
HAL Id: lirmm-04352990
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04352990

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPT algorithms for packing k-safe spanning rooted
sub(di)graphs

Stéphane Bessy, Florian Hörsch, Ana Karolinna Maia, Dieter Rautenbach,
Ignasi Sau

To cite this version:
Stéphane Bessy, Florian Hörsch, Ana Karolinna Maia, Dieter Rautenbach, Ignasi Sau. FPT algorithms
for packing k-safe spanning rooted sub(di)graphs. Discrete Applied Mathematics, 2024, 346, pp.80-94.
�10.1016/j.dam.2023.11.026�. �lirmm-04352990�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04352990
https://hal.archives-ouvertes.fr

FPT algorithms for packing k-safe spanning rooted
sub(di)graphs
Stéphane Bessy
LIRMM, Université de Montpellier, CNRS, Montpellier, France
stephane.bessy@lirmm.fr

Florian Hörsch
Technisch Universität Ilmenau, Ilmenau, Germany
florian.hoersch@tu-ilmenau.de

Ana Karolinna Maia
Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
karolmaia@ufc.br

Dieter Rautenbach
Institute of Optimization and Operations Research, Ulm University, Germany
dieter.rautenbach@uni-ulm.de

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Abstract

We study three problems introduced by Bang-Jensen and Yeo [Theor. Comput. Sci. 2015] and
by Bang-Jensen, Havet, and Yeo [Discret. Appl. Math. 2016] about finding disjoint “balanced”
spanning rooted substructures in graphs and digraphs, which generalize classic packing problems
such as detecting the existence of mutiple arc-disjoint spanning arborescences. Namely, given a
positive integer k, a digraph D = (V, A), and a root r ∈ V , we first consider the problem of finding
two arc-disjoint k-safe spanning r-arborescences, meaning arborescences rooted at a vertex r such
that deleting any arc rv and every vertex in the sub-arborescence rooted at v leaves at least k vertices.
Then, we consider the problem of finding two arc-disjoint (r, k)-flow branchings meaning arc sets
admitting a flow that distributes one unit from r to every other vertex while respecting a capacity
limit of n − k on every arc. We show that both these problems are FPT with parameter k, improving
on existing XP algorithms. The latter of these results answers a question of Bang-Jensen, Havet, and
Yeo [Discret. Appl. Math. 2016]. Further, given a positive integer k, a graph G = (V, E), and r ∈ V ,
we consider the problem of finding two edge-disjoint (r, k)-safe spanning trees meaning spanning
trees such that the component containing r has size at least k when deleting any vertex different
from r. We show that this problem is also FPT with parameter k, again improving on a previous
XP algorithm. Our main technical contribution is to prove that the existence of such spanning
substructures is equivalent to the existence of substructures with size and maximum (out-)degree
both bounded by a (linear or quadratic) function of k, which may be of independent interest.

2012 ACM Subject Classification Design and analysis of algorithms → Fixed parameter tractability.

Keywords and phrases Digraphs, packing problems, arborescences, branching flows, safe spanning
trees, parameterized complexity, fixed-parameter tractability.

Funding Stéphane Bessy: DIGRAPHS (ANR-19-CE48-0013-02).
Ana Karolinna Maia: FUNCAP Pronem 4543945/2016 and CAPES/STIC-AmSud 88881.197438/2018-01.
Ignasi Sau: DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), ELIT (ANR-20-
CE48-0008-01), and French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

https://orcid.org/0000-0001-7130-4990
mailto:stephane.bessy@lirmm.fr
mailto:florian.hoersch@tu-ilmenau.de
https://orcid.org/0000-0002-9027-7948
mailto:karolmaia@ufc.br
https://orcid.org/0000-0002-7214-042X
mailto:dieter.rautenbach@uni-ulm.de
https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr

2 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

1 Introduction

This article deals with finding certain disjoint substructures in graphs and digraphs. Through-
out the article, when given a graph or a digraph, we use n for its number of vertices.

All graphs and digraphs considered in this paper are loopless, but may have multiple
edges or arcs. Given a graph G = (V, E), we say that an edge e = uv is incident to u and
v. For some X ⊆ V , we denote by dG(X) the number of edges that are incident to exactly
one vertex in X. For some v ∈ V , we use NG(v) for the set of vertices w such that there
is an edge in E between v and w. Further, we use δG(v) for the set of edges incident to v

and dG(v) for |δG(v)|. A vertex v ∈ V with dG(v) = 1 is called a leaf of G. A rooted graph
is a graph G = (V + r, E) with a special vertex r called the root. Note that r /∈ V and
V (G) = V + r. If G = (r, ∅), we say that r is a terminal of G. Otherwise, the set of terminals
in G is the set of leaves in V .

Given a digraph D = (V, A) and some X ⊆ V , we use δ−
D(X) (resp. δ+

D(X)) for the set of
arcs entering (resp. leaving) X. We use d−

D(X) (resp. d+
D(X)) for |δ−

D(X)| (resp. |δ+
D(X)|).

For a single vertex v, we abbreviate δ+
D({v}) (resp. δ−

D({v}), d+
D({v}), d−

D({v})) to δ+
D(v)

(resp. δ−
D(v), d+

D(v), d−
D(v)). We call d−

D(v) (resp. d+
D(v)) the in-degree (resp. out-degree) of

v. We use N+
D (v) for the set of vertices w such that there is an arc in A from v to w. A

vertex v ∈ V with d+(v) = 0 is called a sink of D. Subscripts may be omitted when they are
clear from the context. The underlying graph of D is obtained by replacing each arc of A by
an edge between the same two vertices. A rooted digraph is a digraph D = (V + r, A) with
a special vertex r, called the root, whose in-degree is 0. As before, observe that r /∈ V and
V (D) = V + r.

Packing k-safe spanning r-arborescences. The first objects we deal with are called
arborescences. We remark here that the term out-branching is used in [3] to describe the
same object. An r-arborescence is a directed graph X = (V + r, A) such that the underlying
graph of X is a tree, the in-degree of r is 0 in X, and the in-degree of all other vertices is
1 in X. We say that r is the root of X. Observe that every v ∈ V is the root of a unique
maximal subarborescence of X. We denote this subarborescence by Bv

X . Given a digraph D,
an r-arborescence X that is a subdigraph of D is spanning in D if it has the same vertex set
as D. The following is a fundamental result in digraph theory.

▶ Theorem 1 (Edmonds [6]). Let D = (V + r, A) be a rooted digraph and k a positive
integer. There exists a set of k arc-disjoint spanning r-arborescences in D if and only if
d−

D(X) ≥ k for every ∅ ≠ X ⊆ V.

A number of alternative proofs of Theorem 1 have been found, several of which are
algorithmic and yield polynomial-time algorithms to find the desired arc-disjoint spanning
r-arborescences, if they exist [7, 11].

This naturally raises the question whether we also can efficiently find spanning arbores-
cences satisfying some extra properties. This consideration, as well as practical applications
concerning protection against arc failures, motivated Bang-Jensen and Yeo [4] to introduce
the notion of k-safe spanning arborescences. For a positive integer k, an r-arborescence
X = (V + r, A) is called k-safe if n − |V (Bv

X)| ≥ k for every v ∈ V . Notice that it is enough
that only the out-neighbours of r satisfy this latter condition for X to be k-safe. They
proved a negative result showing that in general even the problem of finding a single k-safe
spanning r-arborescence is hard. More specifically, they showed that deciding whether a
rooted digraph D = (V + r, A) has an (n − k)-safe spanning r-arborescence is NP-complete
for any fixed k ≥ 3.

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 3

In this light, a characterization in the shape of Theorem 1 clearly seems out of reach. It
nevertheless remains interesting to investigate the possibility of finding arc-disjoint k-safe
spanning r-arborescences for small values of k. This question has been dealt with by Bang-
Jensen, Havet, and Yeo [3]. On the negative side, they implicitly proved the following result,
which shows that there is little hope to algorithmically find arc-disjoint k(n)-safe spanning
r-arborescences if k is a function that does not grow too slowly. While a polynomial-time
algorithm for the problem they consider would not imply P = NP, it would imply the failure
of the Exponential Time Hypothesis (ETH for short) of Impagliazzo and Paturi [9], stating
that there is an ε > 0 such that there is no algorithm for solving a 3-Sat formula with ℓ

variables and m clauses in time 2εℓ · (ℓ + m)O(1).

▶ Theorem 2 (Bang-Jensen, Havet, and Yeo [3]). Suppose that the ETH holds, let ε > 0 be
arbitrary and let k : Z≥0 → Z≥0 be a function such that (log(n))1+ε ≤ k(n) ≤ n

2 for every
n > 0. Further, suppose that there exists a constant C∗ such that for every integer c ≥ C∗

there exists an n such that k(n) = c. Then there is no algorithm running in time nO(1)

for deciding whether a given rooted digraph D = (V + r, A) has two arc-disjoint k(n)-safe
spanning r-arborescences.

In particular, it is possible to obtain the following lower bound for the running time of
any algorithm deciding whether a given rooted digraph D = (V + r, A) has two arc-disjoint
k(n)-safe spanning r-arborescences.

▶ Corollary 3. Unless the ETH fails, there is no algorithm deciding whether a given rooted
digraph D = (V + r, A) has two arc-disjoint k-safe spanning r-arborescences that runs in
2c·k1−ε · nO(1) time for some ε > 0 and c > 0.

Indeed, if an algorithm as above existed, for k(n) := (log(n))1+ε, we would obtain an
algorithm running in time 2c·(log(n))(1+ε)(1−ε) · nO(1) = nO(1), contradicting Theorem 2.

On the positive side, they show that the problem becomes tractable when fixing the value
of k. While the main results considered in this article hold for finding an arbitrary number
of disjoint objects, we only present the case where we want to find just two of them, in order
to avoid technicalities. In Section 7 we discuss the generalization to more than two objects.

▶ Theorem 4 (Bang-Jensen, Havet, and Yeo [3]). Deciding whether a given rooted digraph D =
(V + r, A) contains two arc-disjoint k-safe spanning r-arborescences is XP with parameter k.

The definition of the classes XP and FPT can be found in Subsection 2.5. Our first
contribution is to improve Theorem 4 by showing that the problem is fixed-parameter
tractable (FPT).

▶ Theorem 5. Deciding whether a given rooted digraph D = (V + r, A) contains two arc-
disjoint k-safe spanning r-arborescences is FPT with parameter k. More precisely, it can be
solved in time 2O(k2·log k) · nO(1). Further, if they exist, the two arc-disjoint k-safe spanning
r-arborescences can be computed within the same running time.

Packing (r, k)-flow branchings. The second structure we consider, which was introduced
by Bang-Jensen and Bessy [1], builds a connection between the theory of finding arc-disjoint
spanning arborescences and flow problems. A flow in a rooted digraph X = (V + r, A) is
a function z : A → Z≥0. For some A′ ⊆ A, we abbreviate

∑
a∈A′ z(a) to z(A′). Recall

that n = |V |+. Given a capacity function c : A → Z≥0, an (r, n − c)-branching flow is a
flow z : A → Z≥0 such that z(a) ≤ c(a) for every a ∈ A, z(δ+(r)) − z(δ−(r)) = n − 1 and

4 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

z(δ−(v)) − z(δ+(v)) = 1 for every v ∈ V . In other words, the idea is that z reaches all
vertices of X from r and each vertex other than r retains one unit of flow. If X admits an
(r, n − c)-branching flow, we say that X is an (r, n − c)-flow branching. If for some positive
integer k, we have c(a) = n − k for all a ∈ A, we speak of an (r, k)-branching flow and an
(r, k)-flow branching. Given a digraph D, an (r, k)-flow branching X that is a subdigraph
of D is spanning in D if it has the same vertex set as D. If D admits a k-safe spanning
r-arborescence, then it is easy to see that D is an (r, k)-flow branching, but the converse is
not necessarily true, as pointed out in [3]. In particular, observe that the underlying graph
of an arc-minimal (r, k)-flow branching is not necessarily acyclic.

Bang-Jensen and Bessy [1] showed that the problem of deciding if a rooted digraph has
two arc-disjoint spanning flow branchings is NP-complete if every arc has capacity at most
two. This result has been strengthened in [3] to the case of capacities all being equal to
some fixed k ≥ 2. The following result is proven in [3]. It shows that there is little hope to
algorithmically find arc-disjoint spanning (r, k(n))-flow branchings if k is a function that does
not grow too slowly. It can be viewed as an analogue of Theorem 2 for (r, k)-flow branchings.

▶ Theorem 6 (Bang-Jensen, Havet, and Yeo [3]). Suppose that ETH holds, let ε > 0 be
arbitrary and let k : Z≥0 → Z≥0 be a function such that (log(n))1+ε ≤ k(n) ≤ n

2 for every
n > 0. Further, suppose that there exists a constant C∗ such that for every integer c ≥ C∗

there exists an n such that k(n) = c. Then there is no algorithm running in time nO(1)

for deciding whether a given rooted digraph D = (V + r, A) has two arc-disjoint spanning
(r, k(n))-flow branchings.

In a similar way as Corollary 3 can be concluded from Theorem 2, the following result is
obtained from Theorem 6.

▶ Corollary 7. Unless the ETH fails, there is no algorithm deciding whether a given rooted
digraph D = (V + r, A) has two arc-disjoint spanning (r, k)-flow branchings that runs in
2c·k1−ε · nO(1) time for some ε > 0 and c > 0.

On the other hand, the problem of finding arc-disjoint spanning (r, k)-flow branchings
for some small values of k turns out to be more tractable. The study of such spanning flow
branchings has surprisingly many similarities with the study of k-safe spanning arborescences.
Bang-Jensen and Bessy [1] showed that the case k = 1 can be solved in polynomial time.
This result was again generalized by Bang-Jensen, Havet, and Yeo [3], who proved that the
problem can be solved in polynomial time for every fixed value of k ≥ 1. The following result
can be viewed as an analogue of Theorem 4 for (r, k)-flow branchings.

▶ Theorem 8 (Bang-Jensen, Havet, and Yeo [3]). Deciding whether a given rooted digraph D =
(V + r, A) contains two arc-disjoint spanning (r, k)-flow branchings is XP with parameter k.

The authors of [3] ask whether the above problem is FPT. Our second contribution is an
affirmative answer to this question.

▶ Theorem 9. Deciding whether a given rooted digraph D = (V + r, A) contains two arc-
disjoint spanning (r, k)-flow branchings is FPT with parameter k. More precisely, it can
be solved in time 2O(k2·log k) · nO(1). Further, if they exist, the two arc-disjoint spanning
(r, k)-flow branchings can be computed within the same running time.

Packing (r, k)-safe spanning trees. Finally, we consider a similar problem in undirected
graphs that has also been introduced in [3]. Given a graph G = (V, E), a spanning tree is a
subgraph T of G that is a tree with V (T) = V . The theory of finding edge-disjoint spanning
trees is also pretty rich. The most fundamental result is the following one.

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 5

▶ Theorem 10 (Tutte [12]). Let G = (V, E) be a graph and p a positive integer. Then G

has p edge-disjoint spanning trees if and only if
∑q

i=1 dG(Vi) ≥ 2p(q − 1) for every partition
{V1, . . . , Vq} of V .

An algorithmic proof of Theorem 10, yielding a polynomial-time algorithm for finding the
spanning trees, if they exist, can be found as the proof of Theorem 10.5.1 in [8]. Again, we
may wish to also find edge-disjoint spanning trees satisfying certain extra properties. Given
a rooted tree T = (V + r, E) and some v ∈ V , we use Cv

T for the subgraph of T − v that
arises from deleting the component of T − v containing r. Observe that v /∈ V (Cv

T). We say
that T is (r, k)-safe if for every v ∈ V , we have |V − V (Cv

T)| ≥ k.

▶ Theorem 11 (Bang-Jensen, Havet, and Yeo [3]). Deciding whether a given rooted graph
G = (V + r, E) contains two edge-disjoint (r, k)-safe spanning trees is XP with parameter k.

Again, we improve Theorem 11 as follows.

▶ Theorem 12. Deciding whether a given rooted graph G = (V + r, E) contains two edge-
disjoint (r, k)-safe spanning trees is FPT with parameter k. More precisely, it can be solved
in time 2O(k2·log k) · nO(1). Further, if they exist, the two edge-disjoint (r, k)-safe spanning
trees can be computed within the same running time.

Since a hardness result in the spirit of Theorem 2 and Theorem 6 was not provided
in [3], we fill this gap and prove the following theorem, whose proof is inspired by the one
of [3, Theorem 5.2]. It shows that the problem is hard even if we want to find one single
(r, k)-safe spanning tree.

▶ Theorem 13. Let p ≥ 1 be a fixed positive integer. Deciding whether a given rooted graph
G = (V + r, E) has p edge-disjoint (r, k)-safe spanning trees is NP-complete. Moreover, let
ε > 0 be arbitrary and let k : Z≥0 → Z≥0 be a function such that (log(n))2+ε ≤ k(n) ≤ n

2 for
all n > 0. Further, suppose that there exists a constant C∗ such that for every integer c ≥ C∗

there exists an n such that k(n) = c. Then, assuming the ETH, there is no algorithm running
in time nO(1) for deciding whether a given rooted graph has p edge-disjoint (r, k(n))-safe
spanning trees.

Again, in a similar way as Corollary 3 can be concluded from Theorem 2, the following
result is obtained from Theorem 13.

▶ Corollary 14. Unless the ETH fails, there is no algorithm deciding whether a given rooted
digraph D = (V + r, A) has two edge-disjoint spanning (r, k)-safe spanning trees that runs in
2c·k

1
2 −ε

· nO(1) time for some ε > 0 and c > 0.

Our techniques. In order to obtain the FPT algorithms for the three considered problems,
we follow a common strategy. In a nutshell, the main ideas used in the XP algorithms of [3],
and how we manage to improve them to FPT algorithms, can be summarized as follows. The
algorithms of Bang-Jensen, Havet, and Yeo [3] are all based on proving the following general
property for each of the considered problems, where all the substructures are rooted:

A given (di)graph contains the required substructure X (i.e., a pair of disjoint
k-safe spanning arborescences, flow branchings, or spanning trees) if and only if
it contains another type of substructure X ′ (i.e., a pair of appropriately defined
disjoint objects) of size bounded by a function of k and that can be extended to
the substructure X in polynomial time.

6 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

We would like to stress that the above property is deliberately abstract in order to capture
the essential common property that can be used for all the considered problems. More
informally, it states that, instead of finding the required substructure X , which may have
arbitrary size (in particular, not depending only on k), we can safely focus on finding another
substructure X ′, with the guarantee that it can always be extended to X in polynomial time,
and with the following crucial property that is exploited in the corresponding algorithms, as
discussed below: the size of X ′ is bounded by a function depending only on the parameter k.
Once the above property is proved, an XP algorithm follows naturally: generate all candidate
substructures X ′ in time nf(k) and, for each of them, try to extend it to a substructure X in
polynomial time. Our main contribution is to prove that the above general property is still
true if we replace X ′ with another type of substructure X ′′ having the crucial property that
the candidate substructures X ′′ can be enumerated in time f(k) · nO(1), hence yielding an
FPT algorithm. In order to achieve this, we prove that we can restrict ourselves to objects
X ′′ whose “non-sink” vertices (i.e., those with positive (out-)degree in X ′′) have (out-)degree,
in the original (di)graph, bounded by some function of k, namely O(k) or O(k2). This is
possible because, given a pair X ′ = {X1, X2} containing a vertex v of large (out-)degree
(as a function of k) in, say, X1, we can safely prune the “branch” of X1 hanging from v,
with the guarantee that it will always be possible to extend the pruned substructure to
another substructure of the original type. Note that since the substructures X ′′ have size
and maximum (out-)degree bounded by a function of k, we can indeed generate all candidate
substructures in time f(k) · nO(1), as required. We now make this informal explanation more
concrete. For all technical definitions used in the next paragraphs, see Section 2.

Let us first focus on the problem of finding two arc-disjoint k-safe spanning r-arborescences.
In this case, the substructure X ′ is an extendable pair of arc-disjoint classic (r, k)-kernels1.
In Lemma 20, we restate a result from [3] that shows that the existence of this substructure
is sufficient for the existence of two arc-disjoint k-safe spanning r-arborescences. We then
introduce compact (r, k)-kernels. An extendable pair of arc-disjoint compact (r, k)-kernels
corresponds to the substructure X ′′. In Lemma 28, we show that the existence of an
extendable pair of arc-disjoint compact (r, k)-kernels is also sufficient for the existence of two
arc-disjoint k-safe spanning r-arborescences. The proof of Lemma 28 is our main technical
contribution. Having Lemma 28 at hand, the proof of Theorem 5 is easy.

As for packing (r, k)-flow branchings, the substructure X ′ defined in [3] is an extendable
pair of arc-disjoint classic (r, k)-cores. In Lemma 24, we restate a result from [3] that shows
that the existence of this substructure is sufficient for the existence of two arc-disjoint (r, k)-
flow branchings. We then introduce compact (r, k)-cores. An extendable pair of arc-disjoint
compact (r, k)-cores corresponds to the substructure X ′′. In Lemma 30, we show that the
existence of an extendable pair of arc-disjoint compact (r, k)-cores is also sufficient for the
existence of two arc-disjoint (r, k)-flow branchings. Again, the proof of Lemma 30 is our
main technical contribution and is similar to the one of Lemma 28. Again, having Lemma 30
at hand, the proof of Theorem 9 is easy.

Finally, for packing (r, k)-safe spanning trees, the substructure X ′ defined in [3] is a
completable pair of edge-disjoint classic (r, k)-certificates. In Lemma 26, we restate a result
from [3] that shows that the existence of this substructure is sufficient for the existence of
two edge-disjoint (r, k)-safe spanning trees. We then introduce compact (r, k)-certificates. A
completable pair of edge-disjoint compact (r, k)-certificates corresponds to the substructure

1 This notion should not be confused with the standard term ‘kernel’ from parameterized complexity, as
defined in Subsection 2.5.

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 7

X ′′. In Lemma 32, we show that the existence of a completable pair of edge-disjoint compact
(r, k)-certificates is also sufficient for the existence of two edge-disjoint (r, k)-safe spanning
trees. Again, the proof of Lemma 32 is our main technical contribution and is similar to the
ones of Lemma 28 and Lemma 30. However, while the proofs of Lemma 28 and Lemma 30
use a property on extendable structures proven in [3], the proof of Lemma 32 relies on a
spanning tree reconfiguration argument. Again, having Lemma 32 at hand, the proof of
Theorem 12 is easy.

Organization. In Section 2 we review some more technical results we need from [3], prove
several preliminary results, and provide the basic definitions about parameterized complexity.
In Section 3, Section 4, Section 5, and Section 6 we give the proof of Theorem 5, Theorem 9,
Theorem 12, and Theorem 13, respectively. Finally, we conclude our work in Section 7.

2 Preliminaries

In this section we collect some more technical previous results and prove several preliminary
statements. We first give some general results on graphs and digraphs and then some which
are more specific to each of the particular applications. We also provide some basic definitions
about parameterized complexity.

2.1 General preliminaries
The following is a well-known submodularity property of digraphs that can be found, for
instance, in [8, Proposition 1.2.1].

▶ Proposition 15. Let D = (V, A) be a digraph and S1, S2 ⊆ V . Then d−
D(S1) + d−

D(S2) ≥
d−

D(S1 ∪ S2) + d−
D(S1 ∩ S2).

A rooted digraph D = (V + r, A) is called ℓ-root-connected if d−
D(X) ≥ ℓ for every

X ⊆ V . We use root-connected for 1-root-connected. In a root-connected rooted digraph
D = (V + r, A), an arc a ∈ A is called critical if D − a is not root-connected anymore. We
now use Proposition 15 to obtain a result that will be useful when dealing with both k-safe
spanning r-arborescences and spanning (r, k)-flow branchings.

▶ Lemma 16. Let D = (V +r, A) be a 2-root-connected rooted digraph and let D′ = (V +r, A′)
be a root-connected rooted digraph that is obtained from D by deleting α arcs of A. Then for
any v ∈ V + r, there are at most α arcs which are critical in D′ and whose tail is v.

Proof. We proceed by induction on α. The statement is trivial for α = 0. We suppose that
it holds for all integers up to some α and show that it also holds for α + 1. Let v ∈ V + r and
let {a1, . . . , aα+1} be a set of arcs in A such that D2 = D − {a1, . . . , aα+1} is root-connected.
By the inductive hypothesis, v is the tail of at most α critical arcs in D1 = D − {a1, . . . , aα}.
Suppose, for the sake of a contradiction, that there are two arcs vw1, vw2 which are critical in
D2, but not in D1. It follows that there are sets X1, X2 ⊆ V such that d−

D2
(X1), d−

D2
(X2) = 1,

d−
D1

(X1), d−
D1

(X2) = 2, and vwi enters Xi. Since D2 = D1 −aα+1, it follows that aα+1 enters
X1 ∩ X2, so X1 ∩ X2 ̸= ∅. As D2 is root-connected, we have d−

D2
(X1 ∩ X2) ≥ 1. As vwi

enters Xi, we have v ∈ V + r − (X1 ∪ X2) and so both vw1 and vw2 enter X1 ∪ X2. This
yields d−

D2
(X1) + d−

D2
(X2) = 1 + 1 < 1 + 2 ≤ d−

D2
(X1 ∩ X2) + d−

D2
(X1 ∪ X2), a contradiction

to Proposition 15. ◀

Given a 2-root-connected rooted digraph D = (V + r, A), a pair of subdigraphs (X1 =
(V1 + r, A1), X2 = (V2 + r, A2)) of D is called extendable if both D − A1 and D − A2 are

8 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

root-connected. The following is an immediate consequence of the fact that checking whether
a digraph is root-connected can clearly be done in polynomial time using a breadth-first
search algorithm.

▶ Lemma 17. Given a rooted digraph D = (V + r, A) and a pair of two subdigraphs
(X1 = (V1 + r, A1), X2 = (V2 + r, A2)), we can decide in polynomial time whether (X1, X2)
is extendable.

We now switch to undirected graphs. The following is an easy known result, whose proof
is provided for the sake of completeness.

▶ Lemma 18. Let G = (V, E) be a graph and let T be a spanning tree of G. Let e = uv ∈
E − E(T). Then there is some f ∈ E(T) that is incident to u such that T + e − f is a
spanning tree of G.

Proof. The graph T + e contains a unique cycle C such that uv ∈ E(C) and the deletion of
an arbitrary edge of E(C) yields a spanning tree of G. As C is is a cycle, E(C) contains an
edge f different from e that is incident to u. This edge satisfies the condition. ◀

Given two spanning trees T1, T2 of a graph G, we say that a function σ : E(T1) → E(T2)
is a tree-mapping function if for every e ∈ E(T1), both T1 − e + σ(e) and T2 − σ(e) + e

are spanning trees of G. It is well-known that a tree-mapping function exists for any two
spanning trees T1, T2 of a graph G, see for example [8, Theorem 5.3.3].

▶ Lemma 19. Let G = (V, E) be a graph, let T1, T2 spanning trees of G, σ : E(T1) → E(T2)
a tree-mapping function from T1 to T2 and F ⊆ δT1(v) for some v ∈ V . Then {σ(e) : e ∈ F}
contains at least ⌈ |F |

2 ⌉ distinct elements.

Proof. It suffices to prove that there are no three distinct edges e1, e2, e3 ∈ F with σ(e1) =
σ(e2) = σ(e3). Let e1, e2, e3 ∈ F . As T1 is a spanning tree, T1 − {e1, e2, e3} contains three
components C1, C2, C3 none of which contains v such that ei is incident to a vertex in V (Ci)
for i = 1, 2, 3. As T1 −ei +σ(ei) is a spanning tree, we obtain that σ(ei) is incident to a vertex
in V (Ci) for i = 1, 2, 3. As V (C1), V (C2) and V (C3) are pairwise disjoint, the statement
follows. ◀

2.2 Preliminaries on k-safe spanning r-arborescences
Given a rooted digraph D = (V + r, A) and a positive integer k, a classic (r, k)-kernel is an
r-subarborescence X = (V ′ + r, A′) of D such that X is k-safe and |V ′| = 2k − 2. The XP
algorithm of Theorem 4 is based on the following result, which we reformulate here using our
terminology.

▶ Lemma 20 (Bang-Jensen, Havet, and Yeo [3]). Let k be a positive integer and D = (V +r, A)
a rooted digraph with |V | ≥ 2k − 2. Then D contains two arc-disjoint k-safe spanning r-
arborescences if and only if D contains an extendable pair of arc-disjoint classic (r, k)-kernels.
Further, the two arc-disjoint k-safe spanning r-arborescences can be constructed from the
extendable pair of classic (r, k)-kernels in polynomial time.

2.3 Preliminaries on spanning (r, k)-flow branchings
We first need the following result that allows to recognize (r, k)-flow branchings.

▶ Lemma 21 (Bang-Jensen, Havet, and Yeo [3]). Given a rooted digraph D = (V + r, A) and
a positive integer k, we can decide in polynomial time whether D is an (r, k)-flow branching.

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 9

Given a digraph D = (V, A) and two vertices u, v ∈ V , a uv-path flow is a flow z such
that z(a) = 1 for all arcs a ∈ A(P) and z(a) = 0 for every a ∈ A − A(P) for some uv-path
P . Similarly, a cycle flow is a flow z such that z(a) = 1 of all a ∈ A(C) and z(a) = 0 for
every a ∈ A − A(C) for some cycle C. We need the following result on flows which is proven
in a more general form in [2].

▶ Lemma 22. Let X = (V + r, A) be a flow branching and z : A → Z≥0 be a branching flow
in X. Then there is an rv-path flow zv for every v ∈ V and a set of cycle flows {zC : C ∈ C}
for some set of cycles C such that z =

∑
v∈V zv +

∑
C∈C zC .

We now use Lemma 22 to prove an important property of arc-minimal (r, k)-flow branch-
ings. A rooted digraph X = (V + r, A) is called triple-free if it does not contain more than
two arcs in the same direction between the same two vertices.

▶ Lemma 23. Let k be a positive integer and X = (V + r, A) an arc-minimal (r, k)-flow
branching with |V | ≥ 2k − 1. Then X is triple-free.

Proof. Suppose that X contains three arcs a1, a2, a3 whose tail is u and whose head is
v for some u, v ∈ V + r. Further, let z : A → Z≥0 be an (r, k)-branching flow. By
Lemma 22, we obtain that z =

∑
v∈V zv +

∑
C∈C zC where zv is an rv-path flow for every

v ∈ V and zC is a cycle flow for every C ∈ C for some set of cycles C. Let z′ =
∑

v∈V zv.
Observe that z′ is an (r, k)-branching flow. As all of the zv are path flows, we obtain
z′(a1) + z′(a2) + z′(a3) ≤ |V | < 2(n − k). It follows that we can define a flow z′′ : A → Z≥0
such that z′′(a1) + z′′(a2) = z′(a1) + z′(a2) + z′(a3), z′′(a3) = 0, min{z′′(a1), z′′(a2)} ≤ n − k

and z′′(a) = z′(a) for every a ∈ A−{a1, a2, a3}. It is easy to see that z′′ is an (r, k)-branching
flow, so X − a3 is an (r, k)-flow branching, a contradiction to the minimality of X. ◀

Given a positive integer k and a rooted digraph D = (V + r, A) with |V + r| ≥ 2k, a
classic (r, k)-core is an (r, k)-flow branching X = (V ′ + r, A′) that is a subdigraph of D

with |V ′| = 2k − 1. The XP algorithm of Theorem 8 is based on the following result, again
reformulated using our terminology.

▶ Lemma 24 (Bang-Jensen, Havet, and Yeo [3]). Let k be a positive integer and D = (V +r, A)
be a rooted digraph with |V | ≥ 2k − 1. Then D contains two arc-disjoint spanning (r, k)-flow
branchings if and only if D contains an extendable pair of arc-disjoint classic (r, k)-cores.
Further, the two arc-disjoint spanning (r, k)-flow branchings can be constructed in polynomial
time from the extendable pair of arc-disjoint classic (r, k)-cores.

2.4 Preliminaries on (r, k)-safe spanning trees
We first define an equivalent for extendability in undirected graphs. Given a rooted graph
G = (V + r, E), a pair of subtrees (X1, X2) is called completable2 if there are edge-disjoint
spanning trees T1, T2 of G such that E(Xi) ⊆ E(Ti). The following result that allows to test
completabality can be established using matroid theory as mentioned in [3].

▶ Lemma 25 (Bang-Jensen, Havet, and Yeo [3]). Given a graph G = (V + r, E) and a pair
of subtrees (X1, X2), we can decide in polynomial time whether (X1, X2) is completable.

2 Note that we require a completable pair of trees to be edge-disjoint. This is in contrast with the fact
that, in Subsection 2.2 and Subsection 2.3, we do not require the elements in an extendable pair to be
arc-disjoint. We adopt this asymmetric choice for technical reasons arising from the proofs.

10 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

Given a positive integer k and a rooted graph G = (V + r, E) with |V + r| ≥ 2k − 1, a
classic (r, k)-certificate is an (r, k)-safe subtree X = (V ′ + r, E′) of G with |V ′| = 2k − 2.
The XP algorithm of Theorem 11 is based on the following result, again restated using our
terminology.

▶ Lemma 26 (Bang-Jensen, Havet, and Yeo [3]). Let G = (V + r, E) be a rooted graph and k

a positive integer. Then G contains two edge-disjoint (r, k)-safe spanning trees if and only if
G contains a completable pair of classic (r, k)-certificates. Further, given a completable pair
of classic (r, k)-certificates, we can compute two edge-disjoint (r, k)-safe spanning trees in
polynomial time.

2.5 Preliminaries on parameterized complexity
We refer the reader to [5] for basic background on parameterized complexity, and we recall
here only some basic definitions used in this article. A parameterized problem is a decision
problem whose instances are pairs (x, k) ∈ Σ∗ × N, where k is called the parameter. A
parameterized problem L is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c. A
parameterized problem L is slice-wise polynomial (XP) if there exists an algorithm A and two
computable functions f, g such that given an instance I = (x, k), A (called an XP algorithm)
correctly decides whether I is a positive instance of L in time bounded by f(k) · |I|g(k).

A kernelization algorithm, or just kernel, for a parameterized problem L is an algorithm
A that, in polynomial time, generates from an instance I = (x, k) of L an equivalent instance
I ′ = (x′, k′) of L such that |x′| + k′ ≤ f(k), for some computable function f : N → N. If
f(k) is bounded from above by a polynomial of the parameter k, we say that L admits a
polynomial kernel. It is well-known [5] that a parameterized problem is FPT if and only if it
admits a (not necessarily polynomial) kernel.

3 An FPT algorithm for packing k-safe spanning arborescences

This section is concerned with proving Theorem 5. Given a rooted digraph D = (V + r, A)
and a positive integer k, we say that a vertex v ∈ V + r is large if |N+

D (v)| ≥ 6k − 5, and
small otherwise. We let LD (resp. SD) be the set of vertices in V + r which are large (resp.
small) in D.

We are now ready to introduce a new notion of (r, k)-kernels for k-safe spanning r-
arborescences. A compact (r, k)-kernel is a subdigraph X = (V ′+r, A′) of D with |V ′| ≤ 2k−2
satisfying the following:

X is an r-arborescence,
all vertices in (V ′ + r) ∩ LD are sinks of X, and
a k-safe r-arborescence Y can be obtained from X by adding a set V ∗ of 2k − 2 − |V ′|
new vertices and adding an arc from a vertex in (V ′ + r) ∩ LD to v for every v ∈ V ∗.

Observe that Y is not necessarily a subdigraph of D. We now give the following algorithmic
result.

▶ Proposition 27. Let D = (V + r, A) be a rooted digraph, k a positive integer, and
X = (V ′ + r, A′) a subdigraph of D with |V ′| ≤ 2k −2. We can test in time 2O(k log k) whether
X is a compact (r, k)-kernel. Further, if this is the case, we can find a k-safe r-arborescence Y

with the properties mentioned in the definition of compact (r, k)-kernels in the same running
time.

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 11

Proof. We first verify whether X is an r-arborescence such that all the vertices in (V ′+r)∩LD

are sinks in X. If this is the case, we add a set V ∗ of 2k −2−|V ′| new vertices to X. We then
test all possibilities to add one arc from (V + r) ∩ LD to v for every v ∈ V ∗. As |V ′ + r| ≤ 2k

and |V ∗| ≤ 2k, there are at most (2k)2k = 2O(k·log k) possibilities to check. For each of these
possibilities, we can then check in polynomial time whether the obtained graph is a k-safe
arborescence. ◀

The following result shows that compact (r, k)-kernels can be used in a similar way as
classic (r, k)-kernels.

▶ Lemma 28. Let k be a positive integer and D = (V + r, A) be a 2-root-connected rooted
digraph with |V | ≥ 2k−2. Then D contains two arc-disjoint k-safe spanning r-arborescences if
and only if D contains an extendable pair of arc-disjoint compact (r, k)-kernels. Further, given
an extendable pair of arc-disjoint compact (r, k)-kernels, we can find a pair of arc-disjoint
k-safe spanning r-arborescences in time 2O(k log k) · nO(1).

Proof. By Lemma 20, for the first part it suffices to prove that D contains a pair of arc-
disjoint extendable compact (r, k)-kernels if and only if D contains a pair of arc-disjoint
extendable classic (r, k)-kernels.

First let (X1 = (V1 + r, A1), X2 = (V2 + r, A2)) be an extendable pair of arc-disjoint
classic (r, k)-kernels. Let X ′

i = (V ′
i + r, A′

i) be obtained from Xi by deleting Bv
Xi

− v for
every v ∈ (Vi + r) ∩ LD. By construction, the X ′

i are r-arborescences and all vertices in
(V ′

i + r) ∩ LD are sinks in X ′
i. Let Yi be obtained from X ′

i by adding the vertices in Vi − V ′
i

and adding an arc from a vertex v ∈ (V ′
i + r) ∩ LD to a vertex w ∈ Vi − V ′

i whenever
w ∈ V (Bv

Xi
) − v. Observe that Yi is an arborescence with |V (Yi)| = 2k − 1. Further, note

that |Vi + r − V (Bv
Yi

)| = |Vi + r − V (Bv
Xi

)| ≥ k for every v ∈ V ′
i and |V (Bv

Yi
)| = 0 for every

v ∈ Vi − V ′
i . This yields that |Vi + r − V (Bv

Yi
)| ≥ |Vi + r − V (Bv

Xi
)| ≥ k for every v ∈ Vi and

so Yi is a k-safe arborescence. By definition, we obtain that (X ′
1, X ′

2) is a pair of arc-disjoint
compact (r, k)-kernels. Further, D − Ai is a subdigraph of D − A′

i that is root-connected, so
D − A′

i is root-connected as well. This yields that (X ′
1, X ′

2) is extendable.
Now let (X1 = (V1 + r, A1), X2 = (V2 + r, A2)) be an extendable pair of arc-disjoint

compact (r, k)-kernels. By definition, there are k-safe arborescences Y1, Y2 such that Yi is
obtained from Xi by adding a set V ∗

i of 2k − 2 − |Vi| new vertices and an arc from a vertex
in (Vi + r) ∩ LD to v for every v ∈ V ∗

i . Let (X ′
1 = (V ′

1 + r, A′
1), X ′

2 = (V ′
2 + r, A′

2)) be a pair
of subdigraphs of D that are vertex-maximal with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex v ∈ V − Vi and an arc of

A that goes from a vertex in (Vi + r) ∩ LD to v,
(ii) d+

X′
i
(v) ≤ d+

Yi
(v) for every v ∈ (Vi + r) ∩ LD,

(iii) A′
1 and A′

2 are disjoint, and
(iv) (X ′

1, X ′
2) is extendable.

Note that (X1, X2) satisfies conditions (i)-(iv), so (X ′
1, X ′

2) is well-defined. Also observe
that if condition (ii) is satisfied with equality for every v ∈ (Vi + r) ∩ LD, then X ′

i is
isomorphic to Yi, so X ′

i is a k-safe arborescence and by definition also a classic (r, k)-kernel.
If this is the case for both X ′

1 and X ′
2, we are done by conditions (iii) and (iv).

We may therefore suppose by symmetry that there is a vertex v ∈ (V1 + r) ∩ LD with
d+

X′
1
(v) < d+

Y1
(v). For any a = vza with za ∈ N+

D (v) − V ′
1 , let Xa

1 = (V ′
1 + r + za, A′

1 ∪ a).
By the maximality of X ′

1, we obtain that Xa
1 violates one of conditions (i)-(iv) for every

a ∈ δ+
D(v) with za ∈ N+

D (v)−V ′
1 . By construction and the choice of v, Xa

1 satisfies conditions

12 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

(i) and (ii) for every a ∈ δ+
D(v) with za ∈ N+

D (v) − V ′
1 . If Xa

1 violates (iii), then za ∈ V ′
2 .

By (ii), we have |V ′
2 | ≤ |V2 ∪ V ∗

2 | = 2k − 2 and so this is the case for at most 2k − 2
vertices za ∈ N+

D (v) − V ′
1 . If Xa

1 does not satisfy (iv), then a is critical in D − A′
1. As D is

2-root-connected and X ′
1 is an arborescence by construction, Lemma 16 implies that this is

the case for at most |A′
1| = |V ′

1 | ≤ |V1 ∪ V ∗
1 | = 2k − 2 vertices za ∈ N+

D (v) − V ′
1 . As v ∈ LD

and |V ′
1 | ≤ |V1 ∪V ∗

1 | = 2k−2, we have |N+
D (v)−V ′

1 | ≥ (6k−5)−(2k−2) > (2k−2)+(2k−2),
so there is at least one vertex in z ∈ N+

D (v) − V ′
1 and an arc a = vz such that Xa

1 does not
violate any of conditions (i)-(iv), a contradiction.

Observe that the second part of the proof yields an algorithm for computing a pair of
arc-disjoint extendable classic (r, k)-kernels from a pair of arc-disjoint extendable compact
(r, k)-kernels. First observe that by the second part of Proposition 27, we can find Y1, Y2 in
2O(k log k) time. Now, defining Xa

2 similarly to Xa
1 , every time we try to add an arc a = vz to

X ′
i for i = 1 or 2, we test, if (Xa

i , X ′
3−i) satisfies conditions (i)-(iv). Conditions (i)-(iii) can

clearly be checked in polynomial time and, by Lemma 17, condition (iv) can also be checked
in polynomial time. Never testing an arc that is parallel to one that we have tested already,
after at most 4k − 4 failed attempts, we manage to add a new vertex to V ′

i . We repeat
this procedure |V ∗

i | ≤ 2k − 2 times. It follows that a pair of arc-disjoint extendable classic
(r, k)-kernels can be computed in time k2 · nO(1) = nO(1). By the second part of Lemma 20,
we can then find the arc-disjoint k-safe spanning arborescences in D in nO(1) time. Therefore,
the overall running time of the algorithm is 2O(k log k) · nO(1), as claimed. ◀

We are now ready to proceed to the proof of Theorem 5.

Proof of Theorem 5. We may suppose that there are at most two parallel arcs from u to v

for any u, v ∈ V + r. If |V | < 2k − 2, the problem can be solved by a brute force algorithm in
time 2O(k2), by generating all pairs of subdigraphs of D and checking whether any of these
pairs satisfies the required conditions. We may hence also suppose that |V | ≥ 2k − 2.

By Theorem 1 and the remark after, we can first decide in time nO(1) if D is 2-root-
connected. If it is not, the answer is negative by Theorem 1, so we may suppose it is.

We first explain how to test whether a candidate for the extendable pair of arc-disjoint
compact (r, k)-kernels is indeed an extendable pair of arc-disjoint compact (r, k)-kernels. After,
we show that the number of candidates is bounded. Let X1 = (V1 + r, A1), X2 = (V2 + r, A2)
be two subdigraphs of D with |V1|, |V2| ≤ 2k − 2. By the first part of Proposition 27,
we can check in time 2O(k·log k) whether both X1 and X2 are compact (r, k)-kernels. By
Lemma 17, we can therefore decide in time 2O(k·log k) + nO(1) if (X1, X2) is an extendable
pair of arc-disjoint compact (r, k)-kernels in D. By Lemma 28, it therefore suffices to prove
that there are at most 2O(k2·log k) possible candidates for the extendable pair of arc-disjoint
compact (r, k)-kernels, and that these can be generated within this running time.

Let X = (V ′ + r, A′) be a compact (r, k)-kernel in D. Observe that by definition of
compact (r, k)-kernels, all vertices in LD ∩ (V ′ + r) are sinks in X. Further, as X can be
extended to a k-safe arboresecence on 2k − 2 vertices, BX

v contains at most k − 1 vertices for
every v ∈ V ′. In particular, every vertex in V ′ can be reached from r by a directed path
all of whose interior vertices are in SD and whose length is at most k − 1. As every vertex
in SD has at most 6k − 6 out-neighbors, we obtain that the number of vertices in V that
can be reached by such a path is at most (6k − 6) + (6k − 6)2 + . . . + (6k − 6)k−1 ≤ (6k)k.
As V ′ contains at most 2k − 2 vertices, there are at most

((6k)k

2k−2
)

≤ (6k)2k2 possibilities to
choose V ′.

Now suppose that we have chosen V ′ of size 2k − 2. As there are at most two arcs in
the same direction between any two vertices, there are at most 4

(|V ′+r|
2

)
≤ 16k2 arcs that

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 13

have their head and tail in V ′ + r. As |A′| = 2k − 2, there are at most
(16k2

2k−2
)

≤ (16k2)2k

possibilities to choose A′. It follows that there are at most (6k)2k2 · (16k2)2k possibilities to
choose a compact (r, k)-kernel X. As these can be computed by a brute force method, the
algorithm can finish after checking less than f(k) =

((6k)2k2
·(16k2)2k

2
)

= 2O(k2·log k) candidates
for the extendable pair of arc-disjoint compact (r, k)-kernels.

If no extendable pair of arc-disjoint compact (r, k)-kernels exists, by Lemma 28, D does
not contain two arc-disjoint k-safe spanning arborescences. On the other hand, once we
have found an extendable pair of arc-disjoint compact (r, k)-kernels, we can compute the
two arc-disjoint k-safe spanning r-arborescences in polynomial time by the second part of
Lemma 28. The overall running time of the obtained algorithm is 2O(k2·log k) · nO(1). ◀

4 An FPT algorithm for packing spanning (r, k)-flow branchings

This section is concerned with proving Theorem 9. Slightly modifying the terminology
introduced in Section 3, given a 2-root-connected digraph D = (V + r, A) and a positive
integer k, we say that a vertex v is large if |N+

D (v)| ≥ 20k2 + 1, and small otherwise. Again,
we let LD (resp. SD) be the set of vertices in V + r which are large (resp. small) in D.

We are now ready to introduce a new notion of (r, k)-cores for spanning (r, k)-flow
branchings. A compact (r, k)-core is a subdigraph X = (V ′ + r, A′) of D with |V ′| ≤ 2k − 1
satisfying the following:

all vertices in (V ′ + r) ∩ LD are sinks in X and
an (r, k)-flow branching Y can be obtained from X by adding a set V ∗ of 2k − 1 − |V ′|
new vertices and adding an arc from a vertex in (V ′ + r) ∩ LD to v for every v ∈ V ∗.

Observe that Y is not necessarily a subdigraph of D. We now give the following algorithmic
result which plays the analogous role of Proposition 27 for flow branchings.

▶ Proposition 29. Let D = (V + r, A) be a rooted digraph, k a positive integer, and
X = (V ′ + r, A′) a subdigraph of D with |V ′| ≤ 2k −1. We can test in time 2O(k log k) whether
X is a compact (r, k)-core. Further, if this is the case, we can find an (r, k)-flow branching
Y with the properties mentioned in the definition of compact (r, k)-cores in the same running
time.

Proof. We first test if all vertices in (V ′ + r) ∩ LD are sinks in X. We then add a set
V ∗ of 2k − 1 − |V ′| new vertices to X. We then test all possibilities to add one arc from
(V ′ + r) ∩ LD to v for every v ∈ V ∗

i . As |V ′|, |V ∗| ≤ 2k, there are at most 2k2k = 2O(k·log k)

possibilities to check. By Lemma 21, we can check in time polynomial in k whether each of
the resulting graphs is an (r, k)-flow branching. ◀

The following result, which is similar to Lemma 28, shows that compact (r, k)-cores can
be used in a similar way as classic (r, k)-cores.

▶ Lemma 30. Let k be a positive integer and D = (V + r, A) be a 2-root-connected rooted
digraph with |V | ≥ 2k − 1. Then D has two arc-disjoint spanning (r, k)-flow branchings
if and only if D contains an extendable pair of arc-disjoint compact (r, k)-cores. Further,
given an extendable pair of triple-free arc-disjoint compact (r, k)-cores, we can find a pair of
arc-disjoint spanning (r, k)-flow branchings in time 2O(k·log k) · nO(1).

Proof. By Lemma 24, for the first part it suffices to prove that D contains an extendable pair
of arc-disjoint compact (r, k)-cores if and only if D contains an extendable pair of arc-disjoint
classic (r, k)-cores.

14 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

First let (X1 = (V1 + r, A1), X2 = (V2 + r, A2)) be an extendable pair of arc-disjoint
classic (r, k)-cores. Let X ′

i = (V ′
i + r, A′

i) be obtained from Xi by first deleting all arcs in Ai

whose tail is a large vertex and then restricting to the subdigraph that is root-connected
from r. As A′

i ⊆ Ai, (X ′
1, X ′

2) is extendable. It remains to show that X ′
1 and X ′

2 are compact
(r, k)-cores. By construction, all vertices in (V ′

i + r) ∩ LD are sinks in X ′
i. If X ′

i = (r, ∅), let
Yi be obtained by attaching 2k − 1 outgoing arcs to r. Clearly, Yi is an (r, k)-flow branching
and so X ′

i is a compact (r, k)-core. We may hence suppose that X ′
i ̸= (r, ∅). As Xi is an

(r, k)-flow branching, there is an (r, k)-branching flow z : Ai → Z≥0 in Xi. Create Yi from X ′
i

by attaching z(δ−
X′

i
(v)) − 1 arcs directed away from v to every vertex v ∈ V ′

i ∩ LD. Assigning
z′(a) = 1 for all arcs leaving a large vertex in Yi and z′(a) = z(a) for all remaining arcs, we
obtain that z′ is an (r, k)-branching flow in Yi, so Yi is an (r, k)-flow branching. Furthermore,
we have |V (Yi) − r| = z′(δ+

Yi
(r)) = z(δ+

Xi
(r)) = |Vi| = 2k − 1. It follows by definition that X ′

i

is a compact (r, k)-core.
Now let (X1 = (V1 + r, A1), X2 = (V2 + r, A2)) be an extendable pair of arc-disjoint

compact (r, k)-cores. Possibly deleting arcs, we may suppose by Lemma 23 and as |V | ≥ 2k−1
that X1 and X2 are triple-free. By definition, there are (r, k)-flow branchings Y1, Y2 such
that Yi is obtained from Xi by adding a set V ∗

i of 2k − 1 − |Vi| new vertices and adding
an arc from a vertex in (Vi + r) ∩ LD to v for every v ∈ V ∗

i . Let X ′
1 = (V ′

1 + r, A′
1) and

X ′
2 = (V ′

2 + r, A′
2) be subdigraphs of D that are vertex-maximal with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex in v ∈ V − Vi and an arc

of A that goes from a vertex in (Vi + r) ∩ LD to v,
(ii) d+

X′
i
(v) ≤ d+

Yi
(v) for every v ∈ (Vi + r) ∩ LD,

(iii) A′
1 and A′

2 are disjoint, and
(iv) (X ′

1, X ′
2) is extendable.

Note that (X1, X2) satisfies conditions (i)-(iv), so (X ′
1, X ′

2) is well-defined. Further,
observe that if condition (ii) is satisfied with equality for every v ∈ (Vi + r) ∩ LD, then X ′

i is
isomorphic to Yi, so X ′

i is an (r, k)-flow branching, thus by definition also a classic (r, k)-core.
If this is the case for both X ′

1 and X ′
2, we are done by conditions (iii) and (iv).

We may therefore suppose by symmetry that there is some v ∈ (V1 + r) ∩ LD with
d+

X′
1
(v) < d+

Y1
(v). For any a = vza with za ∈ N+

D (v) − V ′
1 , let Xa

1 = (V ′
1 + r + za, A′

1 ∪ a).
By the maximality of X ′

1, Xa
1 violates one of conditions (i)-(iv) for every a ∈ δ+

D(v) with
za ∈ N+

D (v) − V ′
1 . By construction and the choice of v, Xa

1 satisfies conditions (i) and (ii)
for every a ∈ δ+

D(v) with za ∈ N+
D (v) − V ′

1 . If Xa
1 violates condition (iii), then za ∈ V ′

2 .
As |V ′

2 | ≤ |V (Y2)| = 2k, this is the case for at most 2k vertices in N+
D (v) − V ′

1 . If Xa
1

does not satisfy (iv), then a is critical in D − A′
1. As X1 is triple-free, |V ′

1 | ≤ 2k and by
construction, we obtain that |A′

1| ≤ 4
(|V ′

1 |
2

)
≤ 16k2. Now Lemma 16 implies that this is the

case for at most 16k2 vertices in N+
D (v) − V ′

1 . As v ∈ LD and |V ′
1 | ≤ |V1 ∪ V ∗

1 | = 2k − 1,
we have |N+

D (v) − V ′
1 | ≥ (20k2 + 1) − (2k − 1) > 2k + 16k2, so there is at least one vertex

z ∈ N+
D (v) − V ′

1 and an arc a = vz such that Xa
1 does not violate any of conditions (i)-(iv),

a contradiction.
Observe that the second part of the proof yields an algorithm for computing a pair of

arc-disjoint extendable classic (r, k)-cores from a pair of triple-free arc-disjoint extendable
compact (r, k)-cores. First observe that by the second part of Proposition 29, we can find
Y1, Y2 in time 2O(k log k). Now, defining Xa

2 similarly to Xa
1 , every time we try to add an arc

a = vz to X ′
i for i = 1 or 2, we test if (Xa

i , X ′
3−i) satisfies conditions (i)-(iv). Conditions

(i)-(iii) can clearly be checked in polynomial time and, by Lemma 17, condition (iv) can
also be checked in polynomial time. Never checking an arc a which is parallel to an arc we

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 15

have already checked, after at most 20k2 failed attempts, we manage to add a new vertex to
V ′

i . We repeat this procedure at most |V ∗
i | ≤ 2k times. It follows that a pair of arc-disjoint

extendable classic (r, k)-cores can be computed in time 40k3 · nO(1) = nO(1). By the second
part of Lemma 24, we can then find the arc-disjoint spanning (r, k)-flow branchings in
D in polynomial time. The overall running time of the algorithm is 2O(k·log k) · nO(1), as
claimed. ◀

We are now ready to proceed to the proof of Theorem 9.

Proof of Theorem 9. First consider the case where |V | < 2k − 1. Observe that any arc-
minimal spanning (r, k)-flow branching has at most |V | parallel arcs between any two vertices.
It follows that, for any two vertices u, v, at most γ := 4k2 different distributions of the arcs
between u and v among the two candidates for the spanning (r, k)-flow branchings have
to be considered, including taking none of these arcs. Since there are µ :=

(|V |
2

)
= O(k2)

pairs of vertices, the total number of choices for these distributions is γµ = 2O(k2·log k). The
problem can therefore be solved by a brute force algorithm in time 2O(k2·log k), by generating
all 2O(k2·log k) pairs of candidate subdigraphs of D and checking whether any of these pairs
satisfies the required conditions. We may hence suppose that |V | ≥ 2k − 1.

By Lemma 23, we may also suppose that there are at most four parallel arcs between any
two vertices in D. By Theorem 1 and the remark after, we can first decide in polynomial
time if D is 2-root-connected. If it is not, the answer is negative by Theorem 1 and the fact
that every (r, k)-flow branching contains an r-arborescence, so we may suppose it is.

We first explain how to test whether a candidate for the extendable pair of arc-disjoint
compact (r, k)-cores is indeed an extendable pair of arc-disjoint compact (r, k)-cores. After,
we show that the number of candidates is bounded. Let X1 = (V1 + r, A1), X2 = (V2 + r, A2)
be two subdigraphs of D with |V1|, |V2| ≤ 2k − 1. By the first part of Proposition 29, we can
check in time 2O(k·log k) whether both X1 and X2 are compact (r, k)-cores. By Lemma 17, we
can therefore decide in time 2O(k·log k) + nO(1) if (X1, X2) is an extendable pair of arc-disjoint
compact (r, k)-cores in D. By Lemma 30, it therefore suffices to prove that there are at most
2O(k2·log k) possible candidates for the extendable pair of arc-disjoint compact (r, k)-cores,
and that these can be generated within the same running time.

Let X = (V ′ + r, A′) be a compact (r, k)-core in D. Observe that every vertex in V ′

can be reached from r by a directed path all of whose internal vertices are in SD and
whose length is at most 2k − 1. As every vertex in SD has at most 20k2 out-neighbors,
we obtain that the number of vertices in V that can be reached by such a path is at most
20k2 + (20k2)2 + . . . + (20k2)2k−1 ≤ (20k2)2k. As V ′ contains at most 2k − 1 vertices, there
are at most

((20k2)2k

(2k−1)
)

≤ (20k2)4k2 possibilities to choose V ′. Now suppose that we have
chosen V ′ of size at most 2k −1. As there are at most four arcs in the same direction between
any two vertices, there are at most 8

(|V ′|
2

)
≤ 32k2 arcs that have their head and tail in

V ′ + r. As all arcs of A′ have both ends in V ′ + r, there are at most 232k2 possibilities to
choose A′. It follows that there are at most (20k2)4k2 · 232k2 possibilities to choose a compact
(r, k)-core X. As these can be computed by a brute force method, the algorithm can finish
after checking less than f(k) =

((20k2)4k2
·232k2

2
)

= 2O(k2·log k) candidates for the extendable
pair of compact (r, k)-cores.

If no such extendable pair of arc-disjoint compact (r, k)-cores exists, by Lemma 30, D

does not contain two arc-disjoint spanning (r, k)-flow branchings. On the other hand, if we
find an extendable pair of arc-disjoint compact extendable (r, k)-cores, we also find such a
pair (X1, X2) where X1 and X2 are arc-minimal, so by Lemma 23 triple-free. By the second

16 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

part of Lemma 30, we can compute the two arc-disjoint spanning (r, k)-flow branchings in
polynomial time. The overall running time of the obtained algorithm is 2O(k2·log k) ·nO(1). ◀

5 An FPT algorithm for packing (r, k)-safe spanning trees

This section is concerned with proving Theorem 12. Again, slightly modifying the terminology
introduced in Section 3 and reused in Section 4, given a rooted graph G = (V + r, E) and
a positive integer k, we say that a vertex v ∈ V + r is large if |NG(v)| ≥ 8k − 7, and small
otherwise. And again, we let LG (resp. (SG)) be the set of vertices in V + r which are large
(resp. small) in G.

We are now ready to introduce a new notion of certificates for (r, k)-safe spanning trees.
A compact (r, k)-certificate is a subgraph X = (V ′ + r, E′) of G with |V ′| ≤ 2k − 2 satisfying
the following:

X is a tree,
all vertices in (V ′ + r) ∩ LG are terminals of X, and
an (r, k)-safe tree Y can be obtained from X by adding a set V ∗ of 2k − 2 − |V ′| new
vertices and adding an edge from a vertex in (V ′ + r) ∩ LG to v for every v ∈ V ∗.

Observe that Y is not necessarily a subgraph of G. We now give the following algorithmic
result which plays the analogous role of Proposition 27 and Proposition 29 for k-safe spanning
trees.

▶ Proposition 31. Let G = (V + r, E) be a rooted graph, k a positive integer, and X =
(V ′ + r, E′) a subgraph of G with |V ′| ≤ 2k − 2. We can test in time 2O(k log k) whether X

is a compact (r, k)-certificate. Further, if this is the case, we can construct an (r, k)-safe
spanning tree Y with the properties mentioned in the definition of compact (r, k)-certificate
in the same running time.

Proof. We first check whether X is a tree such that all the vertices in (V ′ + r) ∩ LG are
terminals of X. If this is the case, we add a set V ∗ of 2k − 2 − |V ′| new vertices to X. We
then test all possibilities to add one edge from (V ′ + r) ∩ LG to v for every v ∈ V ∗. As
|V ′ + r| ≤ 2k and |V ∗| ≤ 2k, there are at most (2k)(2k) = 2O(k·log k) possibilities to check.
For each of them, we can check in time polynomial in k if the obtained graph is an (r, k)-safe
spanning tree. ◀

The following result, which is similar to Lemma 28 and Lemma 30, shows that compact
certificates can be used in a similar way as classic certificates.

▶ Lemma 32. Let k be a positive integer and G = (V + r, E) be a rooted graph with
|V | ≥ 2k − 2. Then G has two edge-disjoint (r, k)-safe spanning trees if and only if G

contains a completable pair of compact (r, k)-certificates. Further, given a completable pair
of compact (r, k)-certificates, we can find a pair of edge-disjoint (r, k)-safe spanning trees in
time 2O(k·log k) · nO(1).

Proof. By Lemma 26, for the first part it suffices to prove that G contains a completable
pair of compact (r, k)-certificates if and only if G contains a completable pair of classic
(r, k)-certificates.

First let (X1 = (V1 + r, E1), X2 = (V2 + r, E2)) be a completable pair of classic (r, k)-
certificates. Let X ′

i = (V ′
i + r, E′

i) be obtained from Xi by deleting Cv
Xi

for every v ∈
(Vi + r)∩LG. By construction, the X ′

i are trees and all vertices in (V ′
i + r)∩LG are terminals

in X ′
i. Let Yi be obtained from X ′

i by adding the vertices in Vi − V ′
i and adding an edge from

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 17

a vertex v ∈ (V ′
i +r)∩LG to a vertex w ∈ Vi −V ′

i whenever w ∈ V (Cv
Xi

). Observe that Yi is a
tree with |V (Yi)| = 2k−1. Further, we have |Vi−V (Cv

Yi
)| = |Vi−V (Cv

Xi
)| ≥ k for every v ∈ V ′

i

and |V (Cv
Yi

)| = 0 for every v ∈ Vi − V ′
i . This yields that |Vi − V (Cv

Yi
)| ≥ |Vi − V (Cv

Xi
)| ≥ k

for every v ∈ Vi and so Yi is an (r, k)-safe tree. By definition, we obtain that (X ′
1, X ′

2) is a
pair of compact (r, k)-certificates. Further, as E(X ′

i) ⊆ E(Xi) and (X1, X2) is completable,
we obtain that (X ′

1, X ′
2) is completable.

Now let (X1 = (V1 + r, E1), X2 = (V2 + r, E2)) be a completable pair of compact (r, k)-
certificates. By definition, there are (r, k)-safe trees Y1, Y2 such that Yi is obtained from Xi

by adding a set V ∗
i of 2k − 2 − |Vi| new vertices and an edge from a vertex in (Vi + r) ∩ LG

to v for every v ∈ V ∗
i . Let (X ′

1 = (V ′
1 + r, E′

1), X ′
2 = (V ′

2 + r, E′
2)) be a pair of subgraphs of

G that are vertex-maximal with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex v ∈ V − Vi and an edge of

E that goes from a vertex in (Vi + r) ∩ LG to v,
(ii) dX′

i
(v) ≤ dYi(v) for every v ∈ (Vi + r) ∩ LG, and

(iii) (X ′
1, X ′

2) is completable.

Note that (X1, X2) satisfies conditions (i)-(iii), so (X ′
1, X ′

2) is well-defined. Observe that
if condition (ii) is satisfied with equality for every v ∈ (Vi + r) ∩ LG, then X ′

i is isomorphic
to Yi, so X ′

i is an (r, k)-safe tree and by definition also a classic (r, k)-certificate. If this is
the case for both X ′

1 and X ′
2, we are done by condition (iii).

We may therefore suppose by symmetry that there is a vertex v ∈ (V1 + r) ∩ LG with
dX′

1
(v) < dY1(v). For any e = vze ∈ δG(v) with ze ∈ NG(v)−V ′

1 , let Xe
1 = (V ′

1 +r+ze, E′
1 ∪e).

By the maximality of X ′
1, we obtain that Xe

1 violates one of conditions (i)-(iii) for every
e = vze ∈ δG(v) with ze ∈ NG(v) − V ′

1 . By construction and the choice of v, Xe
1 satisfies

conditions (i) and (ii) for every e = vze ∈ δG(v) with ze ∈ NG(v) − V ′
1 . It follows that

(Xe
1 , X ′

2) violates condition (iii) for every e = vze ∈ δG(v) with ze ∈ NG(v)−V ′
1 . As (X ′

1, X ′
2)

is completable, there are two edge-disjoint spanning trees T1, T2 of G such that E′
i ⊆ E(Ti)

for i = 1, 2.

▶ Claim 33. There is no e = vze ∈ δG(v) − (E(T1) ∪ E(T2)) with ze ∈ NG(v) − V ′
1 such that

(Xe
1 , X ′

2) violates condition (iii).

Proof. Suppose otherwise. By Lemma 18, there is an edge f ∈ E(T1) incident to ze such
that T ′

1 = T1 − f + e is a spanning tree of G. As ze /∈ V ′
1 , we obtain that f /∈ E′

1, yielding
E(Xe

1) ⊆ E(T ′
1). As T ′

1 and T2 are edge-disjoint, we obtain that (Xe
1 , X ′

2) is completable, a
contradiction. ◀

▶ Claim 34. There are at most 6k − 6 vertices z ∈ NG(v) − V ′
1 such that (Xe

1 , X ′
2) violates

condition (iii) for some e = vz ∈ E(T2).

Proof. Suppose otherwise. As |V ′
2 | ≤ |V (Y2)| − 1 = 2k − 2, we obtain that there are

at least 4k − 3 vertices z ∈ NG(v) − V ′
1 such that (Xe

1 , X ′
2) violates condition (iii) for

some e = vz ∈ E(T2) − E′
2. Let σ : E(T2) → E(T1) be a tree-mapping function from

T2 to T1. By Lemma 19 and since |E′
1| ≤ 2k − 2, there is some z ∈ NG(v) − V ′

1 and an
edge e = vz ∈ E(T2) − E′

2 such that σ(e) ∈ E(T1) − E′
1. By definition of tree-mapping

functions, T ′
1 = T1 − σ(e) + e and T ′

2 = T2 − e + σ(e) are edge-disjoint spanning trees of
G. As E(Xe

1) ⊆ E(T ′
1) and E(X ′

2) ⊆ E(T ′
2), we obtain that (Xe

1 , X ′
2) is completable, a

contradiction. ◀

18 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

As v ∈ LG and |V ′
1 | ≤ |V1 ∪V ∗

1 | = 2k −2, we have |NG(v)−V ′
1 | ≥ (8k −7)− (2k −2) > 6k −6.

It now follows from Claim 33 and Claim 34 that there is at least one vertex in z ∈ NG(v)−V ′
1

and an edge e = vz such that Xe
1 does not violate any of conditions (i)-(iii), a contradiction.

Observe that the second part of the proof yields an algorithm for computing a completable
pair of classic (r, k)-certificates from a pair of completable compact (r, k)-certificates. First
observe that by the second part of Proposition 29, we can find Y1, Y2 in time 2O(k log k). Now,
defining Xa

2 similarly to Xa
1 , every time we try to add an edge e to X ′

i, for i = 1 or 2, we
test if (Xe

i , X ′
3−i) satisfies conditions (i)-(iii). Conditions (i)-(ii) can clearly be checked

in polynomial time and, by Lemma 25, condition (iii) can also be checked in polynomial
time. Never checking an edge that is parallel to one we have already checked, after at most
6k − 6 failed attempts, we manage to add a new vertex to V ′

i . We repeat this procedure
|V ∗

i | ≤ 2k − 2 times. It follows that a completable pair of classic (r, k)-certificates can be
computed in time k2 · nO(1) = nO(1). By the second part of Lemma 26, we can then find two
edge-disjoint (r, k)-safe spanning trees in G in polynomial time. The overall running time of
the algorithm is 2O(k log k) · nO(1), as claimed. ◀

We are now ready to proceed to the proof of Theorem 12.

Proof of Theorem 12. We may suppose that there are at most two parallel edges from u to
v for any u, v ∈ V + r. If |V | < 2k − 2, the problem can be solved by a brute force algorithm
in time 2O(k2), by generating all pairs of subgraphs of G and checking whether any of these
pairs satisfies the required conditions. We may hence also suppose that |V | ≥ 2k − 2.

We first explain how to test whether a candidate for the completable pair of compact
(r, k)-certificates is indeed a completable pair of compact (r, k)-certificates. After, we show
that the number of candidates is bounded.

Let X1 = (V1 + r, E1), X2 = (V2 + r, E2) be two subgraphs of G. By the first part
of Proposition 31, we can check in time 2O(k·log k) whether both X1 and X2 are compact
(r, k)-certificates. By Lemma 25, we can therefore decide in time 2O(k·log k) +nO(1) if (X1, X2)
is a completable pair of compact (r, k)-certificates in G. By Lemma 32, it therefore suffices
to prove that there are at most 2O(k2·log k) possible candidates for the completable pair of
compact (r, k)-certificates, and that they can be generated within the same running time.

Let X = (V ′ + r, E′) be a compact (r, k)-certificate in G. Observe that every vertex in
V ′ can be reached from r by a path all of whose interior vertices are in SG and whose length
is at most k − 1. As every vertex in SG has at most 8k − 8 neighbors, we obtain that the
number of vertices in V that can be reached by such a path is at most (8k − 8) + (8k −
8)2 + . . . + (8k − 8)k−1 ≤ (8k)k. As V ′ contains at most 2k − 2 vertices, there are at most((8k)k

2k−2
)

≤ (8k)2k2 possibilities to choose V ′.
Now suppose that we have chosen V ′ of size 2k − 2. Observe that there are at most

2
(|V ′+r|

2
)

≤ 8k2 edges that have both ends in V ′ + r. As |E′| = 2k − 2, there are at most(8k2

2k−2
)

≤ (8k2)2k possibilities to choose A′. It follows that there are at most (8k)2k2 · (8k2)2k

possibilities to choose a compact (r, k)-certificate X. As these can be computed by a brute
force method, the algorithm can finish after checking less than f(k) =

((8k)2k2
·(8k2)2k

2
)

=
2O(k2·log k) candidates for the pair of compact (r, k)-certificates.

If no completable pair of compact (r, k)-certificates exists, by Lemma 26, G does not
contain two edge-disjoint (r, k)-safe spanning trees. On the other hand, once we have found
a pair of completable compact (r, k)-certificates, we can compute in polynomial time the two
edge-disjoint (r, k)-safe spanning trees by the second part of Lemma 26. The overall running
time of the obtained algorithm is 2O(k2·log k) · nO(1). ◀

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 19

6 A hardness result for packing (r, k)-safe spanning trees

In this section we prove Theorem 13. It is well-known that the 3-Sat problem is NP-
complete. Further, we will need the following lemma derived from the ETH using the
so-called Sparsification Lemma [10].

▶ Lemma 35 (Impagliazzo et al. [10]). Assuming the ETH, there is an ε > 0 such that
there is no algorithm for solving a 3-Sat formula with ℓ variables and m clauses in time
2εm · (ℓ + m)O(1).

The proof of Theorem 13 given below is strongly inspired from the reduction given
in [3, Theorem 5.2], but we provide it here entirely for the sake of completeness.

Proof of Theorem 13. Observe that, given a rooted graph G = (V + r, E) and two positive
integers p and k, G contains an (r, k)-safe spanning tree if and only if the graph that is
obtained from G by replacing each of its edges by p parallel copies of itself contains p edge-
disjoint (r, k)-safe spanning trees. Hence, it suffices to prove the statement for p = 1. Let ϕ

be an instance of 3-Sat, with variables x1, x2, . . . , xℓ and clauses C1, C2, . . . , Cm. Adding a
variable that is not contained in any clause if necessary, we can assume that ℓ is even. We
construct a simple rooted graph G = (V + r, E) as follows; see Figure 1 for an illustration.
For i = 1, . . . , ℓ, let Vi be an independent set containing two vertices vi and v̄i, and let r and
t be two extra vertices. Add all possible edges between r and V1, between Vi and Vi+1 for
i = 1, . . . , ℓ − 1, and between Vℓ and t. Next, add m vertices c1, . . . , cm and link ci to vj

(resp. v̄j) with a path containing ℓ/2 interior vertices if xi (resp. x̄i) is a literal of Ci. Finally,
let k := 1 + ℓ + 3ℓm/2 + m and add to G an independent set Q on q vertices all linked to t,
where q > k − ℓ − 1 will be specified later. Notice that we have n = |V | = q + k + ℓ + 1.

V1 V2 V3 V4 Vℓ−1 Vℓ

r t

Q

c4 cm

ℓ/
2

ve
rt

ice
s

v1

v̄1

v2

v̄2

v3

v̄3

v4

v̄4 v̄ℓ−1 v̄ℓ

vℓ−1 vℓ

c1 c2 c3

Figure 1 The rooted graph G in the proof of Theorem 13 with C1 = x̄1 ∨ x2 ∨ x̄4.

We now prove that ϕ is satisfiable if and only if G admits an (r, k)-safe spanning tree.
First assume that G contains an (r, k)-safe spanning tree T . Observe that, by construction
and the definition of (r, k)-safe spanning trees, T − r has exactly two components whose
vertex sets we denote by T1 and T2. We may assume that T1 contains t. Then G[T1] contains
a path P from V1 to t and T1 contains Q. As a shortest path from V1 to t contains ℓ + 1
vertices, we have |T1| ≥ q + ℓ + 1 and n − |T1| ≤ k. As T is (r, k)-safe, we obtain that
|T1| = q + ℓ+1 and T1 consists exactly of the vertex set of the path P , which contains exactly
ℓ + 1 vertices, and the whole set Q. In particular, P intersects each Vi in exactly one vertex.
Now for i = 1, . . . , ℓ , we set xi to true if P contains v̄i and to false if P contains vi. For each
clause Cj , there must be a path from the corresponding vertex cj to V1 in T2. Then one of

20 FPT algorithms for packing k-safe spanning rooted sub(di)graphs

the vertices corresponding to a literal of Cj must not be contained in P and so, this literal is
set to true and Cj is satisfied by it. It follows that the constructed assignment satisfies ϕ.

Conversely, assume that ϕ admits a truth assignment. Let P be the path defined so that,
for every i = 1, . . . , ℓ, it contains vi if xi is set to false and v̄i if xi is set to true. Further, let
T1 = V (P) ∪ t ∪ Q. As ϕ is satisfied, for every 1 ≤ j ≤ m, there exists a path from cj to
V1 ∪· · ·∪Vℓ in G− (T1 ∪ r). It follows that G− (T1 ∪ r) is connected and we select a spanning
tree of it. The union of this spanning tree with G[T1], r, and the edges incident to r is a
spanning tree of G. In order to see that this spanning tree is (r, k)-safe, it suffices to observe
that, as q > k −ℓ−1, we have |T1| = q +ℓ+1 > k and |V −T1| = q +k +1+ℓ−(q +ℓ+1) = k.

If we fix q = k, then the size of G is bounded by a polynomial in ℓ and m. Thus, the
above reduction implies that, as 3-Sat is NP-complete, given a rooted graph G and an
integer k, deciding whether G admits an (r, k)-safe spanning tree is NP-complete.

Let now ε be a positive constant and assume that k is an integer function satisfying
(log(n))2+ε ≤ k(n) ≤ n

2 for every n > 0. Furthermore, suppose that there exists a constant
C∗ such that for every integer c ≥ C∗ there exists an n such that k(n) = c. Finally, for the
sake of a contradiction assume that there exists a polynomial-time algorithm A, running in
time O(nc0) for some c0 > 0, for deciding if a given rooted graph G = (V +r, E) on n vertices
contains an (r, k(n))-safe spanning tree. Then let ϕ be a 3-Sat formula with ℓ variables and
m clauses. We may assume that ℓ and m are large enough so that 1 + ℓ + 3ℓm/2 + m ≥ C∗.
Adding trivial clauses if necessary, we may also assume that ℓ ≤ m. By assumption, there
exists n such that k(n) = 1 + ℓ + 3ℓm/2 + m. So, in the above reduction, we choose q to
be n − (k(n) + ℓ + 1), in order to have n = q + k(n) + ℓ + 1. Then, using algorithm A, one
could decide if ϕ is satisfiable in time O(nc0) = O(2c0·log n) = O(2c0·k(n)1/(2+ε)), where we
have used the assumption that k(n) ≥ (log(n))2+ε. Moreover, in the previous construction,
we have k(n) = 1 + ℓ + 3ℓm/2 + m ≤ 3m + 3m2/2 ≤ 3m2. So we could decide whether ϕ is
satisfiable in time O(2c0·(3m2)1/(2+ε)) = O(2c′

0·mε′

) with ε′ = 2/(2 + ε) < 1, a contradiction to
Lemma 35 assuming the ETH. ◀

7 Conclusion

We considered three problems on finding certain disjoint substructures in graphs and digraphs.
While in our proofs we restrict to finding two of these substructures for the sake of simplicity,
our results can be generalized to allow for finding an arbitrary number of them using the
same proof techniques. More concretely, the following results can be established using the
techniques of this article. As in [3], we omit the proofs of these generalized statements.

▶ Theorem 36. Given a rooted digraph D = (V + r, A) and an integer p ≥ 2, deciding
whether D contains p arc-disjoint k-safe spanning r-arborescences is FPT with parameter
k. More precisely, the problem can be solved in time 2O(p·k2·log k) · nc, where c is a constant
depending on p. Further, if they exist, the p arc-disjoint k-safe spanning r-arborescences can
be computed within the same running time.

▶ Theorem 37. Given a rooted digraph D = (V + r, A) and an integer p ≥ 2, deciding
whether D contains p arc-disjoint (r, k)-flow branchings is FPT with parameter k. More
precisely, the problem can be solved in time 2O(p·k2·log k) · nc, where c is a constant depending
on p. Further, if they exist, the p arc-disjoint (r, k)-flow branchings can be computed within
the same running time.

▶ Theorem 38. Given a rooted graph G = (V + r, E) and an integer p ≥ 2, deciding whether
G contains p arc-disjoint (r, k)-safe spanning trees is FPT with parameter k. More precisely,

S. Bessy, F. Hoersch, A. K. Maia, D. Rautenbach, and I. Sau 21

the problem can be solved in time 2O(p·k2·log k) · nc, where c is a constant depending on p.
Further, if they exist, the p edge-disjoint (r, k)-safe spanning trees can be computed within
the same running time.

It is natural to ask whether the dependency on k of our FPT algorithms can be improved.
There is still a significant gap between the lower bounds in Corollaries 3,7 and 14, which

are 2O(k1−ε) or 2O(k1/2−ε), and the function 2O(k2·log k) in our FPT algorithms.
We did not focus on optimizing the polynomial factors in n of our algorithms, and we

leave it for further research. Further, we leave as an open question whether any of the
considered problems admit a polynomial kernel parameterized by k. Finally, it would be
interesting to find a theorem on packing k-safe mixed arborescences in mixed graphs, hence
generalizing both Theorem 36 and Theorem 38.

References
1 Jørgen Bang-Jensen and Stéphane Bessy. (arc-)disjoint flows in networks. Theoretical Computer

Science, 526:28–40, 2014. doi:10.1016/j.tcs.2014.01.011.
2 Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications.

London, 2nd edition, 2009. URL: https://dblp.org/rec/books/daglib/0022205.bib.
3 Jørgen Bang-Jensen, Frédéric Havet, and Anders Yeo. The complexity of finding arc-disjoint

branching flows. Discrete Applied Mathematics, 209:16–26, 2016. doi:10.1016/j.dam.2015.
10.012.

4 Jørgen Bang-Jensen and Anders Yeo. Balanced branchings in digraphs. Theoretical Computer
Science, 595:107–119, 2015. doi:10.1016/j.tcs.2015.06.026.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Jack Edmonds. Edge-disjoint branchings. In B. Rustin, editor, Combinatorial Algorithms,
pages 91–96, New York, 1973. Academic Press.

7 Jack Edmonds. Some well-solved problems in combinatorial optimization. In B. Roy, editor,
Combinatorial Programming: Methods and Applications (Proceedings of the NATO Advanced
Study Institute, Versailles, 1974), Reidel, Dordrecht, 1975. Academic Press. doi:10.1007/
978-94-011-7557-9_15.

8 András Frank. Connections in Combinatorial Optimization. 2011. URL: https://global.oup.
com/academic/product/connections-in-combinatorial-optimization-9780199205271.

9 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

10 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

11 László Lovász. Connectivity in digraphs. Journal of Combinatorial Theory, Series B, 15(2):174–
177, 1973. doi:10.1016/0095-8956(73)90018-X.

12 William T. Tutte. On the problem of decomposing a graph into n connected factors. Journal
of the London Mathematical Society, 36(1):221–230, 1961. doi:10.1112/jlms/s1-36.1.221.

https://doi.org/10.1016/j.tcs.2014.01.011
https://dblp.org/rec/books/daglib/0022205.bib
https://doi.org/10.1016/j.dam.2015.10.012
https://doi.org/10.1016/j.dam.2015.10.012
https://doi.org/10.1016/j.tcs.2015.06.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-94-011-7557-9_15
https://doi.org/10.1007/978-94-011-7557-9_15
https://global.oup.com/academic/product/connections-in-combinatorial-optimization-9780199205271
https://global.oup.com/academic/product/connections-in-combinatorial-optimization-9780199205271
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/0095-8956(73)90018-X
https://doi.org/10.1112/jlms/s1-36.1.221

	Introduction
	Preliminaries
	General preliminaries
	Preliminaries on k-safe spanning r-arborescences
	Preliminaries on spanning (r,k)-flow branchings
	Preliminaries on (r,k)-safe spanning trees
	Preliminaries on parameterized complexity

	An FPT algorithm for packing k-safe spanning arborescences
	An FPT algorithm for packing spanning (r,k)-flow branchings
	An FPT algorithm for packing (r,k)-safe spanning trees
	A hardness result for packing (r,k)-safe spanning trees
	Conclusion

