
HAL Id: lirmm-04346669
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04346669v1

Submitted on 15 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Object-Oriented to Workflow: Refactoring of OO
Applications into Workflows for an Efficient Resources

Management in the Cloud
Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe

Dony

To cite this version:
Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony. From Object-
Oriented to Workflow: Refactoring of OO Applications into Workflows for an Efficient Resources
Management in the Cloud. ENASE 2018 - 13th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, Mar 2018, Funchal, Madeira, Portugal. pp.186-214, �10.1007/978-
3-030-22559-9_9�. �lirmm-04346669�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04346669v1
https://hal.archives-ouvertes.fr

Refactoring Object-Oriented Applications for a Deployment in the
Cloud:

Workflow Generation Based on Static Analysis of Source Code

Anfel Selmadji1, Abdelhak-Djamel Seriai1, Hinde Lilia Bouziane1,Christophe Dony1 and
Chouki Tibermacine1

1LIRMM, CNRS and University of Montpellier, Montpellier, France
{anfel.selmadji, seriai, bouziane, dony, tibermacin}@lirmm.fr

Keywords: Object-Oriented, refactoring, workflow, data flow, control flow, cloud.

Abstract: Cloud Computing delivers to customers computing/storage resources as services via the internet. It is charac-
terized by its elastic nature and its payment model (pay-as-you-go). To optimize the use of these resources, one
of the requirements related to this type of environment is to dynamically configure the applications to reduce
the costs of their deployment.The dynamic configuration requires the ability to determine which resources
are used, as well as when and where they are utilized. This can be done using workflows. In fact, several
works rely on workflows to reduce execution costs in the cloud. Unlike workflows, OO applications have an
architecture which exposes little or no behavioral (temporal) aspect. Hence, to execute an OO application in
the cloud, the entire application needs to be deployed and all its used resources need to be allocated during its
entire execution time. To reduce execution costs, we propose a re-engineering process aiming to restructure
these applications from OO architectural style to workflow style. In this paper, we focus on the first step of
the process which has as a goal generating a workflow from OO source code.

1 INTRODUCTION

Cloud computing is a technology that uses the
internet and central remote servers to provide ser-
vices for its customers on demand (Kaur et al., 2011;
Mell et al., 2011). Google App Engine, Amazon
EC2, Aneka and Microsoft Azure are some of the
prominent cloud computing platforms (Masdari et al.,
2016).

Generally, the services provided by the cloud can
be classified as SaaS (Software as a Service), PaaS
(Platform as a Service) and IaaS (Infrastructure as a
Service) (Wu et al., 2013). SaaS is a software de-
livery paradigm, where the software is developed by
service providers and delivered via internet (Espadas
et al., 2013). PaaS provides platforms to develop and
deploy applications in cloud infrastructure using pro-
gramming languages, libraries and so on (Fakhfakh
et al., 2014). IaaS providers deliver processing, stor-
age, network and other fundamental computing re-
sources to deploy and run customers’ software (Dillon
et al., 2010; Mell et al., 2011). In fact, customers can
provision resources (e.g. processors, storage space,
network, etc.) whenever they want and release them
when they are no longer needed (Dillon et al., 2010).

However, based on the ”pay-as-you-go” model, cus-
tomers are usually charged following the resource us-
age. Consequently, it is important to have the ability
to adjust this usage, i.e., allocate resources only when
needed and release them when they are no longer
used, in order to reduce costs. This can be done by
dynamically allocating and releasing resources based
on their usage (Fakhfakh et al., 2014; Xu et al., 2009).
Nevertheless, the dynamic allocation and release re-
quires determining, for each application, which re-
sources are used, as well as when and where they are
utilized.

Object-Oriented (OO) style is one of the most
used architectural styles to develop software applica-
tions (Taylor et al., 2009; Garlan and Shaw, 1993).
However, without any prior restructuring, to execute
an OO application in the cloud, the entire application
needs to be deployed and all its used resources need
to be allocated during its entire execution time. Con-
sequently, a customer will be billed based on the used
resources even if some of them were unnecessarily
occupied for certain periods (Fakhfakh et al., 2014).

For the data used by certain types of applications
such as scientific ones, it is possible to determine the
required resources to execute them: storage space,

network, processor, etc. These resources are neces-
sary for the storage, acquisition/transmission and pro-
cessing of data.

The data flow architectural style is adapted to
deploy this kind of applications in the cloud. In
fact, this style focuses on how data moves between
processing elements of an application (Taylor et al.,
2009; Bass, 2007). Hence, these elements and their
consumed/produced data are explicitly identified al-
lowing to determine resources needed by each one
of them. In addition, it allows to determine when
each element can be executed, and therefore when
its needed resources are used. Note that, by extend-
ing the data flow style with a richer control flow, i.e.
a control flow that expresses sequences, conditional
branches and loops, an architectural style that rep-
resents a workflow (Hollingsworth, 1995), in which
each architectural component is a task, can be ob-
tained. Several works rely on the data flow style in
order to perform dynamic configuration to optimize
resources usage in the cloud, and thus to reduce ex-
ecution costs (Zhu et al., 2016; Masdari et al., 2016;
Fakhfakh et al., 2014; Xu et al., 2009; Lin and Lu,
2011).

In order to deploy OO applications in the cloud
while reducing costs, we propose a re-engineering
process aiming to restructure these application from
OO architectural style to data flow style. In this paper,
we focus on the first step of the process which has as a
goal generating a workflow description from existing
OO application. This generation requires the ability
to map OO concepts into the worklow ones. For ex-
ample, we need to determine what is the mapping of
the concept task compared to the OO concepts. Once
such a mapping is defined, the refactoring consists,
in recovering the constituents of a worklow from a
source code, i.e. a set of tasks, a control flow and a
data flow.

The originality of our approach can be viewed
from two aspects. On the one hand, we use source
code refactoring in order to adopt OO application to
a deployment in the cloud instead of either execut-
ing them with high costs or redeveloping them from
scratch. On the other hand, techniques used in our ap-
proach allow us to recover the entire workflow while
a majority of the existing works (e.g. (Kosower and
Lopez-Villarejo, 2015), (Korshunova et al., 2006),
(Zou et al., 2004)) propose to extract only a part of a
workflow (i.e. either control flow or data flow). More-
over, although some approaches propose to extract a
description of the workflow by analyzing source code,
they do not propose to generate the code of this work-
flow (see section 7).

The remainder of this paper is organized as fol-

lows. Section 2 presents a possible mapping from OO
concepts to workflow ones and announces addressed
refactoring issues. Section 3 presents a solution for
task identification, while section 4 presents control
and data flow recovery solutions. Section 5 discusses
a workflow implementation. Section 6 evaluates our
proposal. Section 7 outlines related works. Finally,
section 8 concludes the paper.

2 OBJECT-ORIENTED VERSUS
WORKFLOW-BASED
ARCHITECTURAL STYLES

2.1 Background : Workflow-Based
Style

The term workflow has been initially defined by the
WorkFlow Management Coalition (WFMC) in 1995
(Hollingsworth, 1995) as:

”The computerized facilitation or automation of a
business process, in whole or part.”

This standard definition proposes a reference
model for the creation, deployment and control of
workflow applications. It refers to a workflow as a
solution for business processes automation. A process
is defined as a coordinated sequence of a set of tasks
leading to a determined result. Coordination speci-
fies the sequencing mode of tasks, as well as the data
exchanged between them. In other words, a work-
flow can be seen as an application constructed by a
set of tasks, with possibly dependencies specified by
following two classical formalisms: data flows and
control flows. In this paper, these concepts are de-
fined as follows:

• Task: a task is the basic unit of composition of a
workfow. It is the smallest execution unit, repre-
senting an execution stage in a whole application.
Its implementation is independent of other tasks
and can be reused in different contexts. A task
can define input and output data, where input data
represent data required for executing the task and
output data, the produced ones. A task can be ei-
ther primitive or composite. A composite one can
be viewed as a sub-workflow enclosing primitive
or composite tasks.

• Control flow: a control flow describes the exe-
cution order of tasks through different constructs
such as sequences, conditional branches (if and
switch) and loops (for and while).

• Data flow: a data flow specifies data dependen-
cies between tasks. If the outputs of a task Ti are

inputs of a task Tj, then the execution of Tj de-
pends on that of Ti.

Figure 1 shows an example of a workflow consist-
ing of three tasks. On the one hand, the control flow
specifies that Task A and Task B are executed sequen-
tially, whereas Task C can be executed only if the con-
dition ”data A>data B” is true. On the other hand,
the data flow indicates that Task A produces three out-
put data data A, data C and data D, while Task B pro-
duces an output data data B. data D and data C are re-
spectively used by Task B and Task C, whereas data A
and data B are utilized to evaluate the condition ”data
A>data B”.

Figure 1: Example of a workflow.

2.2 A Mapping from Object-Oriented
Code to Workflow

A task is the basic unit of composition of a workfow.
It is the smallest execution unit, representing an ex-
ecution stage in a whole application. Based on this
definition, we consider that a method can be mapped
to a task in a workflow (see Figure 2). In particular,
we assume that a method that contains only assign-
ment statements or invokes only methods provided
by a standard library is mapped to a primitive task,
a method that includes a sequence of methods invoca-
tions and control statements is mapped to a compos-
ite task. For methods including both methods invo-
cations, control statements and other statements, the
source code has to be refactored to wrap these later
in a method. In fact, a workflow, as seen in Figure
2, does not include assignment statements as a unit of
composition.

A task can define input and output data, where
input data represent data required for executing the
task and output data, the produced ones. Due to the
fact that a task corresponds to an OO method, task
inputs represents data needed to execute the corre-
sponding method, while task outputs is the data pro-
duced from this execution. In order to be executed,
a method requires a receiving object and its input pa-
rameters. Once executed, the method’s produced data
is its modified inputs (i.e. receiving object and/or in-
put parameters), and/or its output parameter (i.e. re-
turned value). Hence, each method’s produced data
that represents a modified input corresponds to two
data in a workflow, an input and an output data (see
Figure 2).

In a workflow, the execution order of tasks is ex-
pressed using different control constructs such as se-
quence, conditional branches and loops. In OO style,
the execution order of methods invocations, which
corresponds to the execution of tasks, depends on
control statements (e.g. if statement, while statement,
etc.). Hence, we chose to consider that a control state-
ment can be mapped to a control construct. Thus, the
input data of a control construct corresponds to data
manipulated in the corresponding control statement,
i.e. in the condition and the body of the control state-
ment, while control construct outputs are the data de-
fined in the control statement and used in the follow-
ing statements.

The explained mapping between OO concepts and
workflow ones is illustrated in Figure 2.

2.3 Refactoring Process and Issues

Figure 3: OO versus workflow: the re-engineering process

Our goal is to generate a workflow based on static
analysis of OO source code. In order to achieve this

Figure 2: From OO elements to workflow ones: the mapping model.

goal, a refactoring process, that can be seen as a re-
engineering horseshoe model (see Figure 3), was pro-
posed. The existing OO system is represented on the
left side of the figure and the target system on the right
side.

The refactoring process consists of three steps.
These steps are represented in Figure 3. In the first
step, existing source code is analyzed to identify
the application structural elements (classes, methods,
etc.) and their links (method calls, class inheritances,
etc.). The aim of the second step is to map OO con-
cepts to wokflow ones. Starting by, identifying prim-
itive and composite tasks (see section 3), as well as
their respective input and output data, and then recov-
ering the control flow and the data flow (see section
4) associated to these tasks to preserve the same be-
havior then the OO application. The last step of our
process consists of transforming the OO source code

to conform to this workflow (see section 5).
For this refactoring process, we chose to preserve

the object entities of the original source code to gen-
erate the new structure of the application. This means
that object instances will not be transformed into
primitive elements (i.e. the values of their attributes).
Thus, the result of the refactoring is an implementa-
tion based on ”task” entities connected by input and
output data and whose control flow is explicitly rep-
resented at the architectural level. In other words, the
target source code is composed of task entities, im-
plemented based on the object entities of the original
source code.

The realization of this process requires answering
the following questions:

• Q1: what are the tasks that reflect the workflow
corresponding to the analyzed OO application?
The answer to this question requires identifying

a matching at the instance level between task enti-
ties and OO methods invoked on object instances.

• Q2: what is the control flow to be defined be-
tween the identified tasks with preservation of the
same behavior as the analyzed OO application?
The answer to this question requires, among oth-
ers, to make explicit the implicit control flow due
to OO features, for example, polymorphism and
dynamic binding.

• Q3: what is the data flow to be associated with
the identified tasks and control flow? The goal is
to define for each task its input and output data
in such a way that the application architectured as
tasks gives the same results as the application ar-
chitectured as objects, i.e. given the same inputs,
the two variants of the application produces the
same outputs. This is mainly to identify the flow
of objects attached to tasks already identified.

• Q4: what model of implementation to structure
the target application into new object entities that
reflect the identified tasks, control flow and data
flow while preserving the object entities of the
originally crafted application?

3 TASK IDENTIFICATION

Our OO-to-Workflow mapping model establishes
a unique mapping for a workflow tasks, a task cor-
responds to a method in the OO source code (see
Figure 2). Thus, we transform all statements that do
not represent method invocations in the OO code into
method invocations based on code refactoring. Once
this refactoring is done, we determine among all the
code methods those to transform into primitive tasks
from those to transform into composite ones. Finally,
we determine the input and output data for each task.

3.1 Extract Method Refactoring

The refactoring of OO source code consists to extract
each sequence of statements delimited by user method
invocations as a new method and replace the sequence
by an invocation of this method. Note that, only state-
ments that belong to the same block can be extracted
to ensure that the new method is syntactically correct.

Figure 4 shows an example of extract method
refactoring. In this example, the statements delimited
by method invocations method1() and method2(a) do
not belong to the same block and thus it is not possible
to extract them as a new method. Nevertheless, this
sequence can be divided into two fragments based on

whether the statements belong to the same bloc or not.
Each fragment is extracted as a new method (method
m1 and method m2).

Once statements to be extracted are identified, the
extraction begins. Variables acceded (defined or used)
but not declared by these statements (i.e. the vari-
ables declaration statements do not belong to these
statements) should be passed in as input parameters
of the new method. Whereas, variables defined by
these statements and acceded by following fragments
should be passed out as its output parameters. Note
that, a variable is considered as defined if its value is
modified (i.e. writing access) and it is considered as
used if its value is read (i.e. reading access).

Figure 4: Example of extract method refactoring.

Some OO languages, such as Java, imposes that
a method can not have more than one output param-
eter (i.e. returned value). Thus, if a sequence of
statements has multiple output values, this sequence
will be divided into several fragments. Each one of
them is extracted as a new method and return at most
one output parameter. This code fragmentation and
method extraction do not re-order code statements,
which eliminates the possibility of breaking down
program semantics.

3.2 Task Identification Based on
Analysis of the OO Application Call
Graph

A workflow consists of two types of tasks: primitive
and composite ones. As a task is mapped to an OO
method, then a method that does not include calls to
other ones is considered as a primitive task, otherwise,
it is a composite one. The identification of primitive
and composite tasks is based on the analysis of the
OO application’s call graph.

Listing 1: Classes Foo, Bar and Main

1 class Foo {

2 int x;

3 void setX(int y, boolean isDifferent){

4 if (isDifferent)

5 initializeX(y);initialize

6 else

7 incX(2*y);}

8 int incX(int y){

9 if (x!=y)

10 setX(y, true);

11 else

12 setX(y, false);

13 return x;}

14 int getX(){

15 return x;}

16 void initializeX(int y) {

17 x=y;}}

18 class Bar{

19 Foo foo= new Foo();

20 void m(){

21 foo.initializeX (1);

22 int x= foo.getX();

23 while (x<20){

24 x=foo.incX(x);}}}

25 class Main {

26 static Bar bar= new Bar();

27 public static void main(String[]args){

28 bar.m();}}

In order to build a call graph, the source code
is analyzed to determine for each caller method its
callees. Call graph leafs are mapped to primitive
tasks, whereas the rest of nodes are mapped to com-
posite ones.

A particular case related to the analysis of the
call graph concerns direct or indirect recursive calls.
Since recursive transitions between tasks (i.e. the
ability of a task to invoke itself directly or indirectly
during its execution) are not always supported by
workflows (Russell et al., 2006), recursive calls be-
tween methods are transformed as follows: a method
M in a directed cycle is mapped to a primitive task if
all the methods invoked by M belong the this cycle
(see method Foo.incX in Listing 1). Otherwise, this
method is mapped to a composite task (see method
Foo.setX in Listing 1).

Figure 5 represents the call graph built from
the source code shown in Listing 1. The meth-
ods Main.main, Bar.m and Foo.setX map compos-
ite tasks, while the methods Foo.initializeX, Foo.getX
and Foo.incX correspond to primitive tasks.

Figure 5: Call graph built from the source code shown in
Listing 1.

3.3 Identifying Tasks Inputs and
Outputs

Each of the identified tasks, primitive or composite,
have input and output data. As explained in sec-
tion 2.2, the inputs correspond to the parameters and
the receiving object of the corresponding method,
whereas the outputs are the inputs that have been
modified and the returned value by the correspond-
ing method. Note that the modified inputs of a task
are considered as its outputs because their new values
are produced by this task.

To identify which inputs can be modified by a
method, we compute for each method M both its DEF
and USE sets. The DEF (resp., USE) set contains pa-
rameters and attributes defined (resp., used) by M, i.e.
parameters and attributes that their values are modi-
fied (resp., read) by M. An input INDATA of a task is
considered as modified if either 1) INDATA is the re-
ceiving object of M and at least one of its attributes ∈
DEF(M) or 2) INDATA ∈ DEF(M).

For instance, the inputs of the corresponding task
to the method initializeX of the class Foo, shown in
Listing 1, are the receiving object and the parameter
y, whereas the output of this task is the receiving ob-
ject because its attribute x is defined in the method
initializeX (in Line 17).

3.3.1 Computing DEF and USE sets

We consider that assignment on a variable of a prim-
itive type (type which is not a class) is a DEF op-
eration. All others operations on primitive variables
are considered as USE ones (Martena et al., 2002).
However, we consider that operations on an object
are DEF ones in the following cases: 1) this opera-
tion defines some of the attributes of the object 2) it
is a constructor invocation 3) it is a call of a method
that modifies this object (Chen and Kao, 1999). Oth-
erwise, these operations are of USE category.

Determining whether an input INDATA of a
method M (i.e. a parameter or the receiving object)
belongs to DEF or to USE sets depends on the DEF

and USE sets of the methods called by M. An input
INDATA of M is considered as defined (resp., used) if
it is defined (resp., used) by either 1) a statement of
M which is not a method invocation (e.g. assignment,
etc) or 2) at least one of the methods invoked by M.
More precisely, an input INDATA is considered as de-
fined (resp., used) in a called method CalledM by M
in two cases:

• Case 1: INDATA is the receiving object of the in-
vocation of CalledM and the DEF(resp., USE) set
of CalledM contains at least one of the attribute
of INDATA. For example, the receiving object of
the invocation of the method initilizeX in Line 21
(see Listing 1) is considered as defined because
the the method initializeX defines the attribute x
of the receiving object in Line 17.

• Case 2: INDATA is passed as a parameter in the
invocation of CalledM and its corresponding for-
mal parameter is in the DEF(resp., USE) set of
CalledM. For example, the input y passed as pa-
rameter in the invocation of the method initializeX
in Line 21 (see Listing 1) is considered as used be-
cause its corresponding formal parameter (i.e. y)
is used in the method initializeX Line 17.

The above constraints related to computing DEF
sets are formalized below:

−−−−−−−−−−−−−−−−−−−−−−
− INDATA is defined in M1
− ∃ stat ∈ {Statements(M)−MethodCalls(M)}
...2
− INDATA is defined in stat............................3
− ∃ call ∈MethodCalls(M)..............................4
− ReceivingObj(call)= INDATA......................5
− ∃ attribute ∈ AttributeO f (INDATA)6
− attribute ∈ DEF(CorrespondingMethod(call))
...7
− INDATA∈ ActualParameter(call).................8
− FormalParameter(INDATA) ∈
DEF(CorrespondingMethod(call))...................9
−−−−−−−−−−−−−−−−−−−−−−
1⇒ (2 ∧ 3) ∨ (4 ∧ ((5 ∧ 6 ∧7) ∨ (8 ∧ 9)))
−−−−−−−−−−−−−−−−−−−−−−

Where:

• Statements(M) denotes the set of statements of
M.

• MethodCalls(M) represents the set of method
calls in M.

• ReceivingOb j(call) specifies the receiving object
of a method call.

• AttributeO f (INDATA) denotes the set of at-
tributes of INDATA.

• ActualParameter(call) specifies the set of actual
parameter in a call.

• FormalParameter(INDATA) denotes the corre-
sponding formal parameter of an actual parameter
INDATA.

• CorrespondingMethod(call) represents the
called method in call.

Note that, by replacing the DEF set with USE
set in the former formula, it specifies when an input
INDATA is considered as used.

To compute DEF and USE sets, an analysis order
of methods is required. For example, to compute DEF
and USE sets of the method m (see Listing 1), DEF
and USE sets of the called methods on the attribute
foo (initializeX, getX and incX) are required to check
whether foo is defined and/or used.

The built call graph allows the definition of a topo-
logical total order of its nodes. Analyzing meth-
ods according to this order guarantees that a called
method is always analyzed before its caller. The first
methods in the total order are the ones that do not in-
voke others. These methods correspond to the leaves
of the graph.

Figure 6: Acyclic call graph.

In the presence of direct or indirect recursion, the
call graph contains cycles, and hence it is not pos-
sible to determine an order. To tackle this problem,
each cycle in the graph is replaced by a representa-
tive node allowing the definition of a total order. The
call graph nodes are then analyzed following this or-
der. If a node represents a method, then DEF and USE
sets are computed using the former constraints. If the
node is a representative, DEF and USE sets of each
method in the cycle represented by this node are com-
puted, firstly, without considering calls to the meth-
ods belonging to the cycle, and then these sets are re-
computed while taking into account the calls between
the methods of the cycle.

Table 1: DEF/USE sets of the methods shown in Listing 1

Method DEF set USE set
initializeX {x} {y}

getX /0 {x}
setX {x} {x, y, isDifferent}
incX {x} {x, y}

m {foo} {foo}
main {bar} {bar}

For example, to compute DEF and USE sets of the
methods shown in Listing 1, the cycle containing
methods setX and incX is replaced with a represen-
tative node (see Figure 6) allowing the definition of
the following order: 1) Foo.initializeX, 2) Foo.getX,
3) Cycle1, 4) Bar.m and 5)Main.main. Table 1 shows
DEF and USE sets computed for these methods.

4 CONTROL AND DATA FLOWS
RECOVERY

4.1 Control Flow Recovery

The recovery of workflow requires to build the corre-
sponding control flow. This later describes the exe-
cution order of tasks. The control flow of composite
ones describes the execution order of their enclosed
tasks. In our approach, we represent a control flow as
a graph, i.e. a Control Flow Graph (CFG). A CFG is
a graph where a node represents either a method call,
a predicate or a control. A predicate specifies a condi-
tion used in a control statement such as if statement.

Figure 7: The CFG corresponding to the task mapped to
the method m of the class Foo shown in Listing 1.

Each node representing a method call or a predi-
cate is labeled based on its line number in the source
code. Edges of the CFG indicates the execution order
of method calls and evaluation of predicates.

A CFG is built incrementally by traversing the
statements, which represents the body of the corre-
sponding method to this task (see Figure 7).

In the CFG, a node can represent a method call. If
the latter is dynamically dispatched, the exact method
to call can not be resolved statically (at compile time).
To be able to build a CFG statically, our idea is
to refactor each dynamically dispatched call by re-
placing it with nested if-then statements. In these
statements, conditions represent the possible run-time
types of the receiving object of the call, while the
branches are the different implementations of the
called method in each possible receiving object type.
Figure 8 shows an example of a CFG recovered in
the presence of dynamically dispatched calls. The
method m1 of the class Bar invokes the method incX
of the class Foo or the class FooExp. Hence, the corre-
sponding CFG contains a path for each possible run-
time type of the receiver.

Figure 8: Example a CFG recovered in the presence of
dynamic binding.

4.2 Data Flow Recovery

In addition to the identification of the tasks and their
inputs/outputs (see Section 3.3), the construction of
a workflow also requires the identification of depen-
dency links between the data of these tasks (i.e. which
output data of a task represents an input data of an-
other one). These dependency links constitute the
data flow. We present a data flow as a graph, a Data
Flow Graph (DFG) which have the same nodes of a
CFG. However, an edge is created between two nodes
Ni and N j if a variable v defined in Ni is used in N j.
This edge is then labeled using the name of the vari-
able v (see Figure 9).

It should be noted that a composite task encloses
other primitive and composite ones.Thus, a data flow
is recovered for each composite task so as to deter-
mine data dependencies between its enclosed tasks.

To build a DFG for a composite task, we com-
pute def-use triplets for the method mapped to this
task. Each triplet (var, def, use) specifies respectively
the name of a variable, the line number at which this
variable is defined and the line number at which it is
used. As explained in section 4.1, CFG nodes are la-
beled based on the corresponding line numbers in the
program. Hence, a data flow edge is created between
two nodes denoted by k and l if a def-use triplets (v, k,
l) exists.

For example, in Figure 9 an edge is created be-
tween nodes denoted by 21 and 22 due to the exis-
tence of a triplet (foo,21,22). In the rest of this section,
the process of computing def-use triplets is explained
in details.

Figure 9: The DFG corresponding to the task mapped to
the method m of the class Foo shown in Listing 1.

4.2.1 Computing Def-Use Triplets

Computing def-use triplets is performed in three
steps. The first step allows to compute VarUsed sets.
It consists in determining variables used in each CFG
node. The goal of the second step is to compute
ReachDef sets. It is the specification of definitions
that reach each node of the CFG. A definition of a
variable v in a node Ni, denoted (v,Ni), reaches a node
N j if there is a path in the CFG between Ni and N j
without a redefinition of v. In the third step, def-use
triplets are computed using VarUsed and ReachDef
sets.

Step1: Computing VarUsed set: in order to com-
pute the VarUsed sets, first we compute DEF and
USE sets (see section 3.3.1). For each node in the
CFG representing a method call, the receiving object

is used if at least one of its attributes is in the USE
set of the invoked method. An effective parameter is
used if its corresponding formal parameter is in the
USE set of the invoked method. The VarUsed of a
predicate node contains variables which are used in
the corresponding expression.

Step2: Computing ReachDef set: to determine
reaching definitions, first we compute DEF sets, i.e.
definitions produced by each node. For each node in
the CFG that represents a method call, the receiving
object is considered as defined if at least one of its
attributes is in the DEF set of the invoked method.
An effective parameter is considered as defined if its
corresponding formal parameter is in the DEF set of
the invoked method.

Once definitions produced by each node are spec-
ified, reaching definition are determined using the
propoagation algorithm proposed by Aho Alfred et al.
(Aho Alfred et al., 1986).

Step3: Computing def-use triplets: for each
CFG node N, a triplet (v,def,N) is constructed if v ∈
VarUsed(N) and (v,def) ∈ ReachDef(N).

Table 2: VarUsed and ReachDef computed for each node of
the CFG shown in Figure 7

Node VarUsed ReachDef
21 /0 /0

22 {foo} {(foo, 21)}

23 {x} {(foo, 21), (foo,24), (x,22),
(x,24)}

24 {x,foo} {(foo, 21), (foo,24), (x,22),
(x,24)}

For example, using VarUsed and ReachInDef
sets (see Table 2) computed for each node of
the CFG shown in Figure 7, def-use triplets con-
structed are (foo,21,22), (foo,21,24), (foo,24,24),
(x,22,23),(x,22,24), (x,24,24) and (x,24,23).

5 WORKFLOW
IMPLEMENTATION

In the previous sections, we showed how elements
of the workflow mapping an OO application can be
identified. In order to be able to execute the work-
flow, we present in this section the workflow imple-
mentation. The corresponding implementation model
is represented in Figure 10. In this model each task is
an instance of the class Task. It has a list of input data
and a list of output data. To execute a task, we need to
invoke the method run on the corresponding instance.

If a task is primitive, the method run initializes in-
puts and invokes the method mapped to this task. Oth-
erwise, instances corresponding to the elements of the
composite task are created and their methods run are
executed. These elements can be either control con-
structs or other tasks. The order of execution of these
elements is defined by the attribute task taskSubele-
ments.

Similarly, to run a control construct (if construct
or while construct), an instance corresponding to this
construct is created and its run method is invoked.
The run method initializes control construct inputs
and evaluates its condition. For example, in the
case of while construct, if the condition is true then
instances corresponding to the elements of the list
whileElements are created and their run methods are
executed.

Figure 10: Workflow implementation model

6 EXPERIMENTATION AND
VALIDATION

6.1 Data Collection

As a proof of concept of the proposed refactoring pro-
cess, we performed a case study on two applications.
Table 3 provides insight into the nature of the used
applications in our case study.

Table 3: Applications characteristics

Application
name

No of
classes

No of
methods

No of lines
of code

eLib 9 80 555
PostOffice 6 57 231

eLib application is a Java program that supports
the main functions operated in a library: 1) insert
and remove of users/documents, search for users/doc-
uments and loan management. Its code is provided in
(Tonella and Potrich, 2005).

PostOffice application is also a Java program that
computes for each postal item its postage fee and its
reimbursement rate. In addition, it prints item infor-
mation. There are three types of postal items: letters,
parcels and express parcels.

6.2 Refactoring Results

We applied the workflow refactoring process on the
source code of each application in order to generate
the corresponding workflow.

As explained previously, the first step in our refac-
toring process is task identification which requires
applying extract method refactoring. Table 4 shows
the applications characteristics after applying extract
method refactoring using the built in functionality Ex-
tract method within eclipse IDE.

As we can notice, the number of methods after ap-
plying extract method refactoring increased by an av-
erage of 27,15% with a standard deviation of 16,61.
This can be explained by the fact that new methods
were created depending on the number of fragments
to be extracted, i.e. fragments consisting of state-
ments delimited by user method invocations that be-
long to the same block, in the application’source code.

Table 4: Applications characteristics after applying extract
method refactoring

Application No of
classes

No of
meth-
ods

No of
lines
of
code

% of the
added
methods

eLib 9 115 788 43,75%
PostOffice 6 63 341 10,53%

Once the code is refactored, we analyze it to iden-
tify tasks. Table 5 shows the results in term of number
of primitive and composite tasks for each application,
as well as the total number of identified tasks. This
total number equals the number of methods in the OO
application since each method is mapped to a task in
a workflow.

Table 5: Workflow refactoring results

Application No of
primitive
tasks

No of
composite
tasks

Total

eLib 80 35 115
PostOffice 51 12 63

To demonstrate that the code of the generated
workflow preserves the semantic of the original one,
we executed both the code corresponding to this
workflow and the one corresponding to the analyzed
OO application based on the same test suite. We
found out that the produced results are the same.

6.3 Threats to Validity

6.3.1 Threats to Internal Validity

There are four aspects to be considered regarding the
internal validity. These are as follows:

1. Control flow recovery from OO source code in
the presence of polymorphism and dynamic bind-
ing requires taking into account all the possible
run-time types of a receiver, as explained in sec-
tion 4.1. Therefore, if a method contains N virtual
calls and each one have M run-time types of a re-
ceiver, the CFG will contain at least N*M paths.
Hence, the scalability of our approach is not as-
sured. As a solution, we count to combine dy-
namic and static analysis. Dynamic analysis is
used to determine the exact run-time type of a re-
ceiver, while static analysis collect the rest of in-
formation, i.e. methods, parameters, etc.

2. In our case studies, we constructed CFGs with-
out considering exception-handling. This requires
to extend our control flow recovery method to be
able to handle implicit transfers related to excep-
tion raising.

3. The presence of aliasing does not affect the ap-
plicability of our approach. The only requirement
for our data flow recovery in the presence of alias
is the availability of some alias analysis (Clarke
et al., 2013).

4. In our approach, we used Extract method refactor-
ing to restructure code. However, the statements
to be extracted are not functionally related. As
a perspective, we will restructure the code to ob-
tain methods that have a purpose (Charalampidou
et al., 2016) (Kaya and Fawcett, 2016) (Kaya and
Fawcett, 2013).

6.3.2 Threats to External Validity

There are two aspects to be considered regarding the
external validity. These are as follows:
1. The approach was experimented on applications

implemented using Java programming language.
However, OO languages (e.g., C++, C#, etc) have
the same structure.

2. Only two case studies have been collected in the
experimentation. Hence, the approach needs to be
validated with a large number of case studies.

7 RELATED WORKS

Zou et al. (Zou et al., 2004) proposed an ap-
proach to recover a workflow from the source code
of an e-commerce application. In order to recover this
workflow, the authors identified a set of mapping rules
that associates workflow entities to source code enti-
ties. However, applying these mapping directly will
probably generate a workflow that contains a large
number of irrelevant entities that do not map to any
entities in the as-specified workflow. To tackle this
problem, the authors proposed a set of heuristics to
reduce the entities that have been selected. In (Zou
and Hung, 2006), Zou et al. proposed an ameliora-
tion to their recovery process in order to automate the
mapping between source code entities and business
process entities. They propose to lift the abstraction
level of the extracted control flow because it usually
contains more programming language specific control
constructs, for example checking whether a variable is
null.

In addition to previous works that are related to
workflow extraction, other works suggested to reverse
engineer others abstract models by analyzing source
code. In fact, reverse engineering of OO source code
have been widely studied in literature. The aim is to
generate models which allow the understanding of the
structure, such as class diagrams (Budhkar and Gopal,
2011), and behavior, like activity diagrams, interac-
tion diagrams and workflows.

Several tools have been developed to recover an
activity diagram from source code. Kosower and
Lopez-Villarejo (Kosower and Lopez-Villarejo, 2015)
proposed a tool, named Flowfen, to generate a set
of interconnected activity diagrams from annotated
C++ code. Each diagram represents a method in the
source code. In order to recover these diagrams, the
authors proposed that developers annotate the C++
code. Mainly, the annotations are used to: specify
the statement or the sequence of statements that rep-
resents an activity, specify controlling conditions and

return value in a human readable way. The tool uses
annotations along with control structures to provide
activity diagrams.

Korshunova et al. (Korshunova et al., 2006) pro-
posed a reverse engineering tool, named CPP2XMI,
which allows extracting UML class, sequence, and
activity Diagrams in XMI format from C++ source
code. However, the recovery process of these dia-
grams had not been explained in details.

In our work, we use the Def-use triplets construc-
tion. This technique has been widely used in litera-
ture (Chen and Kao, 1999; Buy et al., 2000; Martena
et al., 2002). For example, Chen and Kao (Chen
and Kao, 1999) proposed an approach to construct
two types of def-use triplets: 1) intra-method def-use
triplets in which the definition and the use of a vari-
able are in the same method and 2) inter-method def-
use triplets in which the definition and the use of a
variable are in different methods. The def-use triplets
constructed in our approach are intra-method def-use
triplets because we are interested in determining data
dependencies between the sub-tasks of each compos-
ite task, and not between sub-tasks of different com-
posite tasks.

Buy et al. (Buy et al., 2000) identified def-use
triplets for a single class. Each triplet specifies the
method that defines and the one that uses the same at-
tribute. However, their approach works only on scalar
attributes. Martena et al. (Martena et al., 2002) ex-
tended this approach so as to handle attributes even if
they are objects. Their idea is to classify methods of
each class in three categories: modifier, user and user-
modifier, based on whether a method defines and/or
uses class attributes. When a method is invoked on an
object, using this classification, it is possible to deter-
mine only whether the object is defined and/or used.

Compared to existing approaches, we proposed
a fully automatic approach that generates a work-
flow, unlike the one proposed by Kosower and Lopez-
Villarejo (Kosower and Lopez-Villarejo, 2015). Their
approach needs human interactions to add annotations
which is not an easy task. Especially for large appli-
cations, containing millions of lines of code. More-
over, the generated workflow can be executed con-
trary to the workflow produced by Zou and al (Zou
et al., 2004) which can be used as a documentation
only. It is worthy to note that due to the fact that
the generated workflow has a hierarchical structure,
it can be used for documentation as well. It is up to
the one using it (e.g. developer, architect, etc.) to
decide at which level of details he wants to stop. In
addition, unlike the workflow produced by Zou and al
(Zou et al., 2004), data dependencies between tasks
are explicitly expressed in our workflow. To the best

of our knowledge, only our approach recovers both
data and control flows from source code.

Note that, several works rely on workflows in or-
der to perform dynamic configuration to optimize re-
sources usage in the cloud, and thus to reduce exe-
cution costs (Zhu et al., 2016; Masdari et al., 2016;
Fakhfakh et al., 2014; Xu et al., 2009; Lin and Lu,
2011). In our future works, we intend either to use
these works to run the generated workflow or to pro-
pose a new approach inspired from them.

8 CONCLUSION

The main contribution of the work presented in
this paper is the refactoring of OO source code to
generate a workflow. For this purpose, first a map-
ping model between OO programming concepts and
workflow concepts was defined. In order to identify
the mapping, a three steps process was proposed. It
is worthy to note that the generated workflow can be
used to deploy code and data on paying platforms
such as the cloud and reducing execution costs. As
a part of future work, we plan to apply our approach
on real and complex case studies. In addition to this,
we intend to improve the generated workflow by en-
hancing the granularity level of the identified tasks. In
fact, some of them are fin-grained. Finally, we plan to
propose an approach to run the generated workflow
on the cloud while reducing costs.

REFERENCES

Aho Alfred, V., Ravi, S., and Ullman Jeffrey, D. (1986).
Compilers: principles, techniques, and tools. Read-
ing: Addison Wesley Publishing Company.

Bass, L. (2007). Software architecture in practice. Pearson
Education India.

Budhkar, S. and Gopal, A. (2011). Reverse engineering java
code to class diagram: An experience report. Inter-
national Journal of Computer Applications, 29(6):36–
43.

Buy, U., Orso, A., and Pezze, M. (2000). Automated testing
of classes. In ACM SIGSOFT Software Engineering
Notes, volume 25, pages 39–48. ACM.

Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A.,
Gkortzis, A., and Avgeriou, P. (2016). Identifying ex-
tract method refactoring opportunities based on func-
tional relevance. IEEE Transactions on Software En-
gineering.

Chen, M.-H. and Kao, H. M. (1999). Testing object-
oriented programs-an integrated approach. In Soft-
ware Reliability Engineering, 1999. Proceedings.
10th International Symposium on, pages 73–82. IEEE.

Clarke, D., Wrigstad, T., and Noble, J. (2013). Aliasing
in Object-oriented Programming: Types, Analysis and
Verification, volume 7850. Springer.

Dillon, T., Wu, C., and Chang, E. (2010). Cloud comput-
ing: issues and challenges. In Advanced Information
Networking and Applications (AINA), 2010 24th IEEE
International Conference on, pages 27–33. Ieee.

Espadas, J., Molina, A., Jiménez, G., Molina, M., Ramı́rez,
R., and Concha, D. (2013). A tenant-based resource
allocation model for scaling software-as-a-service ap-
plications over cloud computing infrastructures. Fu-
ture Generation Computer Systems, 29(1):273–286.

Fakhfakh, F., Kacem, H. H., and Kacem, A. H. (2014).
Workflow scheduling in cloud computing: A survey.
In Enterprise Distributed Object Computing Confer-
ence Workshops and Demonstrations (EDOCW), 2014
IEEE 18th International, pages 372–378. IEEE.

Garlan, D. and Shaw, M. (1993). An introduction to soft-
ware architecture. Advances in software engineering
and knowledge engineering, 1(3.4).

Hollingsworth, D. (1995). Workflow management coali-
tion: The workflow reference model.

Kaur, N., Aulakh, T. S., and Cheema, R. S. (2011). Com-
parison of workflow scheduling algorithms in cloud
computing. International Journal of Advanced Com-
puter Science and Applications, 2(10).

Kaya, M. and Fawcett, J. W. (2013). Identifying extract
method opportunities based on variable references (s).
In SEKE, pages 153–158.

Kaya, M. and Fawcett, J. W. (2016). Identification of extract
method refactoring opportunities through analysis of
variable declarations and uses. International Journal
of Software Engineering and Knowledge Engineering,
pages 1–21.

Korshunova, E., Petkovic, M., Van Den Brand, M., and
Mousavi, M. R. (2006). Cpp2xmi: reverse engi-
neering of uml class, sequence, and activity diagrams

from c++ source code. In Reverse Engineering, 2006.
WCRE’06. 13th Working Conference on, pages 297–
298. IEEE.

Kosower, D. A. and Lopez-Villarejo, J. J. (2015). Flowgen:
Flowchart-based documentation for c++ codes. Com-
puter Physics Communications, 196:497–505.

Lin, C. and Lu, S. (2011). Scheduling scientific workflows
elastically for cloud computing. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on,
pages 746–747. IEEE.

Martena, V., Orso, A., and Pezze, M. (2002). Interclass
testing of object oriented software. In Engineering
of Complex Computer Systems, 2002. Proceedings.
Eighth IEEE International Conference on, pages 135–
144. IEEE.

Masdari, M., ValiKardan, S., Shahi, Z., and Azar, S. I.
(2016). Towards workflow scheduling in cloud com-
puting: A comprehensive analysis. Journal of Net-
work and Computer Applications, 66:64–82.

Mell, P., Grance, T., et al. (2011). The nist definition of
cloud computing.

Russell, N., Ter Hofstede, A. H., Van Der Aalst, W. M., and
Mulyar, N. (2006). Workflow control-flow patterns: A
revised view. BPM Center Report BPM-06-22, BPM-
center. org, pages 06–22.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009).
Software architecture: foundations, theory, and prac-
tice. Wiley Publishing.

Tonella, P. and Potrich, A. (2005). Reverse Engineering
of Object Oriented Code. Monographs in Computer
Science. Springer.

Wu, Z., Liu, X., Ni, Z., Yuan, D., and Yang, Y. (2013).
A market-oriented hierarchical scheduling strategy in
cloud workflow systems. The Journal of Supercom-
puting, pages 1–38.

Xu, M., Cui, L., Wang, H., and Bi, Y. (2009). A multiple qos
constrained scheduling strategy of multiple workflows
for cloud computing. In Parallel and Distributed Pro-
cessing with Applications, 2009 IEEE International
Symposium on, pages 629–634. IEEE.

Zhu, Z., Zhang, G., Li, M., and Liu, X. (2016). Evolu-
tionary multi-objective workflow scheduling in cloud.
IEEE Transactions on Parallel and Distributed Sys-
tems, 27(5):1344–1357.

Zou, Y. and Hung, M. (2006). An approach for extract-
ing workflows from e-commerce applications. In Pro-
gram Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on, pages 127–136. IEEE.

Zou, Y., Lau, T. C., Kontogiannis, K., Tong, T., and McK-
egney, R. (2004). Model-driven business process re-
covery. In Reverse Engineering, 2004. Proceedings.
11th Working Conference on, pages 224–233. IEEE.

