
HAL Id: lirmm-04305787
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04305787

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Scalable Reasoning on Document Stores via
Instance-Aware Query Rewriting

Olivier Rodriguez, Federico Ulliana, Marie-Laure Mugnier

To cite this version:
Olivier Rodriguez, Federico Ulliana, Marie-Laure Mugnier. Scalable Reasoning on Document Stores
via Instance-Aware Query Rewriting. Proceedings of the VLDB Endowment (PVLDB), 2023, 16 (11),
pp.2699-2713. �10.14778/3611479.3611481�. �lirmm-04305787�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04305787
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Scalable Reasoning on Document Stores
via Instance-AwareQuery Rewriting

Olivier Rodriguez

LIRMM, Inria, Univ. Montpellier,

CNRS

Montpellier, France

olivier.rodriguez@inria.fr

Federico Ulliana

LIRMM, Inria, Univ. Montpellier,

CNRS

Montpellier, France

federico.ulliana@inria.fr

Marie-Laure Mugnier

LIRMM, Inria, Univ. Montpellier,

CNRS

Montpellier, France

marie-laure.mugnier@inria.fr

ABSTRACT
Data trees, typically encoded in JSON, are ubiquitous in data-driven

applications. This ubiquity makes urgent the development of novel

techniques for querying heterogeneous JSON data in a flexible

manner. We propose a rule language for JSON, called constrained

tree-rules, whose purpose is to provide a high-level unified view

of heterogeneous JSON data and infer implicit information. As rea-

soning with constrained tree-rules is undecidable, we identify a

relevant subset featuring tractable query answering, for which we

design an automata-based query rewriting algorithm. Our approach

consists of leveraging NoSQL document stores by means of a novel

instance-aware query-rewriting technique. We present an exten-

sive experimental analysis on large collections of several million

JSON records. Our results show the importance of instance-aware

rewriting as well as the efficiency and scalability of our approach.

PVLDB Reference Format:
Olivier Rodriguez, Federico Ulliana, and Marie-Laure Mugnier. Scalable Rea-

soning on Document Stores via Instance-Aware Query Rewriting. PVLDB,

16(11): 2699 - 2713, 2023. doi:10.14778/3611479.3611481

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://gitlab.inria.fr/boreal-artifacts/pvldb2023.

1 INTRODUCTION
Rule-based languages have been studied by the database commu-

nity for more than four decades because of their importance in

processing enterprise data and knowledge [8]. In the recent years,

companies like LogicBlox and Relational-AI commercialized full-

fledged solutions for rule-based data processing and explainable

AI [13, 20]. At the same time, companies like Linkedin, Google,

Facebook, and Samsung, among others, developed their own rule

engines for reasoning on data [43, 66, 80]. The interest in such

formalisms comes from declarativity and expressivity, which make

rules a universal form of knowledge suitable for many tasks such as

data-integration [46], recursive queries [8], ontologies and seman-

tic constraints [35], data quality and data preparation for feeding

machine learning and analytic tools [20, 51].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611481

The variety of data that can be handled by rule languages led

to the design of solutions for reasoning on knowledge graphs and

hypergraphs [20, 41, 68]. Nevertheless, in many practical cases,

data exhibits a simpler structure. There is a sheer amount of semi-

structured data held by transactional systems, data warehouses,

and data lakes, which takes the form of data trees. Today, this data is
typically serialized as JSON. Beside this, data trees also permeate the

wholeWeb, where JSON is exchanged at a massive rate. As a bottom

line, JSON trees are ubiquitous in data-oriented applications, hence

among the most practically relevant formats today. This ubiquity

makes urgent the development of novel techniques for querying
heterogeneous JSON data in a flexible manner.

Towards this aim, we study a rule language for JSON suitable to:

(1) act as amediating level to integrate heterogeneous JSON data; (2)
allow one to enrich the querying vocabulary, hence to adapt it to spe-
cific use-cases and free the end-users frommastering the complexity

and irregularity of data; (3) be equipped with reasoning capabilities,
i.e., be able to infer information not explicitly stored in the data

thereby bringing novel and pertinent answers to the user queries.

In the quest for such language, a crucial requirement is that it must

enable efficient and scalable query answering techniques. Our new

approach is to use NoSQL document stores for query-answering
over data-trees together with instance-aware query-rewriting tech-

niques to build a scalable and efficient end-to-end framework
for reasoning on JSON databases.

Example 1.1. Figure 1 shows three JSON trees (pictured in black

solid lines) 𝑇1, 𝑇2, 𝑇3 holding GitHub data from the public archive

[2]. This collection built for data analysis contains 17 types of events

stemming from user actions. Data is complex and irregular. For a

data-scientist willing to exploit the archive, tasks like 𝑖) running

short explorative queries or 𝑖𝑖) extracting a training-set for machine

learning algorithms can both be extremely time consuming, because

of the time required to formulate the “right” queries to the data. To

illustrate, a simple information such as the name (login) of a user

can appear within different JSON keys (e.g., author for commits,

actor for push, user for issues, and more) and within more than 60

different paths in the trees (e.g., actor.login, payload.commits,
payload.issue, etc). Let us consider the query 𝑞, which concerns

the activity of Linus Torvalds (torvalds). It retrieves the id of the

events where the user participated, through the answer variable

x. This query is empty on all trees, as it has no matches. Indeed, to

query the collection, one must first learn the irregular JSON structure.
In contrast, rules 𝑟1 − 𝑟6 can be added (on benefit of all end-users)

on top of data thereby providing a unified high-level vision of

the JSON records. Rules 𝑟4 − 𝑟6 introduce the high-level notion of

event from specific types of events (push, commit, issues), which

2699

https://doi.org/10.14778/3611479.3611481
https://gitlab.inria.fr/boreal-artifacts/pvldb2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611481
https://www.acm.org/publications/policies/artifact-review-and-badging-current

event

torvalds

userid

q

push

userid

PushEvent

type
actor

login

id
commit

userid

PushEvent

type
payload

commits

id

author

commit event

r

issue

userid

IssueEvent

type
payload

issue

id

user

issue event

PushEvent

type
actor

torvalds

login
431

id
02-01

date

user

id

push

T

push event

x

with rules

 431 695

$

$

$

$

$

$

1

PushEvent

type
payload

gvanrossum

commits

526

id
02-01

date

user

id

commit

author

event

T2

IssueEvent

type
payload

torvalds

issue

965

id
02-01

date

user

id

commit

user

event

T3

event

1 r2 r3

r4 r5
r6

Figure 1: Rule-based Querying of GitHub Data

is handy for queries. Rules 𝑟1 − 𝑟3 abstract on the structure of data

to define high-level notions of the same types of events, including

the id and the user involved. Altogether, the rules enable implicit

inferences (pictured as red dashed edges and nodes) which provide

answers to 𝑞 from 𝑇1 and 𝑇3 without requiring users to master the
whole variability of data. Note that, as pictured, these are tree rules.
The left-hand-side (the body) encodes a tree structure to match,

while the right-hand-side (the head) encodes the inferences. Nodes

shared between the body and the head are linked by dotted lines.

Nodes that belong to the head only (in red), called existential nodes,
extend the tree by introducing fresh nodes; they are necessary to

restructure data. Further, as we shall see later, rules can be recursive.

As already said, querying heterogeneous JSON trees in a flexible

manner is critical for many data processing and governance tasks.

These include scenarios where one-of operations are executed, e.g.,

the preparation and extraction of training-sets from heterogeneous

data [20, 51]. These include scenarios where consecutive queries are
run and users expect online answers, e.g., in goal-driven explorative

queries [8, 22, 78]. In both cases, the solution is to use reasoning

algorithms based onmaterialization and query-rewriting techniques
[8, 27]. These are different approaches complementing each other,

for both theoretical and practical concerns [11, 16, 34, 52]. First,

each can handle only certain rule fragments; this, regardless of

the applicative scenarios. Indeed, both suffer from non-termination
issues for languages such as Datalog

±
(a.k.a. existential rules or

Tuple-Generating-Dependencies) [16, 19, 34]. This matters here, as

tree rules like those of Example 1.1 are related to these formalisms.

Second, assuming termination, every method best fits certain ap-

plicative scenarios and hardware constraints.

Materialization consists at extending the database with the in-

ferences produced by rules, as illustrated by Figure 1. In-memory

materialization is regarded as the most effective approach. Systems

based on this approach exhibit extremely high-performances be-

cause of their reasoning-oriented algorithms and data-structures

[20, 41, 68]. Yet, in-memory materialization is tied to the capacity

at storing inferences (or even loading data) in memory. Concretely,

this may confine the use of the technique to powerful hardware

even for medium size datasets. Materialization can also be realized

with a DBMS backend but it can be much less performant [11, 21].

Rewriting consists at propagating the rules into the query thereby
leaving the data untouched. The aim is to produce a set of queries

whose evaluation on the data yields the same answers as the evalua-

tion of the input query on the extended database. Figure 2 illustrates

the rewriting of query 𝑞 from Example 1.1. In spirit, the rewriting

process replaces parts of a query matching a rule head with the rule

body itself. The advantages of query rewriting are multiple. First, it

requires no additional space to store inferences. Second, it is insen-

sitive to data updates. Third, it allows one to reason with read-only

access rights on the database. The most important however is that

rewriting can be deployed on top of existing database technology
[32, 37, 51, 64]. This has two main advantages: it makes the tech-

nique resilient to main-memory limitations, as data is stored on disk

and inferences not stored at all, and it allows one to delegate query

evaluation to the DBMS. On this matter, JSON has been adopted

as a data model by several NoSQL document stores, often praised

for their performances (e.g., MongoDB, CouchDB, ArangoDB, to

cite a few). This opens up for the opportunity of building a novel
family of reasoners relying on query rewriting and NoSQL database
technology. Indeed, these systems come with adapted data layouts,

indexes, query algorithms, buffering, scheduling, and concurrent

data access mechanisms among others. All these components can

work together to make reasoning on JSON both efficient and scal-
able. Note that aiming at materialization on top of document stores

would almost inevitably lead to data blowups and no scalability

because of the tree data-model of JSON [67]. For these systems,

query rewriting is the prominent way to go.
Contribution. Designing a rewriting-based reasoner on NoSQL

document stores has been very little investigated so far [23, 24, 67].

This task poses significant technical challenges, namely identifying

𝑖) adequate languages for the task, together with 𝑖𝑖) algorithms and

optimizations to make query answering efficient and scalable.

Concerning the first point, to start with, one needs a query and

rule language that is closed, i.e., it generates only rewritings that
can be handled by the underlying NoSQL system. This is subtle, as

NoSQL systems often ensure efficient access to data by reducing

the expressivity of queries to rooted path- or tree-shaped queries or

forbidding joins. Here, we shall present a language of constrained
tree queries and rules enjoying this property. Then, the rewriting
process must be finite, which can limit the use recursion in rules.

Rewriting recursive rules (e.g., Datalog [8]) is generally disregarded,

and the typical solution is to restrict the language to ensure that the

set of rewritings of any query is finite [34, 36, 38]. Here, we take

another approach and rather try to cope with infinite rewriting

sets, while encoding them finitely. Finally, query answering with

the target rule language must have tractable data complexity (i.e.,

polynomial complexity in the size of the data) which is theminimum

requirement for efficiency over large data [20].

Concerning the second point, to design algorithms and optimiza-

tions for efficient and scalable reasoning, we believe that query

rewriting process cannot be agnostic to the underlying database.
Therefore, our goal is to couple query rewriting with an innovative

instance-aware evaluation strategy. This leverages on a combination

of data-summaries, partitioning, and parallelization that allow us to

achieve efficiency by distributing the evaluation of rewritings where
the matching data is and at the same time achieving scalability on

very large collections of JSON data thanks to the NoSQL facilities.

2700

Summing up, our contributions are the following.

1. We introduce a novel language of constrained rules and queries
for reasoning on JSON and present a (general) sound and complete

query rewriting algorithm for this setting.

2. As reasoning with constrained rules is undecidable, we identify

a relevant subset, made of relabeling and frontier-constrained rules,

featuring decidable query answering with PTime data-complexity.

We design an automata-based rewriting algorithm for such rules.

3. We propose a novel set of instance-aware evaluation techniques

that - for a fixed database - allow one to efficiently evaluate large

rewritings sets and also scale on large collections of data.

4. We present an extensive experimental analysis on large collec-

tions of several million JSON records showing the efficiency of our

approach, and its scalability beyond state-of-the-art reasoners.

Paper Organization.We introduce our framework in Section

2 then give a high-level presentation of our query answering tech-

niques (Sections 3 and 4). Sections 5 and 6 are devoted to formal

developments on query rewriting algorithms. The experimental

analysis is presented in Section 7. Section 8 discusses related work.

Proofs and further details can be found in the technical report [69].

2 FRAMEWORK
We begin by presenting an abstract setting for reasoning on JSON.

We start by posing the notion of tree which will be used throughout

the paper. Then, we introduce a new language made of constrained
tree rules and queries and define their semantics.

Briefly, a JSON record is a set of key-value pairs, where a value is

recursively defined as a terminal value (constant or null), a sequence

of values, or a record. We see a record as a rooted labeled unordered
tree, in which edges are labeled by keys, leaves are labeled by con-

stant or null values, and all the internal nodes are unlabeled. Note

that a key-value pair (𝑘, 𝑣) where 𝑣 is a sequence is represented by

edges labeled by 𝑘 leading to the nodes that represent the elements

of 𝑣 .1 Example 1.1 illustrates the tree vision of records.

Trees LetL andV be (infinite) sets of edge labels and (terminal)

node values, respectively. A tree is a tuple 𝑇 = (N , E, 𝑡, _E , _N)
whereN is a node set and E ⊆ N2

is a non-empty edge set such that

(N , E) is a directed tree with root 𝑡 ∈ N . Then, _E : E → L is a

(total) edge labeling function (for JSON keys) and _N : leaves(𝑇) →
V∪{𝜖} is a (total) leaf labeling function (for JSON terminal values),

where leaves(𝑇) ⊆ N is the set of leaves of the tree. We distinguish

between valued leaves, which are those labeled by a value inV , and

unvalued leaves labeled by 𝜖 . The corresponding subsets are denoted
by leavesV (𝑇) and leaves𝜖 (𝑇), respectively. Note that all edges are
labeled, while only leaf nodes may be valued. Standard definitions

about trees are extended in the obvious way. In particular, a subtree
of a tree𝑇 is a tree included in𝑇 ; it is a roooted subtree of𝑇 if it has

the same root as 𝑇 .

Processing trees A leaf assignment of a tree 𝑇 is a function

a : leaves𝜖 (𝑇) → V whose application is defined as a (𝑇) =

(N , E, 𝑡, _E , a⊎_N). Next, given a function 𝑓 , a set𝐴 = {𝑎1, . . . , 𝑎𝑙 }
and a sequence b = (𝑏1, . . . , 𝑏𝑘), we note 𝑓 (𝐴) = {𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑙)}
and 𝑓 (b) = (𝑓 (𝑏1), . . . , 𝑓 (𝑏𝑘)). Let 𝑇1 and 𝑇2 be trees with 𝑇𝑖 =

1
We do not represent the ordering on the elements of a sequence, since the considered

queries do not exploit this order. Moreover, a nested sequence is seen as a constant.

(N𝑖 , E𝑖 , 𝑡𝑖 , _E𝑖 , _N𝑖). A homomorphism from𝑇1 to𝑇2 is a total func-

tion ℎ : N1 → N2 such that: (i) for all 𝑒 ∈ E1, ℎ(𝑒) ∈ E2 and

_E1
(𝑒) = _E2

(ℎ(𝑒)); and (ii) for all 𝑛 ∈ leavesV (𝑇1), _N1
(𝑛) =

_N2
(ℎ(𝑛)). A homomorphism ℎ is rooted if ℎ(𝑡1) = 𝑡2. A homomor-

phism ℎ from 𝑇1 to 𝑇2 is an isomorphism if ℎ−1 is also a homomor-

phism (from 𝑇2 to 𝑇1).

Instances and rules An instance is simply a tree (like 𝑇1,𝑇2,𝑇3
in Figure 1). To distinguish, we will call collection a set of trees. In

pictures, edges are always considered as oriented from the root

(black node) to the leaves. The body and the head of a rule are
both trees, which share their root and some leaves; moreover,

leaves in the body may be constrained, which means that they

must be mapped to valued nodes in the data. Formally, a con-
strained tree-rule (or simply rule) is a triple 𝑟 = (B,H , C) where B
and H are trees representing the body and head of 𝑟 , also denoted

by Body(𝑟) and Head(𝑟), and C ⊆ leaves(B) is a (possibly empty)

subset of leaves, said constrained; C is also denoted Constrained(𝑟);
𝐵 and 𝐻 share the same root, and, beside the root, only leaves

can be shared between B and H . The frontier of 𝑟 , denoted by

frontier (𝑟), is the set of nodes shared between B andH . Furthermore,

frontier leaves (𝑟) denotes the set of leaves of 𝑟 shared by B and H , i.e.,

frontier leaves (𝑟) = leaves(B)∩leaves(H) ⊂ frontier (𝑟). In the formal

development, w.l.o.g, we assume no constants in the rules (in con-

trast with data and queries), that is, leavesV (B) = ∅ = leavesV (H).
Consider again the rules in Figure 1. Rule 𝑟1 defines a high-

level notion of a push event. First, it verifies if structural conditions
defined by the body are met in the data. That is, that a key typewith
value PushEvent is present, as well as an event id and the login of
the user who made the event. Then, it checks for constrained nodes

(marked with $ in the picture). That is, it verifies that id and login
are associated with terminal values ofV . Finally, it computes the

result by copying these values within a new structure associated

with the key push. Rules 𝑟2 and 𝑟3 are similar. Rule 𝑟4 states that

the key push is a particular case of event. This rule is called a

relabeling rule. Rules 𝑟5 and 𝑟6 are similar. Note that all frontier

leaves are constrained in 𝑟1-𝑟3, and none in 𝑟4-𝑟6. Finally, a key

feature of rules is that they may have non-frontier nodes in the

head, called existential nodes. This is the case for 𝑟1-𝑟3 in Figure

1, where existential nodes are marked in red. These nodes allow

to reorganize extracted values into new structures. In this, our

framework is leaning towards Datalog±, which extends Datalog

with existentially quantified variables [16, 35].
Rule Semantics As Figure 1 illustrates, the application of rules

leads to an extended instance that we compactly see as a (rooted)

acyclic graph. This is to simplify the formal development, in that

acyclic graphs can always be unfolded into trees. Regardless, since

we will focus on query rewriting, these extended instances never

have to be computed, as they remain virtual. A trigger for a rule
𝑟 = (B,H , C) on an (extended) instance 𝐼 is a pair (𝑟, ℎ) where ℎ is a

(not necessarily rooted) homomorphism from B to 𝐼 respecting the

constrained nodes, i.e., such that ℎ(C) ⊆ leavesV (𝐼). The applica-
tion of (𝑟, ℎ) to 𝐼 results in 𝐼 ∪ℎ+ (H), where ℎ+ ⊇ ℎ is an extension

of ℎ mapping every non-frontier node of H to a fresh node. Given a

set of rules Π, we denote by 𝛼 (𝐼 ,Π) the instance obtained from 𝐼 by

applying all triggers on 𝐼 in parallel, i.e., 𝛼 (𝐼 ,Π) = 𝐼 ∪⋃︁
(𝑟,ℎ) ℎ

+ (H)
where 𝑟 ∈ Π and (𝑟, ℎ) is a trigger on 𝐼 . Given an instance tree 𝑇 ,

2701

we define Sat0 (𝑇,Π) = 𝑇 and Sat𝑖+1 (𝑇,Π) = 𝛼 (Sat𝑖 (𝑇,Π)). Finally,
the saturation of 𝑇 is Sat (𝑇,Π) = ⋃︁∞

𝑖=0 Sat𝑖 (𝑇,Π). This notion of

saturation is also known as chase [8] and is well-defined since the

order in which the rule applications are performed has no incidence

on the result (up to isomorphism).

Queries and Certain Answers A constrained tree-query is a

triple 𝑞 = (𝑇, C, x) where 𝑇 is a tree, C ⊆ leaves(𝑇) is a set of

constrained leaves that must be mapped to valued nodes in the data,

and x ∈ C |x |
is a sequence of answer nodes. We also denote C by

Constrained(𝑞) and x by AnswerSeq(𝑞). We assume valued leaves

are always constrained, i.e., leavesV (𝑇) ⊆ C. To illustrate, consider
the query 𝑞 in Figure 1. The only constrained node is the answer

node (marked by 𝑥). Hence, this node must be mapped to constant

values (here, “431” and “695”). A query 𝑞 is called Boolean if x = ().
A tuple a ∈ V |x |

is an answer to a query 𝑞 over an extended

instance 𝐼 if there is a rooted homomorphism ℎ from 𝑇 to 𝐼 such

that _N ◦ ℎ (x) = a and ℎ(C) ⊆ leavesV (𝐼), i.e., the leaf constraint
is fulfilled. The set of answers to 𝑞 on 𝐼 is denoted by Ans(𝑞, 𝐼). A
tuple a is a (certain) answer to 𝑞 on 𝐼 and Π if it is an answer to

𝑞 on Sat (𝑇,Π). The set of all answers to 𝑞 on (𝐼 ,Π) is denoted by

Ans(𝑞, 𝐼,Π). A query 𝑞 is more general than a query 𝑞′, denoted by

𝑞 ≥ 𝑞′, if there is a rooted homomorphism ℎ from 𝑇𝑞 to 𝑇 ′
𝑞 such

that ℎ(C𝑞) ⊆ C𝑞′ and ℎ(x𝑞) = x𝑞′ . A classical query containment

property [8] holds here: 𝑞 ≥ 𝑞′ iff Ans(𝑞′, 𝐼) ⊆ Ans(𝑞, 𝐼), for all 𝐼 .
Query Rewritings. A sound and complete set of rewritings of 𝑞

wrt Π is a set of queries Q such that, for every instance 𝐼 , it holds

that Ans(𝑞, 𝐼,Π) = ⋃︁
𝑞′∈Q Ans(𝑞′, 𝐼); in this equality, ⊇ expresses

soundness, and ⊆ completeness. In words, Q must embarck all

possible ways in which a query 𝑞 can be satisfied via the rules of Π.
For example, Figure 2 illustrates a sound and complete rewriting set

for 𝑞 of Example 1.1, made by the queries 𝑞, 𝑞1, 𝑞2, 𝑞3, 𝑞
′
1
, 𝑞′

2
, 𝑞′

3
. In

Section 3 we will show how our query rewriting algorithms exploit

two features of rules. First, rules are tree-shaped, and this makes

rewriting within the language of tree queries possible, thereby

fitting the requirements of NoSQL APIs (a property one can loose

beyond tree rules). Second, the applicability of a rule can be limited

via constrained leaves, which, as shown later, will pave the way

to decidability. As a last remark, note that, as the definition states,

a sound and complete set of rewritings Q is independent of any
input instance. This may lead to useless rewritings not matching the

data, like 𝑞, 𝑞1, 𝑞2, 𝑞3 over the trees in Figure 1. In Section 4 we will

present an instance-aware mechanism to prune these efficiently.

3 NEW QUERY REWRITING ALGORITHMS
As a first step towards effective query answering on NoSQL stores,

we give a query rewriting algorithm for (general) constrained tree-
rules. We revisit techniques developed for existential rules, based

on so-called piece-unifiers [16, 61], also reminiscent of view-based

query rewriting [71]. Roughly speaking, a unifier is a node substitu-
tion (i.e., a function replacing nodes with nodes) that, as the name

suggests, makes part of a query equal to part of a rule head. A piece-
unifier checks further structural constraints that are necessary for

the soundness of rewriting when the rule head features existential
nodes, as the rules 𝑟1-𝑟3 from Figure 1. Given a piece-unifier of a

query 𝑞 with a rule 𝑟 , a rewriting step produces a new query by

substituting the unified part of 𝑞 with the body of 𝑟 . Then, given a

event

torvalds

userid

q

x

push

torvalds

userid

x

commit

torvalds

userid

x

issue

torvalds

userid

x

PushEvent

type
actor

login

id
$ PushEvent

type
payload

commits

id

author

$ IssueEvent

type
payload

issue

id

user

$
x xx

q
torvalds

torvalds torvalds

r

1 q2 q3

q'1 q'2 q'3

4 r5 r6 r1 r2 r3

Figure 2: Query Rewriting Associated with Example 1.1

set of rules Π, a Π-rewriting of 𝑞 is a query obtained by a sequence

of rewriting steps with rules from Π. E.g., each query in Figure 2 is

a Π-rewriting of 𝑞, with Π the rule set of Figure 1.

The contribution of this work is to identify a restricted class

of piece-unifiers, called (semi-)twig-unifiers, which have the nice

property of producing tree-shaped rewritings as we sought.2 The
formal development of semi-twig query rewriting is presented in

Section 5. This tool allows us to compute a set of rewritings of a

query, whose soundness and completeness is stated as follows.

Theorem 3.1 (Soundness and Completeness of Rewriting).

For any query 𝑞, instance 𝑇 , and set of constrained tree-rules Π, a ∈
Ans(𝑞,𝑇 ,Π) iff there is aΠ-rewriting𝑞′ of𝑞 such that a ∈ Ans(𝑞′,𝑇).

Hence, semi-twig query rewriting allows one to compute a finite
sound and complete set of rewritings when such set exists. And
indeed, there are rule sets and queries that only admit infinite sound
and complete sets of rewritings (even modulo query containment).

This can happen already with simple rules, as shown by Figure 3.

Query 𝑞 searches for projects forkedFrom a repository owned by
the keras-team. By rewriting 𝑞 with the rules 𝑟1 and 𝑟2, one builds

paths of arbitrary length along the key from. All of the obtained
queries are incomparable to each other w.r.t. query containment,

hence the only sound and complete rewriting set here is infinite.

This raises the issue of algorithmic feasibility for query answering.

3.1 Taming Infinite Rewritings
In spite of an apparent simplicity, query answeringwith constrained

tree-rules is undecidable. This has been shown already for the spe-

cific case of (unconstrained) path rules in various settings [9, 28, 40].

This negative result opens the quest for decidable rule languages

for reasoning on JSON data. Strategies for recovering decidability

include the use of acyclicity notions or syntactic conditions ensur-

ing the termination of (forward or) backward chaining [16, 35, 46].

Here, we take a different approach. We consider a language with

non-terminating (both forward and) backward chaining, but ensur-

ing that the rewritings of a query can always be finitely captured.

We draw inspiration from the language of so-called suffix path-rules

proposed in [23] and lift it to the case of trees, which yields a specific

constrained tree-rule fragment we call frontier-constrained rules.
Crucially, this fragment makes the rewritings of a query forming a

regular tree-language one can capture with automata techniques.

2
In passing, note we cannot use the query rewriting algorithm based on piece-unifiers

as-it-is, because 1) it may yield (more specific) rewritings that are not trees and 2) it

may not terminate when it should, as it does not take into account the shape of data.

2702

ATractable Fragment.We consider combinations of 1) frontier-
constrained rules and 2) relabeling rules, which are defined next.

Definition 3.2. Let 𝑟 = (B,H , C) be a constrained tree-rule. Then:
• 𝑟 is frontier-constrained if frontier leaves (𝑟) ⊆ C
• 𝑟 is relabeling if B and H are edges and frontier leaves (𝑟) ≠ ∅

In Figure 1, 𝑟3-𝑟6 are frontier-constrained rules while 𝑟1-𝑟4 are

relabeling rules. Frontier-constrained rules impose that a trigger

maps all the frontier leaves of the rule to data values, but without any
further condition on the use of recursion. From a practical viewpoint,

they allow one to select values in the data and to reorganize them

into structures adapted to the targeted application. Relabeling rules

are among the most useful rules for reasoning on trees, as they

allow one to define hierarchies of keys. In contrast with frontier-

constrained rules, they apply anywhere on a tree instance.

The decidability of query answering for this fragment follows

from a natural translation into first-order logic. Constrained queries

and rules are translated into tree-shaped conjunctive queries and

existential rules, respectively. Frontier-constrained and relabeling
rules are more specifically translated into a decidable fragment

of existential rules called body-acyclic frontier-guarded [17]. For

this, we obtain that query answering is in ExpTime for combined

complexity [36]. Our framework can also be translated into a spe-

cific description logic, namely ELHV [63], which furthermore

allows one to derive a PTime upper bound for data complexity. Note

however that these complexity results do not make use of query

rewriting. By relying on the tree-automata rewriting described next,

we will design a query answering technique that effectively runs

in polynomial time w.r.t. the size of the data.

Capturing Infinite Rewritings With Automata A key fea-

ture of our (general) query rewriting algorithm is that, when rules

are frontier-constrained, it is ensured in any direct rewriting of 𝑞

that a single node is shared between the remaining part of 𝑞 and the

subtree coming from the rule body. Hence, we fall into an evenmore

specific case of unifiers we call twig-unifiers. As a consequence,

infinite sets of rewritings such as those illustrated in Figure 3 can

be captured by a tree automaton [44]. In a nutshell, the constructed

automaton is made of sub-automata that encode the initial query 𝑞

as well as all the specializations of rule bodies that can be involved

in a rewriting step. This set of sub-automata is finite as there is

a finite number of (non-equivalent) specializations for each rule

body. Transitions between states of different sub-automata allow to

encode rewritings. The detailed construction is provided in Section

6 and its adequacy now stated (follows by Theorem 6.2).

Theorem 3.3. Let Π be a set of frontier-constrained and relabel-

ing rules and 𝑞 be a query. Then, there exists a finite tree automaton
A recognizing a sound and complete set of rewritings of 𝑞 w.r.t. Π.

4 INSTANCE-AWARE EVALUATION
The automata approach gives us a ground for query answering

but still does not suffice, in practice, to exploit NoSQL databases.

Evidently, no database API will take an automaton as a query. Tree

queries are instead accepted. Concretely, this means that the au-

tomaton language has to be enumerated, and that every single query
in a rewriting set has to be evaluated. We are thus facing two issues.

forkedFrom from

forkedFrom

nameowner

from

from

ownernameForkEvent

type

owner

forkee

keras- team

q

r

$$$x

forkedFrom . . .

r2
r2

r1 r1

1

r2

ForkEvent

type

from

forkee

$x

from

owner

keras- team$

name

ForkEvent

type

from

forkee

$x

from

from

owner

keras- team$

name

ForkEvent

type

forkedFrom

forkee

$x

from

owner

keras- team$

name

Figure 3: Rules and Infinite Rewriting Sequences

First, we need to deal again with the case where rewriting sets are

infinite. Second, we need to cope with rewriting sets that are finite

but possibly large. To tackle these problems, we extend our query

rewriting approach to make it instance-aware, and more specifically

able to leverage on structural information of data for the sake of

query answering. Our approach consists in using a novel combina-

tion of 𝑖) summarization techniques to make rewritings finite and

𝑖𝑖) partitioning and parallelization techniques for efficiency.

Summarization. To always reduce rewritings to finite sound
and complete sets - for a given database instance - we use summaries

of data. In theory, it is sufficient to know the size of the data, as the
automaton allows one to enumerate queries by their size. So, once

exceeded the size of data, enumeration can be safely stopped. This

rough bound can be improved by considering only the depth of data
as nodes in a rewriting have a bounded outdegree (Theorem 6.2).

In practice, however, as rewriting is independent of the instance,

this can generate many queries that are not matching any data. So

we consider a data summary built on the set ofmaximal paths (root
to leaf), i.e., a dataguide [53]. When we enumerate the automaton

language we can use this information to discard some empty queries

by checking whether the tree query we are generating contains

an invalid path according to the summary. For instance, the set of

maximal paths of the trees in Figure 1 is

(date) (id) (type) (actor · login)
(payload · commits · author) (payload · issue · user)

Obviously, any rewriting featuring a path that is not in this list can

be discarded, as it will have no answer on the collection. Summaries

can sometimes be simplified when there is little ambiguity in the

data, by considering only the depth and the set of edge labels. For the
collection of Figure 1 these labels are {date, id, type, actor, login,
payload, commits, issue, author, user}. The label summary is less

precise but more compact. Paths can also be enriched with 𝑘-length

prefixes of the values found at their end. For instance, with𝑘 = 5, we

can associate the value “gvanr” to path payload.commits.author
instead of gvanrossum. This can help in filtering queries which

use values not found in the data. Working with 𝑘-prefixes instead

of the values themselves enables more concise summaries while

retaining the precision of filtering. So, the path (dataguide), label,
and path+prefix will be the three main summaries we consider. All

can be used to filter empty queries in the automaton language, and

hence to reduce the (possibly infinite) set of rewritings of a query to

a finite and still complete set (for the given instance). Furthermore,

2703

they can all be computed with a linear traversal of the data, and

are typically of limited size. We will use the depth summary as a

baseline. We did not consider bisimilarity-based summaries [55] as

they tend to be quite large and more complex to compute; the label

and path summaries also proved to be quite effective.

Partitioning and Parallelization Even if finite, rewriting sets

can be hard to evaluate for any database because of the number of

queries they may contain. To improve the situation, our intuition

is that we must provide a mean to lead the single queries (within a
rewriting set) where the matching data is. With this aim, we define an

instance-aware reasoning strategy based on partitioning. In doing

so, we therefore introduce a pre-processing of a collection providing
means for the efficient evaluation of large rewriting sets.

Let 𝐽 = {𝑇1, . . . ,𝑇𝑛} be a (single) collection of tree instances.

Our goal is to define a set of collections 𝐽1, . . . , 𝐽𝑘 making for a

partitioning of 𝐽 . We adopt a simple partitioning function oriented

towards rooted queries, defined as follows: Λ𝑑 (𝑇) = Π𝑑
𝑖=1

labels𝑖 (𝑇).
The function Λ𝑑 (𝑇) concatenates the labels of edges at each level

(we denote by labels𝑖 (𝑇) the labels of edges going from level 𝑖−1
to level 𝑖 in 𝑇) up to the depth set by the parameter 𝑑 ; Λ𝑑 (𝑇) is
then mapped to an integer denoting the partition number of 𝑇 . So,

two trees 𝑇1,𝑇2 will be in the same partition 𝐽𝑖 if Λ𝑑 (𝑇1) = Λ𝑑 (𝑇2),
meaning that they just agree on the set of labels they use level-wise,

up to depth 𝑑 . Note that for Λ𝑑 the number of partitions is not fixed

in advance, and rather depends on 𝑖) the data and 𝑖𝑖) the parameter𝑑 .

The function Λ𝑑 could also be replaced by more complex clustering

functions for trees also taking care of load balancing [10]; exploring

this range of possibilities is however beyond the scope of this work.

Note that Λ𝑑 (𝑇) can be computed in linear time at the moment

when data is loaded into the database.

The first net advantage of partitioning is that, instead of a rough

summarization for the whole collection, we can deploy a set of

narrower data-summaries, one for each partition 𝐽𝑖 . This obviously

leads to a greater filtering power. With this scheme, the queries

within a rewriting are more likely to be evaluated on the partitions

where they can have a match, according to the summary, instead of

being evaluated against the whole database. The use of rewriting,

summarization, and partitioning is shown in Figure 4: A rewrit-
ing automaton A(𝑞,Π) is built from a query 𝑞 and a set of rules Π.
A collection 𝐽 is partitioned into the collections 𝐽1, . . . , 𝐽𝑘 . For every
partition 𝐽𝑖 , the language of A(𝑞,Π) is filtered by Summary(𝐽𝑖). This
produces a finite set of queries Q |Summary(𝐽𝑖) to evaluate on 𝐽𝑖 .
Partitioning can be implemented in several ways. Here, we con-

sider physical partitioning, where a distinct database collection is

built for every partition. Using a logical partitioning strategy is

discussed in [69] and proved to have similar effectiveness. Finally,

with partitioning in place, parallelization can further be added to

attack all of these partitions simultaneously by leveraging on the

concurrent data access facilities of the underlying database.

Let us point out that assuming data-awareness is not a strong

hypothesis in practice. For instance, data-awareness is implicit in

the fact of running a materialization algorithm. Also note that a

summary does not capture a single instance, but rather abstracts

over a class of instances. Instance-aware query rewriting is eval-

uated in Section 7. The following sections (5 and 6) present our

query rewriting algorithms.

𝑞 〜 A(𝑞,Π)

Summary(𝐽1) 〜
.
.
.

Summary(𝐽𝑘) 〜

Q (𝑞,Π)
|Summary(𝐽1)

Q (𝑞,Π)
|Summary(𝐽𝑘)

𝐽1

𝐽𝑘

𝐽

Rewriting Filtering Evaluation Partitioning

Figure 4: Instance-Aware Rewriting and Evaluation

5 SEMI-TWIG-BASED QUERY REWRITING
The goal of this section is to present semi-twig based unification

and query rewriting. As already mentioned, we revisit techniques

developed for existential rules, based on so-called piece-unifiers
[16, 61]. To begin, we need to introduce a key notion, that of

separating node. Let 𝑇 be a tree and 𝑆 be a subtree of 𝑇 . We denote

by (𝑇 \ 𝑆) the forest obtained by removing from 𝑇 all edges in

𝑆 . Then, the nodes that belong to both 𝑆 and (𝑇 \ 𝑆) are said to

separate 𝑆 from𝑇 . In other words, these are the nodes of 𝑆 that have

their parent or one of their children in (𝑇 \ 𝑆). Figure 5 pictures
a tree 𝑇 with four subtrees 𝑆1, 𝑆2,𝑇

′,𝑇 ′′
. The nodes marked with

S are separating for at least one subtree. The subtrees 𝑆1 (in blue),

𝑆2 (in brown) and 𝑇 ′
(in red) have the same root as 𝑇 . For all of

these subtrees the root is separating; indeed the root has other

children that do not belong to the subtree. The root of 𝑇 ′′
(in red)

is separating, this time because its parent does not belong to 𝑇 ′′
.

Note that 𝑆2 also has a separating leaf and 𝑇 ′
also has a separating

internal node.

To simplify definitions, we now assume that the root of a rule

head has a single child. This can be done without loss of generality

since every rule can be decomposed into an equivalent set of rules

satisfying this assumption [69].

Definition 5.1 (Semi-twig). A subtree 𝑆 of 𝑇 is called semi-twig if:

(1) the root of 𝑆 has exactly one child

(2) any node separating 𝑆 from 𝑇 is either the root of 𝑆 or a leaf

of 𝑆 (i.e., no internal node of 𝑆 is separating).

A semi-twig without separating leaves is called a twig.

Consider again 𝑇 in Figure 5. Then, 𝑆1 is a twig as its only sepa-

rating node is the root, and 𝑆2 is a semi-twig as it has a separating

leaf. Finally, 𝑇 ′
and 𝑇 ′′

are not semi-twigs, since 𝑇 ′
has an internal

separating node and the root of 𝑇 ′′
has two children. The intuition

behind semi-twigs is that these are the parts of the query that can be

easily rewritten (Item (1)) while preserving tree-shaped rewritings

(Item (2)). We are now ready to define semi-twig unification.

Definition 5.2 (Semi-Twig Unification). A semi-twig-unifier ` for

a constrained query 𝑞 and a (general) constrained rule 𝑟 is a triple

(𝑆,H , a,𝑢) where:
• 𝑆 is a semi-twig of 𝑞

• H is a rooted subtree of Head(𝑟)
• a is a leaf assignment for the nodes in frontier leaves (𝑟)
•𝑢 is a rooted homomorphism from 𝑆 toa (H) such that𝑢 (𝑆) = a (H)
and 𝑢 maps:

(1) each constrained leaf of 𝑆 to a frontier leaf of 𝑟

(2) each separating leaf of 𝑆 to an unconstrained frontier leaf of 𝑟 .

2704

Although the definition of semi-twig unification may seem some-

what involved, it is perfectly natural. The goal is to identify part

of the query (i.e., 𝑆) that is entailed by the application of the rule

𝑟 . Rewriting will then replace this part by a suitable specialization

of the body of 𝑟 that reflects the way in which the rule is applied.

This is captured first by the rooted homomorphism from 𝑆 to a leaf

assignment of H . This leaf assignment may only assign to a frontier

node in 𝑟 a value from 𝑆 , since𝑢 (𝑆) = a (H). By the homomorphism

𝑢, a leaf of 𝑆 is necessarily mapped to a leaf of H . Then, Conditions

(1) and (2) ensure the correctness of rewriting.

In the next definition of a direct rewriting, the union of the

trees 𝑢 (𝑞 \ 𝑆) and a (Body(𝑟)) is defined in the obvious way (i.e, by

making the union of the node sets, the edge sets and the functions)

and it can be checked that it results in a tree.

Definition 5.3 (Semi-Twig Rewriting). Let ` = (𝑆,H , a,𝑢) be a

semi-twig-unifier for a constrained query 𝑞 and a (general) con-

strained rule 𝑟 . A direct rewriting of 𝑞 with ` is a query 𝑞rew =

(𝑇, C, x) such that:

• 𝑇 = 𝑢 (𝑞 \ 𝑆) ∪ a (Body(𝑟))
• C = 𝑢 (Constrained(𝑞)) ∪ Constrained(𝑟)
• x = 𝑢 (AnswerSeq(𝑞)).

Proposition 5.4 (Closedness). 𝑞rew is a constrained tree query.

Let us come back to Conditions (1) and (2) of semi-twig unifica-

tion and illustrate them with the query 𝑞 and rules 𝑟1 and 𝑟2 from

Figure 5. Both rules have a constrained leaf in their body. This leaf

is frontier for 𝑟1, but not for 𝑟2. Hence, an application of 𝑟1 only

brings a new edge, while an application of 𝑟2 also brings a new

node. One could consider unifying the semi-twig 𝑆 ′
1
constituted by

the sole edge labeled by a. Note that the leaf of 𝑆 ′
1
is separating,

hence can only be mapped to an unconstrained frontier leaf. Uni-

fying 𝑆 ′
1
with 𝑟1 would violate Condition (2) because the frontier

leaf of 𝑟1 is constrained (and the associated rewriting would not

be a well-formed query, as it would have an internal constrained

node). Unifying 𝑆 ′
1
with 𝑟2 would also violate Condition (2) because

the leaf of Head(𝑟2) is not frontier (and the associated rewriting

would not be a well-formed query, as it would be disconnected, and

would furthermore be unsound). Now, consider the twig 𝑆 ′
2
. It can

be unified with 𝑟1 thereby yielding the query 𝑞rew𝑟1
. However, 𝑆 ′

2

cannot be unified with 𝑟2 because Condition (1) would be violated

(and the associated rewriting would be unsound).

Finally, we say that𝑞rew is aΠ-rewriting of𝑞 if there is a sequence
𝑞 = 𝑞0, `1, 𝑞

′
1
, ..., `𝑘 , 𝑞

′
𝑘
= 𝑞rew such that 𝑞𝑖 is a direct rewriting of

𝑞𝑖−1 with `𝑖 using a rule of Π and 𝑞′
𝑖
= (𝑞𝑖)safe, where ·safe is a

function replacing all nodes of 𝑞𝑖 by fresh nodes (1 ≤ 𝑖 ≤ 𝑘). This
is merely a technicality, but it is needed to avoid multiple uses of

the same node if 𝑟 is used multiple times in a rewriting sequence.

The soundness and completeness of query rewriting ensures that

for any query 𝑞, instance 𝑇 , and set of constrained tree-rules Π,
a ∈ Ans(𝑞,𝑇 ,Π) if and only if there is a Π-rewriting 𝑞′ of 𝑞 such

that a ∈ Ans(𝑞′,𝑇) (as stated by Theorem 3.1). From this, we can

easily build a breadth-first query rewriting operator in the spirit

of [61] that terminates if and only the query admits a finite sound

and complete set of rewritings. However, this still leaves the case of

infinite rewritings open. An important remark can be made about

S

S S

S

𝑆1 (twig)

𝑆2 (semi-twig)

𝑇 ′′

𝑇 ′

𝑇

𝑟1

$

b a

𝑟2

$

c a

𝑞

$

a

a

𝑆 ′
1

𝑆 ′
2

𝑞rew𝑟1

$

a

b

Figure 5: Separating Nodes and (Semi-)Twig Unification

the specific case of frontier-constrained rules (Definition 3.2) on

which we will focus in the next section.

Remark 1. Let (𝑆,H , a,𝑢) be a semi-twig unifier for a query 𝑞 and
a frontier-constrained rule 𝑟 . Then, 𝑆 must be a twig.

For instance, in Figure 5, both rules are frontier-constrained,

hence 𝑆 ′
1
can be disregarded for rewriting as it is not a twig.

6 AUTOMATA-BASED QUERY REWRITING
Frontier-constrained rules do not ensure the finiteness of rewriting

sets (nor of saturation). However, they have the following key

property: the rewriting set of a query under frontier-constrained rules
can be characterized by a regular tree language. This means that

it can be compactly represented by a tree automaton. Frontier-

constrained tree rules generalize context-free path rules in [23]

which are in turn related to suffix-rewriting systems [42, 72]. What

paves the way for regularity is that frontier-constrained rules make

any semi-twig unifier for the query to be necessarily a twig-unifier
(Remark 1). Another important insight is that adding relabeling

rules (which, in contrast, requires semi-twig unifiers that may not

be twig unifiers) still preserves regularity, and so both types of

rules can be taken into account jointly. The goal of this section is

to present the construction of the automaton A(𝑞,Π) recognizing a

sound and complete set of rewritings for a query 𝑞 against a set of

rules Π.
We start by posing the notion of tree automaton needed to cap-

ture the rewritings of a query. This follows standard models [44]

adapted to the case of unordered trees.

Definition 6.1 (Automaton). A bottom-up automaton for

unordered trees is a tuple A = (Σ,S,L, F ,Δ) where:
• Σ is an alphabet

• S is a set of states made of

S𝐸
a set of edge-states and S𝑁

a set of node-states

• L, F ⊆ S𝑁
are sets of initial (leaves) and final (root) states

• Δ is a set of transitions made of

ΔL ⊆
(︁
Σ ∪ {𝜖}

)︁
× L a set of leaf nodes transitions

Δ𝐸 ⊆ S𝑁 × Σ × S𝐸
a set of edge transitions

Δ𝑁 ⊆ 2
S𝐸 × S𝑁

a set of (non-leaf) node transitions

A run of A on 𝑇 = (N , E, 𝑡, _E , _N) is a function 𝜌 : N → S𝑁

that agrees with the transition rules of A, in the following sense.

• Every unlabeled leaf ℓ of 𝑇 is recognized by a ΔL
-transition

∅ 𝜖−→ 𝜌 (ℓ)
• Every labeled leaf ℓ of 𝑇 is recognized by a ΔL

-transition

∅
_N (ℓ)
−→ 𝜌 (ℓ)

2705

• Every (non-leaf) node 𝑛 of 𝑇 with children 𝑛1, . . . , 𝑛𝑘 is rec-

ognized by the following Δ-transitions

{s1 . . . s𝑘 } −→ 𝜌 (𝑛) ∈ Δ𝑁 𝜌 (𝑛𝑖)
_E (𝑛,𝑛𝑖)−−→ s𝑖 ∈ Δ𝐸

provided that s𝑖 ≠ s𝑗 for all 1≤𝑖≠ 𝑗≤𝑘
• The root 𝑡 of 𝑇 is such that 𝜌 (𝑡) is a final state in F

An automaton defines a language (or set) of unordered trees L(A).

The automata framework represents tree languages, but is insen-

sitive to query features such as constrained and answer nodes. So, to
proceed, we must define an encoding of a query 𝑞 as a “plain” tree

encode(𝑞) that can manipulated by automata. The idea of the en-

coding is to store information on constrained and answer leaf nodes

as values. The encoding must essentially cover three cases. The first

is where the leaf is unconstrained. The second is where the leaf is

constrained but does not belong to the answer sequence. The third

is where the leaf belongs to the answer sequence (so, by definition,

is also constrained). Figure 6 (left) shows a query 𝑞′ as well as its
corresponding automaton Aencode(𝑞′) . The query seeks for forked

projects (forkee) for all records describing a ForkEvent which

also includes the project from which fork originated (forkedFrom).
The query has three leaf nodes, which are recognized by three

initial states of the automaton. Each initial state is used to define

a non-leaf node transition ∅ 𝑣𝑖−→ sinitial
𝑖

where 𝑣𝑖 is the encoding

of a query leaf. State sinitial
1

recognizes the query leaf labeled by

value ForkEvent. By definition, this is a constrained node. Hence

its encoding is 𝑣1 = ($ · ForkEvent) where the reserved symbol $

is used to denote a constrained node. State sinitial
2

recognizes the

answer variable x, which by definition is also constrained. This is

encoded as 𝑣2 = ($ · 1), where 1 denotes the position of the answer

variable in the answer node sequence. State sinitial
3

recognizes an

existential node. This is encoded as 𝑣3 = (#) where # denotes that
the node is not constrained. Moving on, the initial states are used

to define three edge transitions of the form sinitial
𝑖

𝑘𝑖−→ e𝑖 where
𝑘1 = type, 𝑘2 = forkee, and 𝑘3 = forkedFrom. Each transition

recognizes an edge of the query. Finally, the non-leaf node transi-

tion {e1, e2, e3} −→ sfinal allows Aencode(𝑞′) to recognize the whole

tree. Due to space constraints, the formal construction of the au-

tomata encoding of queries is detailed in [69]. The example of

Figure 6 illustrates that it is straightforward to build an automaton

A𝑇 recognizing a tree 𝑇 which is also minimal (i.e., without useless

state or transition). We can do so by creating distinct states and

transitions for every (1) node label, (2) edge, and (3) internal node
of 𝑇 . This handling of (un)constrained, valued, and answer nodes,

also extends to the encoding of rule bodies introduced from single

rewriting steps [69]. In the remainder of the section, the encoding

of a query 𝑞 and of a rule body 𝐵 specialized by a unifier ` are

denoted by encode(𝑞) and encode(` (𝐵)), respectively. This is at
the basis of the rewriting process described next.

Building the Rewriting Automaton Remind that our goal is

to construct an automaton A(𝑞,Π) recognizing the set of rewritings

of a query 𝑞 against a set of rules Π. For clarity, we present the
construction of A(𝑞,Π) in two steps. First, we provide a declarative

construction, showing (𝑖) the main steps of the process as well as

its connections to the general query rewriting from Section 5 and

(𝑖𝑖) the finiteness of A(𝑞,Π) . In the second step, we outline how to

also achieve a terminating algorithm.

ForkEvent

type
forkee

$x

forkedFrom

sinitial
1

sfinal
q

e1

type

sinitial
2

e2

forkee

e4

e3

forkedFrom

owner

sinitial

4

s3

keras- team

sinitial
7

sfinal
μ(body(r2))

e7

name

sinitial
8

e8

owner

e6

from

s5

$

s6

e5

from

sinitial
1

sfinal

e1

type

sinitial
2

e2

forkee

e3

forkedFrom

ForkEvent 1$

forkedFrom
final

q{ e , e , e } s1 2 5

{ e } s5 5

$

sinitial
3

#

q'

A encode(q')

A(q, {r , r })1 2

(a)

(b)

(c)

forkedFrom

$

ForkEvent$ 1$

keras- team$

Figure 6: Query and Rewriting Automata

Figure 7 presents the construction of the rewriting automaton

A(𝑞,Π) . In there, we do some standard assumptions. First, when

constructing an automaton A𝐵 from a specialized rule body, we use

a fresh set of states. The Extend operation makes the union of two

automata A(𝑞,Π) = (Σ,S,L, F ,Δ) and A𝐵 = (Σ𝐵,S𝐵,L𝐵, F𝐵,Δ𝐵)
but gives precedence to the final state of A(𝑞,Π) by returning (Σ ∪
Σ𝐵,S∪S𝐵,L∪L𝐵, F ,Δ∪Δ𝐵). Finally, as we work with automata

that have a single final state, we denote by sfinalA the final state of A.
Figure 6 (right) illustrates the rewriting of the query 𝑞 presented

in Figure 3 with rules 𝑟1 and 𝑟2. Recall that query 𝑞 searches for

projects forkedFrom a repository owned by the keras-team. The
query has an infinite rewriting set, which is captured as follows. The

process starts by initializing A(𝑞,Π) as the automaton for encode(𝑞).
A twig-unifier ` for 𝑟2 and 𝑞 is found (steps 3 and 4). Remark that `

unifies a twig of the query (actually, the path forkedFrom.owner)
with a twig of the rule head. This leads to the extension of A(𝑞,Π)
with a fresh sub-automaton for encode(` (Body(𝑟2))) (step 5). Also

this yields a a novel non-leaf node transition {e1, e2, e5}−→sfinal𝑞

(step 6) resulting from replacing e3 by e5 in {e1, e2, e3}−→sfinal𝑞 . In

Figure 6, abusing of notation, we picture this with an edge from e5
to e3. At this point, b the relabeling rule 𝑟1 is applied to the fresh

sub-automaton (step 2). This in turn yields a new twig-unifier ` ′ for
𝑟2 (steps 3, 4). As encode(` (Body(𝑟2))) = encode(` ′(Body(𝑟2))),
no extension of A(𝑞,Π) is performed at this time (step 5). However,

c a novel non-leaf node transition {e5}−→s5 (step 6) capturing

the infinite recursion stemming from the rules 𝑟1 and 𝑟2 is added.

The correctness of the construction is now stated [69].

Theorem 6.2 (Soundness and Completeness). Let Π be a set of
frontier-constrained and relabeling rules. For every tree𝑇 and query 𝑞
we have that

⋃︁
encode(𝑞′) ∈L(A(𝑞,Π)) Ans(𝑇, 𝑞

′) = Ans(𝑇, 𝑞,Π). Also,
A(𝑞,Π) is finite and its language is made by trees of bounded rank.

All-at-Once Twig-Unification To turn our declarative con-

struction into a terminating algorithm we have to provide a finite

procedure for the enumeration of all possible queries and twig-

unifiers (steps 3 and 4) which may loop when A(𝑞,Π) recognizes
an infinite language. And indeed, it is possible to manipulate these

unifiers all-at-once by directly working on the states of A(𝑞,Π) . So,
instead of considering every possible query 𝑞′ recognized by A(𝑞,Π)
and every possible twig 𝑆 of 𝑞′ we do the following. First, we iterate
on the (finite) set of rooted twigs H that belong to the head of

the rules in Π. Then, for each H , we iterate on the (finite) set of

node-states s of A(𝑞,Π) . For every H and s, we check if A(𝑞,Π) (s)

2706

Construction of A(𝑞,Π) from 𝑞 and Π

(1) Initialize A(𝑞,Π) to be equal to Aencode(𝑞)

(2) For every edge transition s
a−−→ e in Δ𝐸

and rule 𝑟 ∈ Π relabel-

ing b into a Add the transition s
b−−→ e in Δ𝐸

(3) For every tree encode(𝑞′) recognized by A(𝑞,Π) via a run 𝜌

(4) For every twig-unifier ` = (𝑆,H , a,𝑢) for 𝑞′ and rule 𝑟 ∈ Π

(5) Extend A(𝑞,Π) with an automaton for Aencode(` (Body(𝑟)))
(if not already done)

(6) Add to Δ𝑁
a (non-leaf) node transition

(U \ T) ∪ B −−→ 𝜌 (Root(𝑆)) where

• U = {𝜌 (𝑛1), . . . , 𝜌 (𝑛𝑘)} is a set of node-states where

𝑛1, . . . , 𝑛𝑘 are the children of Root(𝑆) within the query 𝑞′

• T = {𝑛 𝑗 } is a singleton node-state where 𝑛 𝑗 is the (only)

child of Root(𝑆) within the twig 𝑆

• B is a set of states such that B −−→ sfinalencode(` (Body(𝑟)))

(7) Repeat (2-6) until no more transitions can be added.

Figure 7: Rewriting Automaton Construction

(that is, the automaton A(𝑞,Π) where the final state is set to be s)
recognizes a tree𝑇 such that 𝑆 is a rooted twig of𝑇 and there are 𝑢

and a such that 𝑢 (𝑆) = a (H). Because H is finite this can be done

in a finite number of steps. In this way, we can capture all uni-

fiers ` representing a possibly infinite class of unifiers. Once A(𝑞,Π)
built, it is possible to perform a single post-order traversal of an

instance 𝑇 to compute answer to queries [69]. This adapts classical

validation algorithms from [44]. Follows a PTime data-complexity

upper-bound for query answering. The construction is independent

from data. Moreover, it can be boostrapped independently from

queries. Indeed, the unifiers that hold between the rules only, as

those for 𝑟1 and 𝑟2 in Figure 6, can be precomputed off-line thus
reducing rewriting costs at query time.

7 EXPERIMENTAL ANALYSIS
Implementation We implemented our approach for reasoning

over document stores in a Java 11 tool: TreeForce (TF). This library
can be seen as a general toolbox for implementing reasoning tech-

niques for tree-shaped data and rules. The tool has been coded from

scratch. It is composed of two main modules. The first includes

generic data structures and algorithms for trees and tree-automata.

The second includes our instance-aware query rewriting and evalu-

ation methods. TreeForce also includes a translation module tied to

the target DBMS. We deployed our system on top of a well-known

NoSQL database: MongoDB (v5.0.8). Our approach can be ported

to systems supporting constrained tree-queries, which is a basic

requirement for many stores [1, 3, 4, 25, 58, 70]. Query translation

as well as the deployment on other systems is discussed in [69].

EnvironmentWe performed all experiments on a machine with

an AMD Ryzen 9 3900XT CPU (4.7 Ghz, 12 cores), 128GB DDR4

2400Mhz memory and 2TB SSD disk, running KDE neon on ext4 FS.

By relying on MongoDB, TreeForce has modest memory require-

ments. We allocated only 10GB memory to the JVM (jdk16). We

used MongoDB standard configuration with 8GB cache size.

Benchmarks used for our study are shown in Table 1. We de-

fined three benchmarks from known benchs: DBLP
JR
, GitHub

JR

Table 1: Dataset Size

XMark
JR

DBLP
JR

GitHub
JR

[[=0.1] [[=1] [[=10] [[=100] [[=500]

#records 8.9 M 1.2 M 7.1 K 71 K 710 K 7.1 M 35.5 M

#edges 145 M 107 M 290 K 2.9 M 28.9 M 289 M 1.4 B

(JSON) 3.7 GB 5GB 10 MB 100 MB 1 GB 10 GB 50 GB

and XMark
JR

(JR, for JSON Reasoning). DBLP and GitHub are large

corpus of real data. XMark, in contrast, is a synthetic benchmark but

equipped with a data generator that helped us in better understand-

ing the scalability question. Both DBLP and XMark come as XML;

they have been translated into JSON to feed document stores. These

systems are oriented towards the exploitation of limited size records

(e.g., 16MB for MongoDB). So, XML trees have been shredded into

a collection of JSON records in a standard way, that is, by record-

ing the main objects of the original data in different records (e.g.,

one record per publication in DBLP
JR
). DBLPJRand GitHubJR are

tests over several million real world records. For DBLP
JR

we used

22 queries containing a mix of tree queries of different complexity

inspired from those in [30, 32, 52]. We manually defined a set of

51 rules with 15 frontier-constrained rules and 36 relabeling rules

inspired both from the DBLP ontology (dblp.org/rdf/schema) and

[30]. For GitHub
JR

we defined 5 queries of different complexity and

54 tree-rules including 40 frontier-constrained and 14 relabeling.

Overall, these allowed us to gauge our approach on real voluminous

data. XMarkJR includes a set of 115 distinct JSON collections (up

to several million records), 23 rulesets (containing 5 to 62 relabeling

rules), and 10 queries. XMark
JR

is an extension of the well-known

XMark [75] we designed to dispose of a rule-based query answering
benchmark over trees to understand the scalability of our approach.

First, XMark
JR

allows us to control the number of rewritings of a

query - which is a crucial parameter. We consider 23 rulesets each
creating a larger number of rewritings per query (from 1 to 500).

Second, it allows us to control the size and variability of data. So

for, each ruleset, we considered five collections (see Table 1), with

the larger collection having 1.4B edges when data is seen as trees.

We refer to [69] for its detailed presentation. Overall, XMark
JR

is

meant to push the limits of rewriting-based query answering.

Other systems. We are not aware of any system for reasoning

with constrained-tree rules on top of JSON data. However, as our

rules can be encoded as Datalog
±
rules [16, 34] we used reasoners

for Datalog
±
designed for knowledge-graphs as a baseline.

Materialization-based approaches. We used VLog [41] via Rulewerk

[5] to study in-memorymaterialization. VLog is a high-performance

state-of-the-art reasoner [11]. As it runs in-memory, it gives us a

point on absolute performance to evaluate DBMS-based approaches.

Rewriting-based approaches. Graal is the only rewriting-based sys-

tem for Datalog
±
we are aware of [15, 62]. We used a recent major

version of the tool [6]. Graal is a modular system that allows one to

parametrize the storage and reasoning algorithms. So, we leveraged

on Graal’s modularity to study three rewriting-based strategies,

as follows. In all three cases, we used Graal to compute (finite)

rewritings of queries - whenever possible. Then, rewritings were

evaluated in two different ways. The first is in-memory, again with

VLog. The second is with PostgreSQL (v14.7); data was stored as a

2707

dblp.org/rdf/schema

Figure 8: Answering Time (baseline) - XMarkJR

Figure 9: Answering Time (average) vs Summaries

knowledge graph by using indexed property-tables [52] and integer

encoding [81] and tree-queries were translated as SQL queries. As

scaling integer encoding can be challenging, we also considered a

PostgreSQL storage without integer encoding.

MongoDB Wrapper Queries have been translated into Mon-

goDB with the find() facility which answers true on every record

of the collection satisfying a query by returning the record itself.

It is also worth noting that for all benchmarks we considered tree-

queries without answer variables. However, this does not make

evaluation easy, as we still ask MongoDB to check if each record

satisfies the query. To gauge performances across different sys-

tems we asked the competitors compute the set of trees matching a

query as for our system. We focused on the computational effort

needed for evaluating constrained tree-queries: no input time (i.e.,

data loading) nor output time (i.e. result serialization) were consid-

ered. Inputs were translated into formats recognizable by the other

systems (JSON data as CSV, tree queries and rules as DLGP [14]).

Overview of the Results We will focus on two aspects. First,

a study of the query answering techniques we proposed, then a

comparison with the other systems. For space limits, we focus on

the main findings and report average query times. Detailed times

are reported in [69]. Results are robust averages over 5 repetitions.

All times are in seconds. Experiments with the TreeForce system
will be denoted by "TF". The baseline approach for our system

uses the depth-summary, this is denoted by TF-depth. Variants of
our system with different summaries introduced in Section 4 are

denoted TF-{label,path,path+prefix}. We denote by TF-part-parall-
path our method with partitioning and parallelization, with the

path summary; this is our best resulting approach. The variant of

this technique without parallelization is denoted by TF-part-path.
Linear Scalability of the Underlying Database. Figure 8 il-

lustrates how MongoDB reacts to the evaluation of 1) larger rewrit-
ing sets on 2) larger volumes of data produced by XMark

JR
. Every

data point indicates the time taken for evaluating a rewriting set.

We can clearly see that the response time is linear both in the size

of the rewriting sets and in the size of the data. This is expected as

the evaluation algorithm of MongoDB is based on a database scan.

This observation is also confirmed on DBLP
JR

and GitHub
JR
.

Summary-based Filtering is Critical. Figure 9 shows average
query answering times for the depth, label, path and path+prefix

summaries for DBLP
JR

and GitHub
JR
. It reports both the query

rewriting and the evaluation time. For the path+prefix summary, we

fixed𝑘 = 5, i.e., prefixes have length 5. We also tested longer prefixes

but this did not bring any sensible improvement. For DBLP
JR
, the

label summary leads to an average speedup of 3x on a single query.

This raises to 5x for the path summary and to 23x when 𝑘-prefixes

are added. For GitHub
JR
, the label summary leads to a speedup of

4x on average, which raises to 17x for the path summary. While

for GitHub
JR

prefixes did not improve much things, for DBLP
JR

queries with text values, gains with 𝑘-prefixes can be in orders of

magnitude for single queries [69]. Overall, it is unavoidable to use

data summaries for efficiency as the underlying database system

is unable to discard empty queries based on their structure, which

slows down performances. Summaries have no effect on XMark
JR
,

which by design produces almost no empty queries, and forces

the underlying database to evaluate all queries in a rewriting set.

However, summaries will have again the same powerful filtering

role combined with partitioning, as discussed next. As a last remark,

summaries were relatively lightweight for DBLP
JR

and GitHub
JR
.

For DBLP
JR
, they included 50 labels, 188 paths, and 957K 5-prefixes

while GitHub
JR

had 250 labels, 991 paths, and 3.3M 5-prefixes.

Evaluation Dominates Query Rewriting Costs. Recall that
query rewriting is divided in 1) automaton construction and 2)
summary-based filtering and query generation. As expected, the

query rewriting time depends on the complexity of rules and the

size of the resulting rewriting set [69]. For DBLP
JR
, the average

automaton construction time was 300ms and within 1 second even

for thousands of rewritings. For GitHub
JR

the average automaton

construction time was 1.5s and within 3.5 seconds. For XMark
JR
, it

was within 0.1 seconds in general. After the automaton construc-

tion follow filtering and query generation. Rewriting generation

was on average in the order of tens of milliseconds and within

200ms for large rewritings, across all benchmarks. Figure 9 allows

one to compare the rewriting time (automaton construction+query

generation) and the evaluation time of a rewriting set, with different

data summaries. The main observation is that for large volumes of

data query answering is likely to be dominated by the evaluation

of a rewriting-set rather than by rewriting itself. Also, automaton

construction could be boostrapped off-line as discussed in Section

6 further reducing rewriting costs at query time.

Partitioning and Parallelization Bring Big Improvements.
For partitioning, we used the Λ𝑑 function with 𝑑 = 2 (Section 4).

This led to 8 partitions for DBLP
JR
, 30 for GitHub

JR
, and between 6

and 130 for XMark
JR
. We report the results for the path summary

without prefixes. We use this as a yardstick to show that partitioning

and parallelization have sensible effects; gains cannot decrease

when prefixes are added. Recall we focus on physical partitioning;
we found logical partitioning having similar effectiveness [69].

For DBLP
JR
, we start by looking at the gain provided by parti-

tioning alone (i.e., without parallelization), as illustrated in Figure

10 (TF-part-path). The advantage of partitioning alone is that 𝑖) a

2708

query is evaluated on smaller portions of the database and 𝑖𝑖) parti-
tions can be skipped when the data summary rules out any answer

on a specific partition. In this experiment, partitions are queried

sequentially and times added up. For DBLP
JR

queries that took

more than 200ms (20 out 22) the average speedup for (sequentially)

querying the partition was of 16.1x; the value increases if all 22

queries are considered [69]. For GitHub
JR
, the average speedup was

30x. By introducing parallelization (TF-part-parall-path) the run-
time is dominated by the time of querying the “slowest” partition

(to which we add the management of the parallel data access). So,

the gains further raise to 22.9x for (again: 20 out of 22) DBLP queries

and 53x for GitHub
JR

wrt the baseline TF-depth. For comparison,

recall that the path summary had an average speedup of 5.5x (on

all 22 queries) on DBLP
JR
, and of 17.6x on GitHub

JR
, which means

partitioning and parallelization allow one to go 2x to 4x faster wrt

the path summary alone on these datasets. As said above, we re-

ported on the path summary to have a yardstick for performances.

Interestingly, we found the label summary on DBLP
JR

to provide

essentially the same results [69]. This is because partitions have

a reduced variability of data, hence labels are used with less am-

biguity. So, summaries can be both very small and efficient when

combined with partitioning. As expected, adding prefixes to the

path summary improves the filtering power and reduces the size of

rewritings. This can again further improve the speed-up by at least

3x on DBLP
JR

with respect to using partitioning, parallelization

and the path summary without 𝑘-prefixes. Overall, these results
show the gains provided by partitioning and parallelization.

Partitioning Leads Towards Horizontal Scalability. Parti-
tioning and parallelization can be extremely efficient in distributing

the query answering effort on large databases. Figure 11 (left) re-

ports answering times on an XMark
JR

ruleset generating rewritings

of size 100 over several instances. Data points indicate the average

query time for the 10 XMark
JR

queries. Let us focus on two vari-

ants of our system: the baseline (TF-depth) and with partitioning,

parallelization, and the path summary (TF-part-parall-path). While

for small data the two are closer, gains can reach peaks of two

orders of magnitude for single queries on large JSON collections.

The average gain on 100M is 2x (over all 23 rulesets), and raises

13.5x on 1G and to 68.2x for 10GB and to 88.8x for 50G. Figure 11

(right) reports single query time with TF-part-parall-path for 10GB

and 50G XMark
JR

data (note, across all rulesets). We observe that

the greater is the number of partitions attacked by a query, the

lower is the query evaluation time, as the querying effort can be

better distributed. For 10GB data we can answer queries with 100

rewritings in 1.3 seconds, which is encouraging. This suggests that

other partitioning functions could achieve better load balancing

leading towards horizontal scalability; this is left for future work.

No Stored Inferences and LowMemory Consumption Our

method achieves both efficiency and scalability thanks the underly-

ing database. Its persistent storage enables querying on large data,

and query rewriting avoids to store any inference. Let us go back

to Figure 11 (left), showing average query times for rewriting sets

of size 100. Experiments confirm that in-memory materialization

with VLog is extremely efficient, especially on small to medium

instances, because of its dedicated algorithms and data-structures.

TreeForce with partitioning, parallelization, and path summary is

Figure 10: Answering Time (average) - Rewriting Systems

Figure 11: Answering Time: (left) Systems (right) Partitions

slower on small instances but, as data increases, it reaches similar

performances (already for [= 100). This was confirmed also on

XMark
JR

ruleset generating rewritings of size 10 and 500 [69]. For

[= 500, VLog could not load the data as it consumed all of the

RAM we allocated. This shows that in-memory solutions may re-

quire powerful hardware for their deployment on large datasets,

while relying on database solutions allows one to scale with modest

memory resources. For DBLP and GitHub the average query time

for VLog was 5.9s on DBLP (against 7.4s for TF-part-parall-path)
and 0.7s on GitHub

JR
(against 2.2s for TF-part-parall-path). For a

fair comparison, this data does not include the time taken by VLog

to apply the rules alone (without computing answers to queries)

which can be considered either a one-of operation or not. We report

however that rule application time was 160s for DBLP and 65s for

GitHub
JR

(no input nor output time). We conclude that for one-of

operations our approach can be relevant also on smaller instances.

Finally, note that VLog rule-application is negligible for XMark
JR

as relabeling rules are kept intensional [57]; this makes the compar-

ison of Figure 11 meaningful. All of this is interesting also because

a DBMS can be considered at disadvantage when compared with

main-memory solutions in terms of pure response time.

RewritingAlgorithmsTailored forData-Tree. For GitHubJR

and XMark
JR
, we could use Graal to compute rewritings of queries.

However, this was not possible for all DBLP
JR

queries as the transla-

tion of DBLP
JR

tree also yields Datalog
±
rules which are recursive.

Indeed, rewriting with Graal terminated only on 6 queries out of

22. Note that this is not a limitation of this tool, but of any general

rewriting algorithm that makes no hypothesis on the shape of data.

In contrast, our rewriting algorithm tailored for tree rules termi-

nated in all cases. Hence, times reported next for rewriting-based

approaches on DBLP
JR

only consider those 6 queries.

The main feature of interest of rewriting-based systems is their

frugality in terms of main memory. However, they may face other

challenges when scaling out reasoning. The first, is the evaluation of

large rewriting sets, which is a well-known issue [33]. The second

is computing dictionary encoding over large collections, which

2709

is a question in itself [81]. Figure 10 illustrates rewriting-based

approaches on DBLP
JR

andGitHub
JR

showing the effectiveness of

our optimizations. XMark
JR

results for rewriting-based systems are

reported in Figure 11. We include only average times for the cases

where all of the 10 XMark
JR

queries were answered by a system

[69]. For [= 500, again data could not be loaded in main memory

by VLog. On the other side, Graal could not encode the data, as the

dictionary encoding computation ran out of memory. By disabling

dictionary encoding data was loaded into PostgreSQL. However,

already for [= 100, disabling encoding did not allow to answer all

the queries of the benchmark (recall, each with 100 rewritings). Our

approach, in both its baseline and optimized versions, was able to

provide answers across all benchmarks. Overall, we believe these

results on rewriting over MongoDB to be very promising.

8 RELATEDWORK AND CONCLUSION
There has been little work on reasoning on top of JSON databases.

Prior work studied path-rules for JSON [23, 67]; we focus on tree-

rules. More specifically, our frontier-constrained tree-rules extend

the context-free fragment of suffix-path rules from [23], while keep-

ing suitability for query rewriting on document-stores. Still on the

theoretical level, the work of [26, 56] focuses on the computational

complexity of some logical query languages for JSON. Note that

the frameworks from [23, 26, 56, 67] have not been implemented.

Another line of work considers the definition of virtual RDF views

of JSON data as well as reasoning with RDFS/OWL ontologies at

the RDF level [24, 31, 32]; we do reasoning at the JSON level.

With respect to the area of knowledge graphs and hypergraphs,

constrained tree-rules allow for existential nodes in the rule head:

these are analogous to existentially quantified variables in Datalog
±

[16, 19, 34]. As already said, our decidable fragment can be seen

as a strict subset of body-acyclic frontier-guarded existential rules

[17], as well as of the description logic ELHV [63]. Many reason-

ers have been implemented for knowledge graphs. State-of-the-art

materialization-based systems include in-memory solutions like

VLog [41], RDFox [68] and Vadalog [20] (the latter being restricted

to a specific rule fragment) and RDBMS-based solutions like LLu-

natic [51] and DLV [12]. Note that materialization does not always

halt for frontier-constraint tree-rules. State-of-the-art rewriting-

based systems include OnTop [37] and Mastro [39], both devoted

to lightweight OWL ontologies incomparable with our rules, and

Graal for existential rules [15]. Note that Graal accepts any set of

existential rules and conjunctive query, but query rewriting termi-

nates only if the rewriting set is finite [61], a property that is not

fulfilled by frontier-constrained tree-rules (recall Figure 3). Also,

our query rewriting technique based on semi-twig-unifiers exploits

the fact that data is tree-shaped and generates only tree queries.

Various formalisms for reasoning on XML and object-oriented

databases have been studied [7, 18, 27, 29, 45, 60, 65, 74]. A differ-

ence between our framework and most of these proposals is that

they are tied to XML and XPath. Among the rule-based languages

for XML, decidable fragments such as XPathLog [65], Elog [18]

and F-Logic [59, 60], which do not allow for existential nodes, are

incomparable with our frontier-constrained tree-rules in terms of

expressivity. Another sharp difference is that [7, 18, 60, 65] have

been designed with a forward-chaining reasoning in mind; our

focus is query rewriting. Xcerpt [74] is the closest language to

our tree-rules for which backward chaining (over ordered trees)

has been studied [73]. Our work differs as [73, 74] provides no

guarantees for the termination of Xcerpt rules, while we identify

a decidable fragment via query rewriting (over unordered trees).

Active XML [7] is not based on rules but on function calls. UnQL

[29] and XML-QL [45] are not rule-languages but query-languages

based on recursive functions. Although these approaches can be

assimilated with ours, their technical development is quite different.

A last crucial difference with all these proposals is that our work is

the first to consider (and implement) the use of NoSQL document

stores to support rule-based query answering over data-trees.

Rewriting-based techniques have been considered for answer-

ing queries over virtual XML views defined either from SQL data

[49, 50, 77] or XML data [47, 48, 79] to support data-integration

and secure access to information. Note first that view languages are

different from rule languages, which are typically more general. Au-

tomata have been proved effective for tackling problems related to

XML queries in many settings [44, 76]. Very few work considers the

presence of recursion in the definition of views. From the automata

perspective, the work of [48] is the closest to ours in spirit as it

considers automata-based rewriting for regular XPath queries over

recursive XML views. However, the decidable language stemming

from recursive view definitions is much closer to [18, 60, 65] which

makes it orthogonal to frontier-constrained tree-rules. Further, [48]

produces regular-XPath rewritings which are not supported by any

system and calls for an ad-hoc implementation. In contrast, our

instance-aware method outputs tree-queries and relies on efficient

NoSQL systems. To conclude on this matter, note that the prob-

lem of answering queries with materialized views [54] (the input

query targets the source database, rewritings target the views) is

opposite to the one with virtual views (the input query targets

the virtual database, rewritings target the source database). Our

approach can nevertheless benefit from the presence of material-

ized views containing certain answers to queries over the original

database. Having materialized views opens for two types of oppor-

tunities. First, evaluating a subset of the rewriting-set of a query
on the materialized views. Second, the development of early stop

techniques for our rewriting algorithms when answers to single

rewritings (over views) are found. The study of these questions is

however left as the subject of future work.

In conclusion, we have shown that NoSQL stores can be used to

build an efficient and scalable tool for reasoning on JSON databases.

We have outlined the importance of instance-aware query rewriting

techniques and shown that the combination of data summaries, par-

titioning and parallelization result in high performances on large

data. We believe that some of these ideas can be transposed to the

case of knowledge graphs and hypergraphs. Future work also in-

cludes the extension to more expressive rule languages, for example

including suitable forms of equality constraints and contexts.

ACKNOWLEDGMENTS
We are grateful to Florent Tornil for his help with the experiments.

This work was financially supported by the ANR project CQFD

(ANR-18-CE23-0003).

2710

REFERENCES
[1] 2009. (Software) MongoDB. Retrieved 2023-05-01 from www.mongodb.com

[2] 2011. GitHub (GH) Archive. Retrieved 2023-05-01 from www.gharchive.org

[3] 2011. (Software) ArangoDB. Retrieved 2023-05-01 from www.arangodb.com

[4] 2016. (Software) AsterixDB. Retrieved 2023-05-01 from https://asterixdb.apache.

org

[5] 2018. (Software) Rulewerk. Retrieved 2023-05-01 from www.github.com/

knowsys/rulewerk

[6] 2022. (Software) InteGraal. Retrieved 2023-05-01 from https://gitlab.inria.fr/

rules/integraal

[7] Serge Abiteboul, Omar Benjelloun, and Tova Milo. 2004. Positive Active XML. In

Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 14-16, 2004, Paris, France, Catriel Beeri and
Alin Deutsch (Eds.). ACM, 35–45. https://doi.org/10.1145/1055558.1055564

[8] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases:
The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

[9] Serge Abiteboul and Victor Vianu. 1999. Regular Path Queries with Constraints.

J. Comput. Syst. Sci. 58, 3 (June 1999), 428–452. https://doi.org/10.1006/jcss.1999.

1627

[10] Alsayed Algergawy, Marco Mesiti, Richi Nayak, and Gunter Saake. 2011. XML

Data Clustering: An Overview. ACM Comput. Surv. 43, 4, Article 25 (oct 2011),
41 pages. https://doi.org/10.1145/1978802.1978804

[11] Afnan Alhazmi, Tom Blount, and George Konstantinidis. 2022. ForBackBench: A

Benchmark for Chasing vs. Query-Rewriting. Proc. VLDB Endow. 15, 8 (jun 2022),

1519–1532. https://doi.org/10.14778/3529337.3529338

[12] Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer,

and Giorgio Terracina. 2010. The Disjunctive Datalog System DLV. In Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19,
2010. Revised Selected Papers (Lecture Notes in Computer Science), Oege de Moor,

Georg Gottlob, Tim Furche, and Andrew Jon Sellers (Eds.), Vol. 6702. Springer,

282–301. https://doi.org/10.1007/978-3-642-24206-9_17

[13] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (Melbourne, Victoria,

Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,

USA, 1371–1382. https://doi.org/10.1145/2723372.2742796

[14] Jean-François Baget, Alain Gutierrez, Michel Leclère, Marie-Laure Mugnier, Swan

Rocher, and Clément Sipieter. 2015. Datalog+, RuleML and OWL 2: Formats and

Translations for Existential Rules. In Proceedings of the RuleML 2015 Challenge,
the Special Track on Rule-based Recommender Systems for the Web of Data, the
Special Industry Track and the RuleML 2015 Doctoral Consortium hosted by the 9th
International Web Rule Symposium (RuleML 2015), Berlin, Germany, August 2-5,
2015 (CEUR Workshop Proceedings), Nick Bassiliades, Paul Fodor, Adrian Giurca,

Georg Gottlob, Tomás Kliegr, Grzegorz J. Nalepa, Monica Palmirani, Adrian

Paschke,Mark Proctor, Dumitru Roman, Fariba Sadri, andNenad Stojanovic (Eds.),

Vol. 1417. CEUR-WS.org, 15 pages. https://ceur-ws.org/Vol-1417/paper9.pdf

[15] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In Rule Technologies: Foundations, Tools, and Applications - 9th International
Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings (Lecture
Notes in Computer Science), Nick Bassiliades, Georg Gottlob, Fariba Sadri, Adrian

Paschke, and Dumitru Roman (Eds.), Vol. 9202. Springer, 328–344. https://doi.

org/10.1007/978-3-319-21542-6_21

[16] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011.

On rules with existential variables: Walking the decidability line. Artif. Intell.
175, 9-10 (2011), 1620–1654. https://doi.org/10.1016/j.artint.2011.03.002

[17] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël

Thomazo. 2011. Walking the Complexity Lines for Generalized Guarded Existen-

tial Rules. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, Toby Walsh

(Ed.). IJCAI/AAAI, 712–717. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-

126

[18] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. 2001. SupervisedWrapper

Generation with Lixto. In VLDB 2001, Proceedings of 27th International Conference
on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Peter M. G. Apers,

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and

Richard T. Snodgrass (Eds.). Morgan Kaufmann, 715–716. http://www.vldb.org/

conf/2001/P715.pdf

[19] Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data Dependencies.

J. ACM 31, 4 (Sept. 1984), 718–741. https://doi.org/10.1145/1634.1636

[20] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog

System: Datalog-based Reasoning for Knowledge Graphs. Proc. VLDB Endow. 11,
9 (2018), 975–987. https://doi.org/10.14778/3213880.3213888

[21] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,

Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmarking

the Chase. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17). Association
for Computing Machinery, New York, NY, USA, 37–52. https://doi.org/10.1145/

3034786.3034796

[22] Michael Benedikt, Boris Motik, and Efthymia Tsamoura. 2018. Goal-Driven

Query Answering for Existential Rules With Equality. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.).

AAAI Press, 1761–1770. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16927

[23] Meghyn Bienvenu, Pierre Bourhis, Marie-Laure Mugnier, Sophie Tison, and Fed-

erico Ulliana. 2017. Ontology-Mediated Query Answering for Key-Value Stores.

In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 844–851. https://doi.org/10.24963/ijcai.2017/117

[24] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Martin Rezk, and Guohui

Xiao. 2016. OBDA Beyond Relational DBs: A Study for MongoDB. In Proceedings
of the 29th International Workshop on Description Logics, Cape Town, South Africa,
April 22-25, 2016. 12 pages. http://ceur-ws.org/Vol-1577/paper_40.pdf

[25] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao. 2018. Ex-

pressivity and Complexity of MongoDB Queries. In 21st International Conference
on Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria (LIPIcs), Benny
Kimelfeld and Yael Amsterdamer (Eds.), Vol. 98. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 9:1–9:23. https://doi.org/10.4230/LIPIcs.ICDT.2018.9

[26] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017. JSON:

Data model, Query languages and Schema specification. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2017, Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van den Bussche,

and Floris Geerts (Eds.). ACM, 123–135. https://doi.org/10.1145/3034786.3056120

[27] François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg Gottlob,

Clemens Ley, Benedikt Linse, Reinhard Pichler, and Fang Wei. 2007. Foundations

of Rule-Based Query Answering. In Proceedings of the Third International Summer
School Conference on Reasoning Web (Dresden, Germany) (RW’07). Springer-
Verlag, Berlin, Heidelberg, 1–153.

[28] Peter Buneman, Wenfei Fan, and Scott Weinstein. 2000. Path constraints in

semistructured databases. J. Comput. System Sci. 61, 2 (2000), 146–193.
[29] Peter Buneman, Mary Fernandez, and Dan Suciu. 2000. UnQL: a query language

and algebra for semistructured data based on structural recursion. The VLDB
Journal 9 (2000), 76–110.

[30] Maxime Buron. 2020. Raisonnement efficace sur des grands graphes hétérogènes.
These de doctorat. Institut polytechnique de Paris. http://www.theses.fr/

2020IPPAX061

[31] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mugnier.

2020. Obi-Wan: Ontology-Based RDF Integration of Heterogeneous Data. Proc.
VLDB Endow. 13, 12 (2020), 2933–2936. https://doi.org/10.14778/3415478.3415512

[32] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mugnier.

2020. Ontology-Based RDF Integration of Heterogeneous Data. In Proceedings
of the 23rd International Conference on Extending Database Technology, EDBT
2020, Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan
Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George H. L.

Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org, 299–310. https:

//doi.org/10.5441/002/edbt.2020.27

[33] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2016. Teaching an

RDBMS about ontological constraints. Proc. VLDB Endow. 9, 12 (2016), 1161–1172.
https://doi.org/10.14778/2994509.2994532

[34] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-

based framework for tractable query answering over ontologies. In Proceedings
of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island,
USA, Jan Paredaens and Jianwen Su (Eds.). ACM, 77–86. https://doi.org/10.1145/

1559795.1559809

[35] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-

based framework for tractable query answering over ontologies. J. Web Semant.
14 (2012), 57–83. https://doi.org/10.1016/j.websem.2012.03.001

[36] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive

ontology languages: The query answering problem. Artif. Intell. 193 (2012),

87–128. https://doi.org/10.1016/j.artint.2012.08.002

[37] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-

vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017. Ontop:

Answering SPARQL queries over relational databases. Semantic Web 8, 3 (2017),
471–487.

[38] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering

in Description Logics: The DL-Lite Family. J. Autom. Reasoning 39, 3 (2007),

385–429. https://doi.org/10.1007/s10817-007-9078-x

[39] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and

2711

www.mongodb.com
www.gharchive.org
www.arangodb.com
https://asterixdb.apache.org
https://asterixdb.apache.org
www.github.com/knowsys/rulewerk
www.github.com/knowsys/rulewerk
https://gitlab.inria.fr/rules/integraal
https://gitlab.inria.fr/rules/integraal
https://doi.org/10.1145/1055558.1055564
https://doi.org/10.1006/jcss.1999.1627
https://doi.org/10.1006/jcss.1999.1627
https://doi.org/10.1145/1978802.1978804
https://doi.org/10.14778/3529337.3529338
https://doi.org/10.1007/978-3-642-24206-9_17
https://doi.org/10.1145/2723372.2742796
https://ceur-ws.org/Vol-1417/paper9.pdf
https://doi.org/10.1007/978-3-319-21542-6_21
https://doi.org/10.1007/978-3-319-21542-6_21
https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
http://www.vldb.org/conf/2001/P715.pdf
http://www.vldb.org/conf/2001/P715.pdf
https://doi.org/10.1145/1634.1636
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1145/3034786.3034796
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16927
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16927
https://doi.org/10.24963/ijcai.2017/117
http://ceur-ws.org/Vol-1577/paper_40.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2018.9
https://doi.org/10.1145/3034786.3056120
http://www.theses.fr/2020IPPAX061
http://www.theses.fr/2020IPPAX061
https://doi.org/10.14778/3415478.3415512
https://doi.org/10.5441/002/edbt.2020.27
https://doi.org/10.5441/002/edbt.2020.27
https://doi.org/10.14778/2994509.2994532
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1007/s10817-007-9078-x

Domenico Fabio Savo. 2011. The MASTRO system for ontology-based data access.

Semantic Web 2, 1 (2011), 43–53. https://doi.org/10.3233/SW-2011-0029

[40] Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. 2016. Verification of

Evolving Graph-structured Data under Expressive Path Constraints. In 19th
International Conference on Database Theory, ICDT 2016, Bordeaux, France, March
15-18, 2016 (LIPIcs), Wim Martens and Thomas Zeume (Eds.), Vol. 48. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:19. https://doi.org/10.4230/

LIPIcs.ICDT.2016.15

[41] David Carral, Irina Dragoste, Larry González, Ceriel J. H. Jacobs, Markus Krötzsch,

and Jacopo Urbani. 2019. VLog: A Rule Engine for Knowledge Graphs. In The
Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part II (Lecture Notes in Computer
Science), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F.

Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.),

Vol. 11779. Springer, 19–35. https://doi.org/10.1007/978-3-030-30796-7_2

[42] Didier Caucal. 2000. On word rewriting systems having a rational derivation. In

Foundations of Software Science and Computation Structures: Third International
Conference, FOSSACS 2000 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2000 Berlin, Germany, March 25–April 2, 2000
Proceedings 3. Springer, 48–62.

[43] Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller,

Franz Och, Chris Olston, and Fernando Pereira. 2015. Yedalog: Exploring Knowl-

edge at Scale. In 1st Summit on Advances in Programming Languages (SNAPL
2015). Dagstuhl, Germany, 63–78. http://drops.dagstuhl.de/opus/frontdoor.php?

source_opus=5017

[44] Hubert Comon, Max Dauchet, Florent Jacquemard, Denis Lugiez, Sophie Tison,

and Marc Tommasi. 1997. Tree automata techniques and applications. http:

//www.grappa.univ-lille3.fr/tata

[45] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. 1999.

A query language for XML. Computer networks 31, 11-16 (1999), 1155–1169.
[46] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data

exchange: semantics and query answering. Theor. Comput. Sci. 336, 1 (2005),

89–124. https://doi.org/10.1016/j.tcs.2004.10.033

[47] Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. 2004. Secure XML query-

ing with security views. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. 587–598.

[48] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2007. Rewrit-

ing regular XPath queries on XML views. In 2007 IEEE 23rd International Confer-
ence on Data Engineering. IEEE, 666–675.

[49] Wenfei Fan, Jeffrey Xu Yu, Jianzhong Li, Bolin Ding, and Lu Qin. 2009. Query

translation from XPath to SQL in the presence of recursive DTDs. The VLDB
journal 18 (2009), 857–883.

[50] Mary Fernández, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang-

Chiew Tan. 2002. SilkRoute: A framework for publishing relational data in XML.

ACM Transactions on Database Systems (TODS) 27, 4 (2002), 438–493.
[51] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2014.

That’s All Folks! Llunatic Goes Open Source. Proc. VLDB Endow. 7, 13 (Aug. 2014),
1565–1568. https://doi.org/10.14778/2733004.2733031

[52] François Goasdoué, Ioana Manolescu, and Alexandra Roatiş. 2013. Efficient

query answering against dynamic RDF databases. In Proceedings of the 16th
International Conference on Extending Database Technology (EDBT ’13). As-
sociation for Computing Machinery, New York, NY, USA, 299–310. https:

//doi.org/10.1145/2452376.2452412

[53] Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query Formula-

tion and Optimization in Semistructured Databases. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 436–445. http://dl.acm.org/citation.

cfm?id=645923.671008

[54] Alon Y Halevy. 2001. Answering queries using views: A survey. The VLDB
Journal 10 (2001), 270–294.

[55] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. 1995. Computing Simulations

on Finite and Infinite Graphs. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS ’95). IEEE Computer Society, USA, 453.

[56] Jan Hidders, Jan Paredaens, and Jan Van den Bussche. 2017. J-Logic: Logical

foundations for JSON querying. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems. 137–149.

[57] Pan Hu, Jacopo Urbani, Boris Motik, and Ian Horrocks. 2019. Datalog Reasoning

over Compressed RDF Knowledge Bases. In Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM 2019, Beijing,
China, November 3-7, 2019, Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui,

Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.). ACM,

2065–2068. https://doi.org/10.1145/3357384.3358147

[58] Murtadha AI Hubail, Ali Alsuliman, Michael Blow, Michael Carey, Dmitry Ly-

chagin, Ian Maxon, and Till Westmann. 2019. Couchbase Analytics: NoETL for

Scalable NoSQL Data Analysis. Proc. VLDB Endow. 12, 12 (aug 2019), 2275–2286.
https://doi.org/10.14778/3352063.3352143

[59] Michael Kifer. 2005. Rules and Ontologies in F-Logic. In Reasoning Web, First
International Summer School 2005, Msida, Malta, July 25-29, 2005, Tutorial Lectures

(Lecture Notes in Computer Science), Norbert Eisinger and Jan Maluszynski (Eds.),

Vol. 3564. Springer, 22–34. https://doi.org/10.1007/11526988_2

[60] Michael Kifer, Georg Lausen, and James Wu. 1995. Logical Foundations of

Object-Oriented and Frame-Based Languages. J. ACM 42, 4 (1995), 741–843.

https://doi.org/10.1145/210332.210335

[61] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.

2015. Sound, complete and minimal UCQ-rewriting for existential rules. Semantic
Web 6, 5 (2015), 451–475. https://doi.org/10.3233/SW-140153

[62] Mélanie König, Michel Leclere, and Marie-Laure Mugnier. 2015. Query rewrit-

ing for existential rules with compiled preorder. In IJCAI: International Joint
Conference on Artificial Intelligence. 3006–3112.

[63] Markus Krötzsch and Sebastian Rudolph. 2014. Nominal Schemas in Description

Logics: Complexities Clarified. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014, Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter

(Eds.). AAAI Press, 10 pages.

[64] Carsten Lutz, David Toman, and Frank Wolter. 2009. Conjunctive Query An-

swering in the Description Logic EL Using a Relational Database System. In

IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, Craig Boutilier (Ed.).

2070–2075. http://ijcai.org/Proceedings/09/Papers/341.pdf

[65] Wolfgang May. 2002. A rule-based querying and updating language for XML.

In Database Programming Languages: 8th International Workshop, DBPL 2001
Frascati, Italy, September 8–10, 2001 Revised Papers 8. Springer, 165–181.

[66] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2016.

Datalography: Scaling datalog graph analytics on graph processing systems. In

2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington
DC, USA, December 5-8, 2016, James Joshi, George Karypis, Ling Liu, Xiaohua Hu,

Ronay Ak, Yinglong Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan Rachuri, Lyle H.

Ungar, Philip S. Yu, Rama Govindaraju, and Toyotaro Suzumura (Eds.). IEEE

Computer Society, 56–65. https://doi.org/10.1109/BigData.2016.7840589

[67] Marie-Laure Mugnier, Marie-Christine Rousset, and Federico Ulliana. 2016.

Ontology-Mediated Queries for NOSQL Databases. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, Dale Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 1051–1057.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12395

[68] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Baner-

jee. 2015. RDFox: A highly-scalable RDF store. In International Semantic Web
Conference. Springer, 3–20.

[69] Rodriguez Olivier, Ulliana Federico, and Mugnier Marie-Laure. 2023. Scalable
Reasoning on Document Stores via Instance-Aware Query Rewriting (with Appendix).
Technical Report. https://gitlab.inria.fr/boreal-artifacts/pvldb2023

[70] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. 2014. The SQL++

Semi-structured Data Model and Query Language: A Capabilities Survey of

SQL-on-Hadoop, NoSQL and NewSQL Databases. CoRR abs/1405.3631 (2014).

arXiv:1405.3631 http://arxiv.org/abs/1405.3631

[71] Rachel Pottinger and Alon Y. Levy. 2000. A Scalable Algorithm for Answering

Queries Using Views. In Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB ’00). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 484–495.

[72] J Richard Büchi. 1964. Regular canonical systems. Archiv für mathematische
Logik und Grundlagenforschung 6, 3-4 (1964), 91–111.

[73] Finn Sebastian Schaffert. 2004. Xcerpt: A rule-based query and transformation
language for the Web. Ph.D. Dissertation. Dissertation, LMU München: Faculty

of Mathematics, Computer Science and Statistics.

[74] Sebastian Schaffert and François Bry. 2002. A gentle introduction to Xcerpt, a rule-

based query and transformation language for XML. In RuleML 2002, Proceedings of
the International Workshop on Rule Markup Languages for Business Rules on the Se-
mantic Web, 14 June 2002, Sardinia, Italy (In conjunction with the First International
Semantic Web Conference ISWC2002 and hosted by SIG2 of the OntoWeb Network
(CEURWorkshop Proceedings), Michael Schroeder and GerdWagner (Eds.), Vol. 60.

CEUR-WS.org, 22 pages. https://ceur-ws.org/Vol-60/bry_schaffert.pdf

[75] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana

Manolescu, and Ralph Busse. 2002. XMark: A Benchmark for XML Data Man-

agement. In Proceedings of 28th International Conference on Very Large Data
Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Morgan Kaufmann, 974–985.

https://doi.org/10.1016/B978-155860869-6/50096-2

[76] Thomas Schwentick. 2007. Automata for XML—a survey. J. Comput. System Sci.
73, 3 (2007), 289–315.

[77] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, and

John E. Funderburk. 2001. Querying XML Views of Relational Data. In VLDB 2001,
Proceedings of 27th International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy, Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano

Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass (Eds.). Morgan

Kaufmann, 261–270. http://www.vldb.org/conf/2001/P261.pdf

[78] K Tuncay Tekle and Yanhong A Liu. 2011. More efficient datalog queries: sub-

sumptive tabling beats magic sets. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. 661–672.

2712

https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.4230/LIPIcs.ICDT.2016.15
https://doi.org/10.4230/LIPIcs.ICDT.2016.15
https://doi.org/10.1007/978-3-030-30796-7_2
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=5017
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=5017
http://www. grappa.univ-lille3. fr/tata
http://www. grappa.univ-lille3. fr/tata
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.14778/2733004.2733031
https://doi.org/10.1145/2452376.2452412
https://doi.org/10.1145/2452376.2452412
http://dl.acm.org/citation.cfm?id=645923.671008
http://dl.acm.org/citation.cfm?id=645923.671008
https://doi.org/10.1145/3357384.3358147
https://doi.org/10.14778/3352063.3352143
https://doi.org/10.1007/11526988_2
https://doi.org/10.1145/210332.210335
https://doi.org/10.3233/SW-140153
http://ijcai.org/Proceedings/09/Papers/341.pdf
https://doi.org/10.1109/BigData.2016.7840589
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12395
https://gitlab.inria.fr/boreal-artifacts/pvldb2023
http://arxiv.org/abs/1405.3631
https://ceur-ws.org/Vol-60/bry_schaffert.pdf
https://doi.org/10.1016/B978-155860869-6/50096-2
http://www.vldb.org/conf/2001/P261.pdf

[79] Alex Thomo and Srinivasan Venkatesh. 2008. Rewriting of visibly pushdown

languages for xml data integration. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management. 521–530.

[80] Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. 2021.

Materializing knowledge bases via trigger graphs. Proceedings of the VLDB
Endowment 14, 6 (2021), 943–956.

[81] Jacopo Urbani, Sourav Dutta, Sairam Gurajada, and Gerhard Weikum. 2016.

KOGNAC: Efficient Encoding of Large Knowledge Graphs. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI

Press, 3896–3902. http://www.ijcai.org/Abstract/16/548

2713

http://www.ijcai.org/Abstract/16/548

	Abstract
	1 Introduction
	2 Framework
	3 New Query Rewriting Algorithms
	3.1 Taming Infinite Rewritings

	4 Instance-Aware Evaluation
	5 Semi-Twig-Based Query Rewriting
	6 Automata-Based Query Rewriting
	7 Experimental Analysis
	8 Related Work and Conclusion
	Acknowledgments
	References

