
HAL Id: lirmm-04308461
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04308461

Submitted on 27 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

EPIK: Precise and scalable evolutionary placement with
informative k-mers

Nikolai Romashchenko, Benjamin Linard, Fabio Pardi, Eric Rivals

To cite this version:
Nikolai Romashchenko, Benjamin Linard, Fabio Pardi, Eric Rivals. EPIK: Precise and scalable evolu-
tionary placement with informative k-mers. Bioinformatics, 2023, 39 (12), pp.btad692. �10.1093/bioin-
formatics/btad692�. �lirmm-04308461�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04308461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bioinformatics, 2023, 1–9

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Original Paper

EPIK: Precise and scalable evolutionary placement
with informative k-mers
Nikolai Romashchenko ,1,∗ Benjamin Linard ,1, ∗∗ Fabio Pardi 1

and Eric Rivals 1,∗

1LIRMM, Univ. Montpellier, CNRS, Montpellier, France

∗Corresponding author. nromashchenko@lirmm.fr, rivals@lirmm.fr.∗∗Present address: INRAE, UR MIAT, F-31320,

Univ. Toulouse, Castanet-Tolosan, France

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: Phylogenetic placement enables phylogenetic analysis of massive collections of newly sequenced

DNA, when de novo tree inference is too unreliable or inefficient. Assuming that a high-quality reference tree

is available, the idea is to seek the correct placement of the new sequences in that tree. Recently, alignment-

free approaches to phylogenetic placement have emerged, both to circumvent the need to align the new

sequences and to avoid the calculations that typically follow the alignment step. A promising approach is

based on the inference of k-mers that can be potentially related to the reference sequences, also called

phylo-k-mers. However, its usage is limited by the time and memory-consuming stage of reference data

preprocessing and the large numbers of k-mers to consider.

Results: We suggest a filtering method for selecting informative phylo-k-mers based on mutual information,

which can significantly improve the efficiency of placement, at the cost of a small loss in placement accuracy.

This method is implemented in IPK, a new tool for computing phylo-k-mers that significantly outperforms the

software previously available. We also present EPIK, a new software for phylogenetic placement, supporting

filtered phylo-k-mer databases. Our experiments on real-world data show that EPIK is the fastest phylogenetic

placement tool available, when placing hundreds of thousands and millions of queries while still providing

accurate placements.

Availability and Implementation: IPK and EPIK are freely available at https://github.com/phylo42/IPK

and https://github.com/phylo42/EPIK. Both are implemented in C++ and Python and supported on

Linux and MacOS.

Contact: nromashchenko@lirmm.fr or rivals@lirmm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

Key words: phylogenetic placement, metabarcoding, taxonomic identification, NGS, software

1. Introduction

Phylogenetic placement is an increasingly popular task in

phylogenetic analysis (Czech et al., 2022). Its input is a

set of reference sequences (often aligned), a phylogenetic tree

representing their evolution, and a (usually large) collection of

novel query sequences. The problem is to find, for each query, the

likely location(s) of its evolutionary origin in the reference tree.

Applications of phylogenetic placement range from taxonomic

identification and microbiome analysis (Asnicar et al., 2020;

Janssen et al., 2018; Thompson et al., 2017; Bohmann et al., 2020),

to the inference of new clades (Bass et al., 2018; Dunthorn et al.,

2014), and tracking of viral variants (Singer et al., 2020; Turakhia

et al., 2021).

The interest of phylogenetic placement is particularly evident

for amplicon-based analysis of environmental samples. Because of

the number and limited length of the sequences typically found

in these samples, de novo phylogenetic inference would be too

unreliable and inefficient on these data (Czech et al., 2022).

Moreover, phylogenetic placement software plays a key role in an

ecosystem of tools for biodiversity quantification and visualization

(Barbera et al., 2021; Czech et al., 2020), sample comparison, and

identification of correlations (Czech and Stamatakis, 2019).

Early phylogenetic placement tools such as pplacer (Matsen

et al., 2010) and EPA (Evolutionary Placement Algorithm; Berger

1

© The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

https://orcid.org/0000-0002-2264-5219
https://orcid.org/0000-0002-5555-898X
https://orcid.org/0000-0001-8084-1464
https://orcid.org/0000-0003-3791-3973
email:nromashchenko@lirmm.fr
email:rivals@lirmm.fr
https://github.com/phylo42/IPK
https://github.com/phylo42/EPIK

2 N. Romashchenko et al.

et al. (2011)) were based on maximum likelihood (ML) inference —

a successful approach that provides highly accurate placements.

However, those implementations suffered from two scalability

problems. First, they were limited by the size of the reference

tree, making it problematic to apply them to large phylogenies,

e.g., with dozens of thousands of taxa (Koning et al., 2021).

Second, those methods require to align each query to the reference

sequences, which is why such methods are called alignment-based.

Naturally, they also require a multiple alignment of the reference

sequences, which is nonetheless often is a prerequisite to estimate

the tree (or at least branch lengths and model parameters). The

limitation of alignment-based methods is that, even though queries

are typically short, their alignment to long reference sequences is

poorly scalable with the ever-increasing amounts of sequencing

data delivered by current technologies.

Further developments in phylogenetic placement methods

focused on overcoming those challenges. APPLES, followed by

APPLES-2 (Balaban et al., 2020, 2022), was the first method

enabling placement to ultra-large phylogenies. It is a distance-

based method, where the distances between the query and

the reference sequences can be computed on the basis of an

alignment, or in an alignment-free way. It allows placing queries

to trees of hundreds of thousands of taxa at the cost of lower

placement accuracy compared to competing methods. Similar

developments include pplacerDC (Koning et al., 2021) and

SCAMPP (Wedell et al., 2022), which implement heuristics

extending the applicability of ML-based placement to large

phylogenies.

EPA-ng — the successor of EPA — significantly improved the

ML-based placement speed with massive parallelization (Barbera

et al., 2019). However, the challenge of aligning query sequences

was only addressed by the recent emergence of alignment-free

methods. RAPPAS preprocesses the references by computing

phylo-k-mers independent of queries (Linard et al., 2019). Phylo-

k-mers are stored for later use during placement. This allows

RAPPAS to avoid aligning the queries, which explains the

“alignment-free” term (even though the input contains aligned

reference sequences), and makes it highly scalable in the number of

queries to place. Moreover, RAPPAS proved to be highly accurate,

especially for short queries (Blanke and Morgenstern, 2021).

Another recent alignment-free development is App-SpaM, a

distance-based method that utilizes the concept of spaced words

(Blanke and Morgenstern, 2021). App-SpaM has a number

of practical advantages: it is among the fastest phylogenetic

placement tools and requires the reference sequences to be neither

aligned nor assembled. When reference sequences are aligned and

assembled, however, App-SpaM is usually not the most accurate

tool available (Blanke and Morgenstern, 2021).

Here, we take further steps to overcome the challenges of

phylogenetic placement and introduce two tools that together form

the successor of RAPPAS. First, we present IPK (Inference of

Phylo-K-mers), a tool for efficient computation of phylo-k-mers.

IPK improves the running times of the phylo-k-mer construction

step by up to two orders of magnitude. We also introduce phylo-k-

mer filtering — a method to reduce large phylo-k-mer collections

with little or no loss in placement accuracy. These developments

improve the scalability of computing phylo-k-mers to larger

phylogenies. Second, we present EPIK (Evolutionary Placement

with Informative K-mers), an optimized parallel implementation

of placement with filtered phylo-k-mers. EPIK substantially

outperforms its predecessor. We provide experiments on placement

accuracy and speed, showing that EPIK can place millions of

short queries on a single thread in a matter of minutes or hours.

When placing large collections of queries, EPIK outperforms

the state-of-the-art in placement speed, while remaining highly

accurate.

2. Methods

Let A denote a reference sequence alignment, and T denote

a reference phylogenetic tree whose leaves are in one-to-one

correspondence with the sequences of A. Sequences can be either

composed of nucleotides or amino acids. Besides A and T , a

collection of query sequences is also given. Then, for any query

q, phylogenetic placement aims to identify the branch from which

q likely diverged from the rest of the tree. Some placement

methods also estimate the precise position of the divergence along

the identified branch, and the length of the pendant branch

terminating in q. Note that the reference tree remains fixed,

and the queries are not actually added to the tree; this leaves

the evolutionary relationships between queries unresolved. Also,

we assume that the query sequence is homologous to parts of

the reference sequences. This is an essential prerequisite to most

phylogenetic placement methods (Czech et al., 2022).

As in RAPPAS, our method splits phylogenetic placement into

two stages (see Fig. 1 for an illustration). First, IPK preprocesses

A and T to create a phylo-k-mer database. This stage does not

require any knowledge of query sequences. Second, EPIK uses

phylo-k-mers to place the query sequences in an alignment-free

way, based on the matches between the k-mers in the query and

the phylo-k-mers in the database. Note that once we have the

phylo-k-mer database computed for a given alignment and tree,

we can reuse it to place queries as many times as needed.

2.1. Phylo-k-mer inference

Phylo-k-mers can be thought of as k-mers equipped with

probabilistic information about their possible branches of origin

in the reference phylogeny. More precisely, we define a phylo-k-

mer for a given k-mer w and fixed A, T as a tuple
(
w, y, Sy(w)

)
,

where y is a branch of T , and Sy(w) is a phylo-k-mer score. This

score is an approximation of the probability of w being a substring

of an unobserved sequence homologous to those in A, that diverged

from the rest of T somewhere along y (Romashchenko, 2021).

We compute phylo-k-mers in a way that that resembles the

one of RAPPAS (see Fig. 1a for an illustration). We assume a

given stochastic model of sequence evolution, and that the branch

lengths of T were estimated by maximum likelihood under this

model. We also assume that T is rooted. First, we filter the

alignment by removing the columns that contain a certain user-

defined percentage of gaps. Second, we create an extended tree

by adding ghost nodes and ghost branches to T : for every branch

y, we add a node uy at the midpoint of y, a new leaf vy, and a

new branch (uy, vy). Ghost nodes aim to represent hypothetical

ancestral sequences, as well as related sequences that diverged

in the past but are not directly represented by the references.

(See Supplementary Sec. S6 for some additional arguments on the

design of ghost nodes.) We set the length of the new branch to

the mean length among all paths from uy to the leaves of T that

descend from uy. This value represents our expectation of how

evolutionary distant may be the queries that should be placed onto

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

EPIK 3

reference

sequences

reference

tree

database

file

ghost node

injection

alignment

filtering

IPK

complete

database

regular node
regular branch ghost branch

ghost node

v1

u1

u3

a b v3 v4 c v2

u2

u4 phylo-k-mer

computation

A

C

G

T

...

a
b
c

--------TTGGGTGT-TTGATG

AGT-AACTGACCTTTG-TTGACG

-GA-ATA-TATATGGA-ATGACG

(a)

CGACCTTTGTTG

TGGATGACG

...

...

GAATATAGGGTG

GTAACTG

TGGATTGATG

...

EPIK

filtered

database

query

sequences

placement

files

reference

tree

database

file

k-mers
...

placements

queries

placement

k-mer

filtering

(b)

Fig. 1: IPK and EPIK. (1a) IPK takes an alignment of reference sequences and a reference tree as input. The alignment and tree are

pre-processed, most notably the tree is extended by adding ghost nodes and ghost branches. Then state probabilities are computed at

every ghost node and alignment site. On the basis of this, a phylo-k-mer database is constructed. Finally, mutual information values are

computed and stored alongside the rest of the phylo-k-mer database for later use. (1b) EPIK takes the phylo-k-mer database (with the

corresponding reference tree and mutual information values) and query sequences as input. Depending on the way EPIK is called, the

whole or a part of the phylo-k-mer database is loaded in memory. The k-mers of every query are searched in the database to place it

onto the reference phylogeny. The result is a phylogenetic placement file (.jplace-formatted), one for each input query file.

y. Notice that since we average over all descending paths from uy,

it makes correct rooting an important prerequisite of our method.

Then we use standard techniques for ancestral sequence

reconstruction to compute the posterior probabilities of any state

(nucleotide for DNA and amino acid for proteins) at any site

(position) of the alignment for a given node of the phylogeny.

IPK can execute PhyML or RAxML-ng (Guindon et al., 2010;

Kozlov et al., 2019) to perform these computations. This step

results in a matrix with as many columns as in A, describing

posterior state probability distributions for every ghost node u.

Note that assuming statistical independence of states at different

sites of the alignment, this step also defines the probability of any

k-mer at u and any k consecutive sites of A.

The next step is to find, for any ghost node, all k-mers whose

probability is greater than a user-defined threshold ε for at least

one set of k consecutive sites in the alignment. For this step, we

apply a new divide-and-conquer algorithm instead of the branch-

and-bound algorithm used in RAPPAS, because the new algorithm

is shown to be faster in practice (see Romashchenko et al. (2023)

for detail and analysis).

For each k-mer w generated in the above step, we consider a

phylo-k-mer (w, y, Sy(w)), where y is the branch corresponding

to the ghost node where w was generated, and Sy(w) is set to

the maximum probability over all possible choices of k consecutive

columns in A, and over the two ghost nodes corresponding to y.

Such phylo-k-mers can later be retrieved from what we call a phylo-

k-mer database: a set of k-mers mapped to lists of tuples (y, Sy(w))

giving scores of k-mer w for branches y such that Sy(w) > ε.

Since such databases can reach huge sizes, and because k-mers

do not contribute equally to placement inference, we designed

phylo-k-mer filtering, an approach for selecting informative k-

mers. For every k-mer, we compute a filter value indicating

how informative for placement the k-mer is, and sort k-mers by

filter value. We propose two algorithms to form the phylo-k-mer

database: in memory for speed and on disk for low memory usage.

We describe both algorithms in Supplementary Sec. S2.

2.2. Phylo-k-mer filtering

One of the main novelties of IPK and EPIK is the possibility of

filtering phylo-k-mers. This means selecting the k-mers that are

the most informative for phylogenetic placement according to a

measure derived from information theory. We view phylo-k-mer-

based phylogenetic placement as a classification problem, where

(i) the observations to classify are the queries, (ii) the classes that

they must be assigned to are the branches of the reference tree,

and, finally, (iii) the features used for the classification of a query

are all the possible k-mers.

Similarly to feature selection in text classification (McCallum

et al., 1998), we wish to retain the features (k-mers) that maximize

the mutual information (MI) between the class (branch) variable

Y and the variable Xw indicating whether the k-mer w is present

in the query. (That is, Xw = 1 or 0, depending on whether w is

present or absent, respectively).

In information theory, the mutual information between these

random variables, denoted I(Y ;Xw), is defined as the expected

gain of information about Y (i.e., reduction in Y ’s entropy)

resulting from observing Xw (Cover and Thomas, 2006):

I(Y ;Xw) := H(Y)−H(Y | Xw)

= P(Xw = 1) ·
(
H(Y)−H(Y | Xw = 1)

)
+

P(Xw = 0) ·
(
H(Y)−H(Y | Xw = 0)

)
Since EPIK only uses the presence of k-mers (and not their

absence) to determine the placement of a query (see Sec. 2.3

below), the filtering is based on the following modification of the

above formula, which only keeps the term with Xw = 1:

MI(w) : = P(Xw = 1) ·
(
H(Y)−H(Y | Xw = 1)

)
(1)

= c · Sw

(
log |E(T)|+

∑
y

Sy(w)

Sw
log

Sy(w)

Sw

)
. (2)

Here, Sw is the total score of k-mer w (that is, Sw =
∑

y Sy(w)),

E(T) is the set of tree branches, and c is independent of w and thus

does not play any role in the filtering of k-mers. In Supplementary

Sec. S1, we provide more detail about this formula, including the

derivation of (2) from (1) and an alternative explanation of why

we only keep the term with Xw = 1 in I(Y ;Xw). Intuitively,

selecting k-mers maximizing MI(w) favors the ones that both

are probable and cause a greater gain of information about the

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

4 N. Romashchenko et al.

placement branch when observed in the query. A thorough analysis

leading to this formula is given by Romashchenko (2021).

We filter phylo-k-mers as follows. First, we compute MI(w)

for all computed k-mers. Second, we sort k-mers in descending

order of MI(w) and serialize them. We implement this procedure

differently for the in-memory and on-disk algorithms; see

Supplementary Sec. S2 for detail. As a result, the database on

disk is represented so that more informative k-mers are closer to

the beginning of the database file. For placement, we deserialize

k-mers in their order until we reach a certain proportion of the

entire database’s size or the memory limit set by the user.

2.3. Placement step

On the basis of a pre-computed phylo-k-mer database,

EPIK places query sequences in the following fashion (Fig. 1b):

First, it loads the entirety or part of the database into memory

by applying k-mer filtering. This consists in loading k-mers with

their scores until the given memory limit is reached or the complete

database is loaded. At the same time, EPIK populates a hashmap

from k-mers to lists of associated tuples of branches and phylo-

k-mer scores. Since k-mers are stored ordered by MI(w), loading

time is linear in the size of loaded information. Then each query

is placed independently by searching its constituent k-mers in the

database. For a given query q, a log-likelihood score of placing q

onto branch y is computed as follows:

`y(q) =
1

k

|q|−k+1∑
i=1

max{log ε, logSy(wi)}, (3)

where w1, w2, . . . , w|q|−k+1 are all the k-mers in q. This formula

assumes that the branches that do not appear in any tuple

associated to a k-mer have a phylo-k-mer score ε. Also, note that

we intend `y(q) to approximate the log-probability of sequence

q diverging from branch y. Therefore, the term 1/k corrects for

the fact that the sum above includes the log-probability of most

query characters k times. For each query, we report a number of

top-scored branches together with (approximate) likelihood weight

ratios, computed as follows (where b is the base of the logarithm):

LWR(q, y) =
b`y(q)∑

x∈E(T) b
`x(q)

.

2.4. Placement accuracy evaluation

To evaluate placement accuracy, we used PEWO (Placement

Evaluation WOrkflows), a framework recently developed by

Linard et al. (2021). We evaluated the accuracy of EPIK ’s

placement with and without filtering, as well as the accuracy

of the other state-of-the-art phylogenetic placement methods. We

used the pruning-based accuracy procedure (PAC) of PEWO that

computes the accuracy of phylogenetic placement as follows. First,

given a reference alignment and a reference tree, it randomly

selects a subtree to remove (“prune”) from the original tree.

Second, it extracts query reads from the sequences associated with

the leaves removed. Then, query reads are placed on the remaining

tree. Finally, for every placed query read, it computes the

node distance between the observed placement and the expected

placement. Node distance is defined as the number of tree nodes

on the path between the branch reported as the query’s top-

scoring placement (the observed placement) and the branch that

was created as a result of pruning the subtree (the expected

placement). We used node distance as it is the most commonly

used way of evaluating phylogenetic placement accuracy (Czech

et al., 2022). Also, APPLES2 and App-SpaM do not output

multiple placements along with relative confidence scores and thus

do not support evaluating expected node distance.

We compared the accuracy of IPK and EPIK against the

latest versions of state-of-the-art phylogenetic placement tools:

pplacer, EPA-ng, App-SpaM, APPLES2, and RAPPAS (see

Supplementary Sec. S5 for details). We used PhyML for ancestral

reconstruction required by RAPPAS and IPK. We did not include

EPA in the evaluation since it is the predecessor of EPA-ng and

because EPA-ng supports EPA’s placement algorithm as one of

the options. We ran these tools for 50 prunings (prunings and

queries are identical for all tools). For each pruning, we report the

mean node distance across several 150-bp-long queries generated

for that pruning. The number of generated queries per pruning is

variable, as it depends on the number of sequences in the pruned

subtree, and on the length of those sequences. We ran all tools with

their default parameters, except RAPPAS, for which we used the

defaults of EPIK : k = 10 for DNA and k = 6 for proteins instead

of the RAPPAS ’ default k = 8. Generally, using higher values of k,

we can expect increased placement accuracy; we used these values

to facilitate comparison with EPIK. We ran EPA-ng, pplacer,

and APPLES2 using query-reference alignments constructed with

HMMER in the way it is implemented by default in PEWO.

To test the placement accuracy of EPIK, we used seven real-

world datasets of amino acid and nucleotide sequences, where

the number of references sequences ranged from 140 to 3748. All

of these datasets have been previously used as benchmarks for

the accuracy of phylogenetic placement methods. Three datasets

consist of sequences for widely used metabarcoding markers: D218,

D500 (Berger et al., 2011), and D652 (Linard et al., 2019;

Srinivasan et al., 2012). Three others contain full-length viral

sequences: D140 (Berger et al., 2011), HCV (Linard et al., 2019),

and HIV (Schultz et al., 2009). Table 1 gives a short description

of these datasets (including two other datasets, neotrop and tara,

that were used to test efficiency).

2.5. Placement accuracy with filtering

When we remove phylo-k-mers from the database, we expect

placement accuracy to decrease. We aimed to answer two

questions: how quickly does the accuracy decay with increased

filtering, and how much can we filter out without hurting

placement accuracy significantly? To investigate this, we

performed filtering using a parameter µ ∈ (0, 1] indicating the

fraction of the original database to keep (if µ = 1, no filtering was

performed). That is, if |D| denotes the size of the entire database

D, we selected k-mers until it was impossible to add the next k-

mer and its associated tuples, without exceeding the database size

of µ · |D|.
We used pruning-based accuracy evaluation in the following

manner. First, for a given set of input data and a range of values

of µ ∈ (0, 1], we computed phylo-k-mer databases applying the

corresponding filtering ratios µ. Then, we evaluated the mean node

distance for 30 prunings for every produced filtered database. We

carried out this procedure for both the MI filter and a random

filter. The random filter selects k-mers in random order until a

fraction µ of the original database is kept. As input data, we

used the same datasets as in the placement accuracy experiments

described in Sec. 2.4.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

EPIK 5

Dataset Type Locus # of taxa Length (×103)

D218 DNA Bacterial 16S rRNA 218 1.5

D500 DNA Chloroplast rbcL gene 500 1.4

D652 DNA Bacterial 16S rRNA 652 1.3

neotrop DNA Eukaryote 18S rRNA 512 1.8

tara DNA Bacterial 16S rRNA 3748 1.4

HCV DNA Complete genome 155 9.4

HIV DNA Complete genome 881 9.0

D140 AA Genome-scale 140 1.0

Table 1. Datasets used to evaluate the accuracy or speed of phylogenetic placement. The “Length” column contains the average length of the sequences,

measured in units corresponding to the data type (nucleotides or amino acids).

2.6. Running time and memory consumption

We compare the running time and memory consumption of

IPK and EPIK against other tools using the RES workflow of

PEWO (Linard et al., 2021). We used datasets with different

tree sizes and alignment lengths: D652, neotrop (Mahé et al.,

2017), tara (Sunagawa et al., 2015), and HCV. For D652 and

tara, we used ten million of 100–150 bp real-world amplicon reads

of bacterial 16S rRNA gene retrieved from the Earth Microbiome

Project (Thompson et al., 2017; Linard et al., 2019). For HCV,

we used ten million queries of 150 bp simulated for the study of

Linard et al. (2019). For neotrop, we used ten million real-world

18S rRNA reads of various lengths (both the reference and the

queries were retrieved from the study of Mahé et al. (2017)).

We carried out experiments on a computer equipped with

Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz / 8.25 MB Cache / 62

GB RAM and an HDD with SATA 3.0 and 64 MB cache. We ran

all tools in a single-thread mode (not all of them support parallel

execution). For the running time, we consider the total wall clock

time; for the RAM consumption, we consider the peak maximum

resident set size (RSS). Measurements were averaged over three

repeats for every stage of computation of every program.

3. Implementation

3.1. IPK : a standalone tool for computing phylo-k-mers

We introduce IPK, a new tool for computing phylo-k-mers. A

few essential differences set it apart from RAPPAS ’s phylo-k-

mer computation stage. First, we made IPK a standalone tool

to ease the development of new applications of phylo-k-mers.

IPK computes a database of phylo-k-mers for any given reference

A and T and provides transparent access to this database to

query k-mers. Applications such as EPIK and SHERPAS (Scholz

et al., 2020) can use IPK as a black box through the provided

API. Second, it applies a new, faster algorithm for phylo-k-mer

computation (Romashchenko et al., 2023). When compared to

RAPPAS for the default value k = 10, IPK improves running

times by more than two orders of magnitude (see Sec. 4.4 for

experimental results). Third, IPK computes mutual information

values for phylo-k-mers that are later used by EPIK for phylo-

k-mer filtering. By default, IPK creates the database in memory

and then stores it on disk. Alternatively, it can create the database

directly on disk to reduce RAM consumption at the cost of longer

execution (see Sec. 4.4 and Supplementary Sec. S2). This allows

for creating databases of sizes that exceed the amount of RAM

available, which was not possible with RAPPAS.

3.2. EPIK : faster phylo-k-mer-based phylogenetic placement

We also developed EPIK, a new tool for phylogenetic placement

with phylo-k-mers. It implements phylo-k-mer filtering, i.e., can

place using only the most informative part of the phylo-k-mer

database (defined by a proportion of the database size or a

certain fixed size in bytes). This allows for placement even if

the database is larger than the amount of RAM available. Also,

EPIK can be run in parallel in shared memory for higher speed

(see Supplementary Sec. S4 for detail and results on parallel

performance).

Even when running in a single thread, EPIK achieves up to

one order of magnitude improvement in placement speed over

RAPPAS because of more efficient implementation (see Sec. 4.3

for experimental results). For an example of how to run IPK and

EPIK, see Supplementary Sec. S7.

4. Results

4.1. Experiments on placement accuracy

Here, we assess the placement accuracy of EPIK (with unfiltered

databases) compared to the state-of-the-art on real-world datasets.

Fig. 2 shows the distributions of the mean node distance of

placements per pruning (lower values are better). For two out of

four datasets based on short metabarcoding markers (D500, D652,

see Fig. 2a), EPIK shows better accuracy compared to other state-

of-the-art tools. These results are to some extent consistent with

the ones of Blanke and Morgenstern (2021), where RAPPAS using

k = 8 showed the best accuracy on four out of six 16S datasets.

For the viral datasets (Fig. 2b), EPIK was comparable to the

best performing methods (EPA-ng and pplacer) for HCV and

D140, yet was inferior to App-SpaM for HIV. App-SpaM can not

be run for D140 since it does not support protein sequences. Also,

RAPPAS could not build phylo-k-mer databases for HIV, since it

exceeded the 32GB RAM limit.

Fig. 2 also shows that, in general, the tools that are based

on the same methodology tend to have very similar performance.

For example, EPA-ng and pplacer tend to have very similar node

distance distributions; also, the distributions for RAPPAS and

EPIK are matching almost perfectly. However, there exist slight

differences between RAPPAS and EPIK (not visible on Fig. 2).

This is due to floating-point rounding that IPK +EPIK handle

better.

Overall, EPIK showed similar or better accuracy in six out of

seven experiments compared to the state-of-the-art software.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

6 N. Romashchenko et al.

APP
LES

App
-Spa

M
EPA

-ng
ppla

cer
RAP

PAS EPIK

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
No

de
 D
ist
an

ce

D218 16S

APP
LES

App
-Spa

M
EPA

-ng
ppla

cer
RAP

PAS EPIK
0

2

4

6

8

10

12

14

D500 rbcL

APP
LES

App
-Spa

M
EPA

-ng
ppla

cer
RAP

PAS EPIK
0

2

4

6

8

D652 16S

App
-Spa

M
EPA

-ng
ppla

cer EPIK

10

20

30

40

50

tara 16S

(a)

APP
LES

App
-Spa
M
EPA
-ng
ppla
cer
RAP
PAS EPIK

0

1

2

3

4

5

6

M
ea
n
No
de
 D
ist
an
ce

HCV

APP
LES

App
-Spa
M

EPA
-ng

ppla
cer EPIK

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

HIV

APP
LES EPA

-ng
ppla
cer

RAP
PAS EPIK

0

1

2

3

4

5
D140 Papillomav.

(b)

Fig. 2: Results on phylogenetic placement accuracy of different tools. One point of the distribution represents placements of multiple

queries placed to a particular pruned tree. The y-axis corresponds to the mean node distances for such groups of queries and their

placements. (a) Metabarcoding markers datasets. (b) Full-genome viral datasets consisting of nucleotide sequences (HCV, HIV) and

amino acid sequences (D140).

4.2. Experiments on filtering performance

Fig. 3 shows the placement accuracy results in the experiments

with filtered databases. We compare the mean node distance (y-

axis) obtained for different degrees of filtration (i.e., different

values of µ < 1, x-axis) against the mean node distance for µ = 1

(complete database) for the same dataset. We also compare the

accuracy obtained for two filters — the mutual information (MI)

filter and the random filter — obtained with the same value of µ.

First, note that for all datasets and all values of µ < 1, MI

filtering showed better results than the baseline (always lower node

distance than for random filtering). For D218 (see Fig. 3a), the

MI filter decreased the average placement accuracy by 4.4% while

keeping only 1/16 of the information compared to the complete

database (from 4.65 for µ = 1 to 4.85 for µ = 1/16). For random

filtering, the accuracy loss was 74.8% (from 4.65 to 8.12). For D500

and µ = 1/16, MI filtering reduced the accuracy by 5.7% versus

132% for random filtering. For D652 and the same filtration ratio,

the average accuracy worsened by 6.7% and 66.8% for MI filtering

and the baseline, respectively.

For viral datasets (Fig. 3b), k-mer filtering had a larger impact

on accuracy. For D140, keeping µ = 1/16 of the database

decreased the accuracy by 86% and 190% for MI and the baseline,

respectively. For HCV and the same µ, the accuracy change was

83% and 132%; still, the drop in accuracy was just 3.2% while

halving the database using the MI filter (9.6% for the baseline). For

HIV and µ = 1/16, MI filtering decreased the average accuracy

by 7.1% (37.2% for the baseline). Note that results for the D140

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

4

6

8

10

12

14

16

M
ea
n
N
o
de

D
is
ta
nc
e

D218

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

2.5

5.0

7.5

10.0

12.5

15.0

D500

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

2

4

6

8

10

D652

(a)

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

1

2

3

4

5

M
ea
n
N
o
de

D
is
ta
nc
e

D140

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

2

4

6

HCV

1/64 1/32 1/16 1/8 1/4 1/2 1

µ, filtration ratio

10

12

14

16

18

20

HIV

MI

Random

(b)

Fig. 3: Results on k-mer filtering for the mutual information

filter (green) and random selection of k-mers (red). The x-axis

corresponds to the ratio of filtered vs unfiltered database size.

The y-axis corresponds to the mean node distances of placements

(averaged over 30 prunings) obtained with filtered databases.

Vertical bars represent standard errors of the means. (a) Results

for metabarcoding markers. (b) Results for viral genomes.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

EPIK 7

104 105 106 107

Number of queries

1 min

10 min

1 hour

10 hours

To
ta

l r
un

ni
ng

 ti
m

e

(a) D652

104 105 106 107

Number of queries

1 min

10 min

1 hour

10 hours
1 day

(b) neotrop

104 105 106 107

Number of queries

1 min

10 min

1 hour

10 hours

To
ta

l r
un

ni
ng

 ti
m

e

(c) tara

104 105 106 107

Number of queries

1 min

10 min

1 hour

(d) HCV

Fig. 4: Running time of different phylogenetic placement tools on four reference datasets. Preprocessing time is not counted for alignment-

based methods (dotted lines) nor for alignment-free ones (solid lines). Measurements are averaged over three runs.

dataset are difficult to compare to those for other viral datasets,

because of the different sequence type and length of k-mers.

Note that Fig. 3 gives only means and standard errors for

every node distance distribution for fixed µ. Fig. S4 in the

Supplementary Materials gives a more detailed picture of the

distributions. Overall, the results suggest that k-mer filtering can

significantly reduce the phylo-k-mer database size with some (often

negligible) decrease in placement accuracy.

4.3. Running time: placement

Here, we evaluate the scalability of the state-of-the-art tools

and EPIK in the number of query sequences to place. Fig. 4

presents measurements of wall-clock time required for placement of

increasing numbers of queries. Importantly, the running times do

not include any preprocessing needed by these methods. For EPA-

ng and APPLES2 by “preprocessing” we mean the alignment

of queries to the reference alignment, while for RAPPAS and

EPIK we mean the construction of the phylo-k-mer database.

App-SpaM does not require any preprocessing. We present some

results on preprocessing times in the next section. We stopped any

jobs that required more than 32 GB of RAM.

EPIK showed better placement time than RAPPAS in all

experiments. The running time improvement over RAPPAS varied

among datasets and the number of queries placed. For example,

while placing ten million queries to D652, EPIK was around

14 times faster (29m vs. 6h49m); for neotrop and ten million

queries, it was 18 times faster (1h34m vs. 28h). The lower relative

performance of EPIK for fewer queries is due to the overhead

required by loading the phylo-k-mer database in memory that is

constant and does not depend on the number of queries placed.

We also note that the loaded database size greatly affects the

memory consumption of EPIK (see Supplementary Table S3 for

measurements); this, however, can be reduced with phylo-k-mer

filtering.

In conclusion, alignment-free approaches showed consistently

better running times than alignment-based ones, even if we exclude

the time to align query sequences. EPIK showed the best running

time against all tools on all datasets tested while placing a hundred

thousand or more queries.

4.4. Running time: phylo-k-mer computation

Table 2 gives the averaged measurements of total time spent by

RAPPAS and IPK to compute databases of phylo-k-mers for

Dataset HMMER(1M) RAPPAS IPK IPK (on disk)

D652 2h21m 11h26m 4m40s 6m46s

neotrop 10h00m 18h32m 8m59s 11m23s

tara 2h09m 62h59m 30m56s 46m10s

HCV 36h58m 15h22m 3m38s 4m45s

Table 2. Preprocessing times on four reference datasets. Preprocessing

consists in computing phylo-k-mer databases for RAPPAS and IPK, or

aligning query sequences within the reference alignment for alignment-

based tools (EPA-ng, APPLES2) using HMMER. For the latter, the

running time of aligning one million query reads is shown. Measurements

are averaged over three runs.

k = 10, both using the in-memory and on-disk algorithms. For

comparison, it also provides the time needed to align a million

queries used in the experiments described in Sec. 4.3. For all

datasets, IPK (with the default in-memory algorithm) was more

than one hundred times faster than RAPPAS : the speed-up was

147x, 124x, 239x and 120x for D652, neotrop, HCV, and tara,

respectively. Also, IPK clearly outperforms RAPPAS in phylo-

k-mer computation for other k-mer lengths (see Fig. S5 in the

Supplementary Materials). The speed-up of IPK over RAPPAS

increases with the value of k. Importantly, it was significantly

faster to preprocess the reference data with IPK than to align a

million query sequences for all datasets. This was not the case for

RAPPAS.

As for the on-disk algorithm, it showed longer running times

than the default in-memory algorithm. Importantly, on-disk

processing allowed for a significant reduction in RAM usage. For

instance, on-disk IPK processed tara using 1.6 GB of RAM instead

of 30 GB in the in-memory mode, resulting in a database of

size 21 GB on disk (see Supplementary Table S2 for additional

measurements).

5. Discussion

We propose a new two-step solution for alignment-free

phylogenetic placement implemented as two modular programs:

IPK and EPIK. First, IPK computes a phylo-k-mer database

from input alignment and phylogeny of reference sequences, then

EPIK reuses this database to place the query sequences on the

phylogeny. The combination IPK +EPIK follows the strategy used

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

8 N. Romashchenko et al.

in RAPPAS but outperforms it in running time, memory usage,

scalability, and introduces significant novelties.

The new algorithm implemented in IPK provides dramatic

speed improvements: for instance, the tara dataset with 3748

species and 1.4 Kbp alignment, is now preprocessed in minutes

instead of days (cf. Table 2). This allowed us to increase the

default value of k (from k = 8 for DNA in RAPPAS to k = 10),

which is a key parameter. Indeed, using longer k-mers results

in non-decreasing accuracy (Romashchenko, 2021). Second, the

gain in speed permits to process instances with larger number of

species, and hence larger reference trees, which were problematic

for RAPPAS. Last, IPK offers a second computation mode in

which the database is computed on disk, allowing users to adapt

memory usage to their own resources.

Even if computed on disk, a phylo-k-mer database can be

large, and thus lead EPIK to exhaust memory during placement.

However, our filtering experiments show that phylo-k-mers are not

equally informative for placement. We introduce a novel approach

to compute the informativeness of each k-mer, and IPK sorts

the database according to this value. Then EPIK can filter the

database and load only the most informative part that fits into

memory. Accuracy experiments with filtered databases showed

that, quite often, a great number of k-mers (and associated scores)

can be safely excluded. For example, we could reduce the database

sizes by a factor of 16 with a minor loss in placement accuracy for

datasets of metabarcoding markers, and at least by a factor of 4

for datasets of complete viral genomes.

Let us point out two limitations of IPK +EPIK. First, they are

currently not suited for metagenomic applications1 that require

large reference sequences, like large eukaryotic genomes. For these

data, our approach may require using larger values of k and limit

the possibility of filtering. Hence, extending the applicability of

phylo-k-mer-based methods to longer genomes seems challenging.

Second, the mutual information of a given k-mer can only be

computed once all its branch-specific scores are available. A

perspective for future work is to develop an algorithm to assess

k-mer informativeness directly during phylo-k-mer computation.

Using EPIK requires the precomputation of the database

with IPK, a step that is avoided by alignment-based methods.

So how large shall the set of input reads be to counterbalance

the precomputation time? In all our experiments (see Sec. 4.4),

aligning a million short reads within the reference sequences

was always significantly slower than computing phylo-k-mers for

the references with IPK. Thus, already with circa a million

short queries, it is faster to use alignment-free placement with

phylo-k-mers than alignment-based tools.

Implementing IPK as a standalone tool provides flexibility

and eases the application of phylo-k-mers to other bioinformatic

problems, thanks to a carefully designed API. For example,

SHERPAS, another software based on phylo-k-mers, can readily

use databases built by IPK to infer recombination patterns in

viral sequences (Scholz et al., 2020). Currently, a tool exploiting

phylo-k-mers for protein family homology detection is under

development. We hope that further phylo-k-mer based solutions

will be developed in the future.

1 In metagenomics, reads are sampled anywhere on the genome,

as opposed to metabarcoding, where reads come from amplicons
of a chosen marker gene.

The C++ implementation of EPIK already offers high

computational efficiency with a single thread, as well as multi-

threading. Currently, for millions of queries or more, EPIK is the

fastest phylogenetic placement software. Since the combination

IPK +EPIK achieves high accuracy — comparable to state-of-

the-art tools — when placing short metabarcoding reads, we hope

it will become the tool of choice for large-scale metabarcoding

applications.

Acknowledgements

We thank Frédéric Mahé for providing query sequences for

the neotrop dataset, Matthias Blanke and Pierre Barbera for

their useful comments on PEWO-based benchmarking, and the

reviewers. We thank the French Institute of Bioinformatics (IFB)

for the computational resources provided.

Funding

This work has been supported by the French Ministry of Research

(MNERT); by the European Union’s Horizon 2020 research and

innovation program under the Marie Sk lodowska-Curie grant

agreement (ALPACA, № 956229); by the project Fish-Predict;

by the IFB, and the ATGC bioinformatics platform.

References

Asnicar, F., Thomas, A. M., Beghini, F., Mengoni, C., Manara, S.,

Manghi, P., Zhu, Q., Bolzan, M., Cumbo, F., May, U., et al. (2020).

Precise phylogenetic analysis of microbial isolates and genomes from

metagenomes using PhyloPhlAn 3.0. Nature Communications,

11(1), 1–10.

Balaban, M., Sarmashghi, S., and Mirarab, S. (2020). APPLES:

scalable distance-based phylogenetic placement with or without

alignments. Systematic Biology, 69(3), 566–578.

Balaban, M., Jiang, Y., Roush, D., Zhu, Q., and Mirarab, S.

(2022). Fast and accurate distance-based phylogenetic placement

using divide and conquer. Molecular Ecology Resources, 22(3),

1213–1227.

Barbera, P., Kozlov, A. M., Czech, L., Morel, B., Darriba, D.,

Flouri, T., and Stamatakis, A. (2019). EPA-ng: massively parallel

evolutionary placement of genetic sequences. Systematic Biology,

68(2), 365–369.

Barbera, P., Czech, L., Lutteropp, S., and Stamatakis, A. (2021).

SCRAPP: A tool to assess the diversity of microbial samples from

phylogenetic placements. Molecular Ecology Resources, 21(1), 340–

349.

Bass, D., Czech, L., Williams, B. A., Berney, C., Dunthorn,

M., Mahé, F., Torruella, G., Stentiford, G. D., and Williams,

T. A. (2018). Clarifying the relationships between Microsporidia

and Cryptomycota. Journal of Eukaryotic Microbiology, 65(6),

773–782.

Berger, S. A., Krompass, D., and Stamatakis, A. (2011). Performance,

accuracy, and web server for evolutionary placement of short

sequence reads under maximum likelihood. Systematic Biology,

60(3), 291–302.

Blanke, M. and Morgenstern, B. (2021). App-SpaM: phylogenetic

placement of short reads without sequence alignment.

Bioinformatics Advances, 1(1), vbab027.

Bohmann, K., Mirarab, S., Bafna, V., and Gilbert, M. T. P. (2020).

Beyond DNA barcoding: The unrealized potential of genome skim

data in sample identification. Molecular Ecology, 29(14), 2521–

2534.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information

Theory. Wiley-Interscience, Hoboken, N.J, 2nd edition.

Czech, L. and Stamatakis, A. (2019). Scalable methods for analyzing

and visualizing phylogenetic placement of metagenomic samples.

PLoS One, 14(5), e0217050.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

EPIK 9

Czech, L., Barbera, P., and Stamatakis, A. (2020). Genesis and Gappa:

processing, analyzing and visualizing phylogenetic (placement) data.

Bioinformatics, 36(10), 3263–3265.

Czech, L., Stamatakis, A., Dunthorn, M., and Barbera, P. (2022).

Metagenomic analysis using phylogenetic placement—A review of

the first decade. Frontiers in Bioinformatics, 2, 141–165.

Dunthorn, M., Otto, J., Berger, S. A., Stamatakis, A., Mahé, F.,

Romac, S., de Vargas, C., Audic, S., Consortium, B., Stock, A.,

et al. (2014). Placing environmental next-generation sequencing

amplicons from microbial eukaryotes into a phylogenetic context.

Molecular Biology and Evolution, 31(4), 993–1009.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W.,

and Gascuel, O. (2010). New algorithms and methods to estimate

maximum-likelihood phylogenies: assessing the performance of

PhyML 3.0. Systematic Biology, 59(3), 307–321.

Janssen, S., McDonald, D., Gonzalez, A., Navas-Molina, J. A., Jiang,

L., Xu, Z. Z., Winker, K., Kado, D. M., Orwoll, E., Manary, M.,

et al. (2018). Phylogenetic placement of exact amplicon sequences

improves associations with clinical information. mSystems, 3(3),

e00021–18.

Koning, E., Phillips, M., and Warnow, T. (2021). pplacerDC: a new

scalable phylogenetic placement method. In Proceedings of the 12th

ACM Conference on Bioinformatics, Computational Biology, and

Health Informatics, pages 1–9.

Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., and Stamatakis,

A. (2019). RAxML-NG: a fast, scalable and user-friendly tool

for maximum likelihood phylogenetic inference. Bioinformatics,

35(21), 4453–4455.

Linard, B., Swenson, K., and Pardi, F. (2019). Rapid alignment-

free phylogenetic identification of metagenomic sequences.

Bioinformatics, 35(18), 3303–3312.

Linard, B., Romashchenko, N., Pardi, F., and Rivals, E. (2021).

PEWO: a collection of workflows to benchmark phylogenetic

placement. Bioinformatics, 36(21), 5264–5266.

Mahé, F., de Vargas, C., Bass, D., Czech, L., Stamatakis, A.,

Lara, E., Singer, D., Mayor, J., Bunge, J., Sernaker, S., et al.

(2017). Parasites dominate hyperdiverse soil protist communities in

neotropical rainforests. Nature Ecology & Evolution, 1(4), 1–8.

Matsen, F. A., Kodner, R. B., and Armbrust, E. (2010). pplacer: linear

time maximum-likelihood and Bayesian phylogenetic placement of

sequences onto a fixed reference tree. BMC Bioinformatics, 11(1),

1–16.

McCallum, A., Nigam, K., et al. (1998). A comparison of event

models for Naive Bayes text classification. In AAAI-98 Workshop

on learning for text categorization, volume 752, pages 41–48. AAAI.

Romashchenko, N. (2021). Computing informative k-mers for

phylogenetic placement. Ph.D. thesis, Université Montpellier.

Romashchenko, N., Linard, B., Rivals, E., and Pardi, F.

(2023). Computing phylo-k-mers. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 20(5), 2889–2897.

Scholz, G. E., Linard, B., Romashchenko, N., Rivals, E., and

Pardi, F. (2020). Rapid screening and detection of inter-type

viral recombinants using phylo-k-mers. Bioinformatics, 36(22-23),

5351–5360.

Schultz, A.-K., Zhang, M., Bulla, I., Leitner, T., Korber, B.,

Morgenstern, B., and Stanke, M. (2009). jpHMM: improving the

reliability of recombination prediction in HIV-1. Nucleic Acids

Research, 37(suppl 2), W647–W651.

Singer, J., Gifford, R., Cotten, M., and Robertson, D. (2020).

CoV-GLUE: A web application for tracking SARS-CoV-2 genomic

variation. Preprint preprints202006.0225.v1 .

Srinivasan, S., Hoffman, N. G., Morgan, M. T., Matsen, F. A., Fiedler,

T. L., Hall, R. W., Ross, F. J., McCoy, C. O., Bumgarner, R.,

Marrazzo, J. M., et al. (2012). Bacterial communities in women

with bacterial vaginosis: high resolution phylogenetic analyses reveal

relationships of microbiota to clinical criteria. PLoS One, 7(6),

e37818.

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K.,

Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A.,

et al. (2015). Structure and function of the global ocean microbiome.

Science, 348(6237), 1261359.

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J.,

Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann,

G., et al. (2017). A communal catalogue reveals Earth’s multiscale

microbial diversity. Nature, 551(7681), 457–463.

Turakhia, Y., Thornlow, B., Hinrichs, A. S., De Maio, N., Gozashti, L.,

Lanfear, R., Haussler, D., and Corbett-Detig, R. (2021). Ultrafast

sample placement on existing trees (UShER) enables real-time

phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics,

53(6), 809–816.

Wedell, E., Cai, Y., and Warnow, T. (2022). SCAMPP: Scaling

alignment-based phylogenetic placement to large trees. IEEE/ACM

Transactions on Computational Biology and Bioinformatics.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad692/7425449 by guest on 27 N

ovem
ber 2023

	Introduction
	Methods
	Phylo-k-mer inference
	Phylo-k-mer filtering
	Placement step
	Placement accuracy evaluation
	Placement accuracy with filtering
	Running time and memory consumption

	Implementation
	IPK: a standalone tool for computing phylo-k-mers
	EPIK: faster phylo-k-mer-based phylogenetic placement

	Results
	Experiments on placement accuracy
	Experiments on filtering performance
	Running time: placement
	Running time: phylo-k-mer computation

	Discussion

