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Abstract
We propose to demonstrate InteGraal, a tool for reasoning
over heterogeneous and federated data sources. InteGraal
is a highly modular tool constituted by two main compo-
nents. The first is the data-integration layer which allows
the users to build a federated factbase over a collection of
sources. The second is the automated reasoning layer, which
provides powerful means for the declarative exploitation of
data through the expressive formalism of existential rules.
This demonstration proposes to showcase the use of the tool
in use-cases of data exploitation as well as to present its
architecture and its dedicated query answering mechanisms.

1 The Data-Variety Issue and
Knowledge-Based Data-Management

Data is today generated at vertiginous rates and across many
different application domains. This richness opens for many
opportunities and organizations are constantly seeking for
new insights from their data to support their next decision.
Yet, the multiplication of models, languages, platforms, as
well as the number of independent sources which provide
data, makes its exploitation increasingly challenging. Con-
cretely, when dealing with data which is heterogeneous (i.e.,
diverse) and federated (i.e., crosslinked), basic tasks for feed-
ing analytic tools such as running explorative queries or
building a training set become the bottleneck as users are
often unable to formulate the “right” queries to the sources.

Example 1. Consider the scenario depicted by Figure 1 (blue
part). A data-analyst wants to retrieve the list of clients of a
given company starting from two heterogeneous sources. The
first is a relational database which contains purchases made by
clients. The second is a JSON database which contains the de-
scription of products that have been sold. In this case, to retrieve
the desired information, a data-analyst will typically have to
(𝑖) formulate and issue SQL and JSON queriesmanually to two
separated systems (which requires to first understand both data
models) (𝑖𝑖) understand and possibly enrich the data coming
from the sources by relying on expert knowledge and then (𝑖𝑖𝑖)
write an external script to cross the resulting data.

A principled solution to this issue is to provide users a
unified high-level vision of data, which simplifies the writing
of queries and frees the users from mastering the variability
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Figure 1. Querying Heterogeneous and Federated Data

of data by hiding the specificities of each data source behind
a common vocabulary. The unification of data is achieved
through a data-integration system, where heterogeneous
data in the sources is transformed and linked to a global in-
tegration schema that users can query directly. To cope with
the heterogeneity, however, all data must first be brought to
a common model; this is achieved via the definition of views.

In this work, we consider data-integration systems where
the notion of global integration schema is replaced by a
more sophisticated knowledge layer, which not only acts as
a unifying layer but also enables reasoning. More specifically,
instead of resulting in a (possibly virtual) global database, the
integration results in a knowledge base. A knowledge base is
constituted of a set of facts (called factbase) made of factual
knowledge on the application-domain (here, resulting from
the integration of heterogeneous sources) as well as a set
of rules (called a rulebase) containing universal knowledge
on the application-domain. Rules are a powerful declarative
paradigm for representing knowledge and express recursive
queries which can serve to many tasks in data processing
and governance. More precisely, we are focusing on knowl-
edge bases built around sets of existential rules [8, 14] (a.k.a.
Datalog± and Tuple-Generating-Dependencies). The interest
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in Existential rules stems from the fact that they are ubiq-
uitous in many domains because they enable to implement
fundamental mechanisms needed to process data and knowl-
edge. An essential feature of these rules is that they allow to
create entities that may not appear in the factbase, hence to
reason on open domains (a feature also called value invention
[21], see e.g. Rule 𝑟1 in Example 1). As a matter of fact, exis-
tential rules can be used as a uniform language to express
relational GLAV mappings [20, 25] and expressive data de-
pendencies [9], as well as domain knowledge in the form of
semantic constraints and ontologies [28]. In particular, they
generalize many description logics used to reason on data,
a.k.a. Horn Description-Logics [28]. Finally, they can be used
to express rich recursive queries and generalize the Datalog
language [1]. Overall, the combined use of existential rules
with relational views of heterogeneous data provides great
expressivity and integration power.

Example 1 (Continued). Figure 1 illustrates the use of views
and rules to exploit heterogeneous and federated data (red
part). View definitions𝑚1 and𝑚2 export informations related
to purchases and products. Both issue a native query, either
on the SQL or JSON source. The native query results then in-
stantiate the ternary predicates buy and product. Rules 𝑟1 and
𝑟2 provide high-level relations that the users can easily query.
Rule 𝑟1 defines a high-level concept of sale through a reifi-
cation design pattern which groups all relevant information
coming from buy and product (notably, its manufacturer) by
using an existentially quantified variable 𝑆 (which then repre-
sents a sale in itself). On top of this, Rule 𝑟2 defines the relation
clientOf which is instantiated whenever a client buys a prod-
uct of a certain manufacturer. Overall, the combined use of
𝑚1,𝑚2, 𝑟1, 𝑟2 allows the system to provide answers to the user
query retrieving the list of clients of the given company.

1.1 Related Work
The combined use of data integration and knowledge bases
leads to the notion of Knowledge-based Data-Management
(KBDM) system that we shall define in the next section. These
kinds of systems are at the crossroads of several lines of work:
federated query answering (FQA), ontology-based data-access
(OBDA), and ontology-mediated query answering (OMQA).
Federated Query Answering is the problem of providing
users with the ability of querying multiple heterogeneous
data sources (database systems, structured files, web services)
under a uniform data model and query language by relying
on virtualization techniques which leaves the data at the
level of sources. This problem has been studied in different
contexts and we refer the reader to [18] for a recent survey
on the topic. Ontology-based data-access (OBDA) is a data-
integration paradigm where the global integration schema is
an ontology [28]. This paradigm distinguishes itself for the
use of ontologies supporting virtualization, notably DL-Lite
[16]. Ontology-mediated query answering is the problem of

answering queries in the presence of a logical theory mod-
elling domain knowledge [11]. The problem has been vastly
studied for two families of languages: from one side De-
scription Logics [3] and from the other side existential rules
[6, 14]. While many implementations exist, they all focus
either only on FQA (e.g., [2, 22]), or OBDA [15] or OMQA
[5, 17, 26]. The only system we are aware of which combines
FQA and OBDA is Obi-Wan [13]. Obi-Wan considers how-
ever RDF as the data-integration model and RDF-Schema
ontologies (which express very basic knowledge on classes
and properties) on top of the Tatooine mediator [12]. More
generally, the combination of data federation and reasoning
is still an open field of research, as illustrated by the recent
work of [19].

1.2 Novelty and Contributions.
This work proposes to demonstrate InteGraal: a Java tool for
integrating and querying heterogeneous and federated data
through existential rules knowledge-bases. InteGraal is an
open source tool available at (gitlab.inria.fr/rules/integraal).
The distinctive elements of the tool are the following.

1. Framework and Languages. InteGraal is the only
system considering a framework for integrating and
reasoning on data which englobes that of FQA, OBDA,
and OMQA. Also, it provides support for a very ex-
pressive rule language, notably existential rules.

2. Architecture. InteGraal has a generic and extensible
architecture. Instead of fixing a single query answer-
ing approach, it hosts multiple algorithmic strategies
which can be combined in a modular way to cover a
larger landscape of applicative scenarios.

InteGraal is a major revision of the Graal tool for reasoning
with existential rules [5]. With respect to its predecessor
InteGraal features a completely refactored core model and
reasoning algorithms as well as data-integration facilities
which were not present in Graal.

The remainder of the paper is dedicated to the formal
definition of KBDM systems in Section 2 as well as a presen-
tation of the architecture and features of InteGraal in Section
3. Section 4 outlines the demonstrating scenario.

2 Answering Queries in Knowledge-Based
Data-Management Systems

In this section, we formally define KBDM systems as well as
the semantics of query answering, which is the ultimate task
for InteGraal. As already said, in a KBDM system, heteroge-
neous and federated data is integrated through a knowledge
base (KB) that users can query. A KB is typically composed
by a factbase (factual knowledge) and a rulebase (general
knowledge, including ontologies). As such, the classic no-
tion of KB is lifted up to account for factbases that are not
directly given but defined from the federation of heteroge-
neous databases, thereby leading that of a KBDM system.

https://gitlab.inria.fr/rules/integraal
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Formally, a KBDM system is a pair 𝐾 = (F ,R) where F is a
federated factbase and R is a set of existential rules as follows:

• A federated factbase is a pair F = (𝑆,𝑀) constitued
by a set of heterogeneous data sources 𝑆 = {𝑠1, . . . , 𝑠𝑘 }
and a set of relational view-definitions𝑀 transforming
(possibly not relational) data into a relational signa-
ture exploitable by rules. A view definition𝑚 ∈ 𝑀 for
a source 𝑠 ∈ 𝑆 is of the form

𝑞native (𝑥) { 𝑃 (𝑥)
where 𝑞native (𝑥) is a query (or more generally, a func-
tion) on the native language1 of source 𝑠 . The evalua-
tion of the native query yields a set of tuples obtained
by affecting its answer variables 𝑥 to constant values.
Then, every answer tuple t is exported as a logical
atom of the form 𝑃 (t), where 𝑃 is a predicate seen as
a view name.

• A set of existential rules R holds general knowledge
on the domain of data, expressed as a logical theory.
An existential rule is a first-order logic formula of the
form

∀𝑥𝑦.𝜙 (𝑥,𝑦) → ∃𝑧.𝜓 (𝑥, 𝑧)
where 𝜙 (𝑥,𝑦) and 𝜓 (𝑥, 𝑧) are positive function-free
conjunctions of atoms, called the body and head of
the rule, respectively. All variables in the rule are uni-
versally quantified except those in 𝑧 which are exis-
tentially quantified. Next, we simplify the notation by
omitting universal quantifiers.

Abusing notation, we shall denote by F both the federated
factbase and the resulting data federation instance, that is,
the set of all 𝑃 (t), seen as a logical conjunction. Note that
this federated data instance F can bematerialized or virtual;
this is discussed in Section 3.1.
The view definitions we consider can be assimilated to

GAV (global-as-view)mappings as studied in data integration
[25], with the important addition of not being restricted to a
relational source. Then, our formalism naturally allows one
to reach the expressivity of more powerful GLAV (global-
local-as-view) mappings. This is achieved by composing a
view definition 𝑞native (𝑥) { 𝑃 (𝑥) with an existential rule
𝑃 (𝑥) → ∃𝑧.𝜓 (𝑥 ′, 𝑧) (and 𝑥 ′ ⊆ 𝑥). In this vision, a GLAV
mapping is decomposed into low-level (view definition) and
high-level (existential rule) assertions.
We are finally ready to define query answering. Simply

put, answers to queries are logically entailed from the KB as-
sociated with the KBDM system. More specifically, a Boolean
first-order query 𝑄 answers true on a KBDM system 𝐾 =

(F ,R) when F ,R |= 𝑄 , where |= denotes standard logic
entailment; and a tuple of constants t is an answer to a query
𝑄 (𝑥), with t = |𝑥 |, if F ,R |= 𝑄 [𝑥/t], where 𝑄 [𝑥/t] is the
Boolean query obtained from𝑄 by substituting each variable
in 𝑥 by the corresponding constant in t.
1For instance SQL, SPARQL, NoSQL, Web API, etc.

Virtual Federated 
Factbase

Source

Existential Rules
Rewriting

Views
Mediation

Materialized 
Federated Factbase

Rewriting
Saturation

Warehousing

Figure 2. Data-Integration and Reasoning Strategies

3 InteGraal’s Architecture and Algorithms
for Knowledge-Based Data-Management

The landscape of applicative scenarios for KBDM system
is vast. From one side, because of the types of data sources
users may want to integrate. From the other side, because of
the type of data processing and governance tasks aimed by
users. This is a significant challenge, which makes that it is
unlikely for a single approach to be able to tackle all cases. In
light of this, InteGraal has been designed with genericity in
mind thereby making the tool able to adapt to very different
applicative scenarios. The term genericity here refers to two
main aspects: data heterogeneity and reasoning algorithms.

Data Heterogeneity. InteGraal provides support for very
heterogeneous data through a generic integration module
which allows users to integrate multiple type of sources. Cur-
rently, this includes RDBMS (PostgreSQL, MySQL, HSQLDB),
Triplestores (Virtuoso, RDF4J), Document-stores (MongoDB),
and Web APIs. Most importantly, however, the tool can be
extended so as to easily add novel types of data sources seam-
lessly with respect to the query answering algorithms. This
module serves at establishing relational views over the het-
erogeneous sources as previously outlined and constitutes
the first brick for handling heterogeneous and federated data.

Reasoning Algorithms. InteGraal provides a relevant
collection of algorithmic strategies for storing, integrating,
querying, and reasoning on data. All of these algorithms pro-
vide concrete implementations for high-level services which
are offered by the tool (e.g., store, query, reason). The generic-
ity of the tool also makes extending and calling new algorith-
mic strategies easy. Overall, the architecture modularity and
extensibility paves the way to a modular combination of al-
gorithmic solutions which best fit the considered applicative
scenario.

3.1 Algorithmic Strategies
Answering queries over KBDM systems requires to solve two
problems at once: data-integration (to account for views) and
automated-reasoning (to account for rules). Unfortunately,
the large variety of situations that can arise implies that it is
impossible to settle on a one-rules-them-all approach.
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Figure 3. InteGraal Modules

Data-integration. The heterogeneity of data concerns
many aspects. Beside the datamodel employed by the sources,
data can be static or frequently updated as well as volumi-
nous or of moderate size. Furthermore, sources may consist
of platforms offering efficient query facilities as well as web
services introducing undesirable latency. Depending on the
data sources to integrate, InteGraal provides the possibility
to choose between materializing the data resulting from a
source in the federation or to keep this virtual. Materializing
data follows the warehousing approach which aims at cen-
tralizing data into a single database. The net advantage of
this method is that it gives control over the factbase storage
and hence the query answering facilities. The approach can
however be inconvenient when data is frequently updated
or more efficiently queried via the source API. In this case, it
may be preferable to keep the data virtual thereby following
the mediation approach. With this method, data is left at the
level of sources and, at query time, an access plan is built by
using the native queries in the view definitions.

In a nutshell, InteGraal supports both the mediation and the
warehousing approach for handling views and enables the use
of proper combinations of these approaches.

Automated Reasoning. The dynamicity and the volume
of data also play an important role when choosing reason-
ing algorithms. Two main reasoning approaches for query
answering are saturation (also called forward-chaining) and
query rewriting (also called backward-chaining).
Saturation consists at extending the factbase with the in-

ferences produced by rules. Typically, saturation may be
chosen when the database does not change. Once the satu-
ration has been computed, the user queries can be directly
evaluated on the saturated factbase. However, saturation is
not always relevant: the size of the obtained database may be
prohibitive, maintenance can be costly under updates, and
finally the method applies only to federated factbases that
are materialized.
Query rewriting, in contrast, consists at propagating the

rules into the query thereby leaving the data untouched.
With this, a user query is rewritten into a union of queries.
The main inconvenient with this approach is that it can pro-
duce very large rewriting sets but it still remain interesting
when this compensates for computing and maintaining a

saturation. Because of its virtual nature, query rewriting can
be used both in combination with warehousing and media-
tion approaches. In the first case, the rewriting set of queries
is evaluated on the materialized federated factbase. In the
second case, a rewriting is further translated into an access
plan using native queries targeting the sources.
In a nutshell, InteGraal provides a large set of saturation

and rewriting techniques for existential rules, and enables the
use of proper combinations of these approaches.

3.2 Main Modules
InteGraal is an open source project consisting of 25K lines of
Java code. Its main modules are the following (see Figure 3).

• model. This module contains all objects needed for
representing KBDM systems and notably the knowl-
edge base.

• views. This module provides facilities to the creation
of relational views (or as we said, low level mappings)
over heterogeneous data. As described before, for now,
the tool supports views over an SQL, SPARQL, Mon-
goDB and Web APIs as datasources.

• storage. This module provides facilities for storing
locallymaterialized knowledge bases. Note that it com-
plements the module presented before, which focus
on querying data which sits in an autonomous system.
More precisely it allows one to choose between sev-
eral types of storage facilities for sets of logical atoms
[7]. This includes a native InteGraal in-memory im-
plementation of a graph database, as well as a local
RDBMs or a local Triplestore system.

• query-evaluation. The module provides support for
evaluating a conjunctive query over a federated fact-
base. InteGraal provides two alternative strategies for
this task. The first is through a general backtrack algo-
rithm; this can be used to query any federated factbase.
The second is through a bridge with the Tatooine me-
diator [12] which is viable only for views that are
supported by Tatooine (SQL, Triplestore, MongoDB).

• saturation. This module provide facilities for sat-
uration based reasoning. It offers parametrizable al-
gorithm allowing one to deploy different variants of
the known chase algorithm, notably restricted, skolem
and core chases [10]. Each of them offers a different
tradeoffs between complexity and termination (see
[27] for some details on these tradeoffs).

• rewriting. This module provide facilities for rewrit-
ing based reasoning. It offers a general algorithm for
query rewriting as well as an optimized algorithm
relying on rule compilation [23].

• static-analysis. This module provides tools for an-
alyzing the KBDM system and pointing to terminating
reasoning strategies [24].
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• i/o. This module provides support for import and
export of data from textual formats. For now the tool
provides support for DLGP [4], RDF and CSV.

4 Demonstration Scenario
During the demonstration, we will show how to use our tool
for two types of tasks. First, we focus on the construction of
a KBDM system. More precisely, this includes the definition
of views and rules for integrating and exploiting data. We
will then look at the reasoning tasks and show how, in the
presence of rules, the queries formulated by users can be
addressed by saturation, query rewriting, as well as proper
combinations of these techniques. We will in particular zoom
onmediation techniques and show how queries are evaluated
over federated databases by using the different approaches
provided by our tool. The overall demonstration will outline
an end-to-end process for the exploitation of heterogeneous
and federated data. We will focus on data-integration scenar-
ios inspired from use-cases stemming from agronomy where
views and rules are used to support the creation of training
sets at the support of machine learning tasks. These include
the exploitation and reasoning on relational, RDF, JSON, and
Web API sources. Details on our tool and use-cases will be
available at gitlab.inria.fr/rules/integraal-examples.
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