facilitates scaling up the ONN size thanks to the separation between
analog computation and digital propagation. While the neurons exchange information in the digital domain,
SKONN architecture ensures that the sensitive analog computation remains within modules and can be
shielded from the outside. However, it remains some design challenges that are currently being investigated:

(1) Any delay added to the digital propagation is equivalent to a synaptic phase shift. This must be con-
sidered for a high-frequency operation when buffers’ delays become non-negligible and can be an issue
for advanced technologies.
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(2) Large synaptic values can induce large voltage jumps at the analog input that can decrease the frequency
for recurrent synapses, as highlighted in figure 5(d). Without compensation, this strong coupling scenario
could lead to multiple oscillation frequencies and prevent global phase-locking.

5. Conclusion

This article introduced SKONN, a novel mixed-signal ONN architecture that enables large-scale analog
computations in phase domain. We presented how the association of simple circuitry can enable robust
analog phase computation; while propagating the information in the digital domain to facilitate the
implementation of large networks. We first reported experiments on a 9-neuron SKONN on PCB that finds
the maximum cut of weighted graphs with high accuracy. Then, we presented the design of a CMOS
16-neuron integrated circuit (IC), highlighting SKONN programmability, modularity, and benchmarking
with state-of-the-art ONN ICs. Furthermore, our design choice led to interesting phase dynamics that are a
saturated version of the Kuramoto model and have unique properties. Such as, we found that such dynamics
tend to binarize phases and are very efficient to solve NP-hard problems based on binary variables like
Max-Cut. It appeared that SKONN’s accuracy on random graphs is as good as the state-of-the-art
Goemans-Williamson (GW) and CirCut algorithms, and even higher when benchmarked with graphs with
up to 7000 nodes from the G-set. Our study revealed that SKONN’s computation time grows logarithmically
with the network size which is promising for solving large-scale problems. For example, SKONN neurons
oscillating at 1 MHz would provide four orders of magnitude runtime improvement compared to the GW
algorithm run on a CPU.
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Appendix A. SKONN voltage and current dynamics

A.1. Neuron voltage dynamics
By denoting Iij the input synaptic currents, the voltage dynamics of neuron i can be modeled as follows:

CL
dVini
dt = Ibias (1− 2Vouti /VDD)+

∑
j Iij

τH
dVouti
dt = VDD fH

(
Vini ,V

out
i ,VL,VH

)
−Vouti

(29)

where CL is the input capacitance, Ibias the current that charges and discharges CL, VDD is the amplitude of
Vouti , VL and VH are the lower and upper thresholds of the hysteresis block, and τH is the time constant linked
to the output load of the hysteresis block. The term fH expresses the output switching with hysteresis
behavior. As in [59], one can model the hysteresis behavior using a tanh function with slope γ:

fH = 0.5

(
1+ tanh

(
γ

(
Vini −VH − VL −VH

VDD
Vouti

)))
. (30)

When fH = 0, Vouti = 0 and CL charges. When fH = 1, Vouti = VDD and CL discharges. The two switching
occur when Vini = VL and Vini = VH, respectively. Figure 12 shows an example of numerical solution for the
equation (29).
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Figure 12. Voltage dynamics of a single neuron obtained by solving numerically (29). In this example, CL = 500 fF, Ibias = 200 nA,
VL = 0.5 V, VH = 0.7 V, VDD = 1.2 V, γ = 100 and τH = 1 ns.

A.2. Synaptic currents
In SKONN, the digital output voltage Voutj goes through the synaptic capacitance Cij that creates current
spikes holding the phase information ϕj. The synaptic spike train can be expressed as follows:

Iij = Cij

(
dVoutj

dt
− dV ini

dt

)
. (31)

A.2.1. Voltage dynamics of coupled neurons
By injecting the synaptic current expression in equation (29), we obtain:Ceq

dV ini
dt = Ibias (1− 2Vouti /VDD)+

∑
jCij

dV outj

dt

τH
dVouti
dt = VDD fH

(
Vini ,V

out
i ,VL,VH

)
−Vouti

. (32)

With Ceq the equivalent capacitance:

Ceq = CL +
∑
j

Cij (33)

(33) indicates that the synaptic capacitances are added to the oscillator load and slow down the charge and
discharge of the input node. Large synaptic capacitances could potentially induce heterogeneous frequencies
within SKONN and still needs to be explored.

Appendix B. SKONN phase perturbation vector

The PPV is a T-periodic function v⃗(t) that quantifies the phase shift of an oscillator subject to a perturbation
occurring at time t [33]. One way of computing v⃗(t) is to inject a pulsed perturbation to the oscillator at time
t, measure the induced phase shift and normalize by the perturbation’s strength [10]. In SKONN, the
synaptic current Iij perturbs the triangular oscillation Vin

i and the scalar PPV v(t) can be derived by
computing the phase shift dϕ when injecting current pulses I(t ′) = dQδ(t ′ − t) with t ∈ [0;T]. From
figure 13, we distinguish three cases:

(1) 0< t< T/2: the perturbed oscillation is shifted toward the left by the same amount of time−dt.
(2) T/2< t< T: the perturbed oscillation is shifted toward the right by the same amount of time+dt.
(3) t ∈ {0;T/2}: the time shift is undefined as Vini ’s slope is undefined (not derivable).
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Figure 13. SKONN phase perturbation vector (PPV). The injection of a charge dQ induces a time shift±dt, which in turn creates
a phase shift dϕ = 2πdt/T. The phase shift sign changes when there is a change in Vini ’s slope.

Injecting dQ to CL induces a voltage jump dV= dQ/CL. This results in a time delay−dt and+dt when CL

charges and discharges, respectively, with |dt|= CLdV/Ibias. The amount of phase shift can then be expressed
as dϕ = 2πdt/T. The oscillation period T is expressed by T= 2CL∆V/Ibias, with∆V= VH −VL. Finally,
merging the equations leads to

dϕ

dQ
=± π

CL∆V
=±β0. (34)

Which is the phase shift caused by the injection of 1 Coulomb. The phase shift sign depends on whether the
charge is injected during the charge or discharge of the triangular waveform. Considering the three previous
cases and changing the time variable t to phase θ, we express SKONN’s PPV as follows:

v(θ) = β0 square(θ) (35)

where:

square(θ) =

{
−1, if 0< θ < π

+1, if π < θ < 2π
. (36)

Appendix C. SKONN phase dynamics

C.1. Two coupled oscillators
The phase dynamics of a single oscillator of frequency ω0 = 2π/T are:

d

dt
ϕ(t) = ω0. (37)

When the oscillator receives a pre-synaptic signal b⃗(t), it undergoes a time shift α(t) associated with the
perturbation b⃗(t). If the variation of the oscillating amplitude remains small [33], α(t) dynamics can be
expressed as follows:

d

dt
α(t) = v⃗(t+α(t)).⃗b(t) (38)
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where v⃗(t) is the T-periodic phase perturbation vector (PPV) associated with the oscillator; and describes the
phase sensitivity of the oscillator under injections at different nodes. In our case, we consider scalars b(t) and
v(t) as the pre-synaptic signal b(t) is injected to a unique input node. As b(t) also oscillates at frequency ω0
and with phase ϕb(t) = ω0t, we introduce∆ϕ(t) = ϕ(t)−ϕb(t) = ω0α(t) that expresses the phase difference
between post and presynaptic signals. The latter can be considered as the reference as it is driving the
oscillator. To simplify equations, we define the 2π-periodic PPV and perturbation as v2π(ω0t) = v(t) and
b2π(ω0t) = b(t), respectively. The phase dynamics become:

d

dt
∆ϕ = ω0 v

2π (ϕb +∆ϕ) b2π (ϕb) . (39)

We assume that under weak coupling, the phase difference∆ϕ evolves slowly compared to the presynaptic
phase ϕb and it is common practice to average out∆ϕ over one period:

1

2π

ˆ π

−π

d

dt
∆ϕdϕb ≈

d

dt
∆ϕ

=
1

T

ˆ π

−π

v2π (ϕb +∆ϕ) b2π (ϕb) dϕb. (40)

We saw previously that a pre-synaptic signal consists of current pulses that are aligned with the rising and
falling edges of the digital pre-synaptic voltage. Then, we consider the case where b2π(θ) consists of a train of
Dirac pulses:

b2π(θ) =
∞∑
n=0

p(θ− n2π). (41)

With:

p(θ) = Q(δ(θ)− δ(θ−π)) . (42)

Under this assumption, (40) becomes:

d

dt
∆ϕ =

Q

T

(
v2π(∆ϕ)− v2π(∆ϕ+π)

)
. (43)

In SKONN, the analog input oscillation is a symmetric triangular waveform that has a simple 2π-periodic
PPV expressed as follows:

v2π(θ) = β0 square(θ) (44)

where:

square(θ) =

{
−1, if 0< θ < π

+1, if π < θ < 2π
(45)

and β0 is the phase shift induced by the injection of 1 Coulomb to the oscillating node. Finally, we express
the phase dynamics of the driven oscillator:

d

dt
∆ϕ = 2β0

Q

T
square(∆ϕ). (46)

We notice that the average of the phase dynamics are very similar to the Kuramoto model except that its
sinusoidal interaction term is replaced by a saturated square function in our case.

Proposition 1. If the injected charge Q ̸= 0 then the two SKONN oscillators admit a unique stable fixed-point
∆ϕ∗ = (ϕi −ϕj)

∗ such that:

∆ϕ∗ =

{
0, if Q> 0

π, if Q< 0
. (47)
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Proof. The proof consists in finding a Lyapunov function for the dynamics (46). Consider the bounded con-
tinuous Lyapunov function:

E= 2β0
Q

T
triangle(∆ϕ). (48)

With:

triangle(θ) =

{
θ−π/2, if 0⩽ θ ⩽ π

3π/2− θ, if π ⩽ θ ⩽ 2π
. (49)

We have :

∂E

∂∆ϕ
=−2β0

Q

T
square(∆ϕ) =−d∆ϕ

dt
. (50)

E is minimized through time as follows:

dE

dt
=

∂E

∂∆ϕ

d∆ϕ

dt
=−

(
d∆ϕ

dt

)2
⩽ 0. (51)

(1) IfQ> 0, the minima of E are∆ϕ∗ = 0 [2π] and correspond to the phase fixed points of the dynamics (46).
(2) IfQ< 0, the minima of E are∆ϕ∗ = π [2π] and correspond to the phase fixed points of the dynamics (46).

In other words, propagating a spike train that consists of positive and negative current spikes spaced in
time by T/2 induce an in-phase or out-of-phase locking, depending on the polarity of Q. The latter can be
set by choosing one of the two complementary digital post synaptic voltages as shown in figure 3.

C.2. N coupled oscillators
When an oscillator i is perturbed by N other oscillators with same pulsation ω0, (38) can be generalized in
the scalar case:

d

dt
αi =

N∑
j=1

v2πij (ϕi) b
2π
j

(
ϕj

)
. (52)

Similarly to the two-oscillators case, averaging out the previous equation along the fast variable ϕj leads to:

d

dt
αi =

N∑
j=1

1

2π

ˆ π

−π

v2πij
(
∆ϕij +ϕj

)
b2πj
(
ϕj

)
dϕj. (53)

We use the spike train expression (41) to obtain:

d

dt
αi =

1

2π

N∑
j=1

(
v2πij
(
∆ϕij

)
− v2πij

(
∆ϕij +π

))
. (54)

As we inject pre-synaptic signals to the same node, we have v2πij = v2π and we use the SKONN oscillator PPV

v2π (44) to finally get:

d

dt
ϕi =

2β0
T

N∑
j=1

Qij square
(
ϕi −ϕj

)
. (55)

Note that we omitted the term ω0 in the right-hand side of (55) as in practice we refer to the relative phase
relationship between oscillators instead of the absolute values that linearly increase with ω0t.

Considering SKONN’s hardware implementation, we saw that β0 is equal to:

β0 =
π

∆VCL
(56)

and:

Qij = VDDCij (57)
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where∆V is the peak-to-peak triangular amplitude at the input, CL is the neuron input capacitance, VDD is
the digital voltage swing, and Cij is the synaptic capacitance value. SKONN’s phase dynamics become:

d

dt
ϕi = ω0

VDD

∆V

N∑
j=1

Cij

CL
square

(
ϕi −ϕj

)
. (58)

SKONN has an interesting phase binarization property resumed in the following proposition:

Proposition 2. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted charges
Qij ∈ {−q,+q} q ̸= 0.

(1) If D is odd and dϕi/dt= 0, then there is at least one input neuron j such that (ϕi −ϕj) is a multiple of π.
(2) If D is even, then there is at least one ϕi and one set of input phase ϕj such that dϕi/dt= 0 and ∀j(ϕi −ϕj) is

not a multiple of π.

Proof.

(1) By assuming the opposite, i.e. that ∀ j(ϕi −ϕj) ̸= 0 [π], it leads to ∀ j square(ϕi −ϕj) =±1, using (4).
Noticing that D=m+ l withm ̸= l, and writing SKONN’s phase dynamics (7) leads to:

dϕi

dt
= 0 =⇒

D∑
j=1

±1=
m∑
j=1

1−
l∑

j=1

1= 0. (59)

Which is not possible asm ̸= l and proves the proposition.
(2) Consider the integers m and l such that there are m weights Qij =+q and l weights Qij =−q, with D=

m+ l= 2k. We can choose:
(a) ϕj = 0 for the l (resp.m) input neurons.
(b) ϕj = π for k− l (resp. k−m) other input neurons.
(c) ϕj = 0 for the remaining k input neurons.
From SKONN’s phase dynamics (7) we obtain:

T

2β0

dϕi

dt
=−q

∑
j⩽l

square(ϕi)+ q
∑
l<j⩽k

square(ϕi −π)+ q
∑

k<j⩽2k
square(ϕi).

Assuming that ϕi ̸= 0 [π], it follows from (4):

T

2β0

dϕi

dt
=−ql(±1)− q(k− l)(±1)+ kq(±1)

= 0.

Appendix D. Comparison between SKONN phase model and circuit dynamics

The phase dynamics defined in (58) only provide the phases ϕm
i and do not include voltage and current

equations. Here, we compare ϕm
i with ϕ

c
i , the phases extracted from the circuit dynamics expressed in (32).

For every oscillator i, the pair of output voltages Vouti and Vout1 are fed to a 2-XOR gate which produces a
signal VXORi whose duty cycle is proportional to the phase between the first (reference) and the ith oscillator
(figure 14(a)). Then, the voltages VXORi are filtered out with a second-order low-pass filter to obtain the phase
dynamics ϕc

i . Figures 14(b) and (c) show an example of circuit simulation for 4 fully-coupled oscillators with
Wij =−1 and a random initialization. Figure 14(d) shows the corresponding phases ϕc

i and ϕ
m
i (dashed

lines) obtained from the circuit and the phase model, respectively. Note that the XOR-based phase
measurement is insensitive to the phase sign and so ϕc

3 departs from ϕm
3 when ϕ

m
3 > ϕc

3 = 180
◦. However,

computing cos(ϕc
i) and cos(ϕ

m
i ) provide the spin dynamics for the two approaches and are shown at the

bottom of figure 14(d). Overall, in the weak-coupling regime, we observe a good agreement between the
phase and circuit models. This comparison motivates the use of the phase model (58) as it only contains N
ODEs for emulating an N-node SKONN, compared to at least 2 N ODEs for the circuit approach (32).
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Figure 14. (a) Proposed phase read-out to analyze the circuit phase dynamics. We set the cut-off frequency ωc = ω0/2= 500
MHz and damping factorm=

√
2/2. The gain K converts voltage to phase as K= π/VDD. Circuit parameters are CL = 500 fF,

Ibias = 200 nA, VL = 0.5 V, VH = 0.7 V, VDD = 1.2 V, γ = 100 and τH = 1 ns. (b) Example of SKONN network. |Wij|= 1
corresponds to a coupling capacitance Cij = 2.5 fF. (c) Circuit dynamics obtained by solving numerically (32). (d) Comparison
between SKONN’s phase model ϕm

i (58) and the circuit phase ϕ
c
i .

Appendix E. Sub harmonic injection locking in SKONN

To binarize the phases, one can inject a signal at twice the oscillating frequency VSHIL(t) = A sin(4πω0t) to an
oscillator’s node for which its scalar PPV contains a second-order harmonic P2 ̸= 0 in its Fourier
decomposition [32]. In SKONN, we cannot inject the 2-SHIL signal to the input oscillating node Vini (t) as
the associated scalar PPV only contains odd harmonics (square (35)). In practice, we inject the 2-SHIL signal
to a biasing node that allows SKONN binary phase locking. In this case, the SKONN Lyapunov function
becomes

E=
β0
T

N∑
i,j

Qij triangle
(
ϕi −ϕj

)
+

N∑
i

AiP2 cos(2ϕi). (60)

When SHIL amplitudes Ai are large enough, phases are binarized ϕi = (1− Si)π/2 ∈ {0,π} and the SKONN
Lyapunov function corresponds to the Ising Hamiltonian H with an additional offset:

E=−πβ0
2T

N∑
i,j

QijSiSj +
N∑
i

AiP2

=H+ constant

. (61)

Appendix F. Impact of SKONN’s limited bandwidth

When SKONN is implemented in hardware, we observe some phase deviation with respect to the theoretical
phase fixed points, as shown in figure 15. The main reason is the hysteresis block that does not switch
instantaneously when the synaptic current spikes induce voltage jumps above or below the hysteresis
thresholds VH and VL. To better understand this phenomenon, we ran two transistor-level simulations of two
coupled neurons in feed-forward mode with a strong weightW21 =+15 and different frequencies
(figure 15). When the oscillation frequency is low (300 kHz), the hysteresis switching delay is negligible and
there is only a small phase deviation δϕ= 4◦. However, when the oscillation frequency increases to 1.2 MHz,
the limited bandwidth of the hysteresis circuit causes a switching delay and a larger phase deviation δϕ= 13◦.

For a given phase precision required by the application, this error could be mitigated by increasing the
bandwidth of the hysteresis circuit or slowing down the oscillators, and constitute a trade-off with the energy
consumption [17]. Interestingly, we have observed in experiments that having recurrent synapsesWij =Wji
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Figure 15. (a) Two coupled oscillator in feed-forward mode with+C21 = 7.5%CL which implementsW21 =+15 in the ASIC.
(b) Transistor-level simulation with CL = 2 pF to decrease the frequency to fosc = 300 kHz. (c) Transistor level simulation in
nominal case where CL = 500 fF and fosc = 1.2 MHz.

compensate the hysteresis delay induced in both neurons and the theoretical phase fixed point is reached in
that case (see figures 5(c) and (d)).
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