Olivier Rodriguez
email: olivier.rodriguez@inria.fr

Federico Ulliana
email: federico.ulliana@inria.fr

Marie-Laure Mugnier
email: marie-laure.mugnier@inria.fr

Data trees, typically encoded in JSON, are ubiquitous in data-driven applications. This ubiquity makes urgent the development of novel techniques for querying heterogeneous JSON data in a flexible manner. We propose a rule language for JSON, called constrained tree-rules, whose purpose is to provide a high-level unified view of heterogeneous JSON data and infer implicit information. As reasoning with constrained tree-rules is undecidable, we identify a relevant subset featuring tractable query answering, for which we design an automata-based query rewriting algorithm. Our approach consists of leveraging NoSQL document stores by means of a novel instance-aware query-rewriting technique. We present an extensive experimental analysis on large collections of several million JSON records. Our results show the importance of instance-aware rewriting as well as the efficiency and scalability of our approach.

INTRODUCTION

Rule-based languages have been studied by the database community for more than four decades because of their importance in processing enterprise data and knowledge [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF]. In the recent years, companies like LogicBlox and Relational-AI commercialized fullfledged solutions for rule-based data processing and explainable AI [START_REF] Aref | Design and Implementation of the LogicBlox System[END_REF][START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF]. At the same time, companies like Linkedin, Google, Facebook, and Samsung, among others, developed their own rule engines for reasoning on data [START_REF] Chin | Yedalog: Exploring Knowledge at Scale[END_REF][START_REF] Walaa Eldin Moustafa | Datalography: Scaling datalog graph analytics on graph processing systems[END_REF][START_REF] Tsamoura | Materializing knowledge bases via trigger graphs[END_REF]. The interest in such formalisms comes from declarativity and expressivity, which make rules a universal form of knowledge suitable for many tasks such as data-integration [START_REF] Fagin | Data exchange: semantics and query answering[END_REF], recursive queries [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF], ontologies and semantic constraints [START_REF] Calì | A general Datalogbased framework for tractable query answering over ontologies[END_REF], data quality and data preparation for feeding machine learning and analytic tools [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF][START_REF] Geerts | That's All Folks! Llunatic Goes Open Source[END_REF].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF] The variety of data that can be handled by rule languages led to the design of solutions for reasoning on knowledge graphs and hypergraphs [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF][START_REF] Carral | VLog: A Rule Engine for Knowledge Graphs[END_REF][START_REF] Nenov | RDFox: A highly-scalable RDF store[END_REF]. Nevertheless, in many practical cases, data exhibits a simpler structure. There is a sheer amount of semistructured data held by transactional systems, data warehouses, and data lakes, which takes the form of data trees. Today, this data is typically serialized as JSON. Beside this, data trees also permeate the whole Web, where JSON is exchanged at a massive rate. As a bottom line, JSON trees are ubiquitous in data-oriented applications, hence among the most practically relevant formats today. This ubiquity makes urgent the development of novel techniques for querying heterogeneous JSON data in a flexible manner.

Towards this aim, we study a rule language for JSON suitable to: (1) act as a mediating level to integrate heterogeneous JSON data; (2) allow one to enrich the querying vocabulary, hence to adapt it to specific use-cases and free the end-users from mastering the complexity and irregularity of data; (3) be equipped with reasoning capabilities, i.e., be able to infer information not explicitly stored in the data thereby bringing novel and pertinent answers to the user queries. In the quest for such language, a crucial requirement is that it must enable efficient and scalable query answering techniques. Our new approach is to use NoSQL document stores for query-answering over data-trees together with instance-aware query-rewriting techniques to build a scalable and efficient end-to-end framework for reasoning on JSON databases.

Example 1.1. Figure 1 shows three JSON trees (pictured in black solid lines) 𝑇 1 , 𝑇 2 , 𝑇 3 holding GitHub data from the public archive [START_REF]GitHub (GH) Archive[END_REF]. This collection built for data analysis contains 17 types of events stemming from user actions. Data is complex and irregular. For a data-scientist willing to exploit the archive, tasks like 𝑖) running short explorative queries or 𝑖𝑖) extracting a training-set for machine learning algorithms can both be extremely time consuming, because of the time required to formulate the "right" queries to the data. To illustrate, a simple information such as the name (login) of a user can appear within different JSON keys (e.g., author for commits, actor for push, user for issues, and more) and within more than 60 different paths in the trees (e.g., actor.login, payload.commits, payload.issue, etc). Let us consider the query 𝑞, which concerns the activity of Linus Torvalds (torvalds). It retrieves the id of the events where the user participated, through the answer variable x. This query is empty on all trees, as it has no matches. Indeed, to query the collection, one must first learn the irregular JSON structure. In contrast, rules 𝑟 1 -𝑟 6 can be added (on benefit of all end-users) on top of data thereby providing a unified high-level vision of the JSON records. Rules 𝑟 4 -𝑟 6 introduce the high-level notion of event from specific types of events (push, commit, issues), which is handy for queries. Rules 𝑟 1 -𝑟 3 abstract on the structure of data to define high-level notions of the same types of events, including the id and the user involved. Altogether, the rules enable implicit inferences (pictured as red dashed edges and nodes) which provide answers to 𝑞 from 𝑇 1 and 𝑇 3 without requiring users to master the whole variability of data. Note that, as pictured, these are tree rules.

The left-hand-side (the body) encodes a tree structure to match, while the right-hand-side (the head) encodes the inferences. Nodes shared between the body and the head are linked by dotted lines.

Nodes that belong to the head only (in red), called existential nodes, extend the tree by introducing fresh nodes; they are necessary to restructure data. Further, as we shall see later, rules can be recursive.

As already said, querying heterogeneous JSON trees in a flexible manner is critical for many data processing and governance tasks. These include scenarios where one-of operations are executed, e.g., the preparation and extraction of training-sets from heterogeneous data [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF][START_REF] Geerts | That's All Folks! Llunatic Goes Open Source[END_REF]. These include scenarios where consecutive queries are run and users expect online answers, e.g., in goal-driven explorative queries [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF][START_REF] Benedikt | Goal-Driven Query Answering for Existential Rules With Equality[END_REF][START_REF] Tuncay | More efficient datalog queries: subsumptive tabling beats magic sets[END_REF]. In both cases, the solution is to use reasoning algorithms based on materialization and query-rewriting techniques [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF][START_REF] Bry | Foundations of Rule-Based Query Answering[END_REF]. These are different approaches complementing each other, for both theoretical and practical concerns [START_REF] Alhazmi | ForBackBench: A Benchmark for Chasing vs. Query-Rewriting[END_REF][START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF][START_REF] Goasdoué | Efficient query answering against dynamic RDF databases[END_REF]. First, each can handle only certain rule fragments; this, regardless of the applicative scenarios. Indeed, both suffer from non-termination issues for languages such as Datalog ± (a.k.a. existential rules or Tuple-Generating-Dependencies) [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Beeri | A Proof Procedure for Data Dependencies[END_REF][START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF]. This matters here, as tree rules like those of Example 1.1 are related to these formalisms. Second, assuming termination, every method best fits certain applicative scenarios and hardware constraints.

Materialization consists at extending the database with the inferences produced by rules, as illustrated by Figure 1. In-memory materialization is regarded as the most effective approach. Systems based on this approach exhibit extremely high-performances because of their reasoning-oriented algorithms and data-structures [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF][START_REF] Carral | VLog: A Rule Engine for Knowledge Graphs[END_REF][START_REF] Nenov | RDFox: A highly-scalable RDF store[END_REF]]. Yet, in-memory materialization is tied to the capacity at storing inferences (or even loading data) in memory. Concretely, this may confine the use of the technique to powerful hardware even for medium size datasets. Materialization can also be realized with a DBMS backend but it can be much less performant [START_REF] Alhazmi | ForBackBench: A Benchmark for Chasing vs. Query-Rewriting[END_REF][START_REF] Benedikt | Benchmarking the Chase[END_REF].

Rewriting consists at propagating the rules into the query thereby leaving the data untouched. The aim is to produce a set of queries whose evaluation on the data yields the same answers as the evaluation of the input query on the extended database. Figure 2 illustrates the rewriting of query 𝑞 from Example 1.1. In spirit, the rewriting process replaces parts of a query matching a rule head with the rule body itself. The advantages of query rewriting are multiple. First, it requires no additional space to store inferences. Second, it is insensitive to data updates. Third, it allows one to reason with read-only access rights on the database. The most important however is that rewriting can be deployed on top of existing database technology [START_REF] Buron | Ontology-Based RDF Integration of Heterogeneous Data[END_REF][START_REF] Calvanese | Ontop: Answering SPARQL queries over relational databases[END_REF][START_REF] Geerts | That's All Folks! Llunatic Goes Open Source[END_REF][START_REF] Lutz | Conjunctive Query Answering in the Description Logic EL Using a Relational Database System[END_REF]. This has two main advantages: it makes the technique resilient to main-memory limitations, as data is stored on disk and inferences not stored at all, and it allows one to delegate query evaluation to the DBMS. On this matter, JSON has been adopted as a data model by several NoSQL document stores, often praised for their performances (e.g., MongoDB, CouchDB, ArangoDB, to cite a few). This opens up for the opportunity of building a novel family of reasoners relying on query rewriting and NoSQL database technology. Indeed, these systems come with adapted data layouts, indexes, query algorithms, buffering, scheduling, and concurrent data access mechanisms among others. All these components can work together to make reasoning on JSON both efficient and scalable. Note that aiming at materialization on top of document stores would almost inevitably lead to data blowups and no scalability because of the tree data-model of JSON [START_REF] Mugnier | Ontology-Mediated Queries for NOSQL Databases[END_REF]. For these systems, query rewriting is the prominent way to go.

Contribution. Designing a rewriting-based reasoner on NoSQL document stores has been very little investigated so far [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF][START_REF] Botoeva | OBDA Beyond Relational DBs: A Study for MongoDB[END_REF][START_REF] Mugnier | Ontology-Mediated Queries for NOSQL Databases[END_REF]. This task poses significant technical challenges, namely identifying 𝑖) adequate languages for the task, together with 𝑖𝑖) algorithms and optimizations to make query answering efficient and scalable.

Concerning the first point, to start with, one needs a query and rule language that is closed, i.e., it generates only rewritings that can be handled by the underlying NoSQL system. This is subtle, as NoSQL systems often ensure efficient access to data by reducing the expressivity of queries to rooted path-or tree-shaped queries or forbidding joins. Here, we shall present a language of constrained tree queries and rules enjoying this property. Then, the rewriting process must be finite, which can limit the use recursion in rules. Rewriting recursive rules (e.g., Datalog [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF]) is generally disregarded, and the typical solution is to restrict the language to ensure that the set of rewritings of any query is finite [START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF][START_REF] Calì | Towards more expressive ontology languages: The query answering problem[END_REF][START_REF] Calvanese | Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family[END_REF]. Here, we take another approach and rather try to cope with infinite rewriting sets, while encoding them finitely. Finally, query answering with the target rule language must have tractable data complexity (i.e., polynomial complexity in the size of the data) which is the minimum requirement for efficiency over large data [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF].

Concerning the second point, to design algorithms and optimizations for efficient and scalable reasoning, we believe that query rewriting process cannot be agnostic to the underlying database. Therefore, our goal is to couple query rewriting with an innovative instance-aware evaluation strategy. This leverages on a combination of data-summaries, partitioning, and parallelization that allow us to achieve efficiency by distributing the evaluation of rewritings where the matching data is and at the same time achieving scalability on very large collections of JSON data thanks to the NoSQL facilities.

Summing up, our contributions are the following. 1. We introduce a novel language of constrained rules and queries for reasoning on JSON and present a (general) sound and complete query rewriting algorithm for this setting.

2. As reasoning with constrained rules is undecidable, we identify a relevant subset, made of relabeling and frontier-constrained rules, featuring decidable query answering with PTime data-complexity. We design an automata-based rewriting algorithm for such rules.

3. We propose a novel set of instance-aware evaluation techniques that -for a fixed database -allow one to efficiently evaluate large rewritings sets and also scale on large collections of data.

4. We present an extensive experimental analysis on large collections of several million JSON records showing the efficiency of our approach, and its scalability beyond state-of-the-art reasoners.

Paper Organization. We introduce our framework in Section 2 then give a high-level presentation of our query answering techniques (Sections 3 and 4). Sections 5 and 6 are devoted to formal developments on query rewriting algorithms. The experimental analysis is presented in Section 7. Section 8 discusses related work. Proofs and further details can be found in the technical report [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF].

FRAMEWORK

We begin by presenting an abstract setting for reasoning on JSON. We start by posing the notion of tree which will be used throughout the paper. Then, we introduce a new language made of constrained tree rules and queries and define their semantics.

Briefly, a JSON record is a set of key-value pairs, where a value is recursively defined as a terminal value (constant or null), a sequence of values, or a record. We see a record as a rooted labeled unordered tree, in which edges are labeled by keys, leaves are labeled by constant or null values, and all the internal nodes are unlabeled. Note that a key-value pair (𝑘, 𝑣) where 𝑣 is a sequence is represented by edges labeled by 𝑘 leading to the nodes that represent the elements of 𝑣. 1 Example 1.1 illustrates the tree vision of records.

Trees Let L and V be (infinite) sets of edge labels and (terminal) node values, respectively. A tree is a tuple 𝑇 = (N, E, 𝑡, 𝜆 E , 𝜆 N) where N is a node set and E ⊆ N 2 is a non-empty edge set such that (N, E) is a directed tree with root 𝑡 ∈ N . Then, 𝜆 E : E → L is a (total) edge labeling function (for JSON keys) and 𝜆 N : leaves(𝑇) → V ∪ {𝜖} is a (total) leaf labeling function (for JSON terminal values), where leaves(𝑇) ⊆ N is the set of leaves of the tree. We distinguish between valued leaves, which are those labeled by a value in V, and unvalued leaves labeled by 𝜖. The corresponding subsets are denoted by leaves V (𝑇) and leaves 𝜖 (𝑇), respectively. Note that all edges are labeled, while only leaf nodes may be valued. Standard definitions about trees are extended in the obvious way. In particular, a subtree of a tree 𝑇 is a tree included in 𝑇 ; it is a roooted subtree of 𝑇 if it has the same root as 𝑇 .

Processing trees A leaf assignment of a tree 𝑇 is a function 𝜈 : leaves 𝜖 (𝑇) → V whose application is defined as 𝜈 (𝑇) = (N, E, 𝑡, 𝜆 E , 𝜈 ⊎𝜆 N). Next, given a function 𝑓 , a set 𝐴 = {𝑎 1 , . . . , 𝑎 𝑙 } and a sequence b = (𝑏 1 , . . . , 𝑏 𝑘), we note 𝑓 (𝐴) = {𝑓 (𝑎 1), . . . , 𝑓 (𝑎 𝑙)} and 𝑓 (b) = (𝑓 (𝑏 1), . . . , 𝑓 (𝑏 𝑘)). Let 𝑇 1 and 𝑇 2 be trees with 𝑇 𝑖 = (N 𝑖 , E 𝑖 , 𝑡 𝑖 , 𝜆 E𝑖 , 𝜆 N𝑖). A homomorphism from 𝑇 1 to 𝑇 2 is a total function ℎ : N 1 → N 2 such that: (i) for all 𝑒 ∈ E 1 , ℎ(𝑒) ∈ E 2 and 𝜆 E 1 (𝑒) = 𝜆 E 2 (ℎ(𝑒)); and (ii) for all 𝑛 ∈ leaves V (𝑇 1), 𝜆 N 1 (𝑛) = 𝜆 N 2 (ℎ(𝑛)). A homomorphism ℎ is rooted if ℎ(𝑡 1) = 𝑡 2 . A homomorphism ℎ from 𝑇 1 to 𝑇 2 is an isomorphism if ℎ -1 is also a homomorphism (from 𝑇 2 to 𝑇 1).

Instances and rules An instance is simply a tree (like 𝑇 1 ,𝑇 2 ,𝑇 3 in Figure 1). To distinguish, we will call collection a set of trees. In pictures, edges are always considered as oriented from the root (black node) to the leaves. The body and the head of a rule are both trees, which share their root and some leaves; moreover, leaves in the body may be constrained, which means that they must be mapped to valued nodes in the data. Formally, a constrained tree-rule (or simply rule) is a triple 𝑟 = (B, H, C) where B and H are trees representing the body and head of 𝑟 , also denoted by Body(𝑟) and Head(𝑟), and C ⊆ leaves(B) is a (possibly empty) subset of leaves, said constrained; C is also denoted Constrained(𝑟); 𝐵 and 𝐻 share the same root, and, beside the root, only leaves can be shared between B and H . The frontier of 𝑟 , denoted by frontier (𝑟), is the set of nodes shared between B and H . Furthermore, frontier leaves (𝑟) denotes the set of leaves of 𝑟 shared by B and H , i.e., frontier leaves (𝑟) = leaves(B)∩leaves(H) ⊂ frontier (𝑟). In the formal development, w.l.o.g, we assume no constants in the rules (in contrast with data and queries), that is, leaves

V (B) = ∅ = leaves V (H).
Consider again the rules in Figure 1. Rule 𝑟 1 defines a highlevel notion of a push event. First, it verifies if structural conditions defined by the body are met in the data. That is, that a key type with value PushEvent is present, as well as an event id and the login of the user who made the event. Then, it checks for constrained nodes (marked with $ in the picture). That is, it verifies that id and login are associated with terminal values of V. Finally, it computes the result by copying these values within a new structure associated with the key push. Rules 𝑟 2 and 𝑟 3 are similar. Rule 𝑟 4 states that the key push is a particular case of event. This rule is called a relabeling rule. Rules 𝑟 5 and 𝑟 6 are similar. Note that all frontier leaves are constrained in 𝑟 1 -𝑟 3 , and none in 𝑟 4 -𝑟 6 . Finally, a key feature of rules is that they may have non-frontier nodes in the head, called existential nodes. This is the case for 𝑟 1 -𝑟 3 in Figure 1, where existential nodes are marked in red. These nodes allow to reorganize extracted values into new structures. In this, our framework is leaning towards Datalog±, which extends Datalog with existentially quantified variables [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Calì | A general Datalogbased framework for tractable query answering over ontologies[END_REF].

Rule Semantics As Figure 1 illustrates, the application of rules leads to an extended instance that we compactly see as a (rooted) acyclic graph. This is to simplify the formal development, in that acyclic graphs can always be unfolded into trees. Regardless, since we will focus on query rewriting, these extended instances never have to be computed, as they remain virtual. A trigger for a rule 𝑟 = (B, H, C) on an (extended) instance 𝐼 is a pair (𝑟, ℎ) where ℎ is a (not necessarily rooted) homomorphism from B to 𝐼 respecting the constrained nodes, i.e., such that ℎ(C) ⊆ leaves V (𝐼). The application of (𝑟, ℎ) to 𝐼 results in 𝐼 ∪ ℎ + (H), where ℎ + ⊇ ℎ is an extension of ℎ mapping every non-frontier node of H to a fresh node. Given a set of rules Π, we denote by 𝛼 (𝐼, Π) the instance obtained from 𝐼 by applying all triggers on 𝐼 in parallel, i.e., 𝛼 (𝐼, Π) = 𝐼 ∪ ⋃︁ (𝑟,ℎ) ℎ + (H) where 𝑟 ∈ Π and (𝑟, ℎ) is a trigger on 𝐼 . Given an instance tree 𝑇 , we define Sat 0 (𝑇 , Π) = 𝑇 and Sat 𝑖+1 (𝑇 , Π) = 𝛼 (Sat 𝑖 (𝑇 , Π)). Finally, the saturation of 𝑇 is Sat (𝑇 , Π) = ⋃︁ ∞ 𝑖=0 Sat 𝑖 (𝑇 , Π). This notion of saturation is also known as chase [START_REF] Abiteboul | Foundations of Databases: The Logical Level[END_REF] and is well-defined since the order in which the rule applications are performed has no incidence on the result (up to isomorphism).

Queries and Certain Answers A constrained tree-query is a triple 𝑞 = (𝑇 , C, x) where 𝑇 is a tree, C ⊆ leaves(𝑇) is a set of constrained leaves that must be mapped to valued nodes in the data, and x ∈ C |x| is a sequence of answer nodes. We also denote C by Constrained(𝑞) and x by AnswerSeq(𝑞). We assume valued leaves are always constrained, i.e., leaves V (𝑇) ⊆ C. To illustrate, consider the query 𝑞 in Figure 1. The only constrained node is the answer node (marked by 𝑥). Hence, this node must be mapped to constant values (here, "431" and "695"). A query 𝑞 is called Boolean if x = (). A tuple a ∈ V |x| is an answer to a query 𝑞 over an extended instance 𝐼 if there is a rooted homomorphism ℎ from 𝑇 to 𝐼 such that 𝜆 N • ℎ (x) = a and ℎ(C) ⊆ leaves V (𝐼), i.e., the leaf constraint is fulfilled. The set of answers to 𝑞 on 𝐼 is denoted by Ans(𝑞, 𝐼). A tuple a is a (certain) answer to 𝑞 on 𝐼 and Π if it is an answer to 𝑞 on Sat (𝑇 , Π). The set of all answers to 𝑞 on (𝐼, Π) is denoted by Ans(𝑞, 𝐼, Π). A query 𝑞 is more general than a query 𝑞 ′ , denoted by

𝑞 ≥ 𝑞 ′ , if there is a rooted homomorphism ℎ from 𝑇 𝑞 to 𝑇 ′ 𝑞 such that ℎ(C 𝑞) ⊆ C 𝑞 ′ and ℎ(x 𝑞) = x 𝑞 ′ . A classical query containment property [8] holds here: 𝑞 ≥ 𝑞 ′ iff Ans(𝑞 ′ , 𝐼) ⊆ Ans(𝑞, 𝐼), for all 𝐼 .
Query Rewritings. A sound and complete set of rewritings of 𝑞 wrt Π is a set of queries Q such that, for every instance 𝐼 , it holds that Ans(𝑞, 𝐼, Π) = ⋃︁ 𝑞 ′ ∈ Q Ans(𝑞 ′ , 𝐼); in this equality, ⊇ expresses soundness, and ⊆ completeness. In words, Q must embarck all possible ways in which a query 𝑞 can be satisfied via the rules of Π. For example, Figure 2 illustrates a sound and complete rewriting set for 𝑞 of Example 1.1, made by the queries 𝑞, 𝑞 1 , 𝑞 2 , 𝑞 3 , 𝑞 ′ 1 , 𝑞 ′ 2 , 𝑞 ′ 3 . In Section 3 we will show how our query rewriting algorithms exploit two features of rules. First, rules are tree-shaped, and this makes rewriting within the language of tree queries possible, thereby fitting the requirements of NoSQL APIs (a property one can loose beyond tree rules). Second, the applicability of a rule can be limited via constrained leaves, which, as shown later, will pave the way to decidability. As a last remark, note that, as the definition states, a sound and complete set of rewritings Q is independent of any input instance. This may lead to useless rewritings not matching the data, like 𝑞, 𝑞 1 , 𝑞 2 , 𝑞 3 over the trees in Figure 1. In Section 4 we will present an instance-aware mechanism to prune these efficiently.

NEW QUERY REWRITING ALGORITHMS

As a first step towards effective query answering on NoSQL stores, we give a query rewriting algorithm for (general) constrained treerules. We revisit techniques developed for existential rules, based on so-called piece-unifiers [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] König | Sound, complete and minimal UCQ-rewriting for existential rules[END_REF], also reminiscent of view-based query rewriting [START_REF] Pottinger | A Scalable Algorithm for Answering Queries Using Views[END_REF]. Roughly speaking, a unifier is a node substitution (i.e., a function replacing nodes with nodes) that, as the name suggests, makes part of a query equal to part of a rule head. A pieceunifier checks further structural constraints that are necessary for the soundness of rewriting when the rule head features existential nodes, as the rules 𝑟 1 -𝑟 3 from Figure 1. Given a piece-unifier of a query 𝑞 with a rule 𝑟 , a rewriting step produces a new query by substituting the unified part of 𝑞 with the body of 𝑟 . Then, given a q' 1 q' 2 q' 3 4 r 5 r 6 r 1 r 2 r 3 set of rules Π, a Π-rewriting of 𝑞 is a query obtained by a sequence of rewriting steps with rules from Π. E.g., each query in Figure 2 is a Π-rewriting of 𝑞, with Π the rule set of Figure 1.

The contribution of this work is to identify a restricted class of piece-unifiers, called (semi-)twig-unifiers, which have the nice property of producing tree-shaped rewritings as we sought. 2 The formal development of semi-twig query rewriting is presented in Section 5. This tool allows us to compute a set of rewritings of a query, whose soundness and completeness is stated as follows.

Theorem 3.1 (Soundness and Completeness of Rewriting).

For any query 𝑞, instance 𝑇 , and set of constrained tree-rules Π, a ∈ Ans(𝑞,𝑇 , Π) iff there is a Π-rewriting 𝑞 ′ of 𝑞 such that a ∈ Ans(𝑞 ′ ,𝑇).

Hence, semi-twig query rewriting allows one to compute a finite sound and complete set of rewritings when such set exists. And indeed, there are rule sets and queries that only admit infinite sound and complete sets of rewritings (even modulo query containment). This can happen already with simple rules, as shown by Figure 3. Query 𝑞 searches for projects forkedFrom a repository owned by the keras-team. By rewriting 𝑞 with the rules 𝑟 1 and 𝑟 2 , one builds paths of arbitrary length along the key from. All of the obtained queries are incomparable to each other w.r.t. query containment, hence the only sound and complete rewriting set here is infinite. This raises the issue of algorithmic feasibility for query answering.

Taming Infinite Rewritings

In spite of an apparent simplicity, query answering with constrained tree-rules is undecidable. This has been shown already for the specific case of (unconstrained) path rules in various settings [START_REF] Abiteboul | Regular Path Queries with Constraints[END_REF][START_REF] Buneman | Path constraints in semistructured databases[END_REF][START_REF] Calvanese | Verification of Evolving Graph-structured Data under Expressive Path Constraints[END_REF]. This negative result opens the quest for decidable rule languages for reasoning on JSON data. Strategies for recovering decidability include the use of acyclicity notions or syntactic conditions ensuring the termination of (forward or) backward chaining [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Calì | A general Datalogbased framework for tractable query answering over ontologies[END_REF][START_REF] Fagin | Data exchange: semantics and query answering[END_REF]. Here, we take a different approach. We consider a language with non-terminating (both forward and) backward chaining, but ensuring that the rewritings of a query can always be finitely captured. We draw inspiration from the language of so-called suffix path-rules proposed in [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF] and lift it to the case of trees, which yields a specific constrained tree-rule fragment we call frontier-constrained rules. Crucially, this fragment makes the rewritings of a query forming a regular tree-language one can capture with automata techniques.

A Tractable Fragment. We consider combinations of 1) frontierconstrained rules and 2) relabeling rules, which are defined next. Definition 3.2. Let 𝑟 = (B, H, C) be a constrained tree-rule. Then:

• 𝑟 is frontier-constrained if frontier leaves (𝑟) ⊆ C • 𝑟 is relabeling if B and H are edges and frontier leaves (𝑟) ≠ ∅

In Figure 1, 𝑟 3 -𝑟 6 are frontier-constrained rules while 𝑟 1 -𝑟 4 are relabeling rules. Frontier-constrained rules impose that a trigger maps all the frontier leaves of the rule to data values, but without any further condition on the use of recursion. From a practical viewpoint, they allow one to select values in the data and to reorganize them into structures adapted to the targeted application. Relabeling rules are among the most useful rules for reasoning on trees, as they allow one to define hierarchies of keys. In contrast with frontierconstrained rules, they apply anywhere on a tree instance.

The decidability of query answering for this fragment follows from a natural translation into first-order logic. Constrained queries and rules are translated into tree-shaped conjunctive queries and existential rules, respectively. Frontier-constrained and relabeling rules are more specifically translated into a decidable fragment of existential rules called body-acyclic frontier-guarded [START_REF] Baget | Walking the Complexity Lines for Generalized Guarded Existential Rules[END_REF]. For this, we obtain that query answering is in ExpTime for combined complexity [START_REF] Calì | Towards more expressive ontology languages: The query answering problem[END_REF]. Our framework can also be translated into a specific description logic, namely ELH V [START_REF] Krötzsch | Nominal Schemas in Description Logics: Complexities Clarified[END_REF], which furthermore allows one to derive a PTime upper bound for data complexity. Note however that these complexity results do not make use of query rewriting. By relying on the tree-automata rewriting described next, we will design a query answering technique that effectively runs in polynomial time w.r.t. the size of the data.

Capturing Infinite Rewritings With Automata

A key feature of our (general) query rewriting algorithm is that, when rules are frontier-constrained, it is ensured in any direct rewriting of 𝑞 that a single node is shared between the remaining part of 𝑞 and the subtree coming from the rule body. Hence, we fall into an even more specific case of unifiers we call twig-unifiers. As a consequence, infinite sets of rewritings such as those illustrated in Figure 3 can be captured by a tree automaton [START_REF] Hubert Comon | Tree automata techniques and applications[END_REF]. In a nutshell, the constructed automaton is made of sub-automata that encode the initial query 𝑞 as well as all the specializations of rule bodies that can be involved in a rewriting step. This set of sub-automata is finite as there is a finite number of (non-equivalent) specializations for each rule body. Transitions between states of different sub-automata allow to encode rewritings. The detailed construction is provided in Section 6 and its adequacy now stated (follows by Theorem 6.2). Theorem 3.3. Let Π be a set of frontier-constrained and relabeling rules and 𝑞 be a query. Then, there exists a finite tree automaton A recognizing a sound and complete set of rewritings of 𝑞 w.r.t. Π.

INSTANCE-AWARE EVALUATION

The automata approach gives us a ground for query answering but still does not suffice, in practice, to exploit NoSQL databases. Evidently, no database API will take an automaton as a query. Tree queries are instead accepted. Concretely, this means that the automaton language has to be enumerated, and that every single query in a rewriting set has to be evaluated. We are thus facing two issues. First, we need to deal again with the case where rewriting sets are infinite. Second, we need to cope with rewriting sets that are finite but possibly large. To tackle these problems, we extend our query rewriting approach to make it instance-aware, and more specifically able to leverage on structural information of data for the sake of query answering. Our approach consists in using a novel combination of 𝑖) summarization techniques to make rewritings finite and 𝑖𝑖) partitioning and parallelization techniques for efficiency. Summarization. To always reduce rewritings to finite sound and complete sets -for a given database instance -we use summaries of data. In theory, it is sufficient to know the size of the data, as the automaton allows one to enumerate queries by their size. So, once exceeded the size of data, enumeration can be safely stopped. This rough bound can be improved by considering only the depth of data as nodes in a rewriting have a bounded outdegree (Theorem 6.2).

In practice, however, as rewriting is independent of the instance, this can generate many queries that are not matching any data. So we consider a data summary built on the set of maximal paths (root to leaf), i.e., a dataguide [START_REF] Goldman | DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases[END_REF]. When we enumerate the automaton language we can use this information to discard some empty queries by checking whether the tree query we are generating contains an invalid path according to the summary. For instance, the set of maximal paths of the trees in Figure 1 is

(date) (id) (type) (actor • login) (payload • commits • author) (payload • issue • user)
Obviously, any rewriting featuring a path that is not in this list can be discarded, as it will have no answer on the collection. Summaries can sometimes be simplified when there is little ambiguity in the data, by considering only the depth and the set of edge labels. For the collection of Figure 1 these labels are {date, id, type, actor, login, payload, commits, issue, author, user}. The label summary is less precise but more compact. Paths can also be enriched with 𝑘-length prefixes of the values found at their end. For instance, with 𝑘 = 5, we can associate the value "gvanr" to path payload.commits.author instead of gvanrossum. This can help in filtering queries which use values not found in the data. Working with 𝑘-prefixes instead of the values themselves enables more concise summaries while retaining the precision of filtering. So, the path (dataguide), label, and path+prefix will be the three main summaries we consider. All can be used to filter empty queries in the automaton language, and hence to reduce the (possibly infinite) set of rewritings of a query to a finite and still complete set (for the given instance). Furthermore, they can all be computed with a linear traversal of the data, and are typically of limited size. We will use the depth summary as a baseline. We did not consider bisimilarity-based summaries [START_REF] Henzinger | Computing Simulations on Finite and Infinite Graphs[END_REF] as they tend to be quite large and more complex to compute; the label and path summaries also proved to be quite effective.

Partitioning and Parallelization Even if finite, rewriting sets can be hard to evaluate for any database because of the number of queries they may contain. To improve the situation, our intuition is that we must provide a mean to lead the single queries (within a rewriting set) where the matching data is. With this aim, we define an instance-aware reasoning strategy based on partitioning. In doing so, we therefore introduce a pre-processing of a collection providing means for the efficient evaluation of large rewriting sets.

Let 𝐽 = {𝑇 1 , . . . ,𝑇 𝑛 } be a (single) collection of tree instances. Our goal is to define a set of collections 𝐽 1 , . . . , 𝐽 𝑘 making for a partitioning of 𝐽 . We adopt a simple partitioning function oriented towards rooted queries, defined as follows: Λ 𝑑 (𝑇) = Π 𝑑 𝑖=1 labels 𝑖 (𝑇). The function Λ 𝑑 (𝑇) concatenates the labels of edges at each level (we denote by labels 𝑖 (𝑇) the labels of edges going from level 𝑖-1 to level 𝑖 in 𝑇) up to the depth set by the parameter 𝑑; Λ 𝑑 (𝑇) is then mapped to an integer denoting the partition number of 𝑇 . So, two trees 𝑇 1 ,𝑇 2 will be in the same partition 𝐽 𝑖 if Λ 𝑑 (𝑇 1) = Λ 𝑑 (𝑇 2), meaning that they just agree on the set of labels they use level-wise, up to depth 𝑑. Note that for Λ 𝑑 the number of partitions is not fixed in advance, and rather depends on 𝑖) the data and 𝑖𝑖) the parameter 𝑑. The function Λ 𝑑 could also be replaced by more complex clustering functions for trees also taking care of load balancing [START_REF] Algergawy | XML Data Clustering: An Overview[END_REF]; exploring this range of possibilities is however beyond the scope of this work. Note that Λ 𝑑 (𝑇) can be computed in linear time at the moment when data is loaded into the database.

The first net advantage of partitioning is that, instead of a rough summarization for the whole collection, we can deploy a set of narrower data-summaries, one for each partition 𝐽 𝑖 . This obviously leads to a greater filtering power. With this scheme, the queries within a rewriting are more likely to be evaluated on the partitions where they can have a match, according to the summary, instead of being evaluated against the whole database. The use of rewriting, summarization, and partitioning is shown in Figure 4: A rewriting automaton A (𝑞,Π) is built from a query 𝑞 and a set of rules Π. A collection 𝐽 is partitioned into the collections 𝐽 1 , . . . , 𝐽 𝑘 . For every partition 𝐽 𝑖 , the language of A (𝑞,Π) is filtered by Summary(𝐽 𝑖). This produces a finite set of queries Q |Summary(𝐽 𝑖) to evaluate on 𝐽 𝑖 .

Partitioning can be implemented in several ways. Here, we consider physical partitioning, where a distinct database collection is built for every partition. Using a logical partitioning strategy is discussed in [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF] and proved to have similar effectiveness. Finally, with partitioning in place, parallelization can further be added to attack all of these partitions simultaneously by leveraging on the concurrent data access facilities of the underlying database.

Let us point out that assuming data-awareness is not a strong hypothesis in practice. For instance, data-awareness is implicit in the fact of running a materialization algorithm. Also note that a summary does not capture a single instance, but rather abstracts over a class of instances. Instance-aware query rewriting is evaluated in Section 7. The following sections (5 and 6) present our query rewriting algorithms. The goal of this section is to present semi-twig based unification and query rewriting. As already mentioned, we revisit techniques developed for existential rules, based on so-called piece-unifiers [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] König | Sound, complete and minimal UCQ-rewriting for existential rules[END_REF]. To begin, we need to introduce a key notion, that of separating node. Let 𝑇 be a tree and 𝑆 be a subtree of 𝑇 . We denote by (𝑇 \ 𝑆) the forest obtained by removing from 𝑇 all edges in 𝑆. Then, the nodes that belong to both 𝑆 and (𝑇 \ 𝑆) are said to separate 𝑆 from 𝑇 . In other words, these are the nodes of 𝑆 that have their parent or one of their children in (𝑇 \ 𝑆). Figure 5 pictures a tree 𝑇 with four subtrees 𝑆 1 , 𝑆 2 ,𝑇 ′ ,𝑇 ′′ . The nodes marked with S are separating for at least one subtree. The subtrees 𝑆 1 (in blue), 𝑆 2 (in brown) and 𝑇 ′ (in red) have the same root as 𝑇 . For all of these subtrees the root is separating; indeed the root has other children that do not belong to the subtree. The root of 𝑇 ′′ (in red) is separating, this time because its parent does not belong to 𝑇 ′′ . Note that 𝑆 2 also has a separating leaf and 𝑇 ′ also has a separating internal node.

To simplify definitions, we now assume that the root of a rule head has a single child. This can be done without loss of generality since every rule can be decomposed into an equivalent set of rules satisfying this assumption [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF].

Definition 5.1 (Semi-twig). A subtree 𝑆 of 𝑇 is called semi-twig if:

(1) the root of 𝑆 has exactly one child (2) any node separating 𝑆 from 𝑇 is either the root of 𝑆 or a leaf of 𝑆 (i.e., no internal node of 𝑆 is separating).

A semi-twig without separating leaves is called a twig.

Consider again 𝑇 in Figure 5. Then, 𝑆 1 is a twig as its only separating node is the root, and 𝑆 2 is a semi-twig as it has a separating leaf. Finally, 𝑇 ′ and 𝑇 ′′ are not semi-twigs, since 𝑇 ′ has an internal separating node and the root of 𝑇 ′′ has two children. The intuition behind semi-twigs is that these are the parts of the query that can be easily rewritten (Item (1)) while preserving tree-shaped rewritings (Item (2)). We are now ready to define semi-twig unification. Definition 5.2 (Semi-Twig Unification). A semi-twig-unifier 𝜇 for a constrained query 𝑞 and a (general) constrained rule 𝑟 is a triple (𝑆, H, 𝜈, 𝑢) where:

• 𝑆 is a semi-twig of 𝑞 • H is a rooted subtree of Head(𝑟) • 𝜈 is a leaf assignment for the nodes in frontier leaves (𝑟) • 𝑢 is a rooted homomorphism from 𝑆 to 𝜈 (H) such that 𝑢 (𝑆) = 𝜈 (H) and 𝑢 maps:

(1) each constrained leaf of 𝑆 to a frontier leaf of 𝑟 (2) each separating leaf of 𝑆 to an unconstrained frontier leaf of 𝑟 .

Although the definition of semi-twig unification may seem somewhat involved, it is perfectly natural. The goal is to identify part of the query (i.e., 𝑆) that is entailed by the application of the rule 𝑟 . Rewriting will then replace this part by a suitable specialization of the body of 𝑟 that reflects the way in which the rule is applied. This is captured first by the rooted homomorphism from 𝑆 to a leaf assignment of H . This leaf assignment may only assign to a frontier node in 𝑟 a value from 𝑆, since 𝑢 (𝑆) = 𝜈 (H). By the homomorphism 𝑢, a leaf of 𝑆 is necessarily mapped to a leaf of H . Then, Conditions (1) and (2) ensure the correctness of rewriting.

In the next definition of a direct rewriting, the union of the trees 𝑢 (𝑞 \ 𝑆) and 𝜈 (Body(𝑟)) is defined in the obvious way (i.e, by making the union of the node sets, the edge sets and the functions) and it can be checked that it results in a tree. Definition 5.3 (Semi-Twig Rewriting). Let 𝜇 = (𝑆, H, 𝜈, 𝑢) be a semi-twig-unifier for a constrained query 𝑞 and a (general) constrained rule 𝑟 . A direct rewriting of 𝑞 with 𝜇 is a query 𝑞 rew = (𝑇 , C, x) such that:

• 𝑇 = 𝑢 (𝑞 \ 𝑆) ∪ 𝜈 (Body(𝑟)) • C = 𝑢 (Constrained(𝑞)) ∪ Constrained(𝑟) • x = 𝑢 (AnswerSeq(𝑞)).
Proposition 5.4 (Closedness). 𝑞 rew is a constrained tree query.

Let us come back to Conditions (1) and (2) of semi-twig unification and illustrate them with the query 𝑞 and rules 𝑟 1 and 𝑟 2 from Figure 5. Both rules have a constrained leaf in their body. This leaf is frontier for 𝑟 1 , but not for 𝑟 2 . Hence, an application of 𝑟 1 only brings a new edge, while an application of 𝑟 2 also brings a new node. One could consider unifying the semi-twig 𝑆 ′ 1 constituted by the sole edge labeled by a. Note that the leaf of 𝑆 ′ 1 is separating, hence can only be mapped to an unconstrained frontier leaf. Unifying 𝑆 ′ 1 with 𝑟 1 would violate Condition (2) because the frontier leaf of 𝑟 1 is constrained (and the associated rewriting would not be a well-formed query, as it would have an internal constrained node). Unifying 𝑆 ′ 1 with 𝑟 2 would also violate Condition (2) because the leaf of Head(𝑟 2) is not frontier (and the associated rewriting would not be a well-formed query, as it would be disconnected, and would furthermore be unsound). Now, consider the twig 𝑆 ′ 2 . It can be unified with 𝑟 1 thereby yielding the query 𝑞 rew 𝑟 1 . However, 𝑆 ′ 2 cannot be unified with 𝑟 2 because Condition (1) would be violated (and the associated rewriting would be unsound). Finally, we say that 𝑞 rew is a Π-rewriting of 𝑞 if there is a sequence 𝑞 = 𝑞 0 , 𝜇 1 , 𝑞 ′ 1 , ..., 𝜇 𝑘 , 𝑞 ′ 𝑘 = 𝑞 rew such that 𝑞 𝑖 is a direct rewriting of 𝑞 𝑖-1 with 𝜇 𝑖 using a rule of Π and 𝑞 ′ 𝑖 = (𝑞 𝑖) safe , where • safe is a function replacing all nodes of 𝑞 𝑖 by fresh nodes (1 ≤ 𝑖 ≤ 𝑘). This is merely a technicality, but it is needed to avoid multiple uses of the same node if 𝑟 is used multiple times in a rewriting sequence. The soundness and completeness of query rewriting ensures that for any query 𝑞, instance 𝑇 , and set of constrained tree-rules Π, a ∈ Ans(𝑞,𝑇 , Π) if and only if there is a Π-rewriting 𝑞 ′ of 𝑞 such that a ∈ Ans(𝑞 ′ ,𝑇) (as stated by Theorem 3.1). From this, we can easily build a breadth-first query rewriting operator in the spirit of [START_REF] König | Sound, complete and minimal UCQ-rewriting for existential rules[END_REF] that terminates if and only the query admits a finite sound and complete set of rewritings. However, this still leaves the case of infinite rewritings open. An important remark can be made about 2) on which we will focus in the next section.

Remark 1. Let (𝑆, H, 𝜈, 𝑢) be a semi-twig unifier for a query 𝑞 and a frontier-constrained rule 𝑟 . Then, 𝑆 must be a twig.

For instance, in Figure 5, both rules are frontier-constrained, hence 𝑆 ′ 1 can be disregarded for rewriting as it is not a twig.

AUTOMATA-BASED QUERY REWRITING

Frontier-constrained rules do not ensure the finiteness of rewriting sets (nor of saturation). However, they have the following key property: the rewriting set of a query under frontier-constrained rules can be characterized by a regular tree language. This means that it can be compactly represented by a tree automaton. Frontierconstrained tree rules generalize context-free path rules in [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF] which are in turn related to suffix-rewriting systems [START_REF] Caucal | On word rewriting systems having a rational derivation[END_REF][START_REF] Richard | Regular canonical systems[END_REF]. What paves the way for regularity is that frontier-constrained rules make any semi-twig unifier for the query to be necessarily a twig-unifier (Remark 1). Another important insight is that adding relabeling rules (which, in contrast, requires semi-twig unifiers that may not be twig unifiers) still preserves regularity, and so both types of rules can be taken into account jointly. The goal of this section is to present the construction of the automaton A (𝑞,Π) recognizing a sound and complete set of rewritings for a query 𝑞 against a set of rules Π. We start by posing the notion of tree automaton needed to capture the rewritings of a query. This follows standard models [START_REF] Hubert Comon | Tree automata techniques and applications[END_REF] adapted to the case of unordered trees. Definition 6.1 (Automaton). A bottom-up automaton for unordered trees is a tuple A = (Σ, S, L, F , Δ) where:

• Σ is an alphabet • S is a set of states made of S 𝐸 a set of edge-states and S 𝑁 a set of node-states • L, F ⊆ S 𝑁 are sets of initial (leaves) and final (root) states

• Δ is a set of transitions made of Δ L ⊆ (︁ Σ ∪ {𝜖})︁ × L a set of leaf nodes transitions Δ 𝐸 ⊆ S 𝑁 × Σ × S 𝐸 a set of edge transitions Δ 𝑁 ⊆ 2 S 𝐸 × S 𝑁
a set of (non-leaf) node transitions A run of A on 𝑇 = (N, E, 𝑡, 𝜆 E , 𝜆 N) is a function 𝜌 : N → S 𝑁 that agrees with the transition rules of A, in the following sense.

• Every unlabeled leaf ℓ of 𝑇 is recognized by a Δ L -transition

∅ 𝜖 -→ 𝜌 (ℓ) • Every labeled leaf ℓ of 𝑇 is recognized by a Δ L -transition ∅ 𝜆 N (ℓ) -→ 𝜌 (ℓ)
• Every (non-leaf) node 𝑛 of 𝑇 with children 𝑛 1 , . . . , 𝑛 𝑘 is recognized by the following Δ-transitions {s 1 . . .

s 𝑘 } -→ 𝜌 (𝑛) ∈ Δ 𝑁 𝜌 (𝑛 𝑖) 𝜆 E (𝑛,𝑛 𝑖) --→ s 𝑖 ∈ Δ 𝐸
provided that s 𝑖 ≠ s 𝑗 for all 1≤𝑖≠𝑗 ≤𝑘 • The root 𝑡 of 𝑇 is such that 𝜌 (𝑡) is a final state in F An automaton defines a language (or set) of unordered trees L(A).

The automata framework represents tree languages, but is insensitive to query features such as constrained and answer nodes. So, to proceed, we must define an encoding of a query 𝑞 as a "plain" tree encode(𝑞) that can manipulated by automata. The idea of the encoding is to store information on constrained and answer leaf nodes as values. The encoding must essentially cover three cases. The first is where the leaf is unconstrained. The second is where the leaf is constrained but does not belong to the answer sequence. The third is where the leaf belongs to the answer sequence (so, by definition, is also constrained). Figure 6 (left) shows a query 𝑞 ′ as well as its corresponding automaton A encode(𝑞 ′) . The query seeks for forked projects (forkee) for all records describing a ForkEvent which also includes the project from which fork originated (forkedFrom). The query has three leaf nodes, which are recognized by three initial states of the automaton. Each initial state is used to define a non-leaf node transition ∅ -→ e 𝑖 where 𝑘 1 = type, 𝑘 2 = forkee, and 𝑘 3 = forkedFrom. Each transition recognizes an edge of the query. Finally, the non-leaf node transition {e 1 , e 2 , e 3 } -→ s final allows A encode(𝑞 ′) to recognize the whole tree. Due to space constraints, the formal construction of the automata encoding of queries is detailed in [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. The example of Figure 6 illustrates that it is straightforward to build an automaton A 𝑇 recognizing a tree 𝑇 which is also minimal (i.e., without useless state or transition). We can do so by creating distinct states and transitions for every (1) node label, (2) edge, and (3) internal node of 𝑇 . This handling of (un)constrained, valued, and answer nodes, also extends to the encoding of rule bodies introduced from single rewriting steps [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. In the remainder of the section, the encoding of a query 𝑞 and of a rule body 𝐵 specialized by a unifier 𝜇 are denoted by encode(𝑞) and encode(𝜇 (𝐵)), respectively. This is at the basis of the rewriting process described next.

Building the Rewriting Automaton Remind that our goal is to construct an automaton A (𝑞,Π) recognizing the set of rewritings of a query 𝑞 against a set of rules Π. For clarity, we present the construction of A (𝑞,Π) in two steps. First, we provide a declarative construction, showing (𝑖) the main steps of the process as well as its connections to the general query rewriting from Section 5 and (𝑖𝑖) the finiteness of A (𝑞,Π) . In the second step, we outline how to also achieve a terminating algorithm. Aencode(q' A(q, {r }) . In there, we do some standard assumptions. First, when constructing an automaton A 𝐵 from a specialized rule body, we use a fresh set of states. The Extend operation makes the union of two automata A (𝑞,Π) = (Σ, S, L, F , Δ) and A 𝐵 = (Σ 𝐵 , S 𝐵 , L 𝐵 , F 𝐵 , Δ 𝐵) but gives precedence to the final state of A (𝑞,Π) by (Σ ∪ Σ 𝐵 , S ∪ S 𝐵 , L ∪ L 𝐵 , F , Δ ∪ Δ 𝐵). Finally, as we work with automata that have a single final state, we denote by s final A the final state of A. Figure 6 (right) illustrates the rewriting of the query 𝑞 presented in Figure 3 with rules 𝑟 1 and 𝑟 2 . Recall that query 𝑞 searches for projects forkedFrom a repository owned by the keras-team. The query has an infinite rewriting set, which is captured as follows. The process starts by initializing A (𝑞,Π) as the automaton for encode(𝑞). A twig-unifier 𝜇 for 𝑟 2 and 𝑞 is found (steps 3 and 4). Remark that 𝜇 unifies a twig of the query (actually, the path forkedFrom.owner) with a twig of the rule head. This leads to the extension of A (𝑞,Π) with a fresh sub-automaton for encode(𝜇 (Body(𝑟 2))) (step 5). Also this yields a a novel non-leaf node transition {e 1 , e 2 , e 5 }-→s final 𝑞 (step 6) resulting from replacing e 3 by e 5 in {e 1 , e 2 , e 3 }-→s final 𝑞 . In Figure 6, abusing of notation, we picture this with an edge from e 5 to e 3 . At this point, b the relabeling rule 𝑟 1 is applied to the fresh sub-automaton (step 2). This in turn yields a new twig-unifier 𝜇 ′ for 𝑟 2 (steps 3, 4). As encode(𝜇 (Body(𝑟 2))) = encode(𝜇 ′ (Body(𝑟 2))), no extension of A (𝑞,Π) is performed at this time (step 5). However, c a novel non-leaf node transition {e 5 }-→s 5 (step 6) capturing the infinite recursion stemming from the rules 𝑟 1 and 𝑟 2 is added. The correctness of the construction is now stated [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. Theorem 6.2 (Soundness and Completeness). Let Π be a set of frontier-constrained and relabeling rules. For every tree 𝑇 and query 𝑞 we have that ⋃︁ encode(𝑞 ′) ∈L(A (𝑞,Π)) Ans(𝑇 , 𝑞 ′) = Ans(𝑇 , 𝑞, Π). Also, A (𝑞,Π) is finite and its language is made by trees of bounded rank.

All-at-Once Twig-Unification

To turn our declarative construction into a terminating algorithm we have to provide a finite procedure for the enumeration of all possible queries and twigunifiers (steps 3 and 4) which may loop when A (𝑞,Π) recognizes an infinite language. And indeed, it is possible to manipulate these unifiers all-at-once by directly working on the states of A (𝑞,Π) . So, instead of considering every possible query 𝑞 ′ recognized by A (𝑞,Π) and every possible twig 𝑆 of 𝑞 ′ we do the following. First, we iterate on the (finite) set of rooted twigs H that belong to the head of the rules in Π. Then, for each H , we iterate on the (finite) set of node-states s of A (𝑞,Π) . For every H and s, we check if A (𝑞,Π) (s) (that is, the automaton A (𝑞,Π) where the final state is set to be s) recognizes a tree 𝑇 such that 𝑆 is a rooted twig of 𝑇 and there are 𝑢 and 𝜈 such that 𝑢 (𝑆) = 𝜈 (H). Because H is finite this can be done in a finite number of steps. In this way, we can capture all unifiers 𝜇 representing a possibly infinite class of unifiers. Once A (𝑞,Π) built, it is possible to perform a single post-order traversal of an instance 𝑇 to compute answer to queries [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. This adapts classical validation algorithms from [START_REF] Hubert Comon | Tree automata techniques and applications[END_REF]. Follows a PTime data-complexity upper-bound for query answering. The construction is from data. Moreover, it can boostrapped independently from queries. Indeed, the unifiers that hold between the rules only, as those for 𝑟 1 and 𝑟 2 in Figure 6, can be precomputed off-line thus reducing rewriting costs at query time.

EXPERIMENTAL ANALYSIS

Implementation We implemented our approach for reasoning over document stores in a Java 11 tool: TreeForce (TF). This library can be seen as a general toolbox for implementing reasoning techniques for tree-shaped data and rules. The tool has been coded from scratch. It is composed of two main modules. The first includes generic data structures and algorithms for trees and tree-automata. The second includes our instance-aware query rewriting and evaluation methods. TreeForce also includes a translation module tied to the target DBMS. We deployed our system on top of a well-known NoSQL database: MongoDB (v5.0.8). Our approach can be ported to systems supporting constrained tree-queries, which is a basic requirement for many stores [START_REF]Software) MongoDB[END_REF][START_REF]Software) ArangoDB[END_REF][START_REF]Software) AsterixDB[END_REF][START_REF] Botoeva | Expressivity and Complexity of MongoDB Queries[END_REF][START_REF] Murtadha | Couchbase Analytics: NoETL for Scalable NoSQL Data Analysis[END_REF][START_REF] Kian | The SQL++ Semi-structured Data Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and NewSQL Databases[END_REF]. Query translation as well as the deployment on other systems is discussed in [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF].

Environment We performed all experiments on a machine with an AMD Ryzen 9 3900XT CPU (4.7 Ghz, 12 cores), 128GB DDR4 2400Mhz memory and 2TB SSD disk, running KDE neon on ext4 FS. By relying on MongoDB, TreeForce has modest memory requirements. We allocated only 10GB memory to the JVM (jdk16). We used MongoDB standard configuration with 8GB cache size.

Benchmarks used for our study are shown in Table 1. We defined three benchmarks from known benchs: DBLP JR , GitHub JR and XMark JR (JR, for JSON Reasoning). DBLP and GitHub are large corpus of real data. XMark, in contrast, is a synthetic benchmark but equipped with a data generator that helped us in better understanding the scalability question. Both DBLP and XMark come as XML; they have been translated into JSON to feed document stores. These systems are oriented towards the exploitation of limited size records (e.g., 16MB for MongoDB). So, XML trees have been shredded into a collection of JSON records in a standard way, that is, by recording the main objects of the original data in different records (e.g., one record per publication in DBLP JR). DBLP JR and GitHub JR are tests over several million real world records. For DBLP JR we used 22 queries containing a mix of tree queries of different complexity inspired from those in [START_REF] Buron | Raisonnement efficace sur des grands graphes hétérogènes[END_REF][START_REF] Buron | Ontology-Based RDF Integration of Heterogeneous Data[END_REF][START_REF] Goasdoué | Efficient query answering against dynamic RDF databases[END_REF]. We manually defined a set of 51 rules with 15 frontier-constrained rules and 36 relabeling rules inspired both from the DBLP ontology (dblp.org/rdf/schema) and [START_REF] Buron | Raisonnement efficace sur des grands graphes hétérogènes[END_REF]. For GitHub JR we defined 5 queries of different complexity and 54 tree-rules including 40 frontier-constrained and 14 relabeling.

Overall, these allowed us to gauge our approach on real voluminous data. XMark JR includes a set of 115 distinct JSON collections (up to several million records), 23 rulesets (containing 5 to 62 relabeling rules), and 10 queries. XMark JR is an extension of the well-known XMark [START_REF] Schmidt | XMark: A Benchmark for XML Data Management[END_REF] we designed to dispose of a rule-based query answering benchmark over trees to understand the scalability of our approach. First, XMark JR allows us to control the number of rewritings of a query -which is a crucial parameter. We consider 23 rulesets each creating a larger number of rewritings per query (from 1 to 500). Second, it allows us to control the size and variability of data. So for, each ruleset, we considered five collections (see Table 1), with the larger collection having 1.4B edges when data is seen as trees.

We refer to [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF] for its detailed presentation. Overall, XMark JR is meant to push the limits of rewriting-based query answering.

Other systems. We are not aware of any system for reasoning with constrained-tree rules on top of JSON data. However, as our rules can be encoded as Datalog ± rules [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF] we used reasoners for Datalog ± designed for knowledge-graphs as a baseline. Materialization-based approaches. We used VLog [START_REF] Carral | VLog: A Rule Engine for Knowledge Graphs[END_REF] via Rulewerk [START_REF]Software) Rulewerk[END_REF] to study in-memory materialization. VLog is a high-performance state-of-the-art reasoner [START_REF] Alhazmi | ForBackBench: A Benchmark for Chasing vs. Query-Rewriting[END_REF]. As it runs in-memory, it gives us a point on absolute performance to evaluate DBMS-based approaches. Rewriting-based approaches. Graal is the only rewriting-based system for Datalog ± we are aware of [START_REF] Baget | Graal: A Toolkit for Query Answering with Existential Rules[END_REF][START_REF] König | Query rewriting for existential rules with compiled preorder[END_REF]. We used a recent major version of the tool [START_REF]Software) InteGraal[END_REF]. Graal is a modular system that allows one to parametrize the storage and reasoning algorithms. So, we leveraged on Graal's modularity to study three rewriting-based strategies, as follows. In all three cases, we used Graal to compute (finite) rewritings of queries -whenever possible. Then, rewritings were evaluated in two different ways. The first is in-memory, again with VLog. The second is with PostgreSQL (v14.7); data was stored as a knowledge graph by using indexed property-tables [START_REF] Goasdoué | Efficient query answering against dynamic RDF databases[END_REF] and integer encoding [START_REF] Urbani | KOGNAC: Efficient Encoding of Large Knowledge Graphs[END_REF] and tree-queries were translated as SQL queries. As scaling integer encoding can be challenging, we also considered a PostgreSQL storage without integer encoding.

MongoDB Wrapper Queries have been translated into Mon-goDB with the find() facility which answers true on every record of the collection satisfying a query by returning the record itself. It is also worth noting that for all benchmarks we considered treequeries without answer variables. However, this does not make evaluation easy, as we still ask MongoDB to check if each record satisfies the query. To gauge performances across different systems we asked the competitors compute the set of trees matching a query as for our system. We focused on the computational effort needed for evaluating constrained tree-queries: no input time (i.e., data loading) nor output time (i.e. result serialization) were considered. Inputs were translated into formats recognizable by the other systems (JSON data as CSV, tree queries and rules as DLGP [START_REF] Baget | Datalog+, RuleML and OWL 2: Formats and Translations for Existential Rules[END_REF]).

Overview of the Results We will focus on two aspects. First, a study of the query answering techniques we proposed, then a comparison with the other systems. For space limits, we focus on the main findings and report average query times. Detailed times are reported in [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. Results are robust averages over 5 repetitions. All times are in seconds. Experiments with the TreeForce system will be denoted by "TF". The baseline approach for our system uses the depth-summary, this is denoted by TF-depth. Variants of our system with different summaries introduced in Section 4 are denoted TF-{label,path,path+prefix}. We denote by TF-part-parallpath our method with partitioning and parallelization, with the path summary; this is our best resulting approach. The variant of this technique without parallelization is denoted by TF-part-path.

Linear Scalability of the Underlying Database. Figure 8 illustrates how MongoDB reacts to the evaluation of 1) larger rewriting sets on 2) larger volumes of data produced by XMark JR . Every data point indicates the time taken for evaluating a rewriting set. We can clearly see that the response time is linear both in the size of the rewriting sets and in the size of the data. This is expected as the evaluation algorithm of MongoDB is based on a database scan. This observation is also confirmed on DBLP JR and GitHub JR .

Summary-based Filtering is Critical. Figure 9 shows average query answering times for the depth, label, path and path+prefix summaries for DBLP JR and GitHub JR . It reports both the query rewriting and the evaluation time. For the path+prefix summary, we fixed 𝑘 = 5, i.e., prefixes have length 5. We also tested longer prefixes but this did not bring any sensible improvement. For DBLP JR , the label summary leads to an average speedup of 3x on a single query. This raises to 5x for the path summary and to 23x when 𝑘-prefixes are added. For GitHub JR , the label summary leads to a speedup of 4x on average, which raises to 17x for the path summary. While for GitHub JR prefixes did not improve much things, for DBLP JR queries with text values, gains with 𝑘-prefixes can be in orders of magnitude for single queries [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. Overall, it is unavoidable to use data summaries for efficiency as the underlying database system is unable to discard empty queries based on their structure, which slows down performances. Summaries have no effect on XMark JR , which by design produces almost no empty queries, and forces the underlying database to evaluate all queries in a rewriting set. However, summaries will have again the same powerful filtering role combined with partitioning, as discussed next. As a last remark, summaries were relatively lightweight for DBLP JR and GitHub JR . For DBLP JR , they included 50 labels, 188 paths, and 957K 5-prefixes while GitHub JR had 250 labels, 991 paths, and 3.3M 5-prefixes.

Evaluation Dominates Query Rewriting Costs. Recall that query rewriting is divided in 1) automaton construction and 2) summary-based filtering and query generation. As expected, the query rewriting time depends on the complexity of rules and the size of the resulting rewriting set [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. For DBLP JR , the average automaton construction time was 300ms and within 1 second even for thousands of rewritings. For GitHub JR the average automaton construction time was 1.5s and within 3.5 seconds. For XMark JR , it was within 0.1 seconds in general. After the automaton construction follow filtering and query generation. Rewriting generation was on average in the order of tens of milliseconds and within 200ms for large rewritings, across all benchmarks. Figure 9 allows one to compare the rewriting time (automaton construction+query generation) and the evaluation time of a rewriting set, with different data summaries. The main observation is that for large volumes of data query answering is likely to be dominated by the evaluation of a rewriting-set rather than by rewriting itself. Also, automaton construction could be boostrapped off-line as discussed in Section 6 further reducing rewriting costs at query time.

Partitioning and Parallelization Bring Big Improvements. For partitioning, we used the Λ 𝑑 function with 𝑑 = 2 (Section 4). This led to 8 partitions for DBLP JR , 30 for GitHub JR , and between 6 and 130 for XMark JR . We report the results for the path summary without prefixes. We use this as a yardstick to show that partitioning and parallelization have sensible effects; gains cannot decrease when prefixes are added. Recall we focus on physical partitioning; we found logical partitioning having similar effectiveness [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF].

For DBLP JR , we start by looking at the gain provided by partitioning alone (i.e., without parallelization), as illustrated in Figure 10 (TF-part-path). The advantage of partitioning alone is that 𝑖) a query is evaluated on smaller portions of the database and 𝑖𝑖) partitions can be skipped when the data summary rules out any answer on a specific partition. In this experiment, partitions are queried sequentially and times added up. For DBLP JR queries that took more than 200ms (20 out 22) the average speedup for (sequentially) querying the partition was of 16.1x; the value increases if all 22 queries are considered [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. For GitHub JR , the average speedup was 30x. By introducing parallelization (TF-part-parall-path) the runtime is dominated by the time of querying the "slowest" partition (to which we add the management of the parallel data access). So, the gains further raise to 22.9x for (again: 20 out of 22) DBLP queries and 53x for GitHub JR wrt the baseline TF-depth. For comparison, recall that the path summary had an average speedup of 5.5x (on all 22 queries) on DBLP JR , and of 17.6x on GitHub JR , which means partitioning and parallelization allow one to go 2x to 4x faster wrt the path summary alone on these datasets. As said above, we reported on the path summary to have a yardstick for performances. Interestingly, we found the label summary on DBLP JR to provide essentially the same results [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. This is because partitions have a reduced variability of data, hence labels are used with less ambiguity. So, summaries can be both very small and efficient when combined with partitioning. As expected, adding prefixes to the path summary improves the filtering power and reduces the size of rewritings. This can again further improve the speed-up by at least 3x on DBLP JR with respect to using partitioning, parallelization and the path summary without 𝑘-prefixes. Overall, these results show the gains provided by partitioning and parallelization.

Partitioning Leads Towards Horizontal Scalability. Partitioning and parallelization can be extremely efficient in distributing the query answering effort on large databases. Figure 11 (left) reports answering times on an XMark JR ruleset generating rewritings of size 100 over several instances. Data points indicate the average query time for the 10 XMark JR queries. Let us focus on two variants of our system: the baseline (TF-depth) and with partitioning, parallelization, and the path summary (TF-part-parall-path). While for small data the two are closer, gains can reach peaks of two orders of magnitude for single queries on large JSON collections. The average gain on 100M is 2x (over all 23 rulesets), and raises 13.5x on 1G and to 68.2x for 10GB and to 88.8x for 50G. Figure 11 (right) reports single query time with TF-part-parall-path for 10GB and 50G XMark JR data (note, across all rulesets). We observe that the greater is the number of partitions attacked by a query, the lower is the query evaluation time, as the querying effort can be better distributed. For 10GB data we can answer queries with 100 rewritings in 1.3 seconds, which is encouraging. This suggests that other partitioning functions could achieve better load balancing leading towards horizontal scalability; this is left for future work.

No Stored Inferences and Low Memory Consumption Our method achieves both efficiency and scalability thanks the underlying database. Its persistent storage enables querying on large data, and query rewriting avoids to store any inference. Let us go back to Figure 11 (left), showing average query times for rewriting sets of size 100. Experiments confirm that in-memory materialization with VLog is extremely efficient, especially on small to medium instances, because of its dedicated algorithms and data-structures. TreeForce with partitioning, parallelization, and path summary is slower on small instances but, as data increases, it reaches similar performances (already for 𝜂 = 100). This was confirmed also on XMark JR ruleset generating rewritings of size 10 and 500 [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. For 𝜂 = 500, VLog could not load the data as it consumed all of the RAM we allocated. This shows that in-memory solutions may require powerful hardware for their deployment on large datasets, while relying on database solutions allows one to scale with modest memory resources. For DBLP and GitHub the average query time for VLog was 5.9s on DBLP (against 7.4s for TF-part-parall-path) and 0.7s on GitHub JR (against 2.2s for TF-part-parall-path). For a fair comparison, this data does not include the time taken by VLog to apply the rules alone (without computing answers to queries) which can be considered either a one-of operation or not. We report however that rule application time was 160s for DBLP and 65s for GitHub JR (no input nor output time). We conclude that for one-of operations our approach can be relevant also on smaller instances. Finally, note that VLog rule-application is negligible for XMark JR as relabeling rules are kept intensional [START_REF] Hu | Datalog Reasoning over Compressed RDF Knowledge Bases[END_REF]; this makes the comparison of Figure 11 meaningful. All of this is interesting also because a DBMS can be considered at disadvantage when compared with main-memory solutions in terms of pure response time.

Rewriting Algorithms Tailored for Data-Tree. For GitHub JR and XMark JR , we could use Graal to compute rewritings of queries. However, this was not possible for all DBLP JR queries as the translation of DBLP JR tree also yields Datalog ± rules which are recursive. Indeed, rewriting with Graal terminated only on 6 queries out of 22. Note that this is not a limitation of this tool, but of any general rewriting algorithm that makes no hypothesis on the shape of data. In contrast, our rewriting algorithm tailored for tree rules terminated in all cases. Hence, times reported next for rewriting-based approaches on DBLP JR only consider those 6 queries.

The main feature of interest of rewriting-based systems is their frugality in terms of main memory. However, they may face other challenges when scaling out reasoning. The first, is the evaluation of large rewriting sets, which is a well-known issue [START_REF] Bursztyn | Teaching an RDBMS about ontological constraints[END_REF]. The second is computing dictionary encoding over large collections, which is a question in itself [START_REF] Urbani | KOGNAC: Efficient Encoding of Large Knowledge Graphs[END_REF]. Figure 10 illustrates rewriting-based approaches on DBLP JR andGitHub JR showing the effectiveness of our optimizations. XMark JR results for rewriting-based systems are reported in Figure 11. We include only average times for the cases where all of the 10 XMark JR queries were answered by a system [START_REF] Olivier | Scalable Reasoning on Document Stores via Instance-Aware Query Rewriting[END_REF]. For 𝜂 = 500, again data could not be loaded in main memory by VLog. On the other side, Graal could not encode the data, as the dictionary encoding computation ran out of memory. By disabling dictionary encoding data was loaded into PostgreSQL. However, already for 𝜂 = 100, disabling encoding did not allow to answer all the queries of the benchmark (recall, each with 100 rewritings). Our approach, in both its baseline and optimized versions, was able to provide answers across all benchmarks. Overall, we believe these results on rewriting over MongoDB to be very promising.

RELATED WORK AND CONCLUSION

There has been little work on reasoning on top of JSON databases. Prior work studied path-rules for JSON [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF][START_REF] Mugnier | Ontology-Mediated Queries for NOSQL Databases[END_REF]; we focus on treerules. More specifically, our frontier-constrained tree-rules extend the context-free fragment of suffix-path rules from [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF], while keeping suitability for query rewriting on document-stores. Still on the theoretical level, the work of [START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF][START_REF] Hidders | J-Logic: Logical foundations for JSON querying[END_REF] focuses on the computational complexity of some logical query languages for JSON. Note that the frameworks from [START_REF] Bienvenu | Ontology-Mediated Query Answering for Key-Value Stores[END_REF][START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF][START_REF] Hidders | J-Logic: Logical foundations for JSON querying[END_REF][START_REF] Mugnier | Ontology-Mediated Queries for NOSQL Databases[END_REF] have not been implemented. Another line of work considers the definition of virtual RDF views of JSON data as well as reasoning with RDFS/OWL ontologies at the RDF level [START_REF] Botoeva | OBDA Beyond Relational DBs: A Study for MongoDB[END_REF][START_REF] Buron | Obi-Wan: Ontology-Based RDF Integration of Heterogeneous Data[END_REF][START_REF] Buron | Ontology-Based RDF Integration of Heterogeneous Data[END_REF]; we do reasoning at the JSON level.

With respect to the area of knowledge graphs and hypergraphs, constrained tree-rules allow for existential nodes in the rule head: these are analogous to existentially quantified variables in Datalog ± [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Beeri | A Proof Procedure for Data Dependencies[END_REF][START_REF] Calì | A general datalogbased framework for tractable query answering over ontologies[END_REF]. As already said, our decidable fragment can be seen as a strict subset of body-acyclic frontier-guarded existential rules [START_REF] Baget | Walking the Complexity Lines for Generalized Guarded Existential Rules[END_REF], as well as of the description logic ELH V [START_REF] Krötzsch | Nominal Schemas in Description Logics: Complexities Clarified[END_REF]. Many reasoners have been implemented for knowledge graphs. State-of-the-art materialization-based systems include in-memory solutions like VLog [START_REF] Carral | VLog: A Rule Engine for Knowledge Graphs[END_REF], RDFox [START_REF] Nenov | RDFox: A highly-scalable RDF store[END_REF] and Vadalog [START_REF] Bellomarini | The Vadalog System: Datalog-based Reasoning for Knowledge Graphs[END_REF] (the latter being restricted to a specific rule fragment) and RDBMS-based solutions like LLunatic [START_REF] Geerts | That's All Folks! Llunatic Goes Open Source[END_REF] and DLV [START_REF] Alviano | The Disjunctive Datalog System DLV[END_REF]. Note that materialization does not always halt for frontier-constraint tree-rules. State-of-the-art rewritingbased systems include OnTop [START_REF] Calvanese | Ontop: Answering SPARQL queries over relational databases[END_REF] and Mastro [START_REF] Calvanese | The MASTRO system for ontology-based data access[END_REF], both devoted to lightweight OWL ontologies incomparable with our rules, and Graal for existential rules [START_REF] Baget | Graal: A Toolkit for Query Answering with Existential Rules[END_REF]. Note that Graal accepts any set of existential rules and conjunctive query, but query rewriting terminates only if the rewriting set is finite [START_REF] König | Sound, complete and minimal UCQ-rewriting for existential rules[END_REF], a property that is not fulfilled by frontier-constrained tree-rules (recall Figure 3). Also, our query rewriting technique based on semi-twig-unifiers exploits the fact that data is tree-shaped and generates only tree queries.

Various formalisms for reasoning on XML and object-oriented databases have been studied [START_REF] Abiteboul | Positive Active XML[END_REF][START_REF] Baumgartner | Supervised Wrapper Generation with Lixto[END_REF][START_REF] Bry | Foundations of Rule-Based Query Answering[END_REF][START_REF] Buneman | UnQL: a query language and algebra for semistructured data based on structural recursion[END_REF][START_REF] Deutsch | A query language for XML[END_REF][START_REF] Kifer | Logical Foundations of Object-Oriented and Frame-Based Languages[END_REF][START_REF] May | A rule-based querying and updating language for XML[END_REF][START_REF] Schaffert | A gentle introduction to Xcerpt, a rulebased query and transformation language for XML[END_REF]. A difference between our framework and most of these proposals is that they are tied to XML and XPath. Among the rule-based languages for XML, decidable fragments such as XPathLog [START_REF] May | A rule-based querying and updating language for XML[END_REF], Elog [START_REF] Baumgartner | Supervised Wrapper Generation with Lixto[END_REF] and F-Logic [START_REF] Kifer | Rules and Ontologies in F-Logic[END_REF][START_REF] Kifer | Logical Foundations of Object-Oriented and Frame-Based Languages[END_REF], which do not allow for existential nodes, are incomparable with our frontier-constrained tree-rules in terms of expressivity. Another sharp difference is that [START_REF] Abiteboul | Positive Active XML[END_REF][START_REF] Baumgartner | Supervised Wrapper Generation with Lixto[END_REF][START_REF] Kifer | Logical Foundations of Object-Oriented and Frame-Based Languages[END_REF][START_REF] May | A rule-based querying and updating language for XML[END_REF] have been designed with a forward-chaining reasoning in mind; our focus is query rewriting. Xcerpt [START_REF] Schaffert | A gentle introduction to Xcerpt, a rulebased query and transformation language for XML[END_REF] is the closest language to our tree-rules for which backward chaining (over ordered trees) has been studied [START_REF] Sebastian | Xcerpt: A rule-based query and transformation language for the Web[END_REF]. Our work differs as [START_REF] Sebastian | Xcerpt: A rule-based query and transformation language for the Web[END_REF][START_REF] Schaffert | A gentle introduction to Xcerpt, a rulebased query and transformation language for XML[END_REF] provides no guarantees for the termination of Xcerpt rules, while we identify a decidable fragment via query rewriting (over unordered trees). Active XML [START_REF] Abiteboul | Positive Active XML[END_REF] is not based on rules but on function calls. UnQL [START_REF] Buneman | UnQL: a query language and algebra for semistructured data based on structural recursion[END_REF] and XML-QL [START_REF] Deutsch | A query language for XML[END_REF] are not rule-languages but query-languages based on recursive functions. Although these approaches can be assimilated with ours, their technical development is quite different. A last crucial difference with all these proposals is that our work is the first to consider (and implement) the use of NoSQL document stores to support rule-based query answering over data-trees.

Rewriting-based techniques have been considered for answering queries over virtual XML views defined either from SQL data [START_REF] Fan | Query translation from XPath to SQL in the presence of recursive DTDs[END_REF][START_REF] Fernández | SilkRoute: A framework for publishing relational data in XML[END_REF][START_REF] Shanmugasundaram | Querying XML Views of Relational Data[END_REF] or XML data [START_REF] Fan | Secure XML querying with security views[END_REF][START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF][START_REF] Thomo | Rewriting of visibly pushdown languages for xml data integration[END_REF] to support data-integration and secure access to information. Note first that view languages are different from rule languages, which are typically more general. Automata have been proved effective for tackling problems related to XML queries in many settings [START_REF] Hubert Comon | Tree automata techniques and applications[END_REF][START_REF] Schwentick | Automata for XML-a survey[END_REF]. Very few work considers the presence of recursion in the definition of views. From the automata perspective, the work of [START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF] is the closest to ours in spirit as it considers automata-based rewriting for regular XPath queries over recursive XML views. However, the decidable language stemming from recursive view definitions is much closer to [START_REF] Baumgartner | Supervised Wrapper Generation with Lixto[END_REF][START_REF] Kifer | Logical Foundations of Object-Oriented and Frame-Based Languages[END_REF][START_REF] May | A rule-based querying and updating language for XML[END_REF] which makes it orthogonal to frontier-constrained tree-rules. Further, [START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF] produces regular-XPath rewritings which are not supported by any system and calls for an ad-hoc implementation. In contrast, our instance-aware method outputs tree-queries and relies on efficient NoSQL systems. To conclude on this matter, note that the problem of answering queries with materialized views [START_REF] Alon | Answering queries using views: A survey[END_REF] (the input query targets the source database, rewritings target the views) is opposite to the one with virtual views (the input query targets the virtual database, rewritings target the source database). Our approach can nevertheless benefit from the presence of materialized views containing certain answers to queries over the original database. Having materialized views opens for two types of opportunities. First, evaluating a subset of the rewriting-set of a query on the materialized views. Second, the development of early stop techniques for our rewriting algorithms when answers to single rewritings (over views) are found. The study of these questions is however left as the subject of future work.

In conclusion, we have shown that NoSQL stores can be used to build an efficient and scalable tool for reasoning on JSON databases. We have outlined the importance of instance-aware query rewriting techniques and shown that the combination of data summaries, partitioning and parallelization result in high performances on large data. We believe that some of these ideas can be transposed to the case of knowledge graphs and hypergraphs. Future work also includes the extension to more expressive rule languages, for example including suitable forms of equality constraints and contexts.

Figure 1 :

 1 Figure 1: Rule-based Querying of GitHub Data

Figure 2 :

 2 Figure 2: Query Rewriting Associated with Example 1.1

Figure 3 :

 3 Figure 3: Rules and Infinite Rewriting Sequences

Figure 4 :

 4 Figure 4: Instance-Aware Rewriting and Evaluation

Figure 5 :

 5 Figure 5: Separating Nodes and (Semi-)Twig Unification

 𝑖where 𝑣 𝑖 is the encoding of a query leaf. State s initial 1 recognizes the query leaf labeled by value ForkEvent. By definition, this is a constrained node. Hence its encoding is 𝑣 1 = ($ • ForkEvent) where the reserved symbol $ is used to denote a constrained node. State s initial 2 recognizes the answer variable x, which by definition is also constrained. This is encoded as 𝑣 2 = ($ • 1), where 1 denotes the position of the answer variable in the answer node sequence. State s initial 3 recognizes an existential node. This is encoded as 𝑣 3 = (#) where # denotes that the node is not constrained. Moving on, the initial states are used to define three edge transitions of the form s initial 𝑖 𝑘 𝑖

Figure 6 :Figure 7

 67 Figure 6: Query and Rewriting Automata

(1)(2) 6)

 126 Construction of A (𝑞,Π) from 𝑞 and Π Initialize A (𝑞,Π) to be equal to A encode(𝑞) For every edge transition s a --→ e in Δ 𝐸 and rule 𝑟 ∈ Π relabeling b into a Add the transition s b --→ e in Δ 𝐸 (3) For every tree encode(𝑞 ′) recognized by A (𝑞,Π) via a run 𝜌 (4) For every twig-unifier 𝜇 = (𝑆, H, 𝜈, 𝑢) for 𝑞 ′ and rule 𝑟 ∈ Π (5) Extend A (𝑞,Π) with an automaton for A encode(𝜇 (Body(𝑟))) (if not already done) (Add to Δ 𝑁 a (non-leaf) node transition (U \ T) ∪ B --→ 𝜌 (Root(𝑆)) where • U = {𝜌 (𝑛 1), . . . , 𝜌 (𝑛 𝑘)} is a set of node-states where 𝑛 1 , . . . , 𝑛 𝑘 are the children of Root(𝑆) within the query 𝑞 ′ • T = {𝑛 𝑗 } is a singleton node-state where 𝑛 𝑗 is the (only) child of Root(𝑆) within the twig 𝑆 • B is a set of states such that B --→ s final encode(𝜇 (Body(𝑟))) (7) Repeat (2-6) until no more transitions can be added.

Figure 7 :

 7 Figure 7: Rewriting Automaton Construction

Figure 8 :

 8 Figure 8: Answering Time (baseline) -XMark JR

Figure 9 :

 9 Figure 9: Answering Time (average) vs Summaries

Figure 10 :

 10 Figure 10: Answering Time (average) -Rewriting Systems

 , No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611481

Table 1 :

 1 Dataset Size

	XMark JR

We do not represent the ordering on the elements of a sequence, since the considered queries do not exploit this order. Moreover, a nested sequence is seen as a constant.

In passing, note we cannot use the query rewriting algorithm based on piece-unifiers as-it-is, because 1) it may yield (more specific) rewritings that are not trees and 2) it may not terminate when it should, as it does not take into account the shape of data.

ACKNOWLEDGMENTS

We are grateful to Florent Tornil for his help with the experiments. This work was financially supported by the ANR project CQFD (ANR-18-CE23-0003).

The source code, data, and/or other artifacts have been made available at https://gitlab.inria.fr/boreal-artifacts/pvldb2023.