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ABSTRACT
The core chase, a popular algorithm for answering conjunctive

queries (CQs) over existential rules, is guaranteed to terminate and

compute a finite universal model whenever one exists, leading to

the equivalence of the universal-model-based and the chase-based

definitions of finite expansion sets (fes) – a class of rulesets featuring

decidable CQ entailment. In case of non-termination, however, it is

non-trivial to define a “result” of the core chase, due to its non-mo-

notonicity. This causes complications when dealing with advanced

decidability criteria based on the existence of (universal) models of

finite treewidth. For these, sufficient chase-based conditions have

only been established for weaker, monotonic chase variants.

This paper investigates the – prima facie plausible – hypothesis

that the existence of a treewidth-bounded universal model and the

existence of a treewidth-bounded core-chase sequence coincide –

which would conveniently entail decidable CQ entailment when-

ever the latter holds. Perhaps surprisingly, carefully crafted exam-

ples show that both directions of this hypothesized correspondence

fail. On a positive note, we are still able to define an aggregation

scheme for the infinite core chase that preserves treewidth bounds

and produces a finitely universal model, i.e., one that satisfies ex-

actly the entailed CQs. This allows us to prove that the existence of

a treewidth-bounded core-chase sequence does warrant decidability
of CQ entailment (yet, on other grounds than expected). Hence, for

the first time, we are able to define a chase-based notion of bounded
treewidth sets of rules that subsumes fes.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Knowledge representation and reason-
ing.

KEYWORDS
existential rules, tuple-generating dependencies, chase, treewidth,
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1 INTRODUCTION
The chase is a fundamental tool for the popular formalism of exis-
tential rules, also known as tuple-generating dependencies. Given a

knowledge base (KB) composed of a finite set 𝐹 of facts (the data-
base) and a set Σ of (existential) rules, the chase repeatedly applies

rules, giving rise to a sequence 𝐹=𝐹0, 𝐹1, 𝐹2, . . . If, in the course of

this, a fixpoint is reached after a finite number of steps, one speaks

of chase termination. Then, the final fact set obtained, seen as a

structure, constitutes a finite model of the given KB, which is also

universal, meaning that it can be homomorphically mapped to any

model of the KB. This pleasant property allows one to consider this

single model (instead of all models) to answer all queries preserved

under homomorphisms, ranging from conjunctive queries (CQs) to

datalog and other second-order queries.

In fact, there are different chase variants with differing behavior

regarding redundancy treatment and termination. The simplest,

most lavish, known as the oblivious chase, performs all possible

rule applications, without checking for any redundancies [6]. The

most frugal, known as the core chase, prunes all redundancies at

each step, retaining a minimal set of atoms, which is called a core [9].
Between these two extremes, the semi-oblivious (aka skolem) and

restricted (aka standard) chase avoid the creation of some redundan-

cies, but not all [10, 17]. The core chase is the only chase variant

that terminates exactly when the KB has a finite universal model,

and produces the unique (up to isomorphism) smallest such model.

Thus, the core chase is the best choice for a decision procedure that

aims at chase termination. This motivates the definition of the fes
(finite expansion sets) class containing all rule sets Σ for which the

core chase for K = (𝐹, Σ) terminates for all 𝐹 [3]. For such Σ, the
entailment K |= 𝑄 for any CQ 𝑄 can be decided by computing the

core chase and evaluating 𝑄 against the resulting structure.

Yet, finite universal models may not exist. In such cases, no chase

reaches a fixpoint, and there is no last chase sequence element to

pick as a result. As a remedy, onemay define the “result” of the chase

as the infinite union over all the fact sets of the infinite sequence,

obtaining an infinite structure. This will still yield a universal model

for monotonic chase variants, where 𝐹𝑖 ⊆ 𝐹𝑖+1 holds for all 𝑖 , such
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Figure 1: Venn diagram displaying the (non-)inclusion of decidable classes of existential rule sets discussed in the paper. We
abbreviate treewidth by tw, and restricted and core chase by rc and cc, respectively. The rulesets entitled "steepening staircase"
and "inflating elevator" demonstrate that existence of treewidth-finite universal models and treewidth-bounded core-chase
sequences are independent properties. The tw-bounded cc class actually comes in two flavors, referred to as uniform and
recurring boundedness. The latter is more general, but the distinction is irrelevant for this overview.

as the oblivious, semi-oblivious and restricted chases. However, this

does not work well for non-monotonic chase variants such as the

core chase, where one cannot even be certain to obtain a model.

One could argue that these issues are of theoretical interest only,

given that the non-terminating chase cannot actually be computed

and cannot serve as a decision procedure. However, fortunately,

decidability of CQ entailment can be established by other means,

even when the chase does not terminate. In particular, it is ensured

whenever an infinite universal model exists that is still reasonably

“structurally well-behaved” by virtue of having a bounded treewidth
[1, 7]. This insight gave rise to many existential rule fragments of

high practical relevance, mostly based on varying notions of guard-
edness, which impose syntactic restrictions ensuring treewidth-

boundedness for all chase sequences [1, 2, 7, 16]. Yet, these classes

all have in common that the existence of a treewidth-bounded uni-

versal model can be established only via chase variants that are

necessarily monotonic: the union over all 𝐹𝑖 in a monotonic chase

sequence is known to inherit the treewidth bound. Regrettably, for

the core chase, which produces “smaller” intermediate structures

and hence ensures treewidth-boundedness of the produced facts

more often, no adequate model-producing “aggregation” strategy

is known, let alone a treewidth-preserving one.

To overcome this issue, we provide a decidability guarantee, but

also bring some unpleasant truths to light. We propose a treewidth-

preserving aggregation scheme for the core chase that produces

a model, but not a universal one. Luckily, we can still guarantee

that the resulting model is finitely universal (that is, any of its finite

substructures is universal) and thus sufficient for our purpose of

decidable CQ entailment. Also, we show that the failure to construct

a treewidth-bounded universal model out of a treewidth-bounded

chase sequence is not a flaw of our approach, but unavoidable, by

exhibiting the steepening staircase example: a uniformly treewidth-

bounded core-chase sequence for a KBwhose every universal model

has infinite treewidth. Conversely, the inflating elevator example
presents a KB with a universal model of finite treewidth, yet each

of its core-chase sequences consists of structures of ever-growing

treewidth, refuting the plausible hypothesis that any universal

model of bounded treewidth can be obtained from a treewidth-

bounded core-chase sequence. Figure 1 summarizes our findings.

2 PRELIMINARIES
We use countably infinite disjoint sets Δ𝑉 of variables (denoted by

uppercase letters) andΔ𝐶 of constants (denoted by lowercase letters).
A schema S is a finite set of relation symbols (or predicates); each

p ∈ S is given an arity ar (p) ≥ 0. The set of terms is Δ𝑇 = Δ𝐶 ∪Δ𝑉 .
A list 𝑡1, . . . , 𝑡𝑘 of terms is also denoted by ®𝑡 with |®𝑡 | = 𝑘 .

Atomsets and Homomorphisms. An atom over a schema S is an

expression of the form p(®𝑡), p ∈ S and ®𝑡 ∈ (Δ𝑇 )𝑘 with 𝑘 = ar (p).
An atomset over S is a countable set of atoms over S. For an atom

or atomset 𝐴, we let terms(𝐴) and vars(𝐴) denote the set of terms

and variables in 𝐴, respectively.

A substitution of a set of variables Y ⊆ Δ𝑉 is a mapping 𝜎

from Y to Δ𝑇 . For an atom at = p(𝑡1, . . . , 𝑡𝑘 ) and a substitution

𝜎 of Y, let 𝜎 (at) = p(𝜎+ (𝑡1), . . . , 𝜎+ (𝑡𝑘 )) where 𝜎+ (𝑡𝑖 ) = 𝜎 (𝑡𝑖 )
whenever 𝑡𝑖 ∈ Y and 𝜎+ (𝑡𝑖 ) = 𝑡𝑖 otherwise. If𝐴 is an atomset, then

𝜎 (𝐴) = {𝜎 (at) | at ∈ 𝐴}. For two substitutions 𝜎 and 𝜎′ of variable
sets Y and Y′

, respectively, we let 𝜎′ ◦ 𝜎 denote the substitution

of Y′ ∪ Y defined by 𝑌 ↦→ 𝜎′+ (𝜎+ (𝑌 )). Two substitutions are

compatible if they map the same variables to the same terms.

A homomorphism from an atomset 𝐴 to an atomset 𝐵 is a substi-

tution 𝜋 with 𝜋 (𝐴) ⊆ 𝐵. Given such a homomorphism 𝜋 , we also

say that 𝜋 maps 𝐴 to 𝐵, or that𝐴 maps to 𝐵 (via 𝜋 ). An isomorphism
from 𝐴 to 𝐵 is a bijective homomorphism 𝜋 such that 𝜋−1

is a

homomorphism from 𝐵 to 𝐴 (then 𝐴 and 𝐵 are called isomorphic).
An endomorphism (automorphism) of 𝐴 is a homomorphism (iso-

morphism) from 𝐴 to itself. A retraction of 𝐴 is an endomorphism

𝜋 where the restriction of 𝜋 to terms(𝜋 (𝐴)) (the retract) is the id-
entity. Note that the classes of homomorphisms, endomorphisms,

isomorphisms, and retractions are all closed under composition.

A finite atomset 𝐴 is called a core if every retraction of 𝐴 is the

identity. Any finite atomset 𝐴 admits a retract that is a core; this

retract is unique up to isomorphism and called the core of 𝐴.
We identify an atomset with the (possibly infinite) formula ob-

tained from the existential closure of the conjunction of its atoms.

Finite or infinite atomsets also naturally correspond to first-order

interpretations;
1
if we want to emphasize this aspect, we also re-

fer to them as instances. A (Boolean) conjunctive query (CQ) is a

1
Note that we operate under the unique name assumption.
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finite atomset. Note that we conflate labeled nulls usually used in

instances with variables usually used in queries, as they correspond

to the same logical notion. We rely on the standard notions of model

and semantic entailment, denoted by |=. An instance 𝐼 is a model

of a (possibly infinite) atomset 𝐴 iff 𝐴 maps to 𝐼 ; for 𝐴 and 𝐵 two

(possibly infinite) atomsets, 𝐴 |= 𝐵 iff 𝐵 maps to 𝐴.

Existential Rules. An (existential) rule 𝑅 is of the form 𝐵→𝐻 ,

where the body 𝐵 = body(𝑅) and the head 𝐻 = head (𝑅) are

nonempty finite atomsets. The variables in 𝐵 are called univer-
sal, those both in 𝐵 and 𝐻 are called frontier, and those only in 𝐻

are called existential. We identify a rule with the first-order sentence

∀ ®𝑋 ®𝑌.∧𝐵 [ ®𝑋, ®𝑌 ] →∃ ®𝑍.∧𝐻 [ ®𝑋, ®𝑍 ] where ®𝑋, ®𝑌, ®𝑍 are the frontier, non-

frontier universal, and existential variables of 𝑅, respectively. In

examples, we use the logical notation but omit universal quantifiers.

Given an instance 𝐼 and a rule 𝐵→𝐻 , a trigger for 𝐼 is a pair
tr = (𝐵→𝐻, 𝜋) such that 𝜋 maps 𝐵 to 𝐼 ; tr is satisfied in 𝐼 if 𝜋 can

be extended to a homomorphism from 𝐵 ∪ 𝐻 to 𝐼 . Note that an

instance 𝐼 is a model of a rule 𝑅 iff it satisfies every trigger for 𝐼 of

the form (𝑅, 𝜋). Given a rule 𝑅 = 𝐵→𝐻 , an instance 𝐼 and a trigger

tr = (𝑅, 𝜋) for 𝐼 , the application of tr on 𝐼 produces the instance

𝛼 (𝐼 , tr) = 𝐼 ∪ 𝜋safe (𝐻 ), where 𝜋safe
maps every frontier-variable

𝑋 of 𝑅 to 𝜋 (𝑋 ) and any existential variable in vars(𝐻 ) to a fresh

variable (usually called a labeled null).2

Universal Models. A knowledge base (KB) is a pair K = (𝐹, Σ),
where 𝐹 is a finite instance and Σ is a finite set of rules. An instance 𝐼

is amodel ofK if it is a model of 𝐹 and of each rule in Σ. An instance
𝐼 is universal for K if it (homomorphically) maps to every model

of K ; note that this does not necessarily mean that 𝐼 is a model

of K . An instance 𝐼 is a universal model of K if it is a model of K
and is universal for K . We consider the following CQ entailment
problem: given a KBK and a Boolean CQ𝑄 , doesK |= 𝑄 hold? For

any universal model 𝐼 of K , K |= 𝑄 holds iff 𝑄 (homomorphically)

maps to 𝐼 , hence, a universal model of K is sufficient to decide CQ

entailment.

3 DERIVATIONS AND THEIR RESULTS
In this paper, we focus on the restricted and the core chase variants.

We now introduce a convenient notion of derivation to define these

two variants. Actually, it would allow to define other variants that

fall between these two variants in terms of redundancy removal,

like e.g., the frugal chase [15]. Our type of derivation is not only

a sequence of rule applications, but also incorporates a retraction

that removes (some) redundancies after each rule application. In

the following, ℑ denotes either the set N of natural integers (for

infinite derivations) or the interval {0, . . . , 𝑘} ⊆ N (for finite ones).

Definition 1 (Derivation). A derivation from a KBK = (𝐹, Σ)
is a (possibly infinite) sequence D = ((tr𝑖 , 𝜎𝑖 , 𝐹𝑖 ))𝑖∈ℑ, where the tr𝑖
are triggers (except tr0 = ∅), the 𝜎𝑖 are retractions called simplifica-

tions, and the 𝐹𝑖 are finite instances such that: 𝐹0 = 𝜎0 (𝐹 ); and, for
all 𝑖 ∈ ℑ\{0}, 𝐹𝑖 = 𝜎𝑖 (𝛼 (𝐹𝑖−1, tr𝑖 )), where tr𝑖 = (𝑅𝑖 , 𝜋𝑖 ) with 𝑅𝑖 ∈ Σ
is a trigger for 𝐹𝑖−1 not satisfied in 𝐹𝑖−1.

2
The notion of fresh variable refers to the underlying assumption that the referred

variable is not already present in 𝐹 , but also, that it has not occurred at any potential

previous computation step (which is particularly relevant when rule applications are

iterated and/or intertwined with other operations).

For the sake of brevity, we often denote a derivation simply by

D = (𝐹𝑖 )𝑖∈ℑ , leaving the tr𝑖 and 𝜎𝑖 implicit. A derivation is called

monotonic if 𝐹𝑖−1 ⊆ 𝐹𝑖 holds for all 𝑖 ∈ ℑ\{0}. In a monotonic

derivation, the restriction of 𝜎𝑖 to the terms of 𝐹𝑖−1 is the identity.

When a derivation D = (𝐹𝑖 )0≤𝑖≤𝑘 is finite, its result can be

defined by just taking its last instance: D+ = 𝐹𝑘 . However, for

infinite derivations of the form D = (𝐹𝑖 )𝑖∈N, the “result” of D
is usually defined as the (infinite) union of all instances along D.

We denote this union by D∗ =
⋃

𝑖∈ℑ 𝐹𝑖 and call it the natural
aggregation of D (to distinguish it from the robust aggregation
defined in Section 8). Note that ifD is a finite monotonic derivation,

then D∗ = D+
.

As stated in the next proposition, D∗
is universal for K . Yet, to

ensure that a model of K is obtained, we need to require fairness,
which intuitively means that every trigger for some 𝐹𝑖 has to be

satisfied in some 𝐹 𝑗 with 𝑗 ≥ 𝑖 . To formalize this notion, a difficulty

with our derivation notion (which arises for any non-monotonic

type of chase) is that a trigger (𝑅, 𝜋) for some 𝐹𝑖 may not remain a

trigger for some 𝐹 𝑗 with 𝑗 > 𝑖: this is because 𝜋 (body(R)) may be

“transformed away” by successive simplifications. To address this

issue, we need to “trace” how a set of atoms is transformed along a

derivation.

Definition 2. Let D = (𝐹𝑖 )𝑖∈ℑ be a derivation, and 𝑋 be a
variable occurring in some 𝐹𝑖 . For any 𝑗 ∈ ℑ with 𝑗 ≥ 𝑖 , we define
𝜎̃𝑖
𝑖
(𝑋 ) = 𝑋 and 𝜎̃ 𝑗

𝑖
(𝑋 ) = 𝜎𝑗 ◦ · · · ◦ 𝜎𝑖+1 (𝑋 ) when 𝑗 > 𝑖 .

It is immediate that 𝜎̃
𝑗
𝑖
(which is either the identity when 𝑖 = 𝑗

or 𝜎𝑗 ◦ · · · ◦𝜎𝑖+1 otherwise) is a homomorphism from 𝐹𝑖 to 𝐹 𝑗 . Note

also that for a monotonic derivation, 𝜎̃
𝑗
𝑖
is the identity for any 𝑗 . In

the following, if tr = (𝑅, 𝜋) is a trigger for 𝐴 and 𝜎 is a substitution,

we note 𝜎 (tr) = (𝑅, 𝜎 ◦ 𝜋) the trigger for 𝜎 (𝐴).

Definition 3 (Fair derivation). A derivation D = (𝐹𝑖 )𝑖∈ℑ is
fair if, for any 𝑖 ∈ℑ and trigger tr for 𝐹𝑖 , there is some 𝑗 ∈ℑ with
𝑗 ≥ 𝑖 , such that 𝜎̃ 𝑗

𝑖
(tr) is a satisfied trigger for 𝐹 𝑗 .

In classical chase procedures, only active triggers (a notion spe-

cific to each chase variant) are applied. In the restricted chase, a

trigger for 𝐹𝑖 is active if it is not already satisfied in 𝐹𝑖 . The core

chase furthermore computes a retraction to a core after each (or

a finite number of) rule application. For both variants, the clas-

sical definition of a chase sequence coincides with our notion of

a fair derivation. A restricted chase sequence can be seen as a fair

derivation ((tr𝑖 , 𝜎𝑖 , 𝐹𝑖 ))𝑖∈ℑ in which 𝜎𝑖 is the identity. Since this

derivation is monotonic, it allows for a simpler expression of fair-

ness: any trigger for an 𝐹𝑖 has to be satisfied in some 𝐹 𝑗 , with

𝑖 ≤ 𝑗 . A core chase sequence can be seen as a (non-monotonic) fair

derivation in which each 𝜎𝑖 produces a core.

Finally, we adapt to our general framework some well-known

properties of these chase variants [9, 10, 14]. AlbeitD∗
is not always

a model, modelhood is guaranteed for monotonic derivations, as

already known for the restricted chase.

Proposition 1. Let D be a derivation from K . Then:
(1) D∗ is universal for K ;
(2) if D is monotonic and fair, D∗ is a model of K ;
(3) if D is fair, for all CQ 𝑄 , K |= 𝑄 iff D∗ |= 𝑄 .
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4 ADDING TREEWIDTH TO THE PICTURE
We now recall the popular notion of the treewidth of an atomset as

well as some well-known facts about it, which will be useful later.

Definition 4. Given an atomset 𝐴, a tree decomposition of 𝐴 is
a (possibly infinite) tree 𝑇 = (𝑉, 𝐸), with vertices 𝑉 ⊆ 2

terms (𝐴) and
edges 𝐸 ∈ 𝑉 ×𝑉 , where:
• for each at ∈ 𝐴 exists some 𝑣 ∈ 𝑉 with terms(at) ⊆ 𝑣 ;
• for each 𝑡 ∈ terms(𝐴), letting 𝑉𝑡 = {𝑣 ∈ 𝑉 | 𝑡 ∈ 𝑣}, the subgraph
of 𝑇 induced by 𝑉𝑡 is connected.

The width of 𝑇 = (𝑉 , 𝐸) is the size of its largest vertex, minus 1. The
treewidth of an atomset 𝐴, denoted by 𝑡𝑤 (𝐴), is the minimal width
among all its tree decompositions.

Fact 1. 𝐴 ⊆ 𝐵 implies tw(𝐴) ≤ tw(𝐵).

Definition 5. Given a natural number 𝑛, we say that an atomset
𝐴 contains an 𝑛 × 𝑛-grid, if terms(𝐴) contains 𝑛2 distinct terms,
denoted 𝑡𝑖

𝑗
for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, such that for all 𝑘 ∈ {1, . . . , 𝑛 − 1}

and ℓ ∈ {1, . . . , 𝑛}:
• there is some at ∈ 𝐴 with {𝑡𝑘

ℓ
, 𝑡𝑘+1

ℓ
} ⊆ terms(at), and

• there is some at′ ∈ 𝐴 with {𝑡 ℓ
𝑘
, 𝑡 ℓ𝑘+1

} ⊆ terms(at′).

Fact 2. If 𝐴 contains an 𝑛 × 𝑛-grid then tw(𝐴) ≥ 𝑛.

Treewidth is an important notion in the context of existential

rules, as the existence of universal models with finite treewidth im-

plies decidability of CQ entailment [3, 7]. In fact, many concrete and

practically relevant classes of existential rule sets enjoy this prop-

erty. One generic way to guarantee the existence of such models

is by imposing conditions on the corresponding derivations. This

approach underlies all definitions of so-called bounded treewidth
sets of rules from the literature, but there is a certain disagreement

and diversity as to certain details and the type of chase employed (cf.

Footnote 4). Here, we will provide the most general such definition

that is known to guarantee finite-treewidth universal models along

the lines of previously established proofs.

Definition 6. A ruleset Σ is called a bounded treewidth set (bts)
if for any finite instance 𝐹 , there exist some 𝑏 ∈ N and a restricted
chase sequence (𝐹𝑖 )𝑖∈ℑ such that tw(𝐹𝑖 ) ≤ 𝑏 for all 𝑖 ∈ ℑ.

Proposition 2. CQ entailment for bts is decidable.

5 CORE CHASE & STRUCTURAL MEASURES
In what follows, we will use the term structural measure to gener-

ically denote any function 𝜇 that maps instances to elements of

N∪ {∞}. An easy example would be the size of an instance defined

by size : 𝐼 ↦→ |𝐼 |. An instance 𝐼 is then called 𝜇-finite, if 𝜇 (𝐼 ) ≠ ∞.

Moreover, we say that a sequence (𝐹𝑖 )𝑖∈ℑ of atomsets is uniformly 𝜇-
bounded, if there exists some 𝑘 ∈ N such that 𝜇 (𝐹𝑖 ) ≤ 𝑘 for all 𝑖 ∈ ℑ.

(𝐹𝑖 )𝑖∈ℑ will be called recurringly 𝜇-bounded if there exists some

𝑘 ∈ N such that for any 𝑗 ∈ ℑ there exists some 𝑖 ≥ 𝑗 from ℑ for

which 𝜇 (𝐹𝑖 ) ≤ 𝑘 holds. It is easy to see that uniform 𝜇-boundedness

implies recurring 𝜇-boundedness, but not vice versa.

Since – on an intuitive level – universal models can be seen as

“limits” of appropriate chase sequences, it is a natural question to

ask to what extent this limit process preserves structural measures.

More specifically, one may ask oneself, given a particular type of

chase and structural measure 𝜇, if the existence of a (uniformly

or recurringly) 𝜇-bounded chase sequence for a KB is a necessary

and/or sufficient condition for the existence of a 𝜇-finite universal

model. As mentioned before, for the structural measure of size, this

question can be answered positively: A knowledge base K has a

(size-)finite universal model iff it has a size-bounded core chase

sequence [9].

Turning to the structural measure of treewidth, however, we

found that, surprisingly, both directions fail, witnessed by coun-

terexamples for either direction: The “steepening staircase” KB

(Section 6) allows for a (even uniformly) treewidth-bounded chase

sequence while lacking a treewidth-finite universal model, whereas

the “inflating elevator” KB (Section 7) has a universal model of finite

treewidth while not exhibiting a (even just recurringly) treewidth-

bounded core-chase sequence.

Irrespective of the fact that our presentation focuses on treewidth

as the arguably most prominent structural measure, it should be

noted that our counterexamples are based on grid structures and

therefore also immediately work for other measures, such as clique-

width [11] or (generalized) hypertreewidth [13].

6 THE STEEPENING STAIRCASE
For the KB below, the core chase sequence is uniformly treewidth-

bounded by 2, but none of its universal models has finite treewidth.

Definition 7 (The Steepening Staircase KB). We let Kh =

(𝐹h, Σh) where Σh = {𝑅h

1
, 𝑅h

2
, 𝑅h

3
, 𝑅h

4
}, as given in Figure 2.

We now describe the instance 𝐼h
, which is a universal model of

Kh
that we can obtain via both the restricted and the core chase.

Definition 8. We define 𝐼h as the infinite instance using the terms
terms(𝐼h) = {𝑋 𝑖

𝑗 | (𝑖, 𝑗) ∈ N2, 𝑖 + 1 ≥ 𝑗} and consisting of the atoms

f(𝑋 𝑖
0
)

c(𝑋 𝑖
𝑗 ) for 𝑖 ≥ 𝑗 ≥ 1

h(𝑋 𝑖
𝑗 , 𝑋

𝑖+1

𝑗 )
h(𝑋 𝑖

𝑗 , 𝑋
𝑖
𝑗 ) for 𝑖 ≤ 𝑗 .

v(𝑋 𝑖
𝑗 , 𝑋

𝑖
𝑗+1

)

The instance 𝐼h
is depicted in Figure 2; the names 𝑋 𝑖

𝑗 of the

variables of 𝐼h
are in correspondence to their cartesian coordi-

nates (𝑖, 𝑗) in the picture. We now consider some particular subsets

of terms(𝐼h). For any 𝑘 ∈N, let 𝑃𝑘 = {𝑋 𝑖
𝑗 }𝑖≤𝑘 , 𝐶𝑘 = {𝑋𝑘

𝑗 } 𝑗≤𝑘 , and
𝑆𝑘 =𝐶𝑘 ∪𝐶𝑘+1

∪ {𝑋𝑘
𝑘+1

}. Let 𝑃h

𝑘 (resp.𝐶h

𝑘 , 𝑆
h

𝑘 ) denote the subset of

𝐼h
induced by 𝑃𝑘 (resp.𝐶𝑘 , 𝑆𝑘 ). Intuitively, 𝑃

h

𝑘 is the finite part until
column 𝑘 , 𝐶h

𝑘 is the 𝑘th column of 𝐼h
(minus its top element) and

𝑆h

𝑘 is a step – a rectangle containing the two columns 𝐶h

𝑘 and 𝐶h

𝑘+1
.

We first point out that there is a sequence of rule applications

from any 𝐶h

𝑘 producing 𝑆h

𝑘 . Indeed, we can apply 𝑅h

1
on the top of

𝐶h

𝑘 to “complete” 𝐶h

𝑘 and obtain the two highest variables of 𝐶h

𝑘+1
.

Then we apply 𝑅h

2
𝑘 times (from top to bottom) to obtain the other

variables of 𝐶h

𝑘+1
. Once 𝑋𝑘+1

0
has been generated, we can apply 𝑅h

3

to generate the h-loop on 𝑋𝑘+1

0
, then 𝑘 successive applications of

𝑅h

4
propagate the loops on 𝐶h

𝑘+1
, from bottom to top. There is thus

a monotonic infinite derivation Dr = (𝐹𝑖 )𝑖∈N from Kh
, the natural

aggregation of which yields 𝐼h
. We successively apply 𝑅h

1
, 𝑅h

3
, and

𝑅h

4
on 𝐹h

to obtain 𝑆h

0
= 𝑃h

1
. Since 𝐶h

1
⊆ 𝑆h

0
, we apply the rules

on 𝐶h

1
as seen previously to obtain 𝑅h

1
and thus 𝑆h

2
, and so on. The

infinite union of all atomsets along this derivation is D∗
r
= 𝐼h

.

Proposition 3. 𝐼h is a result of the restricted chase on Kh.
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h(𝑋,𝑋 ) → ∃𝑋 ′𝑌𝑌 ′.h(𝑋,𝑌 ) ∧ v(𝑋,𝑋 ′ ) ∧ h(𝑋 ′, 𝑌 ′ ) ∧ v(𝑌,𝑌 ′ ) ∧ c(𝑌 ′ )(𝑅h

1
)

h(𝑋,𝑋 ) ∧ v(𝑋,𝑋 ′ ) ∧ h(𝑋 ′, 𝑋 ′ ) ∧ h(𝑋 ′, 𝑌 ′ ) → ∃𝑌 .c(𝑌 ′ ) ∧ h(𝑋,𝑌 ) ∧ v(𝑌,𝑌 ′ )(𝑅h

2
)

f(𝑋 ) ∧ h(𝑋,𝑋 ) ∧ h(𝑋,𝑌 ) → f(𝑌 ) ∧ h(𝑌,𝑌 )(𝑅h

3
)

h(𝑋,𝑋 ) ∧ v(𝑋,𝑋 ′ ) ∧ c(𝑋 ′ ) → h(𝑋 ′, 𝑋 ′ )(𝑅h

4
)

{f(𝑋 0

0
), h(𝑋 0

0
, 𝑋 0

0
) }(𝐹 h

)

𝐹h 𝑅h

1
𝑅h

2
𝑅h

3
𝑅h

4
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Figure 2: Left: rules of Σh, fact set 𝐹h, and a graphical representation thereof. Orange (grey) elements represent the rule body,
black elements the rule head. Visualization of atoms: denotes h (“horizontal”) and denotes v (“vertical”); we write [×

]

for c (“ceiling”) and [×
] for f (“floor”). Right: Atomset 𝐼h from Definition 8 – an infinite universal model of Kh. Atomset 𝐼h at

the very right is another infinite model of Kh, which is not universal but satisfies exactly the same CQs.

Sketch of proof. The derivation Dr given above is a restric-

ted chase sequence. Clearly, no 𝛼 (𝐹, 𝑅, 𝜋) in Dr retracts to 𝐹, so it

remains to check that Dr is fair. Indeed, if (𝑅, 𝜋) is a trigger for
some 𝐹𝑖 , then it is a trigger wrt some 𝑅h

𝑘 that is necessarily satisfied

(at most in 𝑃h

𝑘+2
). Thus (𝑅, 𝜋) is satisfied in some 𝐹 𝑗 ⊇ 𝑃h

𝑘+2
. □

As a result of the restricted chase, 𝐼h
is a universal model of Kh

.

Now, we point out that for any 𝑘 , 𝐶h

𝑘+1
is a retract of 𝑆h

𝑘 that is

a core. Then we can use Dr to build a derivation Dc that relies

upon those retractions. Dc starts out like Dr, but as soon as 𝑆h

0
is

obtained, we retract it to its core 𝐶h

1
. Then, following Dr’s course,

Dc proceeds to build 𝑆h

1
that retracts to its core 𝐶h

2
. . . As for Dr,

we note that Dc is fair. Moreover, each retraction to a core is done

a finite number of rule applications after the previous one: Dc is

thus a core chase sequence. Finally, we point out that every atomset

in Dc is a subset of some 𝑆h

𝑘 , and has thus treewidth at most 2.

Proposition 4. There is a core chase sequence for Kh that is
uniformly treewidth-bounded by 2.

However, all the core computations done in Dc with the goal of

producing a “leaner” result turn out to be futile when it comes to

the aggregation:D∗
c
= D∗

r
= 𝐼h

contains an 𝑛×𝑛 grid for any 𝑛, and

has thus unbounded treewidth. The next proposition even shows

thatKh
admits no universal model of finite treewidth. For instance,

the atomset 𝐼h
pictured in Figure 2 is a model of Kh

but it is not

universal: it does not map to 𝐼h
, since it features an infinite v-path,

while all v-paths contained in 𝐼h
are of finite length.

Proposition 5. No universal model of Kh has finite treewidth.

Sketch of proof. Any universal model 𝑈 of Kh
is homomor-

phically equivalent to 𝐼h
. This allows to show that, for any 𝑛 ≥ 1,

𝑈 contains an 𝑛 × 𝑛-grid, hence tw(𝑈 ) ≥ 𝑛. □

7 THE INFLATING ELEVATOR
We now present a knowledge baseKv

which does have a universal

model with a treewidth of 1, while any (fair) core chase sequence

for Kv
contains atomsets whose associated treewidths grow mono-

tonically beyond any given bound.

Definition 9 (The Inflating Elevator KB). We let Kv =

(𝐹v, Σv) where Σv = {𝑅v

1
, 𝑅v

2
, 𝑅v

3
, 𝑅v

4
, 𝑅v

5
, 𝑅v

6
, 𝑅v

7
} and 𝐹v are as given

in the upper part of Figure 3.

We describe an atomset (shown on the left in Figure 4) repre-

senting a universal model that can be obtained via the natural

aggregation over the restricted chase or a core chase. We use the

same naming convention for nulls as before.

Definition 10. Let terms(𝐼h) = {𝑋 𝑖
𝑗 | (𝑖, 𝑗) ∈ N, 𝑖 − 1 ≤ 𝑗 ≤ 2𝑖}.

Then 𝐼v consists of the following atoms for all 𝑖, 𝑗 where all mentioned
nulls are in terms(𝐼v):

d(𝑋 𝑖
𝑗 )

f(𝑋 𝑖
𝑗 )

c(𝑋 𝑖
2𝑖 )

h(𝑋 𝑖
𝑗 , 𝑋

𝑖+1

𝑗 )
h(𝑋 𝑖

2𝑖 , 𝑋
𝑖+1

2𝑖+1
)

h(𝑋 𝑖
2𝑖 , 𝑋

𝑖+1

2𝑖+2
)

v(𝑋 𝑖
𝑗 , 𝑋

𝑖
𝑗+1

)
v(𝑋 𝑖

𝑗 , 𝑋
𝑖
𝑗 ) for 𝑖 ≤ 𝑗

Proposition 6. 𝐼v is a result of the restricted chase on Kv.

Sketch of proof. The claim can be shown inductively by as-

suming that rules without existential variables are prioritized and

new nulls are created according to the following scheme:

• for every 𝑖 ≥ 1, 𝑋 𝑖
2𝑖−1

and 𝑋 𝑖
2𝑖 are introduced as instances of 𝑌 ′

and 𝑌 ′′
through an application of Rule 𝑅v

1
with 𝑋 ↦→ 𝑋 𝑖−1

2𝑖−2
and

𝑌 ↦→ 𝑋 𝑖
2𝑖−2

.

• for every 𝑖 ≥ 1, 𝑋 𝑖+1

𝑖 is introduced as instance of 𝑌 ′
through an

application of Rule 𝑅v

2
with 𝑋 ↦→ 𝑋 𝑖

𝑖−1
and 𝑋 ′ ↦→ 𝑋 𝑖

𝑖 .

• every remaining 𝑋 𝑖
𝑗 ∈ terms(𝐼v) with 𝑖 ≥ 1 is introduced as

instance of 𝑌 ′
through an application of Rule 𝑅v

3
with 𝑋 ↦→ 𝑋 𝑖−1

𝑗−1
,

𝑋 ′ ↦→ 𝑋 𝑖−1

𝑗 , and 𝑌 ↦→ 𝑋 𝑖
𝑗−1

.

Fairness follows from the fact that 𝐼v
satisfies all its triggers, as can

be checked easily. □

As a result of the restricted chase, 𝐼v
is a universal model of Kv

.

As it turns out, it even contains another universal model of finite
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{c(𝑋 0

0
), d(𝑋 0

0
), h(𝑋 0

0
, 𝑋 1

0
), f(𝑋 1

0
) }(𝐹 v

)

c(𝑋 ) ∧ h(𝑋,𝑌 ) → ∃𝑌 ′𝑌 ′′.v(𝑌,𝑌 ′ ) ∧ v(𝑌 ′, 𝑌 ′′ ) ∧ c(𝑌 ′′ )(𝑅v

1
)

v(𝑋,𝑋 ′ ) ∧ h(𝑋,𝑌 ) → ∃𝑌 ′.v(𝑌,𝑌 ′ ) ∧ h(𝑋 ′, 𝑌 ′ )(𝑅v

3
)

d(𝑋 ) ∧ f(𝑋 ) ∧ v(𝑋,𝑋 ′ ) → ∃𝑌 ′.h(𝑋 ′, 𝑌 ′ ) ∧ f(𝑌 ′ )(𝑅v

2
)

c(𝑋 ) → d(𝑋 )(𝑅v

4
)

v(𝑋,𝑋 ′ ) ∧ d(𝑋 ′ ) → d(𝑋 )(𝑅v

5
)

h(𝑋,𝑌 ) ∧ d(𝑌 ) ∧ f(𝑌 ) → f(𝑋 ) ∧ v(𝑋,𝑋 )(𝑅v

6
)

c(𝑋 ) ∧ h(𝑋,𝑌 ) ∧ v(𝑌,𝑌 ′ ) ∧ f(𝑌 ′ ) → h(𝑋,𝑌 ′ )(𝑅v

7
)

𝐹v 𝑅v

1
𝑅v

2
𝑅v

3
𝑅v

4
𝑅v

5
𝑅v

6
𝑅v

7
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Figure 3: 𝐹v and rules of Σv (top) and their graphical depictions (bottom). Orange (grey) elements represent the rule body and
black elements the rule head. Atoms are encoded as follows: denotes h (“horizontal”) and denotes v (“vertical”); we
write [×

] for c (“ceiling”), [×
] for f (“floor”), and [×
] for d (“done”).
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1
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𝐼 v
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𝐼 v

5

Figure 4: Two infinite universal models of Kv (𝐼v from Definition 10 and 𝐼v

∗ from Definition 11), and finite atomsets 𝐼v

1
– 𝐼v

5
of

the sequence (𝐼v

𝑛 )𝑛∈N from Definition 12 (recall that 𝐼v

0
= 𝐹v).

treewidth. This second universal model 𝐼v

∗ , also shown in Figure 4,

is given in the next definition.

Definition 11. We define the atomset 𝐼v

∗ as the set of those atoms
from 𝐼v only containing variables of the form 𝑋 𝑖

2𝑖 .

Proposition 7. 𝐼v

∗ is a universal model of Kv.

Proof. 𝐼v

∗ is a model ofKv
: it receives a homomorphism from 𝐹v

and satisfies all rules from Σv
. It is universal, since the identity is a

homomorphism from 𝐼v

∗ to 𝐼v
which is itself a universal model. □

This implies that no finite universal model of Kv
can exist (as

any such model would receive a homomorphism from 𝐼v

∗ and thus

contain a h-cycle, thus not be homomorphically equivalent to 𝐼v

∗ ).
We next describe a sequence 𝐼v

0
, 𝐼v

1
, . . . of subsets of 𝐼v

that ex-

hibit increasing treewidths and will later be shown to occur as

substructures in any core chase sequence of Kv
. Figure 4 depicts

the first elements of that sequence.

Definition 12. We define the sequence (𝐼v

𝑛 )𝑛∈N of atomsets by
letting 𝐼v

0
= 𝐹v and, for any 𝑛 > 0, obtaining 𝐼v

𝑛 as the substructure of
𝐼v induced by terms(𝐼v

𝑛 ) = {𝑋 𝑖
2𝑖 | 𝑖 ≤ 𝑛

2
} ∪ {𝑋 𝑖

𝑗 | 𝑖 ≤ 𝑛+1 and 𝑗 ≥ 𝑛}
removing all atoms v(𝑋 𝑖

𝑗 , 𝑋
𝑖
𝑗 ) and f(𝑋 𝑖

𝑗 ) with 𝑗 > 𝑛 as well as all
atoms h(𝑋 𝑖

𝑗 , 𝑋
𝑖+1

𝑘 ) with 𝑘 > 𝑗 and 𝑘 > 𝑛.

Proposition 8. The following hold:
(1) Every 𝐼v

𝑛 is a core.
(2) 𝐼v

𝑛 has a treewidth of at least ⌈𝑛/3⌉ + 1.
(3) For every core chase sequence (𝐹𝑖 )𝑖∈N for Kv, there is an un-

bounded monotonic function 𝑓 : N → N such that, for every
𝑛 ∈ N, 𝐼v

𝑓 (𝑛) is isomorphic to a subset of 𝐹𝑛 .

(4) For every core chase sequence (𝐹𝑖 )𝑖∈N for Kv and any 𝑚 ∈N
exists a 𝑘 ∈N such that tw(𝐹𝑖 ) ≥𝑚 for all 𝑖 ≥ 𝑘 .

From these technical insights, we obtain the strong guarantee

regarding the growth of the treewidth:

Corollary 1. No core chase sequence for Kv is recurringly or
uniformly treewidth-bounded.
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8 ROBUST AGGREGATIONS SAVE THE DAY
Recall that the steepening staircase example demonstrates that a

bounded-treewidth chase sequence does not warrant the existence

of a universal model of finite treewidth. This blocks the traditional

approach for showing decidability of CQ entailment. However, we

are still able to establish this desired result by other means, as

demonstrated in the course of the next two sections.

More specifically, we show that CQ entailment is decidable for
the class of KBs having a recurringly treewidth-bounded core chase
sequence (forthcoming Theorem 2). To do so, we go through the

following steps. Firstly, we resort to a weaker notion than universal-

ity, namely finite universality (Definition 13). We show that finitely

universal models can play the same role as universal models when it

comes to CQ entailment (Proposition 9). Secondly, we define a novel

way to compute the result of a derivation, namely the robust aggre-
gation of a derivation, and show that the robust aggregation of any

fair derivation is a finitely universal model (Proposition 11). Finally,

in Section 9, we show that the robust aggregation of a derivation

having recurringly bounded treewidth has finite treewidth (Propo-

sition 12), and conclude by adapting Courcelle’s theorem to show

that CQ entailment is decidable for KBs admitting a finitely uni-

versal model of finite treewidth (Theorem 1). In the following, we

detail the employed notions and arguments laid out above.

Definition 13 (Finite universality). An atomset 𝐼 is finitely
universal for K if each finite subset of 𝐼 is universal for K .

Proposition 9. Let 𝑀 be a finitely universal model of a KB K ,
and let 𝑄 be a CQ. Then K |= 𝑄 iff𝑀 |= 𝑄 .

Proof. (⇐) Let 𝜎 be a homomorphism from 𝑄 to 𝑀 . As 𝑀 is

finitely universal, the finite subset 𝜎 (𝑄) of𝑀 maps to any model 𝐼

of K by some 𝜎′, thus 𝜎′ ◦ 𝜎 maps 𝑄 to 𝐼 . (⇒) Since K |= 𝑄 and

𝑀 is a model of K ,𝑀 |= 𝑄 . □

Defining Robust Aggregations. For non-monotonic derivations

D = (𝐹𝑖 )𝑖∈ℑ, it may happen that an atom at is in some 𝐹𝑖 , but

“disappears” at some later step 𝑗 . Yet, at will still belong to the nat-

ural aggregation D∗
. Intuitively, the natural aggregation generates

atomsets that are “too big” (this is why they may not be models). We

thus introduce a new type of aggregation, called robust aggregation,
that, instead of merely combining all atomsets 𝐹𝑖 along the deriva-

tion, combines their collapsed versions obtained via preemptive

applications of future simplifications 𝜎 𝑗 along the derivation. Defin-

ing this result is not immediate, however, since a variable could be

indefinitely re-mapped through simplifications along a derivation.

Observe that, in the staircase example, the core chase maps 𝑋 0

0
to

𝑋 1

0
, then 𝑋 1

0
to 𝑋 2

0
, etc., and there is no way we can define the ulti-

mate image of 𝑋 0

0
unless we can force the simplification to stabilize

at some point. This is the goal of the robust renaming, for which we

assume a bijection rank of the variables X with N, and use the total
ordering <X on X defined by 𝑋 <X 𝑌 iff rank(𝑋 ) < rank(𝑌 ).

Definition 14 (Robust renaming). Let 𝐴 be an atomset and let
𝜎 be a retraction of 𝐴. The robust renaming associated with 𝜎 is the
substitution 𝜌𝜎 of vars(𝜎 (𝐴)) that maps any variable 𝑋 of 𝜎 (𝐴) to
the <X-smallest variable of 𝜎−1 (𝑋 ). We let 𝜏𝜎 = 𝜌𝜎 ◦ 𝜎 .

𝐴𝑖−1 𝐹𝑖−1 𝐴𝑖 𝐹𝑖

𝐺𝑖−1 𝐺𝑖

𝐴′
𝑖

𝐹 ′
𝑖

𝜌𝑖−1 𝜌𝑖

𝜎𝑖−1 𝜎𝑖

𝜌𝑖−1 𝜌𝑖−1

𝜎′
𝑖

𝜌𝜎 ′
𝑖𝜏𝑖𝜏𝑖

homomorphism

isomorphism

rule application

Figure 5: Building the robust sequence associated with D.

It is immediate that 𝜌𝜎 is an isomorphism from 𝜎 (𝐴) to 𝜏𝜎 (𝐴),
and, for any variable𝑋 in𝐴, 𝜏𝜎 (𝑋 ) is a constant or 𝜌𝜎 (𝑋 ) ≤X 𝑋 . Let

us now inductively apply those robust renamings along a derivation.

Definition 15 (Robust seqence). LetD = (𝐹𝑖 )𝑖∈ℑ be a deriva-
tion. The robust sequence associated withD is the sequence of atom-
sets (𝐺𝑖 )𝑖∈ℑ defined inductively by (see Figure 5 for induction step):
• With 𝐴0 = 𝐹 , 𝐹0 = 𝜎0 (𝐴0), and 𝜌0 = 𝜌𝜎0

, we define 𝐺0 = 𝜌0 (𝐹0);
• ∀𝑖 ∈ ℑ with 𝑖 > 0, if 𝐹𝑖−1 = 𝜎𝑖−1 (𝐴𝑖−1), 𝐴𝑖 = 𝛼 (𝐹𝑖−1, tr), 𝐹𝑖 =
𝜎𝑖 (𝐴𝑖 ) and 𝐺𝑖−1 = 𝜌𝑖−1 (𝐹𝑖−1) (𝐹𝑖−1 and 𝐺𝑖−1 being isomorphic),
we build 𝐺𝑖 and an isomorphism 𝜌𝑖 from 𝐹𝑖 to 𝐺𝑖 as follows:
– let 𝐴′

𝑖
= 𝜌𝑖−1 (𝐴𝑖 ) (see that 𝐴′

𝑖
= 𝛼 (𝐺𝑖−1, 𝜌𝑖−1 (tr))), with the

same fresh variables as in 𝛼 (𝐹𝑖−1, tr)) and 𝐹 ′𝑖 = 𝜌𝑖−1 (𝐹𝑖 );
– then 𝜎′

𝑖
= 𝜌𝑖−1 ◦ 𝜎𝑖 ◦ 𝜌−1

𝑖−1
is a retraction such that 𝜎′

𝑖
(𝐴′

𝑖
) = 𝐹 ′

𝑖
;

– we define𝐺𝑖 = 𝜌𝜎 ′
𝑖
(𝐹 ′

𝑖
), with 𝜌𝜎 ′

𝑖
the robust renaming associated

with 𝜎′
𝑖
and 𝜌𝑖 = 𝜌𝜎 ′

𝑖
◦ 𝜌𝑖−1 an isomorphism from 𝐹𝑖 to 𝐺𝑖 ;

– furthermore, we denote by 𝜏𝑖 = 𝜏𝜎 ′
𝑖
= 𝜌𝜎 ′

𝑖
◦𝜎′

𝑖
the homomorphism

from 𝐴′
𝑖
to 𝐺𝑖 . See that 𝜏𝑖 also maps 𝐺𝑖−1 ⊆ 𝐴′

𝑖
to 𝐺𝑖 .

Note that (𝐺𝑖 ) is not a derivation, since the 𝜏𝑖 from 𝐴′
𝑖
to 𝐺𝑖 are

not endomorphisms. However, every 𝐺𝑖 is isomorphic to 𝐹𝑖 , and

we show that variables are finitely renamed along this sequence.

Proposition 10. Let (𝐺𝑖 )𝑖∈ℑ be an associated robust sequence.
For 𝑖, 𝑗 ∈ ℑ with 𝑖 < 𝑗 , let 𝜏 𝑗

𝑖
= 𝜏 𝑗 ◦ · · · ◦ 𝜏𝑖+1 denote the composition

of all 𝜏ℓ between𝐺𝑖 and𝐺 𝑗 . Then, for any𝑋 ∈ vars(𝐺𝑖 ), there is 𝑗 ∈ℑ
with 𝑗 > 𝑖 such that 𝜏 𝑗

𝑖
(𝑋 ) =𝑌 ∈ terms(𝐺 𝑗 ) and for all 𝑘 ∈ℑ with

𝑘 > 𝑗 , 𝜏𝑘
𝑗
(𝑌 ) =𝑌 (i.e., 𝑌 is stable from 𝐺 𝑗 on). We let 𝜏 (𝑋 ) =𝑌 .

Proof. Let 𝑋 ∈ vars(𝐺𝑖 ), then 𝜏𝑖+1 (𝑋 ) =𝜏𝜎 ′
𝑖+1

(𝑋 ) ≤X 𝑋. Con-

sider some arbitrary 𝑗 ∈ℑwith 𝑗 > 𝑖 . Among the homomorphisms 𝜏ℓ
that 𝜏

𝑗
𝑖
is composed of, there can be at most rankX (𝑋 )many of them

that are effectively decreasing (causing 𝜏 ℓ−1

𝑖
(𝑋 ) <X 𝜏 ℓ

𝑖
(𝑋 )). □

We now use the 𝜏 (𝐺𝑖 ) to define the robust aggregation. Note that,
contrary to (𝐹𝑖 ) or (𝐺𝑖 ), the sequence (𝜏 (𝐺𝑖 )) is monotonic.

Definition 16 (Robust aggregation). Given a derivation D =

(𝐹𝑖 )𝑖∈ℑ and its associated robust sequence (𝐺𝑖 )𝑖∈ℑ , the robust aggre-
gation of D is the (possibly infinite) atomset D⊛ =

⋃
𝑖∈ℑ 𝜏 (𝐺𝑖 ).

Semantic Properties of Robust Aggregations. The steepening stair-
case shows that the robust aggregation of a derivation is not always

universal. Indeed, consider the KB Kh
(from Definition 7) and let

<X be an order on the variables with 𝑗 < 𝑘 ⇒ 𝑋 𝑖
𝑗 <X 𝑋 𝑖

𝑘 . The core

chase on Kh
begins building the first step 𝑆h

0
of 𝐼h

, and all simplifi-

cations are the identity until done. Now, the first proper retraction

maps 𝑋 0

0
to 𝑋 1

0
and 𝑋 0

1
to 𝑋 1

1
, so the robust renaming generates

𝐺𝑖1 , which is isomorphic to the column 𝐶h

1
, but its variables are
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named (from bottom to top) 𝑋 0

0
and 𝑋 0

1
. Likewise, from successive

proper retraction steps, we obtain 𝐺𝑖 𝑗 isomorphic to 𝐶h

𝑗
but with

variables named 𝑋 0

0
, 𝑋 0

1
, 𝑋 1

2
, . . . , 𝑋 𝑗

𝑗+1
. Note that 𝜏 (𝐺𝑖 𝑗 ) = 𝐺𝑖 𝑗 holds:

every variable is stable since subsequent re-mappings would have

to be within the same row, yet all variables therein are <X-greater.
Then, the robust aggregation D⊛ is isomorphic to the infinite col-

umn 𝐼h
, with variables named 𝑋 0

0
, 𝑋 0

1
, 𝑋 1

2
, . . . , 𝑋 𝑗

𝑗+1
, . . . , which is

not universal, but is a finitely universal model, as stated below.

Proposition 11. Let D be a derivation from K . Then (1) D⊛ is
finitely universal for K ; and (2) if D is fair, D⊛ is a model of K .

To prove this proposition, we rely on the next lemma, which

states that any finite part of D⊛ is “stably present” from a certain

element on in the robust sequence associated with D.

Lemma 1. Let D be a derivation and let (𝐺𝑖 )𝑖∈ℑ be the robust
sequence associated with D. For any finite subset 𝐴 of D⊛ , there is
some 𝑘 ∈ ℑ such that 𝐴 ⊆ 𝐺𝑟 for every 𝑟 ∈ ℑ with 𝑟 ≥ 𝑘 .

Sketch of proof. See that (i) the 𝜏 (𝐺𝑖 ) form a monotonic se-

quence and then, thanks to Proposition 10, that (ii) for every 𝜏 (𝐺𝑖 ),
there exists 𝑘 ∈ ℑ such that 𝜏 (𝐺𝑖 ) ⊆ 𝐺𝑟 for every 𝑟 ≥ 𝑘 . Thanks to

(i), there is some 𝑖 with 𝐴 ⊆ 𝜏 (𝐺𝑖 ) and we conclude with (ii). □

Proof of Proposition 11. (1) Let 𝑀 be an arbitrary model of

K , and let 𝐼 be be any finite subset of D⊛ . By Lemma 1, there is

some 𝑘 such that 𝐼 ⊆ 𝐺𝑘 . Now 𝐺𝑘 is isomorphic to 𝐹𝑘 , which is

universal (from Proposition 1), so 𝐺𝑘 (hence also 𝐼 ) maps to𝑀 .

(2) Let D = (𝐹𝑖 )𝑖∈ℑ be a fair derivation from (𝐹, Σ) and (𝐺𝑖 )𝑖∈ℑ
be its associated robust sequence. Since 𝜏0 maps 𝐹 to𝐺0, 𝜏 ◦𝜏0 maps

𝐹 to D⊛ , thus D⊛ is a model of 𝐹 . Consider now any trigger tr for
D⊛ . By Lemma 1, there exists some 𝑗 ∈ℑ such that tr is a trigger for
𝐺𝑟 for any 𝑟 ∈ℑ with 𝑟 ≥ 𝑗 . Since 𝜌𝑟 is an isomorphism from 𝐹𝑟 to

𝐺𝑟 , we obtain that 𝜌−1

𝑟 (tr) is a trigger for 𝐹𝑟 . Since D is fair, there

exists some 𝑠 ∈ℑ with 𝑠 ≥ 𝑟 such that the trigger 𝜎̃𝑠𝑟 ◦ 𝜌−1

𝑟 (tr) for 𝐹𝑠
is satisfied in 𝐹𝑠 . Now since 𝜌𝑠 is an isomorphism from 𝐹𝑠 to 𝐺𝑠 , it

follows that 𝜌𝑠 ◦𝜎̃𝑠𝑟 ◦𝜌−1

𝑟 (tr) is a satisfied trigger for𝐺𝑠 . We first see

that 𝜎𝑟+1 ◦ 𝜌−1

𝑟 = 𝜌−1

𝑟+1
◦ 𝜏𝑟+1. By applying this property iteratively,

we show that 𝜌𝑠 ◦𝜎̃𝑠𝑟 ◦𝜌−1

𝑟 = 𝜏𝑠𝑟 . Then 𝜌𝑠 ◦𝜎̃𝑠𝑟 ◦𝜌−1

𝑟 (tr) = 𝜏𝑠𝑟 (tr) = tr
is a trigger for 𝐺𝑠 satisfied in 𝐺𝑠 , and thus satisfied in D⊛ . □

Hence, both natural and robust aggregations indicate whether a

CQ is entailed by a KB. Yet, natural aggregation provides an instance

that is universal but not always a model, while the more complex

robust aggregation provides a model which might be only finitely

universal. We show next how the latter case can still be utilized

towards proving Theorem 2.

9 DECIDABILITY THROUGH TREEWIDTH
The steepening staircase example shows that the natural aggre-

gation of the core chase may have infinite treewidth even if the

chase sequence is uniformly treewidth-bounded. The next proposi-

tion provides two results: Firstly, the natural aggregation is indeed

treewidth-preserving for monotonic derivations, generalizing a re-
sult by Baget et al. [3] for the restricted chase. Secondly (and more

importantly), robust aggregation is superior to natural aggrega-

tion in that treewidth preservation can be shown to hold even for

non-monotonic chases. Both results rely upon the compactness of

treewidth [18]: if 𝐹 is an atomset where tw(𝐹 ′) ≤ 𝑘 holds for every

finite subset 𝐹 ′ ⊆ 𝐹 , then tw(𝐹 ) ≤ 𝑘 .

Proposition 12. For any derivation D that is recurringly tree-
width-bounded by some integer 𝑘 , the following hold:
(1) D’s natural aggregationD∗ has treewidth ≤𝑘 , ifD is monotonic.
(2) D’s robust aggregation D⊛ has treewidth ≤𝑘 .

Proof. Let 𝐼 be a finite subset of D∗
(for proof of (1)) or D⊛

(for proof of (2)). There is some 𝑝 ∈ ℑ such that, ∀𝑟 ≥ 𝑝 ∈ ℑ,

we can exhibit some 𝐼𝑟 isomorphic to 𝐹𝑟 with 𝐼 ⊆ 𝐼𝑟 . To prove

(1), D being monotonic, we can define 𝐼𝑟 = 𝐹𝑟 . To prove (2), we
rely upon Lemma 1 and define 𝐼𝑟 = 𝐺𝑟 . Since D is recurrently

treewidth-bounded, there is some 𝑠 ≥ 𝑝 ∈ ℑ such that tw(𝐹𝑠 ) ≤ 𝑘 .

Thus tw(𝐼 ) ≤ tw(𝐼𝑠 ) = tw(𝐹𝑠 ) ≤ 𝑘 , and we conclude, thanks to

compactness of treewidth, that D∗
or D⊛ has treewidth ≤ 𝑘 . □

The lastmissing insight is that the existence of treewidth-bounded

finitely universal models suffices to establish decidability of CQ

entailment.
3
We obtain this result via a mild generalization of re-

spective statements for universal models [3, 7, 11].

Theorem 1. Let ℭ be a class of knowledge bases for which every
K = (𝐹, Σ) ∈ ℭ has a model 𝐼 that is finitely universal for K and
that satisfies 𝑡𝑤 (𝐼 ) ∈ N. Then CQ entailment for ℭ is decidable.

Sketch of proof. K |= 𝑄 can be detected in finite time due to

the completeness of first-order logic. K ̸|= 𝑄 can be detected by

incrementing 𝑘 stepwise and checking if K ∧ (¬𝑄) has a model of

treewidth 𝑘 , which is decidable. □

We finally obtain our main result, which follows from Proposi-

tions 11 and 12, and Theorem 1:

Theorem 2. CQ entailment is decidable for the class of KBs having
a recurringly treewidth-bounded core chase sequence.

We end this section by using this decidability result to define a

new class of rulesets and discussing its relationship with existing

abstract decidable classes. As usual in the existential rule setting,

the considered property can be abstracted from the underlying

database, obtaining a new fragment of existential rules that – thanks

to Theorem 2 – warrants decidable CQ entailment and properly

subsumes and reconciles other classes with that property.
4

Definition 17. A ruleset Σ is called core-bts, if for every finite
atomset 𝐹 , there exists a core chase sequence for the KB (𝐹, Σ), whose
treewidth is recurringly bounded by some 𝑘 ∈ N.

Proposition 13. CQ entailment is decidable for any ruleset that
is core-bts. Moreover, core-bts subsumes both finite expansion sets (fes)
and bounded treewidth sets (bts), which are mutually incomparable.

3
However, no upper complexity bounds are entailed. This holds even for the more

restricted class of KBs with finite, “properly” universal models [5].

4
Notably, this corrects inaccurate statements in prior work by Baget et al. [3], where

bts was claimed to subsume fes. The reason for this misconception was a definition

of bts using cores, whereas the proof of decidability of CQ entailment for this class

was flawed, as it erroneously assumed that the natural aggregation over a (treewidth-

bounded) core chase sequence produces a (treewidth-bounded) universal model. The

current paper also corrects this earlier work, showing that the decidability claim made

therein can be salvaged by other means.
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10 CONCLUSION AND FUTUREWORK
In this paper, we have investigated ways of exploiting properties of

the core chase in non-terminating settings, with the main goal of en-

suring decidability of CQ entailment based on treewidth guarantees

for the atomsets occurring in chase sequence.

On the negative side, we found that, contrary to plausible expec-

tations, the existence of a treewidth-bounded core-chase sequence

does not coincide with the existence of a treewidth-bounded univer-

sal model, nor is there a subsumption in one of the two directions:

On one hand, we exhibited a KB Kh
admitting a core-chase se-

quence the treewidth of which is uniformly bounded by 2, while

all its universal models are of unbounded treewidth. On the other

hand, we described a KB Kv
admitting an infinite universal model

of treewidth 1, while all corresponding core chase sequences consist

of structures of ever increasing treewidth.

On the positive side, we showed how a given core chase sequence

can be robustly aggregated into a (potentially infinite) atomset that

is a model of the underlying knowledge base, while satisfying ex-

actly those CQs entailed by it. We also showed that for any such

core chase sequence that is recurringly treewidth-bounded, the

aggregated atomset will be of finite treewidth. Together, these find-

ings establish decidability of CQ entailment for all knowledge bases

with a recurringly treewidth-bounded core chase. Abstracting from

concrete databases, this yields a novel, very general abstract class

of recurringly treewidth-bounded rulesets, ensuring decidability of

CQ entailment and subsuming the two previously known incompa-

rable classes fes and bts.

Future work on the topic will clarify under what circumstances

the robust aggregation produces cores (according to some of the

many existing non-equivalent definitions of cores in the infinite [4]).

Also, we will investigate the relationship of our approach to the

stable chase introduced by Carral et al. [8], which also produces

(not necessarily universal) models satisfying exactly the entailed

CQs. Note that the stable chase is quite elaborate and not subsumed

by our current generic definition of derivation: the computation

occasionally “jumps back” to earlier sequence elements and starts

rebuilding the sequence from there.
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A PROOFS OF SECTION 3
The following appendices are devoted to the complete proofs that

are missing or only sketched in the paper.

Fact 3. If tr is a trigger for 𝐹 , 𝜇 maps 𝐹 to 𝐼 and 𝐼 satisfies 𝜇 (tr),
then there is 𝜇′ (compatible with 𝜇) that maps 𝛼 (𝐹, tr) to 𝐼 .

Lemma 2. For every fair derivation D = (𝐹𝑖 )𝑖∈ℑ, there exists a
fair monotonic derivation D𝑚𝑜𝑛 = (𝐺𝑖 )𝑖∈ℑ such that for every 𝑖 ∈ ℑ,
there is a retraction from 𝐺𝑖 to 𝐹𝑖 .

Proof. From D = (𝐹𝑖 )𝑖∈ℑ , let us first build inductively a deriva-
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the trigger tr1 is also a trigger in 𝐺0, allowing us to build 𝐺1. Now
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retraction from 𝐺1 to 𝐹1. An induction based upon these remarks

shows that for 𝑖 ∈ ℑ, 𝜎̃𝑖 = 𝜎𝑖 ◦ · · · ◦ 𝜎0 is a retraction from 𝐺𝑖 to
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Rule Homomorphism Atoms produced

𝑅ℎ
1

𝑋 ↦→ 𝑋𝑘
𝑘 v(𝑋𝑘

𝑘 , 𝑋
𝑘
𝑘+1

), h(𝑋𝑘
𝑘+1

, 𝑋𝑘+1

𝑘+1
), c(𝑋𝑘+1

𝑘+1
), h(𝑋𝑘

𝑘 , 𝑋
𝑘+1

, 𝑘), v(𝑋𝑘+1

𝑘 , 𝑋𝑘+1

𝑘+1
)

𝑅ℎ
2

𝑋 ↦→ 𝑋𝑘
𝑘−1

, 𝑋 ′ ↦→ 𝑋𝑘
𝑘 , 𝑌

′ ↦→ 𝑋𝑘+1

𝑘 h(𝑋𝑘
𝑘−1

, 𝑋𝑘+1

𝑘−1
), v(𝑋𝑘+1

𝑘−1
, 𝑋𝑘+1

𝑘 ), c(𝑋𝑘+1

𝑘 )
.
.
.

.

.

.
.
.
.

𝑅ℎ
2

𝑋 ↦→ 𝑋𝑘
0
, 𝑋 ′ ↦→ 𝑋𝑘

1
, 𝑌 ′ ↦→ 𝑋𝑘+1

1
h(𝑋𝑘

0
, 𝑋𝑘+1

0
), v(𝑋𝑘+1

0
, 𝑋𝑘+1

1
), c(𝑋𝑘+1

1
)

𝑅ℎ
3

𝑋 ↦→ 𝑋𝑘
0
𝑌 ↦→ 𝑋𝑘+1

0
c(𝑋𝑘+1

0
), h(𝑋𝑘+1

0
, 𝑋𝑘+1

0
)

𝑅ℎ
4

𝑋 ↦→ 𝑋𝑘+1

0
, 𝑋 ′ ↦→ 𝑋𝑘+1

1
h(𝑋𝑘+1

1
, 𝑋𝑘+1

1
)

.

.

.
.
.
.

.

.

.

𝑅ℎ
4

𝑋 ↦→ 𝑋𝑘+1

𝑘 , 𝑋 ′ ↦→ 𝑋𝑘+1

𝑘+1
h(𝑋𝑘+1

𝑘+1
, 𝑋𝑘+1

𝑘+1
)

Table 1: Steepening staircase: from column to step.

monotonic, but it remains to check that it is fair. Given any trigger

tr for some 𝐺𝑖 , 𝜎̃
𝑖 (tr) is a trigger for 𝐹𝑖 and thus (fairness of D)

there exists 𝑗 ∈ ℑ such that 𝜎̃ 𝑗 (tr) is a trigger for 𝐹 𝑗 satisfied in

𝐹 𝑗 , and the trigger tr for 𝐺 𝑗 for which 𝜎̃ 𝑗
is a retraction into 𝐹 𝑗 is

satisfied in 𝐺 𝑗 . □

Proposition 1 (Extended version) Let D be a derivation from K .

Then:

(1) D∗
is universal for K ;

(2) if D is finite, D+
is universal for K ;

(3) if D is monotonic and fair, D∗
is a model of K ;

(4) if D is finite and fair, D+
is a model of K ;

(5) if D is fair and 𝑄 is a CQ, K |= 𝑄 iff D∗ |= 𝑄 .

Proof. Let 𝑀 be an arbitrary model of K . We first prove the

existence of homomorphisms 𝐹𝑖 → 𝑀 by induction over 𝑖 . The

existence of some homomorphism 𝐹0 → 𝑀 is immediate by as-

sumption. Then, if there is a homomorphism 𝜇 𝑗 from some 𝐹 𝑗 of D
to 𝑀 , then there is a homomorphism 𝜇 𝑗+1 of 𝐹 𝑗+1 to 𝑀 such that

𝜇 𝑗+1 is compatible with 𝜇 𝑗 . We have 𝐹 𝑗+1 = 𝜎 𝑗+1 (𝛼 (𝐹 𝑗 , tr𝑖+1)). See
that 𝜇 𝑗 (tr𝑖+1) is a trigger for 𝑀 , satisfied in 𝑀 since it is a model

of K . Then (Fact 3) there is a homomorphism 𝜇 from 𝛼 (𝐹 𝑗 , tr 𝑗+1)
to𝑀 compatible with 𝜇 𝑗 and its restriction 𝜇 𝑗+1 to the variables of

𝜎 𝑗+1 (𝛼 (𝐹 𝑗 , tr 𝑗+1)) is a homomorphism from 𝐹 𝑗+1 to𝑀 compatible

with 𝜇 𝑗 .

(2) Hence,𝑀 is a model of every 𝐹𝑖 in D: each instance 𝐹𝑖 is univer-

sal and, ifD is finite, then the final resultD+ = 𝐹𝑘 is universal. □

(1) Now we claim that since a variable present both in 𝐹𝑖 and 𝐹 𝑗
must appear in all atomsets between 𝐹𝑖 and 𝐹 𝑗 (a consequence of

the usage of fresh variables), the pairwise compatibility of the 𝜇𝑖
between succsessive atomsets implies global compatibility of all

𝜇𝑖 . We conclude by pointing out that

⋃
𝑖∈ℑ 𝜇𝑖 is a homomorphism

from D∗
to𝑀 , and thus that D∗

is universal. □

(4) The final result D+ = 𝐹𝑘 of a finite derivation is a model of 𝐹

(𝜎̃
𝑗

0
◦ 𝜎0 is a homomorphism from 𝐹 to any 𝐹 𝑗 in the derivation)

and, by Definition 3, for any trigger tr for 𝐹𝑘 , there is some 𝑗 ≥ 𝑘

(thus 𝑗 = 𝑘) such that 𝜎̃𝑘
𝑘
(tr) = tr is a satisfied trigger for 𝐹𝑘 . □

(3) In the case of an infinite fair derivation, we first point out that

D∗
contains 𝐹0 = 𝜎0 (𝐹 ), so it is a model of 𝐹 . Then consider any

trigger tr forD∗
: it is also a trigger for some 𝐹𝑖 inD. By Definition 3,

there exists some 𝑗 ∈ ℑ with 𝑗 ≥ 𝑖 such that 𝜎̃
𝑗
𝑖
(tr) is a satisfied

trigger for 𝐹 𝑗 . Since D is monotonic, 𝜎
𝑗
𝑖
is the identity and thus

𝜎̃
𝑗
𝑖
(tr) = tr is satisfied in D∗

. □

(5,⇐) Let 𝜋 be a homomorphism from 𝑄 to D∗
. Since D∗

is uni-

versal (by (1)), it maps to any model 𝑀 of K . Let 𝜏𝑀 be a homo-

morphism from D∗
to𝑀 , then 𝜏𝑀 ◦ 𝜋 maps 𝑄 to𝑀 . □

(5,⇒) Let us now consider the fair monotonic derivation D𝑚𝑜𝑛

from Lemma 2. We now that D∗
𝑚𝑜𝑛 is a model of K , and then

if K |= 𝑄 , then there is a homomorphism 𝜋 from 𝑄 to D∗
𝑚𝑜𝑛 .

Since 𝜋 (𝑄) is finite, there is some atomset 𝐺𝑖 in D𝑚𝑜𝑛 such that

𝜋 (𝑄) ⊆ 𝐺𝑖 . We know there is a retract 𝜎̃𝑖 from 𝐺𝑖 to 𝐹𝑖 , so 𝜎̃
𝑖 ◦ 𝜋

is a homomorphism from 𝑄 to 𝐹𝑖 and so from 𝑄 to D∗
. □

B PROOFS OF SECTION 6
We first prove the following claim (see the explanations before

Proposition 5.).

Claim. There is a sequence of rule applications from any column
𝐶h

𝑘
producing step 𝑆h

𝑘
.

Proof. Let us consider𝐶ℎ
𝑘
with variables named (𝑋𝑘

0
, 𝑋𝑘

1
, . . . , 𝑋𝑘

𝑘 ),
from bottom to top. Let us apply rules as shown in Table 1. The

obtained result is indeed 𝑆ℎ
𝑘
. □

Proposition 5. No universal model of Kh has finite treewidth.

Proof. We call v-path (resp. h-path) in an atomset a non-empty

sequence of nulls such that, for any two consecutive nulls 𝑋𝑖 and

𝑋𝑖+1, the atomset contains the atom v(𝑋𝑖 , 𝑋𝑖+1) (resp. h(𝑋𝑖 , 𝑋𝑖+1)).
By analogy to graphs, the length of a path is 𝑛 − 1 if it is a sequence

of 𝑛 nulls.

Let 𝑈 be an arbitrary universal model of Kh
. We first point out

that 𝐼h
and 𝑈 being both universal models, they homomorphically

map to each other. We let ℎ1 denote the homomorphism from 𝐼h

to 𝑈 and let ℎ2 denote the homomorphism from 𝑈 to 𝐼h
. Then

ℎ = ℎ2 ◦ ℎ1 is an endomorphism on 𝐼h
, the properties of which we

will now inspect further. We make use of the following notation: for

ℎ(𝑋 𝑖
𝑗 ) = 𝑋𝑘

ℓ , we denote 𝑘 by ℎ𝑥 (𝑖, 𝑗) and ℓ by ℎ𝑦 (𝑖, 𝑗), that is, we
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let ℎ(𝑋 𝑖
𝑗 ) = 𝑋ℎ𝑥 (𝑖, 𝑗 )

ℎ𝑦 (𝑖, 𝑗 ) . We make the following observations (which

hold for all endomorphisms on 𝐼h
):

(1) ℎ𝑦 (𝑖, 0) = 0 since f holds precisely for all nulls 𝑋 𝑖
0
.

(2) ℎ𝑦 (𝑖, 𝑗) = 𝑗 , inductively with (1) as base case and the observa-

tion that ℎ must preserve the length of incoming v-paths rooted
in some f.

(3) ℎ𝑥 (𝑖, 𝑗) = ℎ𝑥 (𝑖, 𝑗 +1), since this is the only way for ℎ to preserve

the v-atoms.

(4) ℎ𝑥 (𝑖, 𝑗) = ℎ𝑥 (𝑖, 𝑘), via iteration of (3).

(5) ℎ𝑥 (𝑖, 𝑗) ≥ 𝑖 , due to (2) and the fact that 𝑋 𝑖
𝑗 does not exist for

𝑗 > 𝑖 + 1.

(6) ℎ𝑥 (𝑖 + 1, 𝑗) = ℎ𝑥 (𝑖, 𝑗) or ℎ𝑥 (𝑖 + 1, 𝑗) = ℎ𝑥 (𝑖, 𝑗) + 1, since this is

the only way for ℎ to preserve the h-atoms.

(7) ℎ𝑦 (𝑖 +1, 𝑗) = ℎ𝑦 (𝑖, 𝑗) since this is the only way for ℎ to preserve

the h-atoms.

(8) There are 𝑘, ℓ ∈ N such that ℎ𝑥 (𝑖, 𝑗) = 𝑖 + ℓ for all 𝑖 > 𝑘 . This is

a consequence of (5) and (6).

(9) There is a 𝑘 ∈ N such that the restriction of ℎ to the 𝑋 𝑖
𝑗 with

𝑖 > 𝑘 is injective. Follows from (8), for the same 𝑘 , and (2).

If we now let 𝐼h

− be 𝐼h
restricted to terms𝑋 𝑖

𝑗 with 𝑖 > 𝑘 , we obtain

that ℎ is an isomorphism from 𝐼h

− to ℎ(𝐼h

−), i.e., 𝐼h

− � ℎ(𝐼h

−). Since
ℎ = ℎ2 ◦ ℎ1, this means that ℎ1 must be an isomorphism from 𝐼h

− to

ℎ1 (𝐼h

−) andℎ2 must be an isomorphism fromℎ1 (𝐼h

−) toℎ2 (ℎ1 (𝐼h

−)) =
ℎ(𝐼h

−). Therefore, 𝑡𝑤 (𝐼h

−) = 𝑡𝑤 (ℎ1 (𝐼h

−)) = 𝑡𝑤 (ℎ2 (ℎ1 (𝐼h

−))) (*). Now,
for any given 𝑛 ∈ N with 𝑛 > 𝑘 , take T𝑛×𝑛 = {𝑋 𝑖

𝑗 | 𝑛 + 1 ≤ 𝑖 ≤
2𝑛 and 0 ≤ 𝑖 ≤ 𝑛 − 1} ⊆ terms(𝐼h). Consequently, T𝑛×𝑛 witnesses

that 𝐼h

− contains a 𝑛 × 𝑛 grid. Yet, as 𝑛 can be chosen arbitrarily

large, 𝐼h

− contains grids of arbitrary size and thus cannot have

finite treewidth, i.e., 𝑡𝑤 (𝐼h

−) ∉ N (**). From these insights, we can

conclude

𝐼h

− ⊆ 𝐼h =⇒ ℎ1 (𝐼h

−) ⊆ ℎ1 (𝐼h) ⊆ 𝑈
Fact 1

=⇒ 𝑡𝑤 (ℎ1 (𝐼h

−)) ≤ 𝑡𝑤 (𝑈 )
(*)

=⇒ 𝑡𝑤 (𝐼h

−) ≤ 𝑡𝑤 (𝑈 )
(**)

=⇒ 𝑡𝑤 (𝑈 ) ∉ N.
□

C PROOFS OF SECTION 7
Proposition 8. The following hold:
(1) Every 𝐼v

𝑛 is a core.
(2) 𝐼v

𝑛 has a treewidth of at least ⌈𝑛/3⌉ + 1.
(3) For every core chase sequence (𝐹𝑖 )𝑖∈N for Kv, there is an un-

bounded monotonic function 𝑓 : N → N such that, for every
𝑛 ∈ N, 𝐼v

𝑓 (𝑛) is isomorphic to a subset of 𝐹𝑛 .

(4) For every core chase sequence (𝐹𝑖 )𝑖∈N for Kv and any 𝑚 ∈N
exists a 𝑘 ∈N such that tw(𝐹𝑖 ) ≥𝑚 for all 𝑖 ≥ 𝑘 .

Proof. We show these claims consecutively.

(1) It is straightforward to check that 𝐼v

0
is a core. To show that 𝐼v

𝑛

is a core for every 𝑛 > 0, pick an arbitrary retraction 𝜎 of 𝐼v

𝑛 .

Toward showing that 𝜎 is the identity, first note that it must be

column-preserving (i.e., satisfy 𝜎 (𝑋 𝑖
ℓ ) = 𝑋 𝑖

ℓ ′ ), since for any two

𝑋 𝑖
𝑘 , 𝑋

𝑗
ℓ ∈ Δv

𝑛 hold:

• they are connected by a v-path exactly if 𝑖 = 𝑗 ,

• if there is an h connection from the former to the latter, then

𝑖 + 1 = 𝑗 ,

• if 𝑖 +1 = 𝑗 , then there are 𝑘′ and ℓ′ satisfying h(𝑋 𝑖
𝑘 ′ , 𝑋 𝑗

ℓ ′ ) ∈ 𝐼v

𝑛 .

Yet then, for every 𝑋 𝑖
𝑘 ∈ Δv

𝑛 , the corresponding column (the

substructure of 𝐼v

𝑛 induced by all 𝑋 𝑗
ℓ with 𝑗 = 𝑖) has an retrac-

tion obtained by restricting 𝜎 accordingly. Yet, each of these

column-wise retractions must map the unique elements carry-

ing f and c to themselves, which also forces all other elements

(on the intermediate directed v-path) to be identically mapped.

Consequently, every row-wise retraction must be the identity

function. Yet then, 𝜎 as a whole must be the identity as well.

(2) This claim is a consequence of Fact 2, since, for every 𝑛, the

elements 𝑋 𝑖
𝑘 with ⌊2𝑛/3⌋ + 1 ≤ 𝑖 ≤ 𝑛 + 1 and 𝑛 ≤ 𝑘 ≤ ⌈4𝑛/3⌉

witness that 𝐼v

𝑛 contains a (⌊𝑛/3⌋ + 1) × (⌊𝑛/3⌋ + 1)-grid.
(3) Without loss of generality, we assume the considered core chase

employs the same naming scheme as 𝐼v
. Therefore, any inter-

mediate atomset of the considered chase can be described by

a subset of 𝐼v
. We first observe that 𝐼v

0
= 𝐹v

, thus the claim

is satisfied for 𝑛 = 0 once we set 𝑓 (0) = 0. We proceed itera-

tively for larger 𝑛. For any subsequent 𝑛, we can assume that

𝐹𝑛−1 contains some 𝐼v

𝑚 . Therefore, the only interesting case is

if, upon producing 𝐹𝑛 , nulls of 𝐹𝑛−1 are removed through the

non-trivial retraction 𝜎𝑛 . Among the nulls removed, let 𝑋 𝑖
𝑗 be

the one with maximal 𝑗 and (among all these) the one with

minimal 𝑖 . By construction (observing 𝐼v
), removal of nulls will

always simultaneously affect all nulls in a row, leaving behind

only those of the form 𝑋𝑘
2𝑘 . Therefore, we obtain 𝑖 = ⌊ 𝑗/2⌋ + 1.

Also, by maximality of 𝑗 and the fact that there are no row-

decreasing v-atoms, we know that 𝜎𝑛 (𝑋 𝑖
𝑗 ) = 𝑋 𝑖

𝑗+1
(note that

retractions must be column-preserving, as argued before). Then,

for 𝜎𝑛 to be a retraction, we require h(𝑋 𝑖−1

2⌊ 𝑗/2⌋ , 𝑋
𝑖
𝑗+1

) ∈ 𝐼v

𝑛−1
.

Yet, as row-increasing h-edges can only be the consequence of a

(potentially iterated) prior application of 𝑅v

7
, the atom f(𝑋 𝑖

𝑗+1
)

must occur in some atomset preceding 𝐼v

𝑛 . Yet, this can only be

the consequence of the iterated application of 𝑅v

7
propagating f

from “right to left”, starting from f(𝑋 𝑗+2

𝑗+1
), d(𝑋 𝑗+2

𝑗+1
). The latter

atom must, in turn have been created through iterated appli-

cation of 𝑅v

5
, propagating d “top-down” starting from d(𝑋 𝑗+2

2𝑗+4
)

which must have been created through application of 𝑅v

4
to

c(𝑋 𝑗+2

2𝑗+4
). Yet, the only way to produce the latter is through 𝑅v

1

following iterated application of 𝑅v

2
preceded by an application

of 𝑅v

3
to d(𝑋 𝑗+1

𝑗 ), f(𝑋 𝑗+1

𝑗 ), and v(𝑋 𝑗+1

𝑗 , 𝑋 𝑗+1

𝑗+1
). This argument

can then be repeated for columns further left, leading to the

insight that removal of 𝑋 𝑖
𝑗 requires that all facts from 𝐼v

𝑗+1
must

have previously existed in the derivation. Among those, the

facts involving nulls 𝑋𝑘
ℓ with ℓ > 𝑗 , cannot have been removed

by our maximality assumption. The remaining facts of 𝐼v

𝑗+1
are

indefinitely exempt from removal because the participating

nulls are column-wise unique wrt carrying c. We can therefore

conclude that upon removal of 𝑋 𝑖
𝑗 toward the creation of 𝐹𝑛 ,

the latter must contain 𝐼v

𝑗+1
.

Finally, we observe that, as an indirect consequence of fairness,

every 𝑋 𝑖
𝑗 with 𝑗 ≠ 2𝑖 will be removed in some derivation step,

leading to the consequence that ever growing elements 𝐼v

𝑗+1
will

come into operation.

(4) This claim is a direct consequence of Item 2 and Item 3, given

monotonicity of treewidth (Fact 1). □
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Figure 6: Depiction of the inductive definition of the robust sequence (Definition 15). Also useful to followproof of Proposition 11.

D PROOFS OF SECTION 8
Lemma 1. Let (𝐺𝑖 )𝑖∈ℑ be the robust sequence associated with a deriva-
tion D. If 𝐴 is a finite subset of D⊛ , then there exists some 𝑘 ∈ ℑ

such that, for every 𝑟 ≥ 𝑘 ⊆ ℑ, 𝐴 ⊆ 𝐺𝑟 .

Proof. We first prove (i) for every 𝑖 > 0 ∈ ℑ, 𝜏 (𝐺𝑖−1) ⊆
𝜏 (𝐺𝑖 ). Indeed, since 𝜏𝑖 is a homomorphism from 𝐺𝑖−1 to 𝐺𝑖 , then

𝜏𝑖 (𝐺𝑖−1) ⊆ 𝐺𝑖 and thus for any 𝑗 > 𝑖 ∈ ℑ, 𝜏
𝑗
𝑖
(𝜏𝑖 (𝐺 𝑗−1)) ⊆ 𝜏

𝑗
𝑖
(𝐺𝑖 ),

meaning 𝜏 (𝐺𝑖−1) ⊆ 𝜏 (𝐺𝑖 ).
Then we prove (ii) for every 𝜏 (𝐺 𝑗 ), there exists some 𝑘 ≥ 𝑗 such

that for every 𝑟 ≥ 𝑘 , 𝜏 (𝐺 𝑗 ) ⊆ 𝐺𝑟 . For every variable 𝑋 in 𝐺 𝑗 , there

is some 𝑘𝑋 ∈ ℑ such that 𝜏 (𝑋 ) = 𝜏
𝑘𝑋
𝑗

(𝑋 ) is stable in all atomsets

after 𝐺𝑘𝑋 (Proposition 10). If we take 𝑘 = max𝑋 ∈vars (𝐺 𝑗 )𝑘𝑋 , then

for every 𝑟 ≥ 𝑘 , 𝜏𝑟
𝑗
= 𝜏𝑟

𝑘
◦ 𝜏𝑘

𝑗
= 𝜏 is a homomorphism from 𝐺 𝑗 to

𝐺𝑟 , and thus 𝜏 (𝐺 𝑗 ) ⊆ 𝐺𝑟 .

Finally, since 𝐴 is finite and the successive 𝜏 (𝐺𝑖 ) form a mono-

tonic sequence (see (i)), there exists 𝑗 ∈ ℑ such that 𝐴 ⊆ 𝜏 (𝐺 𝑗 ).
Then (ii) there exists 𝑘 ≥ 𝑗 such that for every 𝑟 ≥ 𝑘 , 𝜏 (𝐺 𝑗 ) ⊆ 𝐺𝑟

and thus 𝐴 ⊆ 𝐺𝑟 . □

E PROOFS OF SECTION 9
Theorem 1. CQ entailment is decidable for the class of KBs having a
recurringly treewidth-bounded core chase sequence.

Proof. Let ℭ be the class of KBs having a recurringly treewidth-

bounded core chase sequence. The proof closely follows arguments

from previous work [3, 7]. An algorithm deciding K |= 𝑄 for a

given K ∈ ℭ and conjunctive query 𝑄 can be devised from two

semi-decision procedures (which, when executed in parallel give

rise to a decision algorithm): one guaranteed to detect K |= 𝑄

after finite time and another detecting K ̸|= 𝑄 . For the former, we

can evoke the fact that thanks to the completeness of first-order

logic [12], the consequences of a first-order theory are recursively

enumerable. So, the first part of the algorithm can just enumerate

the consequences ofK and terminate answering “yes” as soon as𝑄

is found among the consequences. It remains to be shown that there

is a semi-decision procedure detecting K ̸|= 𝑄 . By assumption, K
has a finitely universal model 𝐼 with 𝑡𝑤 (𝐼 ) ∈ N. From 𝐼 being finitely

universal for K and K ̸|= 𝑄 , we can conclude 𝐼 ̸ |= 𝑄 . But then we

obtain 𝐼 |= 𝐹∧(∧ Σ)∧(¬𝑄) (assuming that 𝐹 and𝑄 are represented

as first-order sentences and Σ as a set of first-order sentences). This

means, whenever K ̸|= 𝑄 , then there exists some 𝑘 (namely 𝑡𝑤 (𝐼 ))
such that the first-order sentence 𝐹∧(∧ Σ)∧(¬𝑄) is satisfiable over

the class of structures of treewidth 𝑘 . Fortunately, as previously

observed [3, 7], satisfiability of monadic second-order logic – and

thus also of first-order logic – over classes of structures with a

treewidth bounded by a given 𝑘 is decidable. This allows to design

a semi-decision procedure that increases 𝑘 stepwise and in each

step applies the decision procedure that checks if 𝐹 ∧ (∧ Σ) ∧ (¬𝑄)
has a model of treewidth 𝑘 . If so, the procedure terminates with the

output “no”, since we have shown that 𝑄 cannot be a consequence

of K . If not, we increment 𝑘 and repeat. Clearly, thanks to the

above assumption, this semi-decision procedure will output “no”

and terminate exactly if K ̸|= 𝑄 . □

Proposition 13. CQ entailment is decidable for any ruleset that is
core-bts. Moreover, core-bts subsumes both finite expansion sets (fes)
and bounded treewidth sets (bts), which are mutually incomparable.

Proof. Decidability follows from Theorem 2. We sucessively

prove the following items:

• fes and bts are incomparable,

• fes is subsumed by core-bts.

• bts is subsumed by core-bts.

For the first bullet point, note that the singleton ruleset {r(𝑋,𝑌 ) →
∃𝑍 .r(𝑌, 𝑍 )} is bts but not fes, whereas the singleton ruleset {r(𝑋,𝑌 )∧
r(𝑌, 𝑍 ) → ∃𝑉 .r(𝑋,𝑋 ) ∧ r(𝑋,𝑍 ) ∧ r(𝑍,𝑉 )} is fes but not bts.

For the second bullet point, recall that finite extension sets guar-

antee core-chase termination. Yet, for any finite sequence of finite

structures one can find a uniform finite bound on the treewidth, it

suffices to pick max𝑖∈ℑ |T (𝐹𝑖 ) |.
For the third bullet point, we observe that any treewidth-bounded

restricted chase sequence (𝐹𝑖 )𝑖∈ℑ can be transformed into a core-

chase sequence (𝐹 ′
𝑖
)𝑖∈ℑ as follows: Let 𝜎′

0
be an endomorphism

turning 𝐹0 into a core and let 𝐹 ′
0
= 𝜎′

0
(𝐹0) = 𝜎′

0
(𝐹 ). From this

starting point, we can always use 𝐹𝑖 , 𝐹
′
𝑖
, and 𝜎′

𝑖
where 𝜎′

𝑖
(𝐹𝑖 ) = 𝐹 ′

𝑖
is a core, to define 𝜎′

𝑖+1
and 𝐹 ′

𝑖+1
such that 𝜎′

𝑖+1
(𝐹𝑖+1) = 𝐹 ′

𝑖+1
is a

core as follows: assuming 𝐹𝑖+1 = 𝛼 (𝐹𝑖 , (𝑅, 𝜋)), we let 𝜎𝑖+1 be an

endomorphism of 𝛼 (𝜎′
𝑖
(𝐹𝑖 ), (𝑅, 𝜎′𝑖 ◦𝜋)) producing a core, which we

choose as 𝐹 ′
𝑖+1

. Clearly then 𝐹 ′
𝑖+1

is also a core of 𝐹𝑖+1 = 𝛼 (𝐹𝑖 , (𝑅, 𝜋))
witnessed by the endomorphism 𝜎′

𝑖+1
= 𝜎𝑖+1 ◦𝜎′𝑖 . Note that (𝐹

′
𝑖
)𝑖∈ℑ

is indeed a core chase sequence, except for some elements being

repeated, which can be removed. Now given that there exists a

bound 𝑏 greater than the treewidth of each element of (𝐹𝑖 )𝑖∈ℑ , the
same must hold for (𝐹 ′

𝑖
)𝑖∈ℑ, given that 𝐹 ′

𝑖
⊆ 𝐹𝑖 for all 𝑖 ∈ ℑ. Thus

(𝐹 ′
𝑖
)𝑖∈ℑ (and any pruned subsequence of it) is uniformly (and hence

also recurrently) treewidth-bounded. □
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