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Abstract. The development of the Terahertz laser technology in quantum cascade
lasers (qcl) has brought about great potential for industrial applications. These
lasers are based on the Terahertz electromagnetic waves, in the frequency range
from about 100GHz to 10THz. There is need to understand the structure of the
laser and its influence on the performance in order to optimize the design process.
One way of collating this information is by having ontologies and knowledge bases
capturing the various qcl designs and their performance characteristics. Majority of
the laser design data is usually contained in scientific literature. The main drawback
of such textual data sources is their unstructured nature. The complex nature of the
laser design and the varying author language styles poses some level of difficulty in
retrieving this information. Owing to this, the existing methods needs improvement
in order retrieve the laser information at a high precision(with minimal number of
incorrect records extracted) and minimized number of correct records not extracted.
In this paper, we tackle this initial challenge by proposing a text mining pipeline for
mining the qcl properties by extending the grammar rules of a conditional random
field (CRF) based model using a rule-based approach. The properties of interest
include: hetero-structure (laser stacking properties), working temperature, lasing
frequency, laser thickness and the optical power. We evaluate the pipeline on sample
open access journal papers from AIP, OPTICA and IOP Publishers.

Keywords: CRF model· Information Extraction · Knowledge Bases · Ontologies ·
Property Models· Quantum Cascade Lasers · Text Mining

1 Introduction

There exists a lot of information in scientific literature published daily on quantum cascade
laser technologies. The literature documents the various laser designs and their performance
properties [1]. The terahertz quantum cascade lasers have varying industrial application
potential ranging from the biomedical field, where the radiation can be used in detection
of abnormal tissues, including cancers [2] and in the pharmaceutical field, where the lasers
have been used in detecting organic compounds in drugs and identification of two or three
dimensional distributions of molecules [3]. In electronics, the lasers can be used to pre-
configure high speed telecommunication networks [4].
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Quantum cascade lasers are complex hetero-structures. Most of the properties of the
laser are defined by its growth sheet, i.e. the description of the different stacked layers: their
thickness, the nature of the material, the order etc. The hetero-structural design of the
laser constitutes the stacking properties i.e the different materials stacked together to form
the laser while the opto-electronic characteristics of the laser entails the laser performance
behaviour such as working temperature, power, frequency which is as a result of current
injection in the laser.

Information regarding the description of the quantum cascade laser structures and per-
formance is highly desired to give crucial insights for several purposes such as optimization
of scientific design processes/implementations. The quantum cascade laser properties of
interest to our study include: Working temperature, Optical Power, Lasing Frequency,
Material design(Hetero-structure) and the Barrier thickness. These properties are crucial
in evaluating the performance of the laser on various tasks. The quantum cascade laser
working temperature, power, and frequency properties consists of value and a unit. For
instance,“the quantum cascade laser lases at 9.7 THz, at a working temperature of 186
K with a maximum output power of 9 mW”. The material design consist of a combina-
tion of chemical material names, in some cases with digits together with forward slashes.
A sample statement containing this information is “We present two different terahertz
quantum cascade laser designs based on GaAs/Al0.3Ga0.7As heterostructures”. On the
other hand, the quantum cascade laser barrier thickness consists of the thickness of the
barriers in the hetero-structure. The property definition consist of the value(which in most
cases consist of a sequence of numbers and forward slashes/commas)and a unit. A sample
expression of this unit may be as follows: “The improved structure has layer sequence
31/93/14/73.4/23/155.4/11/110.2/14/84.7/20/155.4/17/110.1 Å”.

One of the ways to capture the quantum cascade laser design and performance in-
formation from scientific literature is by designing ontologies and knowledge bases from
the unstructured textual data. The main limitation of such textual data is their unstruc-
tured nature owing to the domain specific terminologies and different language styles by
the authors. Some of the quantum cascade laser properties such as the barrier thickness
poses difficulty in extraction due to the presence of special characters such as the forward
slash(/) and the comma(,). In some cases, the properties are expressed in different ways
such that there is need for contextualized rules to identify the property. The initial step of
achieving structured ontologies and knowledge bases of quantum cascade laser design and
performance properties is therefore implementing a text mining pipeline for extracting the
quantum cascade laser properties from scientific literature.

There has been advances in the field of Information Extraction to structure the un-
structured textual data in order to extract meaningful information from them. This has
been accelerated by the adoption of the TDM Exception, a policy framework that advo-
cates for the use of published resources for text and data mining purposes [5]. Examples
include the use of machine learning algorithms in accelerated materials discovery [6]. With
this breakthrough, there is enormous potential for applicability to other domains.

In this paper, we propose a text mining pipeline for mining the quantum cascade laser
properties based on an extension of the ChemDataExtractor pipeline, a chemistry aware
toolkit based on the CRF model [7]. We propose this as the first step in developing ontolo-
gies and knowledge bases for the quantum cascade laser domain. Our main contribution in
this paper constitutes proposed efficient qcl property mining rules with improved precision
and minimized number of correct records that are not extracted. This is achieved by defin-
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ing new property parsing rules in form of property parsers using the rule based grammar
approach [8]. We also extend the extraction capabilities by defining new property models
for the qcl properties to be used along with the defined rules.

The rest of the paper is organized as follows: we first review the related works in
Section 2, then we propose the workflow in the methodology in section 3, we present the
experimental and evaluation results in section 4, and finally we conclude in section 5.

2 Literature Review

Several works have been reported in the field of information retrieval in the materials
science domain. The methodologies used can be broadly categorized into machine learning
approaches and those that use a combination of machine learning and natural language
processing principles. One of the crucial tasks under IR in materials science is the Chemical
Name Entity Recognition(CNER).

CNER usually involves the identification of chemical and materials terms in the text. It
can also be used to extract properties, physical characteristics, and synthesis actions. Early
works on CNER focused on the on extraction of drugs and biochemical information [9,10].
Recently, CNER has gained alot of interest in the extraction of chemical and materials
terms. The methods used in the CNER vary from traditional rule-based and dictionary
look-up approaches to modern methodology built based on advanced machine learning(ML)
and NLP techniques [11,12].

Examples of publicly available toolkits for extracting material terms include: those using
rules and dictionaries-based approaches e.g LeadMine [13], ChemicalTagger [14], statistical
models e.g OSCAR4 [15] and predominantly, the CRF model e.g ChemDataExtractor [7],
ChemSpot [16], tmChem [17]. ChemDataExtractor has been extended/modified to extract
several material terms and properties: semi-conductor bandgaps [18] , thermo-electric ma-
terials [19], battery materials [20], refractive indices and dielectric constants [21], transi-
tion temperatures of magnetic materials [22] and an auto-populated ontology of material
sciences [23]. Machine Learning techniques have also been utilized in CNER to identify
chemical materials and their roles based on context information. Examples include bidi-
rectional LSTM models [24,25] and a combination of deep convolutional and recurrent
neural networks [26]. Others studies have also proposed mined datasets of inorganic mate-
rials synthesis recipes [27] and gold nanoparticle synthesis procedures, morphologies, and
size entities [28]. Pre-trained BERT models have also been utilized in the extraction of
battery materials [29] and for optical materials research [30].

Material science information has also been extracted from tables and figures. There has
been attempts to parse tables from the scientific literature using heuristics and machine
learning approaches [31]. Attempts have been reported on parsing article images , for
instance ImageDataExtractor tool that uses a combination of OCR and CNN to extract
the size and shape of the particles from microscopy images [32] and the Livermore SEM
Image Tools for electron microscopy images using Google Inception-V3 network [33].

As noted from the literature review, several works have been reported on the appli-
cations of machine learning and NLP to materials discovery. In this study, the interest
is more on “wafer fabrication” or hetero-structure properties, which is a critical step in
the quantum cascade lasers development. Despite the great advancements reported in the
literature, there is still a great potential for research in the materials science domain in
order to achieve structured information regarding the quantum cascade lasers. The existing
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methodologies cannot be readily applied to mining these structures and the correspond-
ing performance without modification/extension. Most of the natural language toolkits
perform well in chemical terms, but when generalized from chemistry to the wider materi-
als science, the grammar-based parsing rules used become less efficient. The BERT based
models also need a lot of training data which involves manual annotation of the various
properties by an expert. This may be cumbersome for large collections of articles. There
is therefore need to extend the parsing capabilities of these techniques in order to adapt
to the problem of mining the quantum cascade laser properties.

3 Methodology

In this section, we provide a detailed description of the workflow of the text mining pipeline
for mining the qcl properties. The pipeline is based on an extension of the ChemDataEx-
tractor, a chemical aware software toolkit [7]. We define new rules and make targeted
extensions in order to fit to our domain of interest. The steps are as follows:

3.1 Document Retrieval and Processing

The first step in the text mining workflow is to acquire the scientific articles documenting
the design of quantum cascade lasers. The study targets open access journals published by
AIP, OPTICA and IOP publishers. The papers are retrieved using the keyword “quantum
cascade lasers” and manually downloaded in the HTML format for further processing. The
downloaded documents are then fed into ChemDataExtractor which uses the bespoke to
process their information one document at a time. The downloaded HTML documents
have a hierarchical structure with semantic markup tags. An example of such tags is the
<head> tag which contains the metadata about the document such as title of the paper,
the doi, authors etc. These tags are utilized by ChemDataExtractor to identify the key
information about the papers such as the abstract, paragraphs, sentences etc. These files
are then converted into plain text using the “reader” package in ChemDataExtractor which
is then stored in the Document object of the toolkit for further processing.

3.2 Natural Language Processing

In this step, state-of-the-art Natural Language Processing techniques are applied to the
document text. These capabilities are provided by the ChemDataExtractor toolkit. The
techniques, which are tailored to the materials science domain include Sentence splitting,
Tokenization, Part-of-Speech Tagging and Chemical-Named Entity Recognition(CNER).
Sentence splitting, Tokenization and Part-of-Speech-Tagging were adopted from Chem-
DataExtractor without modification. The CNER rules are extended and adapted to the
quantum cascade laser domain as described in the information extraction section.

3.3 Information Extraction

The ChemDataExtractor toolkit provides three ways of extracting information from text.
These include:(i) Rule-based approach-which involves explicit crafting of statements that
utilize regular expressions patterns and POS tags, (ii) automatic parsing and (iii) the
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modified snowball algorithm that can be trained in a semi-supervised manner on docu-
ments dataset and probabistically used to extract information. In this paper, we adopt
an extended rule-based approach by defining new property models and grammar logic for
the qcl properties of interest. The property models are defined based on the user model
concept [22].

The user model concept in ChemDataExtractor consists of a collection of defined prop-
erty models for extracting different information. In general, a property model specifies the
information to be extracted and the extraction rules to be used in retrieving the infor-
mation. The information can be in form of physical quantities or chemical names. The
user model consists of three models i.e the quantity models, general base model and the
compound model.

The quantity model defines physical quantities such as time, electric charge, volume
and the compound model defines chemical names together with the corresponding chemical
name labels and roles. The general base model on the other hand contains user-defined
fields, such as words, regular expressions, or other models. Every quantity model has the
respective fields that will be populated upon data extraction from the document. The fields
include the value, units, error, the standardized value and the specifier used to extract the
data. For our text mining pipeline, we define five new property model to capture each of
the properties of interest.

The property models for the working temperature, lasing frequency, power and laser
thickness constitute quantity models while the hetero-structure model constitutes the com-
pound model as the hetero-structure consist of material names. The Working Temperature
property model inherits/nests the existing Temperature model in ChemDataExtractor.
This handles the unit standardization process for the extracted temperatures. This is also
the case for the OpticalPower model which inherits from the Power Model and the Het-
erostructure model which inherits from the Base model. In the quantum cascade laser
literature, power readings are expressed in milliwatts(mW). We include this as an addi-
tional unit in the Power model. For the Lasing Frequency property model and the Barrier
thickness, we define the Frequency model and the Barrier thickness model to handle the
units. The fields to be populated from are also defined from scratch.

For all the property models, one of the important attributes is the parser. A property
model can have one or more parsers. The parsers includes the defined grammar rules(logic)
for relationship extraction. More information on parsers is given in relationship extraction
section.

Phrase Parsing and Relationship Extraction: This is a key step that entails the
extraction of suitable relationships. The relationship can be in the form of (i) a specifier
expression/keyword and a chemical name or (ii) a specifier expression, a value and a
unit. These relations are the ones that populate the specific records of the various qcl
properties. ChemDataExtractor makes use of a hybrid approach to Chemical Named Entity
Recognition (CNER); machine-learnt, dictionary-based and rule-based methods are all
used.

The default parser of ChemDataExtractor , AutoSentenceParser, uses multiple special-
ized grammar rules that have been designed to extract more specific types of chemical
information. In order to use the autosentence parser, a specifier expression is defined to
capture the property relationship extraction rule. The rules are formed by combining the
different keywords(table 1) and parser elements (table 2) in form of tokens.
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Table 1. Quantum Cascade Laser Properties and the Keywords

Target Property Keyword/Sentence Unit
Working Temperature heat-sink, Tmax, Maximum Temperature, Working Temperature K
Optical Power Optical power, Output Power, Peak Power W
Hetero-structure Growth, Grown in, Wafer, MBE, Laser-structure N/A
(Material)
Frequency Laser Frequency, Lasing at, output Frequency THz
Barrier Thickness Layer thicknesses Å

Table 2. The Parser Elements

Elements Description Elements Description
R(Regex) Match text with regular expression T (Tag) Match tags
W(Word) Match case-sensitive token text I(IWord) Match case-insensitive token text
Any Match any single token H(Hide) Ignore the matched tokens
Not Match only if not followed by some text FollowedBy Match only if followed by some text
ZeroOrMore Match zero or more of the expressions OneOrMore Match one or more of the expressions
Optional Match if it exists SkipTo Skips to the next occurrence of text

The keywords adopted for each of the properties shown in Table 1 were settled upon
based on consultation and advise by experts in the quantum cascade laser domain.

The default Autosentence parser however fails and under performes on some properties
due to the high level of ambiguity and implicit knowledge carried within natural language.
This has an implication on the precision of the extraction process and also leads to various
correct records not being extracted. For instance, where several temperatures are mentioned
in an article, there is need to define more precise rules for extracting the temperature of
interest.

The Autosentence parser also requires a chemical compound in order to merge a com-
plete record for extraction. This causes it to fail in cases where properties are mentioned
without an associated chemical compound as this is the case with most of the qcl prop-
erties. The requirement to display a compound also leads to many false positives as the
many records with characters in form of compounds are extracted.

Some of the properties such as the barrier/layer sequence have special characters such as
the forward slash (/). A sample property of this is as follows: “42/67.8/23/96/34/73/40/206.2
nm”. In some cases, the unit is also is put in brackets immediately after the value. Experi-
mental analysis indicates failure by the AutoSentence parser in extracting these properties
due to the unique combination of the special characters. In cases where the unit is men-
tioned after the property, the parser only extracts the last digits close to the unit and the
unit(i.e 206.2 nm in the example property given).

In order to extract the material design (hetero-structure), working temperature, the
lasing frequency, barrier thickness and the optical power, we define five efficient grammar
parsing rules for the respective defined property models for these properties in form of
property parsers. The parsers capture the phrase extraction rules expressed in form of
regular expressions. These expressions are based on the selected keywords describing the
various qcl parameters. The grammar rules of the parsers are defined based on a set of
parser elements indicated in table 2 as defined in Chemdataextractor.

A parser typically consist of a prefix, value and the unit for the properties capturing
physical quantities. The prefix contains the combined tokens of the various keywords used
in identifying a property, the value contains the rules(in form of regular expressions) for
matching the property value and the unit captures the units for the property.
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For the qcl material parser, we define the ‘heterostructure’ as the main field to capture
the value of the material design. We also only have the prefix(key phrases contextualizing
the qcl material property) and the material attributes for the material design parser. The
material consists of a series of regular expressions to match the qcl material names. The
prefix and the material properties are combined to populate a complete heterostructure
record.

Figure 1 shows a sample material design(hetero-structure) tree structure(upper) and
extracted record output(lower) for a sample sentence from a journal paper:“We present
two different terahertz quantum cascade laser designs based on GaAs/Al0.3Ga0.7As het-
erostructures that feature a depopulation mechanism of two longitudinal-optical phonon
scattering events.”.

Fig. 1. Sample Extracted Material Design(Heterostructure) Record.

For the barrier/layer thickness property parser, the rules are defined in such a way
that the records are extracted with the special characters matched. The defined parsers
interpret the manually defined grammar rules into an xpath parse tree from which the
data model is constructed. The different parser elements, are combined with the “+” or
“—” operators making the grammar rule flexible for update. The nested grammatical rules
constitutes the specifier expression. The defined property rules are run for each document
containing the qcl properties of interest. Algorithm 1 shows the workflow of the pipeline
for extracting the qcl properties.

Algorithm 1 Mining the QCL properties

Input: D-Union{Ei}, input document object.
Output: : R-Union{Ri}

1 S ← Union{Si}/* Prefix for the various keywords describing qcl properties */

2 M ← PropertyModel/* specifies the fields to be captured for a particular

property. */

3 P ← Parser /* grammar logic. */

4 Set D.model←M and parser ← P /* Defining the parser and property model. */

5 for each document element Ei in D do
6 scan(Ts) if T i← Si ⊆ S then
7 match Ri.
8 else
9 skip to the next Ei and repeat step 6 and 7.

10 end

11 end
12 repeat line 5-11 until all Ris are merged.
13 return record R with the matched property relationship(s).
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We consider a document object D, capturing the various qcl properties of interest. D
contains different document elements E1. . . En such as the title, paragraphs, sentences etc.
A defined prefix S captures the possible expressions Si for a particular property. The expres-
sions consists of keywords/a combination of the keywords used in context of a particular
qcl property of interest. R consists of set of the property records which may consist of sev-
eral of the individual record elements Ri. Ri captures the contextual property name, value
and units. M and P consists of the defined property models and the parsers respectively.
Before scanning though the document tokens, the property models and parsers have to be
specified as shown in step 3 of the algorithm. The subsequent steps now involves searching
for the matching token expressions for the prefix, property values, units and names which
are merged into complete records.

4 Results and Discussions

4.1 Evaluation Metrics

In order to evaluate the performance of the proposed pipeline, we use the precision and
recall as the evaluation metrics. In this context, the precision is the fraction of correct
(relevant) records among all extracted records and the recall is the fraction of successfully
extracted records among all correct (relevant) records in the articles. The word “correct”
implies that the relationship of that record can be identified by a human when reading the
corresponding sentence. In contrast, an “incorrect” (false) record suggests that a human
expert cannot deduce the relationship of that record from the corresponding sentence. The
metrics are determined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where TP is the true positive count (the number of correct records extracted), FP is the
false positive count (the number incorrect records extracted), and FN is the false negative
count (the number of correct records that are not extracted). The metrics are used to
assess the chances of the pipeline leaving correct records unextracted and the chances of
getting only the correct records in a given number of records.

4.2 Discussions

We use a sample of 43 open access articles as the evaluation dataset. The articles are
randomly sampled from AIP, OPTICA and IOP publishers using the keyword “terahertz
quantum cascade lasers”. We restrict the sample to the articles describing proposed qcl
designs and the corresponding performance characteristics. The articles consist of a total of
192 records manually extracted. The distribution of records is as follows: Optical power(33),
Working Temperature (32), Lasing Frequency(44), Hetero-structure(66) and Barrier thick-
ness 15 records. The records are manually extracted by an expert in quantum cascade
lasers. The records are compared with those extracted by the pipeline in order to come up
with the evaluation metrics. We compare the performance of our defined parsers and the
default autosentence parser in chemdataextractor except for the sequence layer thickness
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property. The performance evaluation of the pipeline on the sequence layer thickness is
done separately as the autosentence is not used in extracting this property. This is owed
to the inability of the autosentence parser in extracting these records. A correct extracted
record is one that can be identified to correspond to the one manually extracted by an
expert. Table 3 shows the evaluation metrics for the default autosentence parser and table
4 shows the performance evaluation metrics for our defined parsers.

Table 3. Performance Evaluation Metrics for the Default Autosentence Parser.

Property Records Extracted TP FP FN Precision(%) Recall(%)

Optical Power 16 11 5 22 68.75 33.33
Working Temperature 128 31 97 1 24.22 91.17
Lasing Frequency 16 10 6 34 62.50 22.73
Hetero-structure 140 50 90 16 35.71 75.76
Total 300 102 198 73 47.80 55.75

Table 4. Performance Evaluation Metrics for the Defined Parsers.

Property Records Extracted TP FP FN Precision(%) Recall(%)

Optical Power 25 24 3 9 96.00 72.73
Working Temperature 32 25 7 7 78.13 78.13
Lasing Frequency 37 29 8 15 78.34 65.91
Hetero-structure 60 59 1 7 98.33 89.39
Total 154 137 19 38 87.70 76.55

The autosentence parser achieves a precision of 68.75% and recall of 33.33% for the
optical power property. This implies a higher number of correct records that are not ex-
tracted. Most the unextracted records are expressed in different contexts with varying
keywords hence posing a chellenge to the default parser. The defined parser achieves a
higher precision of 96.00% and has a higher recall of 72.73% indicating a lesser number
of correct records that are not extracted. This is as indicated by the false negative(FN)
values in tables 3 and 4. The defined rules take into consideration the various contexts
in which the power values are expressed.

For the working temperature, the autosentence parser has a higher false positive rate
hence resulting to a lower precision of 24.22%. One the other hand, the working temper-
ature parser achieves minimal incorrect and unextracted records hence attaining a higher
precision and recall of 78.13% and 78.13% respectively. This clearly indicates that as more
temperatures are mentioned in literature, there is increased difficulty in retrieving the
temperature of interest. The autosentence parser extracts most of the temperatures men-
tioned including the working temperature but has increased number of incorrect records
extracted.

The default parser results to a recall of 22.73% for the lasing frequency. The defined
parser on the other hand has a recall of 65.91% . The defined logic has therefore higher
chances of extracting the correct records due to the specialized grammar rules. This is also
pointed out by the higher precision of 78.34% for the defined parser. The lasing frequency
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property is however expressed in many forms. This needs a wider definition of the rules
hence the lower recall for both the autosentence parser and the defined parser. For the
hetero-structure/material property, the default autosentence parser exhibits a higher false
positive rate hence resulting to a precision of 35.71% and a recall of 75.76%. The higher
false positive rate is attributed to the records having compound like names but are not
necessarily qcl material names. The defined parser on the other hand achieves a precision
of 98.33% and recall of 89.39%. The higher precision in attributed to the more specialized
rule combination for the material design.

Overally, the default autosentence parser achieves a precision of 47.80% and a recall
of 55.75%. The defined parsers on the other hand achieves a precision of 87.70% and a
recall of 76.55%. This indicates a better performance of the defined parsers on the power,
frequency, working temperature and the hetero-structure properties as shown in table 3.
For the barrier thickness grammar logic, 2 records are left unextracted. The unextracted
records consists of a combination of values with units in different positions and not after the
reading. This results to a precision of 72.22% and a recall of 86.67%. The performance of
the defined parsing rules in extracting the qcl barrier thickness indicates a great potential
of their applicability on this property as they constitute the initial attempt to extract such
properties with special characters.

5 Conclusion

In this paper, we propose a text mining pipeline for mining the qcl hetero-structure and the
opto-electronic properties based on efficient rule based grammar logic. This is achieved by
defining new parsing rules for the properties of interest in order to minimize the number of
incorrect records extracted and the number of correct records not extracted. The rules are
also able to match readings with special characters such as the qcl barrier thickness. Exper-
imental analysis of comparative performance indicates better performance by the proposed
rules. The work is however limited on open access articles for the specified publishers and
more articles will be needed in future for extensive experimentation. The grammar logic
is also limited to descriptions where the unit immediately follows the readings. We aim
to extend this in future work to capture situations where the barrier thickness values are
separated by commas and no unit mentioned after the value. We also aim to explore the
integration of the named entity recognition with ontology population techniques in order
to generate ontologies for the extracted properties.
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