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Energy-based analog neural
network framework

Mohamed Watfa1,2, Alberto Garcia-Ortiz2* and Gilles Sassatelli1

1LIRMM, University of Montpellier, CNRS, Montpellier, France, 2ITEM, University of Bremen, Bremen,

Germany

Over the past decade a body of work has emerged and shown the disruptive

potential of neuromorphic systems across a broad range of studies, often

combining novel machine learning models and nanotechnologies. Still, the scope

of investigations often remains limited to simple problems since the process

of building, training, and evaluating mixed-signal neural models is slow and

laborious. In this paper, we introduce an open-source framework, called EBANA,

that provides a unified, modularized, and extensible infrastructure, similar to

conventional machine learning pipelines, for building and validating analog neural

networks (ANNs). It uses Python as interface language with a syntax similar to

Keras, while hiding the complexity of the underlying analog simulations. It already

includes the most common building blocks and maintains su�cient modularity

and extensibility to easily incorporate new concepts, electrical, and technological

models. These features make EBANA suitable for researchers and practitioners to

experiment with di�erent design topologies and explore the various tradeo�s that

exist in the design space. We illustrate the framework capabilities by elaborating

on the increasingly popular Energy-Based Models (EBMs), used in conjunction

with the local Equilibrium Propagation (EP) training algorithm. Our experiments

cover 3 datasets having up to 60,000 entries and explore network topologies

generating circuits in excess of 1,000 electrical nodes that can be extensively

benchmarked with ease and in reasonable time thanks to the native EBANA

parallelization capability.

KEYWORDS

neural networks, energy-based models, equilibrium propagation, framework, analog,

mixed-signal, SPICE

1. Introduction

The past decade has seen a remarkable series of advances in deep learning (DL)

approaches based on artificial neural networks (ANN). In the drive toward better accuracy,

the complexity, and resource utilization of state-of-the-art (SOTA) models have been

increasing at such an astounding rate that training and deploying these models often require

computational and energy resources that lie outside the reach of most resource-constrained

edge environments (Bianco et al., 2018). As a result, most of the training and processing has

been done in data centers that require access to the cloud. However, energy cost, scalability,

latency, data privacy, etc., pose serious challenges to existing cloud computing. Alternatively,

edge computing has emerged as an attractive possibility (Wang et al., 2020).
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The high computational and power demands of DL are

driven by two key factors. The first is the efficiency of the

DL algorithms. Current SOTA models require multiply-and-

accumulate operations (MACs) that number in the billions. For

example, VGGNet (Simonyan and Zisserman, 2015), a model

that enabled significant accuracy improvements in the ImageNet

challenge, required 138M parameters and 15.5G MACs. These

numbers are even higher for current SOTA models (Sevilla et al.,

2022).

The second component of the power equation is tied to

the hardware architecture on which the DL workloads are

executed. Machine learning and other data intensive workloads

are fundamentally limited by computing systems based on the von

Neumann architecture, which has separate memory and processing

units, and thus wastes a lot of energy in memory access and data

movement. For instance, to support its 724M MACs, AlexNet

requires nearly 3 billion DRAM accesses, where fetching data from

off-chip DRAM costs 200×more energy compared to fetching data

from the register file (Sze et al., 2017).

With energy-efficiency being a primary concern, the success

of bringing intelligence to the edge is pivoted on innovative

circuits and hardware that simultaneously take into account the

computation and communication that are required. Consequently,

recent hardware architectures for DL show an evolution toward

“in/near-memory” computing with the goal of reducing data

movement as much as possible. One category of such architectures,

the so-called Processing-In-Memory (PIM), consists in removing

the necessity of moving data to the processing units by performing

the computations inside the memory. This approach is commonly

implemented by exploiting the analog characteristics of emerging

non-volatile memories (NVM) such as ReRAM crossbars, though it

is also possible to leverage mature CMOS-based technologies (Kim

et al., 2017). Furthermore, as ANN inference is inherently resilient

to noise, this opens the opportunity to embrace analog computing,

which can be much more efficient than digital especially in the low

SNR (signal-to-noise ratio) regime (Murmann et al., 2015). This

work targets this class of ANNs.

Due to the highly demanding device and circuit requirements

for accurate neural network training (Gokmen and Vlasov, 2016),

most mixed-signal implementations are inference-only. While

the optimal implementation of the memory devices is an on-

going challenge, there is an opportunity to simplify the circuit

requirements by considering learning algorithms that are well-

matched with the underlying hardware. One such algorithm is the

Equilibrium Propagation (EP) algorithm that leverages the fact that

the equilibrium point of a circuit corresponds to the minimization

of an abstract energy function (Scellier and Bengio, 2017), whose

definition is discussed in Section 2. By allowing the bidirectional

flow of signals, the EP method forgoes the need for a dedicated

circuit during the backward phase of training, while also keeping

the overhead of the periphery circuit that supports it to a minimum

as there is no need for analog-to-digital converters between layers.

Given the growing rate of machine learning workloads, it is

of paramount importance to have a framework that is capable

of performing a comprehensive comparison across different

accelerator designs and identify those that are most suitable for

performing a particular ML task. Thanks to ML frameworks such

as Google’s Tensorflow and Keras, the ease of creating and training

models is far less daunting than it was in the past. While training

an analog neural network with EP could in theory be possible in

Tensorflow, there are three major difficulties:

• First, the current-voltage (I-V) characteristic of each circuit

element has to be completely defined. This also calls for the

implementation of a non-linear equation solver.

• Second, the network layers have to be designed in such a way

that they can influence each other in both directions. Without

the loading effect, the model will fail to learn.

• Finally, implementing procedures that involve iterative

updates, like differential equations, within automatic

differentiation libraries like Tensorflow, would mean that we

need to store all the temporary iterates created during this

solution for each time step. This requires storing a great deal

of information in memory. As will be explained later, when

implemented on analog circuits, the EP method requires the

data points at only two time steps.

Based on the above motivations, this work introduces an

exploratory framework called EBANA (Energy-Based ANAlog

neural networks), built in the spirit of Keras1 with two goals

in mind: ease-of-use and flexibility. By hiding the complexity

inherent to machine learning and analog electronics behind a

simple and intuitive API, the framework facilitates experimentation

with different network topologies and the exploration of the various

trade-offs that exist in the design space.

In the relatively few studies that strive to understand the inner

workings of the EP algorithm on analog hardware, we observe

several cases where our framework could prove immediately

beneficial. In Kiraz et al. (2022), the authors studied the impacts

of the learning rate and the scaling factor of the feedback current

on the algorithm convergence. Their experiments were carried

out on a simple two-input-one-output circuit, and, therefore, it

is not clear whether their results generalize to more complex

circuits. The size of the network in our framework is limited only

by the underlying SPICE simulator, thus facilitating much more

comprehensive studies. In Foroushani et al. (2020), the authors

built a circuit based on the continuous Hopfield model to learn

the XOR circuit. The modularity and graph-based data structure

of our framework can easily accommodate new analog blocks and

topologies, making it easy to study their effect on accuracy, power

estimation, etc., as the network size grows.

Although research on EBM-based ANN accelerators is still

in its early stages, a substantial amount of work has been done

on non-EBM-based accelerators. Most of these accelerators are

designed for inference only, as on-chip training has proven to be

challenging (Krestinskaya et al., 2018). To achieve speed and energy

savings, these accelerators embed the computations inside memory

elements such as emerging non-volatile memory (Li et al., 2015;

Hu et al., 2016; Shafiee et al., 2016; Gokmen et al., 2018), floating-

gate transistors (Agarwal et al., 2019; Park et al., 2019), or volatile

capacitive memories (Boser et al., 1991; Bankman et al., 2019). For

1 https://keras.io/guides/functional_api/

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1114651
https://keras.io/guides/functional_api/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Watfa et al. 10.3389/fncom.2023.1114651

a more comprehensive overview of ANN architectures, the reader

is referred to (Xiao et al., 2020).

This paper is organized as follows. In Section 2, we give a

very brief introduction into energy based learning, and explain

why it is a natural fit for analog systems. In Section 3, we provide

an overview of the internals of our API, and illustrate with an

example how quickly and easily models can be created. In Section 4,

we validate our framework by training an analog circuit on a

non-trivial ML task, evaluate the performance, and show how the

framework can be extended. Finally, we discuss the conclusions and

further work.

In this work, we expand upon our previous introduction of the

EBANA framework in Watfa et al. (2022) by elaborating on the

relationship between energy-based models and electrical circuits.

Specifically, we demonstrate how the energy function can be shaped

and modified by the learning process and examine the impact of

various parameters on the learning capacity of the analog circuit.

Additionally, we discuss the potential for interfacing an analog

neural network based on the EP algorithm with one based on the

backpropagation algorithm in a mixed-mode design.

2. Energy based learning

The main goal of deep learning or statistical modeling is to find

the dependencies between variables. Energy Based Models (EBMs)

encode these dependencies in the form of an energy function

E that assigns low energies to correct configurations and high

energies to incorrect configurations. However, unlike statistical

models which must be properly normalized, EBMs have no such

requirements (LeCun et al., 2006), and, as such, can be applied to a

wider set of problems.

Two aspects must be considered when training EBMs. The first

is finding an energy function that is rich enough to model the

dependency between the input and output. This is usually tied to

the architecture of the network. The second is shaping the energy

function so that the desired input-output combinations have lower

energy than all other (undesired) values. In the following sections,

we consider one example of such a method, explain how it works,

and discuss how it can be used to train analog neural networks.

2.1. An alternative to backpropagation

The success of deep neural networks can be attributed to the

backpropagation (BP) algorithm, which exploits the chain rule of

derivatives to compute updates for the parameters in the network

during learning. In spite of its success, BP poses a few difficulties for

implementation in hardware. The requirement for different circuits

in both phases of training is one of the core issues that the EP

learning framework sets out to address (Scellier and Bengio, 2017).

It involves only local computations while leveraging the dynamics

of energy-based physical systems. It has been used to train Spiking

Neural Networks (Martin et al., 2021) and in the bidirectional

learning of Recurrent Neural Networks (Laborieux et al., 2020).

The EP algorithm is a contrastive learning method in which the

gradient of the loss function is defined as the difference between the

equilibrium state energies of two different phases of the network.

The two phases are as follows. In the free phase, the input is

presented to the network and the network is allowed to settle

into a free equilibrium state, thereby minimizing its energy. Once

equilibrium is reached, inference result is available at the output

neurons. In the second, nudging phase, an error is introduced to

the output neurons, and the network settles into a weakly-clamped

equilibrium state, which is closer to the desired state than the free

equilibrium state. The parameters of the network are then updated

based on these two equilibrium states. The idea is depicted in

Figure 1.

2.2. Constructing the energy function

Supervised learning in a neural network is driven by the

optimization of an error function of the output. A common

objective is the minimization of mean squared error (MSE) or

the cross-entropy of the network’s output and the target output.

However, in energy-based models the optimization objective is not

a function of the output, but some scalar energy function of the

entire network state.

The design of the energy E can be inspired from physics or

hand-crafted based on the network architecture. An early example

of EMBs is the Hopfield network and its stochastic variant, the

Restricted Boltzmann Machine (Hinton, 2012). In these networks,

the energy function is constructed by observing that a neuron only

flips when the state of the neuron is opposite that of the field. The

energy function is defined as the negative sum of the output of all

the neurons, a number bounded by the parameters of the network.

As the neurons flip, the overall energy of the system decreases until

a configuration is reached that corresponds to the minimum of

the energy function. The energy function of the RBM is presented

below.

E(v, h) = −bTv − cTh− vTWh (1)

where θ = (b, c,W) are the real-valued parameters of the model.

b and c are the bias vectors, and W is the weight matrix. The

parameters represent the preference of the model for a particular

value of v or h.

Despite being an energy-based model, the RBM is trained using

maximum-likelihood estimation (MLE) (Hinton, 2012), a standard

method for training probabilistic models. The basic idea is to find

the parameters of the network that maximize the likelihood of the

dataset. This is a very slow and computationally expensive process,

especially when the dimensionality of the dataset is high, as it

requires sampling from the joint distribution of v and h. The EP

algorithm is able to avoid this by introducing a cost function to the

energy function that nudges the system toward a state that reduces

the cost value.

In the EP algorithm, the state s of the system is governed by the

network energy function

F(θ , x, y,β , s) = E(θ , x, s)+ β · C(θ , x, y, s), (2)

where θ = (W, b) are the network parameters, x is the input to

the network, y is the target output, and s = {h, ŷ} is the collection
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FIGURE 1

Equilibrium propagation algorithm: (A) In the free phase, the input is presented to the network and the network settles in an equilibrium state. (B) In

the nudging phase, an error signal (depicted in red) is introduced at the output, forcing the network to settle in nearby equilibrium state, having a

slightly lower energy than the free equilibrium state. The parameters are updated based on these two states.

of neuron states, comprised of the hidden and output neurons,

respectively.

The total energy function F is composed of two sub-parts: the

internal energy E, which is a measure of the interaction of the

neurons in the absence of any external force, and the external

energy or cost function C, modulated by the influence parameter β .

The states are gradually updated over time to minimize the overall

energy. The introduction of the cost function to the energy function

is one of the main features that distinguishes the EP algorithm from

other EBM-based algorithms.

2.3. Equilibrium propagation algorithm

Given a training example (x(i), y(i)) and θ in the absence of an

external potential (β = 0), the system reaches a state s0 = s0(θ , x)

that minimizes the internal energy E(θ , x, s). The cost function

C(θ , x, y, s) evaluates the quality of s0 in mapping x(i) to y(i). If s0

isn’t adequate, a force proportional to ∂C
∂ ŷ

is applied to drive the

output units toward their target, moving the system to a nearby

state sβ = sβ (θ , x, y) that has a lower prediction error. As opposed

to RBMs where the output units are clamped to the desired values

during the second phase of training, the output units are driven

to the desired values in the EP algorithm, hence the term weakly-

clamped. The perturbation at the outputs propagates across the

hidden layers, causing the network to relax at a nearby state sβ ,

which is better than s0 in terms of the prediction error. This

corresponds to “pushing down” the energy of sβ , and “pulling up”

the energy of s0. A demonstration of this is presented in the next

section.

The EP training algorithm is presented in Algorithm 1.

Equation (3) shows how we can update the parameters of the

network between the two phases. It is an approximation of the

derivative of the loss function with respect to β (hence the 1
β
term).

For the interest of brevity, the reader is directed to the source

material (Scellier and Bengio, 2017) for a detailed derivation of the

equation.

Compared to backpropagation, there are two important

differences that make this approach especially attractive for

implementation in hardware: First, propagating the errors toward

the input does not require a special computational circuit (which is

the case for backpropagation). Second, the learning rule is local due

to the sum-separability property of the energy function in physical

systems. We also touch on this in the next section.

The EP algorithm can be implemented on digital hardware

using a discrete-time implementation of the state dynamics (Ji

and Gross, 2020). However, this is a slow process as it involves

long phases of numerical optimization before convergence, in

essence similar to a simulation. As the EP algorithm is inherently

a continuous-time optimization method, this motivates the

exploration of analog implementations.

Several works have proposed analog implementations of EP

in the context of Hopfield networks (Foroushani et al., 2020;

Zoppo et al., 2020). A recent study showed that a class of analog

neural networks called non-linear resistive networks are EBMs and

possess an energy function whose stationary point is the steady-

state solution of the analog circuit (Kendall et al., 2020). This

result provides theoretical ground for implementing an end-to-end

hardware that performs inference and training on the same circuit.

Consequently, it serves as the inspiration on which our framework

is based.

2.4. Example: A simple regression model

In this section, we elaborate on the learning process of an EBM

by demonstrating the construction of the energy function and how

the training process shapes the energy surface. To visualize the
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1. Fix the inputs and allow the system to settle in s0

that corresponds to the local minimum of E(θ , x, s) or

F(θ , x, y, 0, s). Collect ∂F
∂θ
(θ , x, y, 0, s0). This is the free phase.

2. With the input still fixed, nudge the output units toward their

target values. Allow the system to settle in a new but nearby

fixed point sβ that corresponds to slightly smaller prediction

error. Collect ∂F
∂θ
(θ , x, y,β , sβ ). This is the nudging phase.

3. Update the parameter θ according to

1θ ∝ − 1

β

(

∂F

∂θ
(θ , x, y,β , sβ )− ∂F

∂θ
(θ , x, y, 0, s0)

)

. (3)

Algorithm 1. Equilibrium propagation.

actual surface rather than its projection to a lower dimension, we

construct a contrived example of a simple regression model that

can learn the dataset shown in Figure 2A. This shape was chosen for

two reasons: (1) It can be implemented in real circuit components,

such as a diode. (2) The pseudo-power of the circuit can be easily

calculated.

Figure 2B shows the schematic of the model. The input is

provided through Vin and the output is taken from node X. The

second input is held at a fixed voltage Vbias. Connection to the

output node is made through series conductances G1 and G2. A

non-linear element is attached to node X. It has two regions of

operation: it behaves as an open-circuit when Vout < VTH and as

a voltage source, VTH, in series with a resistance ron when Vout >

VTH.

The “energy function” of non-linear resistive networks is a

quantity called the total pseudo-power of the circuit (Johnson,

2010), and its existence can be derived directly from Kirchhoff’s

laws. Moreover, this energy function has the sum-separability

property: the total pseudo-power of the circuit is the sum of the

pseudo-powers of its individual elements. It can be shown that

the pseudo-power of a two-terminal element with terminals i and

j, characterized by a well-defined and continuous current-voltage

characteristic Iij = φij(1Vij) is given by

pij(1Vij) =
∫ 1Vij

0
φij(v) dv. (4)

The quantity pij(1Vij) has the physical dimensions of power, being

a product of a voltage and a current.

With the above definition, and the sum-separability property of

the energy function, the total pseudo-power of the circuit shown in

Figure 2B can now be calculated.

E = G1

∫ Vout−Vin

0
v dv+ G2

∫ Vout−Vbias

0
v dv

+
∫ Vout

0
max

(

0,
v− VTH

ron

)

dv

E = G1
(Vout − Vin)

2

2
+ G1

(Vout − Vbias)
2

2

+ (max(Vout,VTH)− VTH)
2

2 · ron
(5)

Given θ = (G1,G2) andVin, the energy function associates with

each state s = {Vout} a real number E(θ ,Vin, s). For a given input,

the effective state s⋆ = s(θ ,Vin) is the state s that minimizes the

energy function; i.e., s⋆ such that ∂E
∂s (θ ,Vin, s

⋆) = 0. In a non-linear

resistive network with two-terminal components, this equilibrium

state is exactly the steady state of the circuit imposed by Kirchhoff’s

laws.

Figure 3 shows three snapshots of the energy surface during the

course of training. In the leftmost plot, initializing the network with

random conductances defines an energy surface that associates low

energy with states (depicted with red dots on the xy-plane) different

from the desired ones (depicted with blue dots). The goal of training

is to adjust the conductance values to generate an energy surface

that associates low energy with the desired states. In some cases,

this may not be possible if the energy function is not expressive

enough. For instance, there is no set of conductance values that

can mold the energy surface to produce equilibrium points defined

along a parabola for the circuit in Figure 2B. However, as shown

in the rightmost plot, it is possible to obtain a set of conductance

values that shape the energy function to produce the regression line

in Figure 2A.

3. Exploratory framework

Our framework, EBANA, provides a comprehensive solution

for designing and training neural networks in the analog domain.

The architecture is comprised of two main parts: one for defining

the networkmodel, and the other for training in the analog domain.

A high level view is shown in Figure 4A.

The interface to EBANA is Python, leveraging its rich ecosystem

of libraries for data processing and data analysis.With the exception

of circuit simulation, all operations, including netlist generation,

gradient computation, and weight updates, are performed in

Python.

We employ a SPICE simulator for realistic simulation of the

circuit dynamics, with PySpice2 serving as the bridge between

Python and the simulator. PySpice supports two of the most widely

used open-source SPICE simulators, Ngspice3 and Xyce.4 Ngspice

is readily available on almost all popular operating systems and is

the default simulator for EBANA. Xyce supports large-scale parallel

computing platforms and is attractive for complex deep learning

problems. The choice between the two simulators can be made by

simply setting a global variable. It’s worth noting that the vanilla

build of Ngspice has a subcircuit node limit of 1,000, whereas Xyce

does not have this limitation, though it requires compiling the

source code.

3.1. Network structure

The process of designing and training a model in our

framework starts with defining the model. A typical structure of an

analog neural network that can be trained with the EP framework

2 https://pypi.org/project/PySpice/

3 http://ngspice.sourceforge.net/

4 https://xyce.sandia.gov/
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FIGURE 2

Example of a learning task in EBM: (A) Dataset which the model learns. Each dot represents a sample point from the dataset. The dashed line

represents the regression line. (B) Circuit model that learns the regression line. φ is nonlinear function that relates the voltage to the current. The red

arrow shows the direction of the current through the non-linear element.

FIGURE 3

Evolution of the energy surface during training for the task in Figure 2. The goal of training is to mold the energy surface such that the minima are

associated with points defined on the blue curve. (A) In the beginning of training, the minima of the energy surface are associated with points defined

on the red curve, which depend on the random initialization of the parameters of the model. (B) After 5 epochs, the shape of the energy surface has

changed to create minima closer to the desired points. (C) After 10 epochs, the minima are over the desired points.

is shown in Figure 5. It consists of an input layer, several hidden

layers, and an output layer. It looks similar to a regular neural

network that can be trained by the backpropagation algorithm

except for two major differences. First, the layers can influence

each other bidirectionally; i.e., the information is not processed

step-wise from inputs to outputs but in a global way. Second, the

output nodes are linked to current sources which serve to inject

loss gradient signals during training.

3.2. Creating a model

Layers, which are essentially subcircuits in analog circuits, form

the core data structure of our framework. They are expressed as

Python classes whose constructors create and initialize the pin

connections, and whose call methods build the netlist. The

process of creating a model is heavily inspired by Keras’s functional

API due to its flexibility at composing layers in a non-linear

fashion. In this manner, the user is able to construct models

with multiple inputs/outputs, share layers, combine layers, disable

layers, and much more. An example of this is given in Figure 6,

which follows the structure shown in Figure 5. In the following

subsections, we provide details on only those layers that have a

unique interpretation in the analog domain.

3.2.1. Input layer
This defines the number of inputs to the circuit, which are

typically represented by voltage sources. Generally, the input layer

is defined according to the dataset. However, the input layer can be

defined slightly differently in the analog domain.

• First, since the weights are implemented by resistors, and

resistances cannot be negative, a second set of inputs with the

opposite polarity of the voltages defined in the dataset is added

to the input layer. This accounts for negative weights and

effectively doubles the number of inputs and storage elements.

This idea (a voltage layer that is the same but opposite in

polarity to another one) is depicted with two green rectangles
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FIGURE 4

High level organization of EBANA: (A) Topologies such as the one shown in Figure 5 can be easily composed with a few lines of python code.

Together with the library files (SPICE models, subcircuits, etc.), the EBANA framework dispatches the generated netlist in batches to the SPICE

simulator. The EBANA framework then executes the EP algorithm on the result of the simulation, as well as keep track of the evolution of important

parameters such as voltages and currents. These can later be studied to reveal important trends that can help in fine-tuning the learning process, as

well as in the evaluation of the power consumption of the system. (B) The implementation of the fitmethod follows closely that of any traditional

ML training loop. The di�erence here is that a SPICE simulator is used, and the parameters of the network are updated based on the data points at

only two time steps.

FIGURE 5

Analog neural network in the EP framework. IL, Input Layer; DL, Dense Layer; NL, Non-linearity Layer; AL, Amplification Layer; CL, Current Layer.

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1114651
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Watfa et al. 10.3389/fncom.2023.1114651

FIGURE 6

Example of a model in the EBANA framework (Iris model).

in Figure 5. Note that this can avoided by setting the reference

voltage to some value other than 0. In this way, all voltages less

than the reference voltage are considered negative. However,

this requires shifting all other voltage nodes in the circuit by

the new reference value.

• Second, in typical software-based frameworks, the bias, when

used, is implicitly set to 1. However, since circuits can work

with a wide range of voltages, setting the bias voltage to values

other than 1 is necessary. Hence, we provide the option to

independently set the bias voltage in each layer. Note that it

is also possible to learn the bias voltages.

3.2.2. Weight layers
Two kinds of weight layers are defined in the framework:

the Dense layer and the LocallyConnected2D layer. The

Dense class is the implementation of the fully-connected layer,

which means that each neuron of the layer is connected to every

neuron of its preceding layer. This connectivity pattern can be

easily implemented in crossbar arrays by simply connecting each

row of the crossbar array to all columns of the previous layer’s

crossbar array.

The implementation of fully-connected layers is

straightforward, but implementing convolutional layers in

the analog domain is challenging as the filters are connected to

a local region of the previous layer. To achieve this connectivity

pattern, a more complex wiring is necessary in crossbar arrays.

While it can still be done by shifting the inputs and temporarily

storing them in buffers, the dot product operation becomes a

non-constant time process (Boser et al., 1991). To overcome this,

we have implemented a variant of the convolutional layer called the

LocallyConnected2D layer, where the dot product operation

is between a section of the input matrix and the filter, with a

different filter used for each subregion of the input, avoiding the

weight sharing issue.

Another issue that is specific to ANNs is the weight

initialization problem. Neural networks are very sensitive to

the initial weights, and thus selecting an appropriate weight

initialization strategy is critical to stabilize the training process.

As a result, a lot of research has gone into finding optimal

weight initialization strategies (Li et al., 2020). However, since

conductances cannot be negative, these methods cannot be applied

directly. Hence, although we provide a default range, some

experimentation is advised.

3.2.3. Non-linearity
The non-linearity layer is implemented with a diode in series

with a voltage source. We provide two kinds of diodes: a regular

diode and a MOS diode. They have the following options:
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• Diode orientation (direction): This specifies the

orientation of the anode and cathode of the diode with respect

to the voltage source.

• Bias voltage (bias): By choosing a bias value other than zero,

we can change the voltage at which the diode saturates, and

therefore alter the shape of the non-linearity.

• SPICE model (model): This is a text description that is

passed to the SPICE simulator that defines the behavior of the

diode.

3.2.4. Amplification layer
Unlike the dense layer used in libraries like Tensorflow where

the output is the weighted sum of the inputs, the output of a

resistive crossbar array is the weighted mean of the inputs. This has

the effect of reducing the dynamic range of the signal. As a result,

amplifiers are needed to restore the dynamic range of the signal as

it propagates between the input and output layers.

The amplification layer is implemented with ideal behavioral

sources. It boosts the voltages in the forward direction by a factor of

A and the currents in the reverse direction by a factor of 1
A . Without

the reverse current, the circuit reduces to a signal-flow model

where the outputs no longer affect the inputs and the algorithm

fails. Furthermore, the 1
A factor is to ensure that the gain of the

amplifier does affect the magnitude of the reverse current; i.e., a

load connected to the output node of the amplifier has the same

effect at the input node as a load connected directly to the input

node.

3.2.5. Current source layer
This layer simply adds current sources at each output node

to inject current into the network during the nudging phase. It is

implemented with ideal current sources. During the forward phase,

the current sources are set to 0.

3.3. Training

The training process that is implemented by the fit method is

illustrated in Figure 4B.

3.3.1. Weight gradient calculation
The current gradients are calculated according to the chosen

loss function. For instance, in the case of the mean squared-error

(MSE), the loss is given by C(Ŷk,Yk) = 1
2 (Ŷk − Yk)

2, where k is the

index of output node, Ŷk is the output of the node, and Yk is the

target value. Other loss functions such as the cross-entropy loss are

also available.

The current that is injected into output node k is some multiple

β of the derivative of the loss with respect to that node: i.e.,−β ∂C

∂Ŷk
.

The negative sign is for gradient descent.

To address the constraint of non-negative weights, the number

of output nodes are doubled. That is, the output node Ŷk is

represented as the difference between two nodes: Ŷk = Ŷ+
k
− Ŷ−

k
.

The currents, I+
k

and I−
k
, that are to be injected into Y+

k
and Y−

k
,

respectively, are:

I+
k
= −β

∂C

∂Ŷ+
k

= β(Ŷk + Ŷ−
k
− Y+

k
)

I−
k
= −β

∂C

∂Ŷ−
k

= β(Ŷ+
k
− Ŷ−

k
− Yk)

(6)

3.3.2. Weight update
During the free phase, the current sources at the output nodes

are set to 0. The inputs are applied and circuit is allowed to settle.

We then collect the node voltage V0 = (V0
1 , . . . ,V

0
N) and calculate

the voltage drop 1V0
ij across each conductance.

In the nudging phase, the current given by Equation (6) is

injected into each output node. After the circuit settles, we collect

the node voltages Vβ = (V
β
1 , . . . ,V

β
N) and calculate the voltage

drop 1V
β
ij across each conductance once again. We then update

each conductance according to the equation below (Kendall et al.,

2020).

Gij ← Gij −
α

β
[(1V

β
ij )

2 − (1V0
ij)

2] (7)

where α is the learning rate.

The weight update rule as defined by (7) is one of the options

available in the optimizer class, and is defined under the

name SGD (stochastic gradient descent). Other weight update

mechanisms such as SGDMomentum (stochastic gradient descent

with momentum) and ADAM are also available.

The momentum method can speed up training in regions of

the solution space that are nearly flat by adding history to the

conductance update equation based on the gradient encountered in

the previous updates. The ADAM update rule takes this idea one step

further by adapting a learning rate for each conductance, thereby

dulling the influence of conductances with higher gradients and

boosting those with smaller gradients.

During the early stages of training when the conductances

are rapidly changing, the value of the update term α
β
[(1V

β
ij )

2 −
(1V0

ij)
2] can sometimes be larger than Gij. This will result in

numerical instability as some conductances are now negative. To

address this issue, all conductance values that fall below a certain

threshold are clipped to that threshold.

3.4. Parallelism

Training with EP requires performing the free phase and

nudging phase, after which the conductances are updated. Both of

these phases are done sequentially in SPICE, and are the critical

path in the pipeline. While SPICE simulations are always going to

be time consuming, the overall simulation time can be reduced by

running many simulations in parallel. This is achieved by noting

that all the samples in a mini-batch are independent and, therefore,

could be simulated independently. As a result, the simulation time

could in theory be limited only by the time it takes to simulate a

single sample in a batch.
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4. Evaluation

In this section, we evaluate our framework focusing on three

aspects: correctness, extensibility, and performance.

4.1. Illustrative example: Learning the iris
dataset

As a first step in the evaluation, we built a model that

could learn the Iris dataset.5 This example is a well-known

problem of moderate complexity, containing 150 samples,

with 4 input variables and 1 output variable that takes

values 3 values.

Two preprocessing steps are needed before the data is ready for

training. First, the input variables have to be normalized. Second,

we associate with each unique output value a 3-bit one-hot encoded

value. Hence, after the preprocessing step, the dataset has 4 inputs

and 3 outputs.

We constructed a model with 1 input layer, 1 hidden layer, and

1 output layer, as shown in Figure 6. The input layer has 9 nodes; 4

for the regular inputs, 4 for the inverted set, and 1 for the bias. In

the preprocessing step, the data was scaled to take real values in the

range [−0.5V, 0.5V] so that it is compatible with modern CMOS

process voltages.

The hidden layer was implemented with 10 nodes and the

output layer with 6 nodes. The weights were initialized from

samples drawn randomly from the range
[

10−7S, 8·10−8√
nin+nout+1

S
]

,

where nin is the size of the inputs and nout is the number of nodes.

The learning rate of both layers was set to 4 · 10−4.
The dataset was split into two parts: 105 samples for training,

and 45 samples to evaluate the model on new data while training.

The optimizer was set to ADAM and the model was trained for

400 iterations. It achieved an accuracy of 100% on the test dataset.

A plot of the loss and accuracy as a function of the number of

the training epochs is shown in Figure 8A1. This validates the

correctness of our framework.

4.2. E�ect of model parameters on model
performance

The non-linearity of activation functions used in deep learning

models is crucial for the learning process. Without them, the

model reduces to a linear composition of layers. In terms of the

energy surface, this means that all the equilibrium points lie along

a straight line, preventing the model to capture anything but

linear responses. The addition of non-linearities creates a much

richer energy surface that greatly enhances the model’s capability

to learn.

Our model incorporates non-linearity through the non-linear

current-voltage (I-V) characteristics of a diode, as depicted

in the blue curve in Figure 7. This plot resembles the ReLu

5 https://archive.ics.uci.edu/ml/datasets/iris

FIGURE 7

Illustration of the operating point of the circuit as RThev is changed

for both an ideal diode and a real diode. In the case of a real diode,

the smaller the resistances in the dense layer, the higher is the

voltage at which the diodes saturate or the lesser is the non-linearity

e�ect for the same voltage range. Even though we need amplifiers

with lower gains, but because the resistances are now smaller, a

larger current flows through the circuit, causing the power

consumption to go up.

function commonly used in deep learning, but with two

key differences:

(1) The plot here represents the current-voltage transfer function,

not the voltage-voltage transfer function. When the voltages

applied in the circuit are below the knee of the diode’s I-V curve,

the diode draws minimal current, resulting in a nearly linear

circuit. Non-linearity only arises when the operating point is

above the knee of the curve and the diode begins to draw current,

which is the opposite behavior to the ReLu function.

(2) Because of loading effects in the analog domain, the voltage

at the output node of the diode is a non-linear function of

the entire circuit, not just the layers preceding it. This has two

implications: (a) To know the voltage at the output node of the

diode, the entire circuit has to be solved. (b) The shape of the

non-linearity (or the voltage at which the diode saturates) is

affected by the circuit parameters.

We can get some insight into the non-linear behavior of

the diode by modeling the circuit around it with a Thevenin

voltage (VThev) and a Thevenin resistance (RThev). In this case,

the operating point (Q-point) of the circuit is the intersection of

the I-V characteristic of the diode and that of the load line, given

by the equation ID = VThev−VD
RThev

, where ID is the current through

the diode, and VD is the voltage across it. In the case of an ideal

diode, VD = const, indicating that the diode saturates at the same

voltage irrespective of the value of RThev (similar to how a non-

linear function behaves). However, real diodes offer a resistance in

series with RThev, causing the diode to saturate at different values

depending on the size of RThev. This complex relation affects the

input dynamic range that can be used, the gain needed for the
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FIGURE 8

A plot of the loss/accuracy for experiments 1, 2, and 3 is shown in (A1–A3). (B1–B3) Show the voltage distribution. (C1, C2) Show the resistance

distribution of the first dense layer at the end of training. (D) Compares the power consumption of the circuit during training for experiments 1 and 3.

amplifiers, and the overall power consumption of the circuit. Here,

we investigate the interplay between these factors on the model

performance.

Figure 7 shows how the Q-point of the circuit changes as RThev
is changed. For a fixed VThev > VTH, increasing the resistance

reduces the voltage at which the diode saturates. This reduces

the dynamic range of the signal, forcing the use of amplifiers

with higher gains. While the actual behavior of the circuit is

more complex, this insight equips us with a beacon to search the

parameter space for better initial points.

To test this hypothesis, we designed an experiment similar

to the one in the previous section, but with the conductances

multiplied by 104. The distribution of the conductances (or

resistances) in the first and second experiments is shown in

Figures 8C1, C2, respectively. The values of beta (β) and the

learning rates (α) have to be scaled by roughly the same factor.

We obtained an accuracy of 93% after 200 epochs (Figure 8A2),

compared to 100% in the first (Figure 8A1). The loss in accuracy

can explained by the fact that the nonlinearity is weaker in the

second experiment due to the smaller resistances in the dense layer.
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TABLE 1 Keras model for Fashion-MNIST dataset.

Layer Parameters

Conv2D Filters = 8, kernel_size = 5, activation = “relu”

MaxPooling2D Pool_size = 2

Conv2D Filters = 8, kernel_size = 5, activation = “relu”

MaxPooling2D Pool_size = 2

Flatten –

Dropout p = 0.15

BatchNormalization -

Dense Units = 512, activation = “relu”

Dense Units = 10, activation = “softmax”

FIGURE 9

High level view of integrating a digital neural network with an analog

neural network based on the EP algorithm. The digital block

receives a high-dimensional input, downscales it, and feeds the

result to the analog block, which does the bulk of the computation.

The analog block “backpropagates” error signals to the digital block

such that the parameters of both blocks are adjusted in the direction

that reduces the energy of the system.

To support the claim that the non-linearity is weaker due to the

smaller resistances, bias voltages were applied to allow the diodes

to saturate earlier by 0.05V. With this modification, the accuracy

improved to 100% (Figure 8A3). The distribution of the voltages at

input of the amplifer for the three cases is shown Figures 8B1–B3.

The weaker non-linearity in the second experiment resulted in a

voltage distribution with a higher density around 0V, as opposed to

the other two, where the density is highest around the saturation

voltages. Finally, even though the adjustment made to the second

experiment improved the accuracy, the power consumption of the

circuit is roughly 104 more (Figure 8D).

4.3. Mixed-signal application

In this section, we explore the possibility of integrating a

digital component to our analog model, in a so-called mixed-

signal design. The idea is depicted in Figure 9. Here, the inputs,

for example a high-dimensional image, is introduced to the digital

block, preprocesses the data and embeds the input in a lower-

dimensional space before passing it to the analog block. The reason

for doing this is the following: A convolutional layer reuses the

same input data and a relatively small number of weights overmany

sequential operations. Meanwhile, a fully connected layer typically

involves a much larger number of weights with no input data reuse.

Furthermore, as convolutional operations tend to be computation-

bound, while fully connected layers are bounded by the memory

bandwidth, it is thus advantageous to implement convolutional

layers in digital and fully-connected layers in analog.

The proposed mixed-signal implementation was evaluated on

the Fashion-MNIST dataset. Fashion-MNIST is a popular machine

learning benchmark task that improves on MNIST by introducing

a harder problem, increasing the diversity of testing sets, and more

accurately representing a modern computer vision task.

In our approach, Keras was used to play the role of the digital

block while EBANA acted as the analog block. The process of

training the mixed-signal system is as follows:

1. We built a model with the parameters shown in Table 1 and

trained it for 20 epochs. We achieved an accuracy of 90% on the

test dataset.

2. Using the trained model, we passed the entire Fashion-MNIST

dataset through the layers of the model, and collected the result

from the Flatten layer. This step represents embedding the input

vector from a dimension of 784 into dimension of 150.

3. We then trained an analog model similar to the one in Figure 6

but with 100 nodes in the hidden layer. We stopped training

after 1 epoch after achieving an accuracy of 85% on the test

dataset using the cross-entropy loss.

4. Using the trained analog model, we then trained the inputs (i.e.,

gradient descent on the input) until we achieved an accuracy

of 100%. This new set of inputs represents the inputs that the

analog block expects from the digital block if the accuracy is to

be improved.

5. Back in Keras, a newmodel was trained using the original dataset

but with the objective of producing the trained inputs from the

previous step. We then repeated steps 2 and 3. The accuracy

improved by 3%.

The result of this experiment shows that we can

“backpropagate” through the analog layer, opening the possibility

of a full-fledged mixed-signal implementation where the analog

block benefits from the preprocessing opportunities available in

the digital domain.

4.4. Extensibility

Even though it is possible to design fully functional ANNs with

the EBANA framework, we provide sufficient system encapsulation

and model extensibility to meet the individual requirements of

incorporating new models and extending the functionality of the

framework, beyond Energy-Based Models. This includes adding

new layers, defining new loss functions, changing the training loop,

and much more. The only constraint in defining new components

is that they must be constructed of linear and non-linear dipoles to

ensure stability, as stated by Johnson (2010).

To demonstrate the extensibility capabilities of our framework,

we consider the example shown in Figure 10. Here, we show that

by subclassing the SubCircuit class, and with a just a few lines

of code, a new kind of non-linearity can be defined using MOSFET

transistors and voltages sources.
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FIGURE 10

Example of defining a new kind of layer.

TABLE 2 DC simulation time as a function of circuit size and training dataset size.

Datasets I/O units Circuit nodes
(N)

Dataset size
(D)

Epochs
(E)

Time (T) Threads (P) K(10−4)

Xor 5/2 16 4 85 14 s 1 25.74

Iris 9/6 56 105 155 182 s 4 7.99

Wine 25/4 111 5,000 2 217 s 4 7.92

Our library is modularized to easily plug in or swap out

components. For instance, to investigate the circuit behavior with

this new kind of non-linearity, all we have to do is replace the

DiodeLayer in Figure 6 with MOSDiode layer in Figure 10

and rerun the simulation. Moreover, while the circuit in Figure 5

is setup for training, it can be easily converted to one that

measures the compatibility of an input-output pair by simply

swapping the current layer with a voltage layer that represents

the output.

4.5. Performance

To evaluate the performance of the simulator, two experiments

were conducted. The first experiment was conducted on the Iris

model with the goal of measuring the speed-up gained through

parallelism. We fixed the number of samples in the mini-batch

and ran the simulation for the same number of epochs on a

single thread, followed by two, and then four. While the speed-

up factor was indeed almost doubled when the thread count was

increased from 1 to 2, doubling the thread count further resulted

in just 1.5x increase in speed. Due to the resulting circuit being

relatively simple, and the small batch size, the overhead of starting

new processes for every batch is a non-trivial percentage of the

overall simulation time. However, this would not be a problem for

experiments with reasonably large datasets.

For the second experiment, we wanted to measure the

simulation performance as a function of problem complexity.

To this end, we considered 3 datasets; xor, iris, and wine.6 To

obtain an estimate for the complexity of the circuit, we counted

the number of nodes only in those models that achieved an

accuracy greater than 95% on the test dataset. This is due to

the fact that the bias-variance trade-off is a property of the

model size.

The circuits were simulated and the average simulation time in

seconds is recorded in Table 2. For a measure of the intrinsic speed

of the simulator, a column with a calculated property K is added.

The property is calculated according to Equation (8) and takes into

account the simulation time T, the number of allocated threads

P, the number of nodes in the generated circuit N, the number

of epochs E, and the size of the training dataset D. We can see

from Table 2 that K is about the same for the two examples whose

simulation time is not dominated by the overhead of starting the

SPICE simulator. We expect this to hold true for larger datasets.

Training for all the experiments was carried out in a laptop with

an Intel i7-6700HQ CPU and 32 GB of RAM.

K = T · P
N · E · D (8)

5. Conclusion

In this paper, we presented an open-source unified,

modularized, and extensible framework called EBANA, that

6 https://archive.ics.uci.edu/ml/datasets/wine
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can be used to easily build, train, and validate analog neural

networks. By using Python as the interface language, with a syntax

similar to Keras, we’re able to hide the complexity of the underlying

analog simulations and offer researchers in neuroscience and

machine learning a conceptual and practical framework to

experiment with and explore the various tradeoffs that exist in the

design space.

EBANA does not only include the building blocks required

for the design of EBMs (i.e., IL, DL, NL, and CL layers); it

also maintains sufficient modularity and extensibility to easily

incorporate new concepts, electrical and technological models. For

example, adding a new non-linear layer requires less than 15 lines

of code. New learning concepts beyond EBM can also be easily

implemented, as illustrated with the co-training of an EBM with

a conventional CNN that uses the backpropagation algorithm.

Finally, EBANA has a graph-based data structure that facilitates the

composition of networks with a great deal of flexibility. All of these

features enable the implementation of a broad range of supervised

machine learning tasks in EBANA, and not just those with linear

topologies.

While EBANA is already fully functional and can reduce by

orders of magnitude the effort required to analyze new analog

neural networks, more features and functionalities will be added

in future iterations, including a suite of hardware blocks in

nanometric technologies for proper evaluation of the energy

consumption of the system. At the moment, the framework

supports only the open-source simulators Ngspice and Xyce, which

introduce some artificial limitations: The default distribution of

Ngspice places a limit of 1,000 nodes on the size of subcircuits. This

is not an issue for Xyce, but it is not always as readily available. We

plan to add support for commercially available simulators such as

Specter and Hspice. We also plan on improving the training speed

by optimizing the training loop and avoid generating a new netlist

for every simulation. This can result in massive speedups, both in

Python (where the netlist is generated) and the SPICE simulator

which builds a conductance matrix every time it is presented with a

new netlist. Finally, we plan to addmethods for distributed training

over multiple machines.
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