N

N

Reducing the Silicon Area Overhead of Counter-Based
Rowhammer Mitigations

Loic France, Florent Bruguier, David Novo, Maria Mushtaq, Pascal Benoit

» To cite this version:

Loic France, Florent Bruguier, David Novo, Maria Mushtaq, Pascal Benoit. Reducing the Silicon Area
Overhead of Counter-Based Rowhammer Mitigations. IEEE Computer Architecture Letters, In press,
IEEE Computer Architecture Letters, pp.1-4. 10.1109/LCA.2023.3328824 . lirmm-04420368

HAL Id: lirmm-04420368
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04420368

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04420368
https://hal.archives-ouvertes.fr

Reducing the Silicon Area Overhead
of Counter-Based Rowhammer Mitigations

Loic France, Florent Bruguier, David Novo, Maria Mushtaq, and Pascal Benoit

Abstract—Modern computer memories have shown to have reliability issues. The main memory is the target of a security threat called
Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Numerous countermeasures have been proposed, some
of the most efficient ones relying on row access counters, with different techniques to reduce the impact on performance, energy
consumption and silicon area. In these proposals, the number of counters is calculated using the maximum number of row activations
that can be issued to the protected bank. As reducing the number of counters results in lower silicon area and energy overheads, this

can have a direct impact on the production and usage costs.

In this work, we demonstrate that two of the most efficient countermeasures can have their silicon area overhead reduced by
approximately 50% without impacting the protection level by changing their counting granularity.

Index Terms—Security, Rowhammer, DRAM.

1 INTRODUCTION

EMORY is a key component in modern computers.

The largest portion of the data used at run-time
is stored in a Random-Access Memory (RAM) built with
Dynamic RAM (DRAM) CMOS technology. In the past
decades, CMOS process technology became more efficient
and smaller. DRAM manufacturers have been able to put
more memory cells in much smaller spaces, resulting in bet-
ter performance and lower cost. However, making DRAM
smaller resulted in higher vulnerability to what Kim et al. [1]
described as disturbance errors: activating a DRAM row cre-
ates electrical disturbances that slightly affect adjacent rows.
Repeated activation of neighbors of a victim row can imply a
loss of charge for capacitors in this row, effectively deleting
the stored data. This became an important security threat
with the emergence of Rowhammer (RH) attacks [1] that
exploit this vulnerability. Using precisely targeted bit-flips,
this type of attack is able to perform privilege escalation [2]
or to retrieve sensitive information [3]. RH became even
more important as state-of-the-art attacks were successfully
mounted in JavaScript from a web browser sandbox [4], [5],
or even without malicious code running on a victim server,
using only network requests [6].

Therefore, this problem is being widely studied in
academia and industry at present. In order to counter
the RH attack, multiple mitigation techniques have been
proposed [1], [7], [8], [9], [10], [11], [12]. Some mitigations
rely on probability to refresh the victims before they get
corrupted, while others count activations of DRAM rows to
detect attacks. Detecting the aggressor before acting reduces
the performance overhead as the protection does not disturb
the normal operation of the memory. However, it implies
additional memory to store counters, which incurs silicon
area and energy consumption overheads.

In this paper, we propose to change the scope at which

e Loic France, Florent Bruguier, David Novo, and Pascal Benoit are
with LIRMM, University of Montpellier, CNRS, France. E-mail:
{firstname}.{lastname}@lirmm.fr

e Maria Mushtaq is with LTCI, Télécom Paris, Institut Polytechnique de
Paris, France. E-mail: maria.mushtaq@telecom-paris.fr

row activations are counted from the bank level to the rank
level to reduce the storage requirements of two state-of-the-
art mitigation proposals by 40% to 50%, without affecting
the protection level. While a previous publication studied
the effect of this change for two mechanisms [13], this
proposal intends to generalise the impacts of a granularity
change to what we consider to be the most important
counter-based Rowhammer protections.

2 BACKGROUND
2.1 DRAM architecture and operation

Modern computer architectures use a DRAM main memory
to store run-time data, and several cache levels to speed
up access to frequently-used data. Addressing a data in the
main memory is done using multiple levels: channel, rank,
bank group (BG), bank, row, and column. Fig. 1 illustrates
the different levels for the main memory.

ceu 1 I ||
@
Caches
5} @ _q;, § Row [___TWL?iiiiiﬂl
E ’ VIS N =S
o3 R (@) N N l
a=eml | B e | e
& ’ S Row Buffer[F - -~ --T2IIIf:
- T Il | — |
EE Column Selec- ren |
tion Logic AN } }
N
Bank /O || [cmd / addi] [Bank 1/0 wO |

Fig. 1. DRAM internal architecture.

The CPU has multiple channels (1) to communicate with
the DRAM ranks (2). Multiple DRAM ranks can use the
same channel. A DRAM rank contains multiple DRAM

chips (3) that are accessed in parallel. The data bytes of a
memory access are split across all the chips of the rank, and
processed in parallel. Each rank contains multiple banks (4)
which can be further organized in BG of e.g., 4 banks each.

In a bank, the data is organized in memory arrays (MAT)
3, containing a matrix of memory cells ®. A memory cell
stores one bit of data using the charge of a capacitor. An
access transistor acts as a relay controlled by a wordline
(WL) to connect this capacitor to a bitline (BL). All cells of a
row share the same WL, and all cells of a column share the
same BL. BLs are connected at one end to a sense amplifier
(SA) (7), which reads the voltage of the BL and acts as a row
buffer (RB) to store the last accessed row.

To access an address in the main memory, the mem-
ory controller first finds the appropriate bank where the
requested data is stored. Second, if the requested data is
not in the row buffer, the controller issues an ACTIVATE
command (ACT) to transfer the target bank row to the row
buffer. The bank charges all the BL with VLQD Third, the WL
is used to open all transistors of the row to raise (lower) the
voltage of the BL by discharging (charging) the capacitor
into (from) the BL. Finally, the SA is enabled, interprets and
stores the value as a 1 or a 0 in the RB. After a short period of
time or when the RB is needed for another row, the value is
stored back in the MAT using the PRECHARGE command
(PRE). The WL is kept open, and the BL is set to either Vpp
or GND to restore the capacitor to its proper voltage. The
WL is then set to GN D to close the access transistors.

As capacitors are not perfect insulators, they leak charge
over time. To maintain the data during long periods of time,
the memory controller cyclically restores all cells at a row-
level granularity. This operation, known as REFRESH (REF),
is akin to an ACT followed by a PRE.

2.2 Rowhammer and existing mitigation techniques

As DRAM technologies become denser, wordlines tend to
get closer to each other. This proximity makes them more
vulnerable to electrical disturbance: Due to multiple fac-
tors such as electromagnetic coupling and charge pumping
through the silicon, activating a row slightly depletes the
capacitors in neighboring rows. If repeated enough times,
this operation can lower the charge of victim capacitors
under the threshold at which it is considered high, therefore
deleting the stored value. This is known as the Rowhammer
attack. Due to the still increasing density, the number of
ACTs an aggressor must send to the neighbors of a victim
row has gone from 130k for DDR3 to around 9.6k in the
latest LPDDR4 [14]. Fig. 2 illustrates the evolution of the
voltage across a capacitor that stores one bit of data under
normal operation and under RH attack. The stored value is
originally set to 1, and after the disturbance, it is changed to
0 without any write operation on it.

cap. voltage

Distutance

time

Fig. 2. Memory cell capacitor voltage evolution under normal behavior
and attack. Stored value starts at 1, and changes to 0 after corruption.

Since the discovery of the RH problem, multiple mitiga-
tion techniques have been proposed with different advan-

2

tages. Among the existing mitigations, we can distinguish
two categories: probability- and counter-based.

The former aims at making corruption statistically im-
probable by randomly refreshing the neighbors of activated
rows, often using light but imprecise detection to reduce the
performance overhead. They offer a very low area overhead
at the expense of a relatively high False Positive (FP) rate
and a non-zero False Negative (FN) rate [1], [10], [11].

The latter relies entirely on a detection mechanism that
counts the ACTs of each row during the refresh window.
When the count reaches a threshold, the row is considered
as an aggressor and the mechanism either refreshes the
victim rows or prevents further accesses to the aggressor
rows. They use different algorithms to reduce the number
of counters to use. They offer a very low FP rate and a FN
rate of zero at the expense of a higher area overhead to store
the counters [7], [8], [9], [12]. In this paper, we will focus on
counter-based mitigations.

2.3 DRAM timing parameters

For counter-based mitigation, the configuration (i.e., the
number of counters) depends on the bandwidth of the mem-
ory, which can be calculated using its timing parameters.
Table 1 lists the relevant timing parameters for three models
of DDR3, DDR4 and DDR5, and Fig. 3 illustrates them.

TABLE 1
Relevant timing parameters (in ns unless specified otherwise) for DDR3
1600 [15], DDR4 2400 [16], and DDR5 4000 [17] 8Gb x8 modules.

Name Description DDR3 DDR4 DDR5
trC Same-bank ACT interval 48.75 45.8 46
trrp_s Diff.-BG ACT interval 6.25 33 4
trrp_r. Same-BG ACT interval - 49 5
trAw Four activate window 30 21.67 16
trerw REF window (ms) 64 64 32
tREFI REF interval (ps) 7.8 7.8 3.9
tRFC REF command duration 350 350 195
tREFW
1 [] [T 1 [
tREFI trrC
tRDDL tRDDS i
: RC
[N |]]
[HE I 1 []
[T 1 | []
[I 1 |]
[| []
| L [|]
L | J
traw trc

Fig. 3. lllustration of DDR timings. Refreshes are in light grey and ACTs
are in darker grey. Banks are grouped by pairs in 3 bank groups.

The minimum interval between two ACTs is defined by
trc, trrp_ I O trrp_s if the two rows are in the same
bank, in different banks but the same BG, or in different BG,
respectively. A maximum of four ACTs can be issued to the
rank during tpaw. tpaw is the most limiting parameter for
frequent row activations in different banks. DRAM rows are
periodically refreshed every trprw . Refreshes of all rows
are spread across this period. REF commands are triggered
every trerr and keep the bank busy during tgrc.

3 COUNTING AT A DIFFERENT GRANULARITY

The objective of the RH attack is to send enough ACTs
to an aggressor row within a refresh cycle (treprw) to
corrupt some bits in neighboring victim rows. We define
the RH detection threshold (Dgrp) as the ACT count at
which the detection mechanism must trigger a mitigation
technique to prevent the corruption. Usually, the storage
overhead needed to guarantee the detection of a RH attack
mostly depends on (1) the bitwidth of each counter S (that
directly depends on Dppy) and (2) the total number of
counters. In principle, we would need to keep count of
each row separately. However, having one counter per row
is excessively expensive (e.g., a DDR4 bank can have 64K
rows per bank, which would require about 1Gb of counter
storage for a typical Dry of 16384 [14]). Thus, most existing
counter-based proposals include methods to minimize the
number of counters while still guaranteeing detection. These
methods take Dgry and W, the maximum number of ACTs
that can be issued to the considered memory during trprw,
as inputs. Dy determines the vulnerability of the memory
to corruption and is fixed after DRAM fabrication. Hence,
in this work we aim at reducing the memory overhead of a
detection mechanism by lowering W which in turn reduces
the number of counters. Our key observation is that the
value of W varies depending on the granularity at which
ACTs are counted. While existing mitigation techniques
propose to keep the count at a bank granularity, a previous
publication calculated the benefits of having a rank-level
counting granularity [13] for two proposals. We propose to
extend this study to other mitigation proposals.
Considering the traditional bank granularity, W (W at
bank-level) is limited by the minimum interval between two
ACTs trc and periodic refreshes (trrpc every trerr). The
value of Wg can be calculated using the following equation:

_ irrc
tREFW X (1 tREFI)

Wp =

)

trco

Alternatively, considering a rank granularity, the fre-
quency of ACTs is not limited by the maximum frequency of
individual banks. It is limited by ¢z 4w, which restricts the
ACTs count in a rank to four per tFaw. As a consequence,
not all banks of a rank can be accessed at their maximum
frequency. The periodic refreshes also impact the maximum
ACT frequency of a rank. DDR3 and DDR4 use the all-
bank refresh command, which refreshes all banks simulta-
neously, keeping the rank busy for t rrc every t rprr. DDR5
standard introduced the single-bank refresh command [18]
which allows the banks of a rank to be refreshed individu-
ally, allowing the available banks of a rank to be used while
some banks are being refreshed. Hence, the value of W at
rank-level W can be calculated using

trRF
e [

traw +4

for DDR3 and DDR4. Instead, DDRS5 follows the following
equation:

®)

t
WR:{ REFW 1

tpaw ~4
Considering Npqn i as the number of banks per rank, the

3

total number of counters in a rank for bank-level detection
mechanism is Nyqpni times the number of counters per
bank. If the number of counters is proportional to W, the
effective value of W for the sum of all bank-level detec-
tion mechanisms in a rank is Npenx X Wg. Hence, when
Npank X W > Wpg, a rank-level detection mechanism has
a lower effective W than the sum of all bank-level detec-
tion mechanisms. As a consequence, moving to rank-level
granularity could reduce the number of counters needed to
protect against RH attacks.

4 RESULTS

In this section, we calculate the effective reduction in W
when changing the granularity of the RH detection, and its
storage benefits on two state-of-the-art countermeasures.
Table 2 lists the different values of Wy and Wg, the
number of banks per rank, and the reduction in W when
changing the detection level from bank to rank, for DDR3,
DDR4 and DDR5. The reduction in W is calculated using
the following formula: 1 — % Interestingly, the
more recent DDR technologies achieve a more important
reduction, from 19% for DDR3 to 62% for DDR5, due to the

trend of including more banks per rank.

TABLE 2
W reduction for DDR3, DDR4 and DDR5

Wg Wgr Npank W reduction
DDR3 1.25 x 108 8.15 x 109 8 19%
DDR4 1.33x10% 11.3 x 10% 16 47%
DDR5 6.61 x 105 8.00 x 106 32 62%

To quantify the memory reduction resulting from the
reported W reductions, we consider two recently published
RH countermeasures, namely Graphene [7] and BlockHam-
mer [8]. Since these countermeasures were only dimen-
sioned for DDR4 memories, the results in the rest of the
paper are restricted to DDR4. All changes on the parameters
are calculated to maintain the original detection accuracy.
Graphene. Graphene [7] stores the most activated rows in
a Content-Addressable Memory (CAM) and uses the Misra-
Gries algorithm to only count the ACTs on the N,y most
activated rows. According to the algorithm, the minimum
number of entries in the CAM is calculated using the fol-

lowing equation:
w
J : @)

Dry +2

Every entry includes a key-value pair, where the key is the
row address and the value is a counter, and one overflow
bit for the counter, which is used as a trigger to detect the
aggressors and refresh the victim rows. The counter needs to
go up to Dy <2, which corresponds to 13 bits for a typical
Dry = 16384 [14]. When counting at the bank level, as
proposed in the original paper, the total entry size is 30 bits.
This includes a row address of 16 bits to address the 64K
rows included in a bank (for the considered DDR4 memory),
the 13 bits of the counter and the overflow bit. According to
Eq. 4, a prototypical DDR4 memory needs 162 CAM entries.
Thus, the total CAM size is 16 banks x 162 entries x 30 bits =
9.49KiB per rank (5.06KiB for the keys, 4.43KiB for the rest).
Alternatively, counting at a rank granularity, as we propose

Nentry = \\

in this paper, requires extending the row address to 20 bits
to cover the 16 banks in a rank. As a result, the total entry
size becomes 34 bits. Considering Wg in (4), the number
of CAM entries becomes 1394. Thus, the total CAM size is
1394 entries x 34 bits = 5.71KiB per rank (3.36KiB for the
keys, 2.35KiB for the rest), which is 40% lower than when
counting at the bank level.

BlockHammer. BlockHammer [8] uses Counting Bloom
Filters (CBF) to count the number of ACTs for each row.
A CBF uses hashing to associate each possible entry to a
unique set of k counters out of a total of m counters. When
a row is activated, the CBF increments the corresponding
k counters. When all k counters are above a pre-defined
threshold Npj;, BlockHammer considers the row as an
aggressor row and blocks further access to this row until the
end of the refresh window to stop the attack. To maintain the
same detection precision when counting at the rank level,
we adapt the CBF architecture to achieve a similar False
Positive Probability (Prp). According to CBF theory [19],
the Prp of BlockHammer can be calculated as follows:

(-3 (N -0 o

I<NprL

The implementation proposed by the authors of BlockHam-
mer, which counts at the bank level, includes m = 1024
counters and k& = 3 hash functions. This corresponds
to a Prp ~ 107198 for the considered DDR4 memory.
To maintain the Prp when W increases to count at the
rank level, m and/or k should be changed. For simplic-
ity, we choose to keep the value of £ and only change
the number of counters m to the closest power-of-two
leading to the desired Ppp, which corresponds to 8192.
The authors of Blockhammer propose a maximum count-
ing value Npr = 8192. They use two CBFs in a time-
interleaved fashion. Each CBF takes turns to count ACTs.
Hence, the total memory size used by the mechanism for
one rank with an implementation counting at the bank level
is 16 banks x 2 CBFs x 1024 counters x 13 bits = 52KiB.
Instead, for our rank-level approach the total memory size
is 2 CBFs x 8192 counters x 13 bits = 26KiB, which is 50%
lower than the bank-level implementation.

Table 3 summarises the memory usage for both
Graphene [7] and BlockHammer [8] considering a bank- and
a rank-level protection in a DDR4 memory. We observe that
both RH mitigation techniques significantly reduce their
storage overheads when changing the granularity of the RH
detection to the rank level.

TABLE 3
Comparison of the implementation of Graphene and BlockHammer at
bank level and rank level for DDR4

Mitigation Bank level Ranklevel Storage reduction
Graphene 9.61KiB 5.79KiB 40%
BlockHammer 52.00KiB 26.00KiB 50%

Counting at a rank granularity implies coping with a
higher ACT frequency. BlockHammer introduces a < 1ns
latency to check the safety of every memory access, and
can therefore withstand the minimum period between two
activations at rank level trrp s > 3ns. While the authors
of Graphene do not specify the processing time, they sug-

4

gests to use a recent CAM design [20], which is capable
of searching words at 370MHz (2.7ns). This is higher than
the minimum frequency to meet the 21.67ns traw for the
DDR4, or 200MHz for the DDR5. If timing becomes an
issue, multi-banking solutions can be explored to parallelize
multiple access to the counters.

5 CONCLUSION

The most efficient Rowhammer countermeasures rely on
counters to detect the attack. Most of them use a separate
set of counters for each bank. In this work, we have shown
that by using a common set of counters for a rank, we
can decrease the memory usage of the Graphene [7] and
BlockHammer [8] mitigation techniques by approximately
50% for typical DDR4 DRAM memories. We show that this
reduction will be more important with the newer DDR5
standard due to the increase in banks per rank. Further-
more, the RH corruption threshold continues to decrease
in newer technology nodes [14], which leads to growing
storage requirements in RH mitigation techniques. Thus, we
believe that future mitigation proposals should consider the
implementation at rank-level rather than bank-level, and
that previously-published counter-based mitigations could
be improved by moving the implementation to rank-level.

ACKNOWLEDGMENTS

The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-19-
CE39-0008 (project ARCHI-SEC).

REFERENCES

[1] Y. Kim et al., “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA'14.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer
bug to gain kernel privileges,” Black Hat, 2015.

[3] A. Kwong et al., “Rambleed: Reading bits in memory without
accessing them,” in SP, 2020.

[4] D. Gruss et al., “Rowhammer.js: A remote software-induced fault
attack in javascript,” in DIMVA'16.

[5] E de Ridder et al., “SMASH: Synchronized many-sided rowham-
mer attacks from javascript,” in USENIX Security’21.

[6] M. Lipp et al., “Nethammer: Inducing rowhammer faults through
network requests,” in EuroS&PW’20.

[7] Y. Park et al., “Graphene: Strong yet lightweight row hammer
protection,” in MICRO'20.

[8] A.G. Yaglikgi et al., “Blockhammer: Preventing rowhammer at low
cost by blacklisting rapidly-accessed dram rows,” in HPCA'21.

[9] G. Saileshwar et al., “Randomized row-swap: Mitigating row
hammer by breaking spatial correlation between aggressor and
victim rows,” in ASPLOS’22.

[10] M. Son et al., “Making DRAM stronger against row hammering,”
in DAC’17.

[11] J. M. You and J.-S. Yang, “MRLoc: Mitigating row-hammering
based on memory locality,” in DAC’19.

[12] S. M. Seyedzadeh et al., “Mitigating wordline crosstalk using
adaptive trees of counters,” in ISCA’18.

[13] I. Kang ef al., “CAT-TWO: Counter-based adaptive tree, time
window optimized for DRAM row-hammer prevention,” IEEE
Access, 2020.

[14] J. S. Kim ef al., “Revisiting rowhammer: An experimental analysis
of modern DRAM devices and mitigation techniques,” in ISCA’20.

[15] JEDEC, “JESD79-3 DDR3 SDRAM,” 2013.

[16] , “JESD79-4 DDR4 SDRAM,” 2021.

[17] Micron, “DDR5 SDRAM product core datasheet,” 2021.

[18] , “Micron DDR5 SDRAM: New features,” 2021.

[19] S. Tarkoma et al., “Theory and practice of bloom filters for dis-
tributed systems,” IEEE Communications Surveys & Tutorials, 2011.

[20] S.Jeloka et al., “A 28 nm configurable memory (TCAM/BCAM/S-
RAM) using push-rule 6t bit cell enabling logic-in-memory,” JSSC,
2016.

