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• A new adaptive disturbance observer is proposed for unnamed underwater vehicles.
• The stability analysis of the resulting closed-loop controller/observer is provided.
• Real-time experiments demonstrate the effectiveness and robustness of the proposed solution.
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ABSTRACT
In this paper, we propose to improve the robustness of the well-known PD controller through an
adaptive disturbance observer. The proposed disturbance observer is based on the Super-Twisting
Algorithm, and is designed with adaptive gains. The stability analysis of the resulting closed-
loop controller/observer is achieved using Lyapunov arguments. Real-time experiments in different
operating conditions are conducted to demonstrate the effectiveness as well as robustness of the
proposed methodology, compared to the nominal PD controller.

1. Introduction and Related Work
The current trend in trajectory tracking control of AUVs

is focused on searching for advanced control schemes to
deal with the multiple challenges of their nonlinear dy-
namics, with unknow, time-varying and thereby difficult-to-
estimate parameters, in addition to operating in the pres-
ence of unpredictable random disturbances. Examples of
such approaches include Fuzzy Logic Controllers (FLC)
Xiang, Yu, Lapierre, Z. and Z. (2015), Khodayari and
Balochian (2015), Neural-Network based control (NNC)
Cui, Chen, Yang and Chen (2017); Yan, Wang and Xu
(2019), Model Predictive control Shen, Shi and Buck-
ham (2018), Adaptive control Li and Lee (2005), Sliding
Mode Control (SMC) García-Valdovinos, Salgado-Jiménez,
Bandala-Sánchez, Nava-Balanzar, Hernández-Alvarado and
Cruz-Ledesma (2014), High Order Sliding Modes Control
(HOSMC) Ismail and Putranti (2015); Guerrero, Torres,
Antonio and Campos (2018), and deep learning based
control Li, Wang and Ma (2022). Each methodology from
the literature has mainly both strengths and weaknesses. For
instance, FLC has a simple structure, making its design easy
and cost-effective. However, this controller’s tuning might
be difficult, because it has no stability criterion to guide this
process.

On the other hand, one may ascertain the constant in-
terest in reinforcing the prominent place PD controllers
have gained in several applications. The goal is to take
advantage of the classic PD/PID controllers (including ac-
ceptable performance, ease of design, cost, etc.) to face
the challenges of complex nonlinear dynamics of robotic
systems like AUVs. To this end, PD/PID controllers have
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been improved by adopting several strategies based on auto-
tuning Zhang, Zhang, Liu, Zhou and Papavassiliou (2018),
saturation Sarhadi, Noei and Khosravi (2016a), adaptation
Khodayari and Balochian (2015), MR adaptive PID Sarhadi,
Ranjbar and Khosravi (2016b) or nonlinear time-varying
functions Campos, Chemori, Creuze, Torres and Lozano
(2017); Guerrero, Torres, Creuze and Chemori (2019a).
For instance, a nonlinear PID for the trajectory tracking of
an AUV has been proposed in Guerrero, Torres, Creuze,
Chemori and Campos (2019b).
In general, the above-mentioned approaches present good
performance in the presence of unmodeled parametric un-
certainties and dynamic disturbances; however, it can be
seriously degraded by ubiquitous exogenous disturbances
often present in marine environments Tijjani, Chemori and
Creuze (2022). Nonlinear observers may constitute a poten-
tial candidate to estimate unknown external perturbations of
an AUV, and can be easily integrated in any control scheme.
The stability of the resulting controller-observer structure in
closed loop is not simple to prove theoretically; where it is
essential to reject the external disturbance asymptotically or
in finite time. Disturbance observers include those based on
sliding modes Hall and Shtessel (2006), high-gain observers
Fernandes, Sørensen, Pettersen and Donha (2015), and the
Extended State Observers (ESO) Guo, Zhang, Celler and
Su (2016). Second-order sliding mode observers are pri-
oritized in this work since they provide robustness along
with chattering attenuation and continuous estimation. This
is an improvement w.r.t. the basic sliding mode algorithm,
as demonstrated by Levant (1993).
In practice, introducing nonlinear saturation functions to re-
place the constant feedback gains of standard Proportional-
Derivative (PD) or Proportional-Integral-Derivative (PID)
control strategies can improve their performance and ro-
bustness. This has led to the development of a family of
nonlinear control strategies so-called NLPD (Nonlinear PD)
and NLPID (NonLinear PID), Campos et al. (2017), Guer-
rero et al. (2019b). Subsequently, in Guerrero et al. (2019a),
introducing a disturbance observer based on generalized
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STA (GSTA) has proven to be effective in strengthening the
NLPID controller, especially in its ability to reject exoge-
nous disturbances, which is a known weakness of the con-
ventional NLPID algorithm alone, Guerrero et al. (2019b).
This approach has been developed in several studies from
the literature, and has shown promising results in practical
control applications, Guerrero et al. (2019a).
The present manuscript focuses on analyzing and designing
an NLPD controller enhanced with an STA-based distur-
bance observer to achieve reliable performance and robust-
ness in presence of internal and external parametric distur-
bances. The main objective of this control approach is to
maintain tracking performance while effectively rejecting
external disturbances. A significant advantage of PD con-
trol over its PID counterpart is that PD control does not
suffer from wind-up phenomenon when the control input
is saturated, Sarhadi, Ranjbar and Khosravi (2017). From a
design point of view, the simplicity of basic PD controllers
is maintained, where the STA observer requires the tuning
of only two parameters. Finally, the complete closed-loop
stability analysis and design of the proposed control scheme
are provided, which are expected to offer competitive perfor-
mance and robustness compared to other control strategies.
The rest of the paper is organized as follows: The mathe-
matical modeling of underwater vehicles is given in Sec-
tion 2. The design of the proposed adaptive disturbance
observer, based on the Super Twisting Algorithm, is detailed
in Section 3, while the stability analysis of the proposed
observer is addressed in Section 4. Section 5 is devoted to the
stability analysis of the nominal PD controller augmented
with the proposed adaptive disturbance observer. Finally, the
obtained experimental results are introduced and observed
in Section 6; where several real-time experiments are con-
ducted on a real platform. Finally, some concluding remarks
are drawn in Section 7.

2. Mathematical Model of the Underwater
Vehicle
The mathematical model of underwater vehicles has

been studied in several works from the literature Fossen
(1999, 2011); Wadoo and Kachroo (2017). To this end,
reference frames are selected as illustrated in Figure 1. The
dynamic model in the body-fixed frame is given as follows:

M�̇ + C(�)� +D(�)� + g(�) =� +w�(t) (1)
The vector � ∈ ℝ6 is the state vector of velocity in the body-
fixed frame. The inertia matrix is denoted by M ∈ ℝ6×6,
C(�) ∈ ℝ6×6 is the Coriolis-centripetal matrix, D(�) ∈
ℝ6×6 is the hydrodynamic damping matrix, and g(⋅) ∈ ℝ6
is the vector of the gravitational and buoyancy forces and
moments. The vector � ∈ ℝ6 is the control input acting on
the vehicle, and w�(t) ∈ ℝ6 is the vector of the external
disturbances effects.

Figure 1: Illustration of the Earth-fixed frame (xi, yi, zi) and
the body-fixed frame (xb, yb, zb) of an underwater vehicle.

The above dynamics of the underwater vehicle can be
expressed in the Earth-fixed frame using the transformation
matrix J (�) ∈ ℝ6×6 as follows:

�̇ = J (�)� (2)
Where � = [x, y, z, �, �,  ]T is the vector of position and
orientation of the vehicle in the Earth-fixed frame, and �̇
denotes its time derivative. Replacing (2) into (1) leads to
the following representation in the Earth-fixed frame:
M�(�)�̈+C�(�, �)�̇+D�(�, �)�̇+g�(�) = ��(�)+w�(t) (3)

where the different matrices are defined as follows:
M�(�) =J−T (�)MJ−1(�)

C�(�, �) =J−T (�)
[

C(�) −MJ−1(�)J̇ (�)
]

J−1(�)

D�(�, �) =J−T (�)D(�)J−1(�)

g�(�) =J−T (�)g(�)

��(�) =J−T (�)�

w�(t) =J−T (�)w�(t)

It is well known that model-based controllers require
the full knowledge of the dynamical model of the vehicle.
However, in underwater robotics, it is difficult to evaluate the
hydrodynamic parameters because their values may depend
on the operating conditions. For these reasons, we express
the dynamics of the vehicle given in (3) in terms of the
estimated parameters as follows:
M̂�(�)�̈+Ĉ�(�, �)�̇+D̂�(�, �)�̇+ĝ�(�) = ��(�)+w�(t) (4)

where M̂� , Ĉ� , D̂� , and ĝ� represent the estimation of the
matrices of the dynamic model. The vector of the external
disturbances w�(t) can be defined as:

w�(t) = w� − f̃ (⋅) (5)
It is worth noting that the vector w�(t) includes the exter-
nal disturbances and the unknown dynamics of the model
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denoted by f̃ (⋅) and defined as:
f̃ (⋅) = (M�−M̂�)�̈+(C−Ĉ�)�̇+(D−D̂�)�̇+(g�−ĝ�) (6)
Note that the dynamics is rewritten in terms of the known

hydrodynamic parameters f̂ (⋅) and the lumped vectorw�(t),including the unknown dynamics and the bounded external
disturbances.

3. Proposed adaptive disturbance observer
In this section, a robust STA-Based disturbance observer

is designed. The proposed methodology is based on the
Extended State Observer methodology (ESO) Han (1995,
1998). In brief, the ESO technique is applied to a chain form,
where the external disturbance is seen as an augmented state.
Then, the ESO will be designed to estimate both the state
variables and the external disturbances.

To give a comprehensive explanation of the disturbance
observer, let us rewrite the dynamical model (4) in integrator
chain form by considering the following state variables:

z1 = � ; z2 = �̇

Then, the dynamical model (4) can be expressed as follows:
ż1 = z2
ż2 = F̂ (z) + Ĝ(z)u(t) + d(t) (7)

Where:
F̂ (z) = −M̂�(�)−1

[

Ĉ�(�, �)�̇ + D̂�(�, �)�̇ + ĝ�(�)
]

Ĝ(z) = M̂n(�)−1J−T (�)

d(t) = M̂�(�)−1w�(t)
u(t) = ��

Finally, classical assumptions in underwater vehicles can
be considered:

Assumption 1. The pitch angle is smaller than �∕2, i.e.,
|�| < �∕2.

Assumption 1 ensures that the inverse of the matrix
J (�) always exists; consequently, the term G(z) exists. In
a practical situation, a pitch close to �∕2 implies that the
robot dives vertically, which is mainly not required during
sea missions.

Now, let us consider the following auxiliary variable
defined as:

�(t) = z2 + Γz1 (8)
where � ∈ ℝ6 and Γ = diag{1, 2,⋯ , 6} is a diagonal
positive definite matrix.

The time derivative of �(t) can be expressed as follows:
�̇(t) = f (z) + g(z)u(t) + d(t) (9)

where f (z) = F̂ (z) + Γż1, and g(z) = Ĝ(z)

From the dynamics (9) of the auxiliary variable, the
lumped disturbance can be considered as an extended state
ℎ(t), such that:

�̇(t) = f (z) + g(z)�� + ℎ(t)
ℎ̇(t) = �(t) (10)

where �(t) is the time derivative of the total disturbance d(t).
The proposed disturbance observer dynamics for the

system (10) can then be defined as:
̇̂� = f (z) + g(z)�� −K1Φ1(�̃) + d̂(t)
̇̂d = −K2Φ2(�̃)

(11)

WhereK1 = diag{k11,⋯ , k16} andK2 = diag{k21,⋯ , k26}are diagonal positive definite matrices representing the ob-
server feedback gains. The vectorsΦ1 andΦ2 are defined as
Φ1(�̃) = [�11, �12,⋯ , �16]T andΦ2(�̃) = [�21, �22,⋯ , �26]T ,where each element of these vectors is given by:

�1i(�̃i) = |�̃i|
1∕2sgn(�̃i) (12)

�2i(�̃i) =
1
2
sgn(�̃i) (13)

for i = 1, 6.
Finally, the estimation errors are deduced as follows:
�̃(t) = �̂(t) − �(t) (14)
d̃(t) = d̂(t) − d(t) (15)

where �̂(t) and d̂(t) are the estimated observer internal
states, ̇̂�(t) and ̇̂d(t) represent the dynamics of the estimated
observer internal states.

4. Observer Stability Analysis
Theorem 1. Consider the augmented system dynamics (10).
The Super Twisting-based Algorithm (11) is a finite-time
disturbance observer with the adaptive gains defined as
follows:

k̇1i = !1i

√

&1i
2

(16)
k̇2i = �k1i (17)

with i = 1, 6 and the design parameters selected as!1i, &1i >
0.

PROOF. First of all, let us compute the time derivative of the
estimation errors (14) and (15), leading to:

̇̃� = −K1|�̃|1∕2sgn(�̃) + d̃
̇̃d = −K2sgn(�̃) − ℎ(t)

(18)

To give a more comprehensive explanation of the stability of
the proposed observer, let us consider the following change
of variables:

s1i = �̃i
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s2i = d̃

Then (18) can be rewritten in a scalar form (for i = 1, 6) as
follows:

ṡ1i = −k1i|s1i|
1
2 sgn(s1i) + s2i

ṡ2i = −k2isgn(s1i) + ℎi(t)
(19)

Without loss of generality, (19) can be rewritten, by adopting
simplified notations as follows:

ṡ1 = −k1|s1|
1
2 sgn(s1) + s2

ṡ2 = −k2sgn(s1) + ℎ(t)
(20)

Note that if we select the state vector � = [�1, �2]T =
[|s1|

1
2 sgn(s1), s2]T , then the dynamics of � can be expressed

as follows:

�̇ = 1
2|�1|

{[

−k1 1
−2k2 0

]

� +
[

0
2|�1|

]

ℎ(t)
}

(21)

Where the following identities are always satisfied:
|�1| = |s1|

1
2

sgn(�1) = sgn(s1)

Then, considering that the perturbation ℎ(t) is bounded, it is
easy to observe that:

ℎ(t) =
�(t)
2
sgn(�) =

�(t)
2

�1
|�1|

(22)

Where �(t) is a bounded function satisfying:
0 < �(t) < �1, �1 > 0

Finally, the dynamics (20), can be rewritten as follows:
�̇ = A� (23)

Where:

A = 1
2|�1|

[

−k1 1
−(2k2 − �(t)) 0

]

(24)

Now, to analyze the stability of the resulting dynamic sys-
tem (21), let us consider the following Lyapunov function
candidate:

V (�, k1, k2) = V0(⋅) +
1
2&1

(k1 − k∗1)
2 + 1

2&2
(k2 − k∗2)

2

(25)
where &1,&2,k∗1,k∗2 are positive constants and V0(⋅) is definedas:

V0(� ) = �TP� (26)
with:

P = P T =
[

� + 4�2 −2�
−2� 1

]

> 0 (27)

Where � and � are defined as arbitrary positive constants,
then P is a positive definite matrix. Besides, note that V0(⋅)satisfies the following inequalities:

�min(P )‖�‖22 ≤ V0(⋅) ≤ �max(P )‖�‖22 (28)
where �min(P ) and �max(P ) are the smallest and greatest
eigenvalues of P , respectively. The term ‖�‖22 = |s1|+ s22 isthe Euclidean norm of � satisfying the inequality:

|�1| ≤ ‖�‖2 ≤
V

1
2
0 (� )

�
1
2
min(P )

(29)

Finally, it is worth to note that the proposed Lyapunov func-
tionV (⋅) is a continuous, positive definite, and differentiable.

To compute the time derivative of V (⋅), we divide the
procedure into two main steps. First, we obtain the time
derivative of V0(⋅). Second, the total time derivative of V (⋅)
is found.

Step 1. Computing the time derivative of V0.Consider the dynamics of � in (23), then, the time
derivative of V0 is computed as follows:

V̇0 = 2�TP �̇

= 2�TPA�

= �T (ATP + PA)�

= − 1
2|�1|

�TQ� (30)

where

Q =
[

2k1� + 8�(�k1 − k2) + 4��(t) ⋆
2(k2 − �k1) − � − 4�2 − �(t) 4�

]

(31)

and ⋆ = 2(k2 − �k1) − � − 4�2 − �(t).Note that the matrix Q is positive definite if the gain k2is selected as follows:
k2 = �k1 (32)

with a minimum eigenvalue �min(Q) ≥ 2� if

k1 > �0 +
�22
4��

+
�
[

2(� + 4�2 + L) + 1
]

2�
(33)

Finally, using (29), the time derivative of V0(⋅) can be
bounded as follows:

V̇0 ≤ − V
1
2
0 (� ) (34)

with  = �1 ��
1
2
min(P )

�max(P )
.

Step 2. Computing the time derivative of V .
The time derivative of the Lyapunov function (25) can

be expressed as follows:

V̇ = V̇0(⋅) +
1
&1
(k1 − k∗1)k̇1 +

1
&2
(k2 − k∗2)k̇2
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≤ −V
1
2
0 (s, k) +

1
&1
(k1 − k∗1)k̇1 +

1
&2
(k2 − k∗2)k̇2

= −V
1
2
0 (s, k) −

!1
√

2&1
|k1 − k∗1| −

!2
√

2&2
|k2 − k∗2|+

1
&1
(k1 − k∗1)k̇1 +

1
&2
(k2 − k∗2)k̇2 +

!1
√

2&1
|k1 − k∗1|+

+
!2

√

2&2
|k2 − k∗2| (35)

Using the Cauchy-Schwarz inequality, the first three terms
of V̇ can be rewritten as:

−V
1
2
0 (s, k) −

!1
√

2&1
|k1 − k∗1| −

!2
√

2&2
|k2 − k∗2| ≤ −�

√

V

(36)
where � = min{, !1, !2}.Assuming that there exist positive constants k∗1 and k∗2,such that k1 − k∗1 < 0 and k2 − k∗2 < 0 ∀t ≥ 0. Then, the
time derivative of V can be rewritten as follows:

V̇ ≤ −�
√

V (s, k1, k2) − |k1 − k∗1|

(

1
&1
k̇1 −

!1
√

2&1

)

− |k2 − k∗2|

(

1
&2
k̇2 −

!2
√

2&2

)

= −�
√

V (s, k1, k2) + # (37)
Where:

# = − |k1 − k∗1|

(

1
&1
k̇1 −

!1
√

2&1

)

−

|k2 − k∗2|

(

1
&2
k̇2 −

!2
√

2&2

)

(38)

In order to preserve the finite-time convergence, it is neces-
sary to ensure the condition # = 0, which can be achieved
through the following adaption laws:

k̇1 = !1

√

&1
2

(39)

k̇2 = !2

√

&2
2

(40)

Roughly speaking, the adaptive gains k1 and k2 will be
increased based on the dynamic and algebraic equations
stated in (16) until the condition (33) is reached. Then,
the matrix Q will be positive definite, and the finite-time
convergence will be assured according to (37). Finally, when
the sliding variable � and its derivative converge to zero,
the adaptive gains k1 and k2 will stop increasing by making
k̇1 = 0 as � = 0. Subsequently, the gain-adaptation law (16)
is obtained.

5. Improving non-robust controllers
PD feedback control is a widely used control strategy in

the field of AUVs. PD controllers are relatively simple and
easy to implement, while assuming acceptable performance
in controlling the vehicle’s motion. Although this control
scheme performs well under nominal conditions, its perfor-
mance may significantly degrade when the hydrodynamic
parameters of the vehicle change. To address this issue,
we propose an enhanced PD controller that utilizes the
ESO technique as well as an adaptive disturbance observer
to estimate and compensate for external disturbances and
parametric uncertainties.

First of all, let us consider the PD nominal design re-
ported in Campos et al. (2017), and defined as:
�nom = M̂� �̈d+Ĉ� �̇d+D̂� �̇d+ĝ�(�)−Kpe(t)−Kd ė(t) (41)

where �d = [xd(t), yd(t), zd(t), �d(t), �d(t),  d(t)]T is the
desired trajectory vector, �̇d and �̈d are the first and second
time derivatives of �d , respectively. Also, the trajectory
tracking error is expressed by e(t) = [e1(t),⋯ , e6(t)]T =
� − �d and ė(t) is its time derivative. The PD controller
feedback gains are defined by Kp, Kd ∈ ℝ6×6, diagonal
positive definite matrices.

Based on the real-time experiments reported in Campos
et al. (2017), the PD controller performs well when the robot
is working under nominal controlled conditions. However,
when some parameters such as the buoyancy or the damping
change, the controller performance is severely degraded, and
the robot cannot follow properly the reference trajectories.
To overcome this issue, we propose to enhanced the PD
controller by injecting the external disturbance estimation
generated by the proposed disturbance observer to be com-
pensated. Moreover, it is worth to note that the proposed
observer has two gains tuned automatically according to the
adaptation dynamics in (16).

Finally, the proposed control law for the enhanced PD
controller (ePD) is given as follows:

��(�) = �nom − M̂(⋅)d̂ − K̂ SGN(ė) (42)
where �nom is the control law given in (41), d̂(t) is the
disturbance estimation generated by the observer dynam-
ics (11). The vector SGN(ė) is defined as SGN(ė) =
[sgn(ė1(t)),⋯ , sgn(ė6(t))] and K̂ is an adaptive gain, com-
puted from the following dynamic equation:

̇̂K = �‖ė‖ (43)
where � ∈ ℝ is a real positive constant.

It is worth to note, from the proposed control law (42),
that the second term d̂ is the observer’s external disturbance/
parametric uncertainties vector estimation. Besides, the third
term is added to give more robustness to the proposed
controller. However, this term could generate a chattering
effect in the control input and should carefully tuned to avoid
such an effect.

Finally, the closed-loop dynamics stability analysis is
given in the sequel.
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5.1. Closed-loop stability analysis
First, consider the dynamic model of the underwater

vehicle (4), then by introducing the control law (42), we
obtain the following closed-loop system:

d
dt

[

e
ė

]

=

⎡

⎢

⎢

⎢

⎣

ė
−M�(�)−1

[

[Ĉ�(�, �) + D̂�(�, �) +Kd]ė +Kpe

+K̂SGN(ė)
]

− d̂(t) + d(t)

⎤

⎥

⎥

⎥

⎦

(44)
Second, consider the following Lyapunov candidate

function:

V (e, ė) = 1
2
ėT M̂�(�)ė+ ∫

e

0
�TKp(�)d� +

1
2�
K̃2 (45)

where � is a positive constant introduced in (43), and the
parameter estimation error is defined by K̃ = K̂ − K .
Additionally, the integral term is defined as follows:

∫

e

0
�TKp(�)d� = ∫

e1

0
�1kp1 (�1)d�1+⋯+∫

e6

0
�6kp6 (�6)d�6

Then, consider the following inequality:
ejkpj > �j(|ej|) for j = 1, .., 6

Which is satisfied by considering class-K functions �(⋅) as
reported in Campos et al. (2017). Consequently, we can
conclude that:

∫

e

0
�TKp(�)d� > 0, ∀ e ≠ 0 ∈ ℝn (46)

and

∫

e

0
�TKp(�)d� →∞ as ‖e‖ →∞ (47)

From (46) and (47), one can ensure that the proposed Lya-
punov function is positive definite and radially unbounded.
Then, taking the time derivative of V leads to:

V̇ (e, ė) = ėT M̂�(�)ë+
1
2
ėT ̇̂M�(�)ė+eTKpė+

1
�
K̃ ̇̂K (48)

Now, injecting the error dynamics (44) into (48), yields:
V̇ (e, ė) = 1

2 ė
T
[ ̇̂M�(�) − 2Ĉ�(�, �)

]

ė − ėT
[

D̂�(�, �) +Kd
]

ė

+ėT [d(t) − d̂(t)] − K̂ėT SGN(ė) + 1
� K̃

̇̂K

(49)
Recalling an important property of the dynamic model,
within the Lagrangian approach, that is [ ̇̂M�(�) − 2Ĉ�(�, �)]
is a skew-symmetric matrix, Fossen (1999). Then, V̇ can be
simplified as:

V̇ (e, ė) = −ėT
[

D̂�(�, �) +Kd
]

ė + ėT [d(t) − d̂(t)]

− K̂ėT SGN(ė) + 1
�
K̃ ̇̂K

= −ėT
[

D̂�(�, �) +Kd
]

ė + ėT [d(t) − d̂(t)]

− K̂
6
∑

i=0
|ėi| +

1
�
K̃ ̇̂K

≤ −�min{D̂�(�, �) +Kd}‖ė‖2 +K‖ė‖

− K̂‖ė‖ + K̃‖ė‖

= −�min{D̂�(�, �) +Kd}‖ė‖2 (50)
In (50), the matrix Kd was selected as positive definite in
the control design, and the damping matrix is D̂� > 0 (see
Fossen (1999)). This means that the function V̇ is negative
semi-definite. However, we can conclude that the equilib-
rium point is asymptotically stable by applying Krasovskii-
Lasalle’s invariance principle (Khalil (2015)).

6. Real-time experimental results
The proposed approach was experimentally tested in dif-

ferent operating conditions to demonstrate its effectiveness
and robustness. It was tested on the "Leonard" Unmanned
Underwater Vehicle (UUV), developed at LIRMM labora-
tory, located at the University of Montpellier in France. The
robot is a tethered vehicle with dimensions of 75 x 55 x 45
cm and a weight of 28 kg. It has six propellers, making it a
fully actuated holonomic vehicle.

This UUV is controlled with a laptop computer fea-
turing an Intel Core i7-3520M 2.9 GHz CPU and 8 GB
memory. The proposed control scheme was programmed
using Visual C++ language, and the laptop collects data
from the robot’s pressure and IMU sensors. The laptop then
processes the data using the control algorithms and transmits
the commands to the six Syren10 Motor Drives that regulate
the robot’s actuators. Table 1 provides an overview of the
primary features of Leonard underwater vehicle.

To demonstrate the effectiveness and robustness of the
proposed control solution, several experimental tests were
conducted in the engineering pool of LIRMM. The test
pool has dimensions of 4 ÃŮ 3 ÃŮ 2 m and a capacity
of approximately 24 000 liters. Without loss of generality,
the conducted experiments are mainly focused on depth and
yaw dynamics, even though the control laws developed were
intended for the whole six-degree-of-freedom system. The
main objective of the control law is to accurately track a pre-
defined trajectory for depth and yaw in presence of external
disturbances and parametric uncertainties. The developed
controllers were then implemented on the Leonard under-
water vehicle for the experimental investigations considered
in this paper.
6.1. Performance evaluation criteria

To ensure a fair comparison of the performance of each
controller in tracking the reference trajectory, we propose to
use the following criteria:

J. Guerrero et al.: Preprint submitted to Elsevier Page 6 of 12



STA-based Adaptive Disturbance Observer

Table 1
Main Features of the underwater vehicle

Mass 28 kg
Buoyancy 9 N
Dimensions 75 × 55 × 45 cm
Maximal depth 100m
Thrusters 6 Seabotix BTD150
Power 24V - 600 W
Attitude Sensor Invensense MPU-6000 MEMS 3-axis gyro

and accelerometer
3-axis I2C magnetometer HMC-5883L
Atmega328 microprocessor

Camera Pacific Co. VPC-895A
CCD1/3 PAL-25-fps

Depth sensor Pressure Sensor MS5803-02BA
Sampling period 50 ms
Surface computer Dell Latitude E6230- Intel Core i7 -2.9 GHz

Windows 10 Professional 64 bits
Microsoft Visual C++ 2015

Tether length 30 m

• Root Mean Square Error (RMSE) - This metric is
defined as:

RMSE =

√

1
Tf ∫

Tf

0
‖e(t)‖2dt (51)

where Tf is the duration of the experimental test, and
e(t) is the tracking error.

• In order to assess the amount of energy used, we
suggest utilizing the integral of the control input in-
dex, denoted as INT. This metric is calculated as the
integral of the absolute values of the position/attitude
control input vector, denoted by �(t), throughout the
experiment duration, from ti (the initial time) to tf(the final time), as expressed in the following equa-
tion:

INT = ∫

tf

ti
|�(t)|dt (52)

Using this criteria, we can accurately evaluate the
energy consumed during the experiment.

6.2. Real-Time experimental scenarios
Several real-time experiments were conducted to vali-

date the effectivenes and robustness of the proposed control
scheme, including:

1. Nominal scenario: This test was conducted without
external disturbances, where the robot should track a
reference trajectory in depth and yaw simultaneously
(see illustration of Figure 2).

2. Robustness towards parametric uncertainties: The hy-
drodynamic parameters of the underwater vehicle are
modified to test the proposed controller’s robustness.

Figure 2: Setup for the nominal case. The robot tracks a
desired trajectory in depth (dashed line) and yaw simultane-
ously without considering parametric uncertainties or external
disturbances.

A floater was attached to the vehicle’s body to modify
its buoyancy, and a rigid plastic sheet, measuring
45 cm×20 cm, was attached to the body of the vehicle
to change its damping. Both the floater and plastic
sheet can be seen in Figure 3.

3. Robustness towards sudden mass variation: In this
scenario, the robot should carry a payload for a while
and then release it. To demonstrate this situation, a 60-
cm long rope holding a 335-gram mass was attached
to the robot’s body, as illustrated in Figure 4.

4. Robustness towards external disturbances: In this sce-
nario, external disturbances were applied to the robot
while tracking the reference trajectory. A stick was
used to push the robot several times, as illustrated in
Figure 5.

For all these scenarios, the underwater vehicle should
track a reference trajectory in depth and yaw simultaneously,
as shown in Figure 6.
6.3. Scenario 1: Nominal Scenario

The results of the trajectory tracking for depth and yaw
dynamics are shown in the top part of Figure 7, respectively.
The trajectory tracking for depth dynamics is shown on the
left part. As we can see, the proposed controller has better
tracking error than the nominal PD because this last one
has a steady state tracking error. Besides, when we analyze
the yaw trajectory tracking performance, we notice that
both controllers perform well. The tracking errors for both
degrees of freedom are plotted in the middle part of Figure
7. Finally, in the lower part of Figure 7, the evolution of the
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Figure 3: Setup configuration for scenario 2. We fixed a rigid
plastic sheet to modify the damping of the vehicle. Also, we
attached a floater to increase the vehicle’s floatability.

Figure 4: Setup configuration for scenario 3. In this scenario,
we attach a weight to the vehicle’s body to suddenly modify
the mass carried by the vehicle when the depth changes.

control inputs versus time is shown. We can observe that
both controllers have a similar energy consumption behavior.

In Figure 8, the evolution of the adaptive feedback ob-
server gains is shown. From this figure, one can notice that
the gains grow linearly until the real sliding mode condition
is reached. The gains for the depth controller are shown in
the left part, and those for the yaw dynamics are depicted in
the right part.

To quantify and fairly compare the PD and the proposed
ePD, the RMSE is computed as summarized in the first row
of Table 2. This table shows that the proposed controller has
better tracking errors compared to the original PD controller.
However, for the yaw tracking, the PD control performs
better, showing a smaller RMSE. The energy consumption
for both controllers is summarized in the first row of Table
3. As expected, the proposed ePD demands slightly more
energy than the original PD.

Figure 5: Setup configuration for scenario 4. Using a stick, we
apply aggressive external disturbances to the vehicle’s body.
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Figure 6: Desired depth and yaw trajectories used in all the
proposed scenarios.

Finally, the main objective behind the proposed observer
was to estimate both external disturbances and parametric
uncertainties. The estimation generated by the proposed
observer can be seen in the first row of Figure 15.
6.4. Scenario 2: Robustness to parametric

uncertainties
In this scenario, we have modified the hydrodynamic

parameters of the robot as explained in Section 6.2. As
we can see in Figure 3, we have attached a single floater
to increase the floatability of the vehicle up to 100%, to
introduce parametric uncertainties in the depth dynamics.
Furthermore, we have fixed a rigid plastic sheet of dimen-
sions 45 cm × 10 cm to increase the damping of the vehicle
up to 90% affecting the yaw dynamics.

The trajectory tracking for depth and yaw dynamics in
this scenario are shown at the top part of Figure 9. For the
depth dynamics, we can observe from the PD performance
(solid blue line), that the controller fails to track the desired
trajectory because it shows a steady-state tracking error
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during this test. In contrast, for the proposed scheme based
on the disturbance observer, we can notice that the controller
performs well with a tracking error around the origin. The
trajectory tracking for the yaw dynamics is shown in the left
part of the figure. Both controllers perform well until the last
20 seconds of the test, where we can observe an increase
in the tracking error of the original PD controller. In the
middle of Figure 9, the tracking errors for this experiment
are plotted. Finally, in the bottom part of the figure, we show
the evolution versus time of the control inputs. Note that the
chattering effect is not present for this test.

In Figure 10, we can observe the evolution of the con-
troller feedback gains. These gains increase linearly during
the first seconds of the test, then they remain at a constant
value when the sliding surface is reached.

The values of the RMSE metric are given in the second
row of Table 2; analyzing the obtained values, we can con-
clude that the proposed ePD outperforms the PD controller.

Regarding energy consumption, both controllers behave
apparently in the same way, as stated in the second row of
Table 3.

The observed disturbance given by the estimator is
shown in the second row of Figure 15.
6.5. Scenario 3: Robustness to mass variation

In this scenario, we try to reproduce a situation where
the robot is autonomously carrying an object and will release
it for a certain time. In particular, we have attached a 330-
g weight to the vehicle’s body. The added extra mass will
change the robot’s initial position, so when the experiment
starts, the robot subject to the added payload will track the
desired trajectory. Then, when the robot moves down to
50 cm in depth, the weight will touch the floor, suddenly
changing the mass of the vehicle and affecting its dynamics.

The results of this experiment are shown in Figure 11.
The trajectory tracking for depth reference is shown in the
left part of the figure. We can observe that, for the depth, the
proposed ePD controller has slightly more oscillations than
the original PD controller. Also, both controllers perform
well in the trajectory tracking of the desired yaw dynamics.
In the middle part of the figure, the resulting tracking errors
are plotted. Finally, at the bottom part of the figure, we
can notice the oscillatory behavior in the generated control
input of the depth. These oscillations are due to the constant
increase of the controller feedback gains, as shown in Figure
12, where we can observe that the gains are growing during
the experiment. Solving this challenging issue is a part of
our future work.

Finally, the values of RMSE metric for this experiment
are given in the third row of Table 2. The INT metric is
shown in the third row of Table 3.

The observed disturbance for this experiment generated
by the proposed estimator is plotted in the third row of Figure
15.

6.6. Scenario 4: External disturbance rejection
The last test is about the robustness of the proposed

controller towards aggressive external disturbances. As il-
lustrated in Figure 5, we apply disturbances by hand to the
robot using a long stick trying to affect the depth and yaw
dynamics during the trajectory tracking.

The obtained results of this scenario are shown in Figure
13. In the top part of the figure, we plotted the trajectory
tracking for both dynamics. We can observe that we dis-
turbed the depth dynamics six times and the yaw three times.
From this figure, we can see a fast recovery of the vehicle
when it is externally disturbed. The resulting tracking errors
for both dynamics are plotted in the middle part of the figure.
Finally, at the bottom part, the evolution of the input signals
is shown. As expected, the controller tries to counteract and
to compensate for external disturbances.

The values of RMSEmetric for this experiment are given
in the third row of Table 2. The INT metric is shown in the
third row of Table 3.

The observed disturbance for this experiment generated
by the proposed estimator is plotted in the third row of Figure
15.

Finally, note that we cannot compare our proposed
scheme with the original PD controller for this experiment
since it is impossible to reproduce precisely and exactly the
same disturbances for both controllers.

Table 2
RMSE comparison criteria for PD and ePD

PD ePD

Case Depth (m) Yaw (deg) Depth (m) Yaw (deg)

1 0.0151 0.1418 0.0037 0.2955
2 0.0613 2.1718 0.0069 0.0644
3 0.0069 1.0053 0.0053 0.0142
4 − − 0.0006 0.3421

Table 3
Energy consumption comparison criteria through the
INT indicator for PD and ePD

PD ePD

Case Depth Yaw Depth Yaw

1 3221 414 3487 308
2 7634 731 7049 462
3 1902 509 2363 541
4 − − 3525 533

7. Conclusions
In this paper, we have designed an enhanced robust PD

controller to resolve the problem of trajectory tracking in
underwater robotics. This controller mixes the nominal PD
control law with an adaptive disturbance observer based
on the Super-Twisting algorithm. Roughly speaking, the
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Figure 7: Scenario 1 - Nominal Case. Experimental results of the trajectory tracking in depth and yaw, the desired trajectory is
represented by the black dashed line, the PD with a blue solid line, and the proposed ePD controller with a red solid line.
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Figure 8: Scenario 1 - Nominal Case. Evolution of the adaptive gains of the controller in depth (left) and yaw (right) dynamics.

observer online estimates the external disturbances and para-
metric uncertainties, allowing the controller to compensate
for them. Lyapunov arguments provide the stability of the re-
sulting closed-loop controller/observer architecture. Finally,
several real-time experiments were conducted, in different

operating conditions, to demonstrate the proposed scheme’s
effectiveness and robustness. The proposed controller is
compared with the nominal PD design and shows better
performance in all these experiments.
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Figure 9: Scenario 2 - Robustness towards parametric uncertainties. Experimental results of the trajectory tracking in depth and
yaw, the desired trajectory is represented by the black dashed line, the PD with a blue solid line, and the proposed RPD controller
with a red solid line.
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Figure 10: Scenario 2 - Robustness towards parametric uncertainties. Evolution of the adaptive gains of the controller in depth
(left) and yaw (right) dynamics.
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Figure 11: Scenario 3 - Robustness towards sudden mass change. Experimental results of the trajectory tracking in depth and
yaw, the desired trajectory is represented by the black dashed line, the PD with a blue solid line, and the proposed ePD controller
with a red solid line.
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Figure 12: Scenario 3 - Robustness towards sudden mass change. Evolution of the adaptive gains of the controller in depth (left)
and yaw (right) dynamics.
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Figure 13: Scenario 4 - Robustness towards external disturbance rejection. Experimental results of the trajectory tracking in depth
and yaw, the desired trajectory is represented by the black dashed line, the PD with a blue solid line, and the proposed ePD
controller with a red solid line.
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Figure 14: Scenario 4 - Robustness towards external disturbance rejection. Evolution of the adaptive feedback gains of the
controller in depth (left) and yaw (right) dynamics.
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Figure 15: Estimation of the external disturbances generated by the proposed adaptive observer for the nominal (first row),
parametric uncertainties (second row), sudden change of the mass (third row), and external disturbance rejection (fourth row)
scenarios.
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