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Abstract. CNN-based inference engine’s performance and efficiency always
depend on the computational and dataflow-control complexity. Instead of con-
sidering a 2-dimensional (2D) feature array for processing, a 3D array of fea-
tures/weights would improve the dataflow movement & memory computation.
The optimum 8 × 8 × 32 3D-feature array size was chosen based on the factor of
on-chip memory requirement, data reuse, and PE utilization. Using the optimum
8 × 8 × 32 feature array, seven different combinations of data-flow scheduling
strategies were analyzed by varying row, column, and depth-wise parameters on
the workload model using a MATLAB environment. From the analysis, strategy-
V (depth-wise parallel & row/column-wise sequence) is found to be the best
with a 4 × 8 processor array. Compared to the state-of-the-art processor strategy,
strategy-V achieves the data transfer rate (off-chip to on-chip) and on-chip mem-
ory requirement of 3.3 times (higher) and 16 times (lesser) with a small overhead
of processor cost.

Keywords: Convolutional Neural Network · Data flow Movement · Efficient
Memory · Feature Array · Processing Element · Scheduling

1 Introduction

Automation in agricultural, automobile, medical and industrial fields universally use
sensing devices such as sensors and digital cameras. These devices bring a sequence of
data (image/video data) into the inference engines. Therefore, inference engines have
to adopt a convolutional neural network (CNN) algorithm to automate and process the
huge data in a limited time [1, 2]. The computer vision adopted standard deep learning-
CNN models such as AlexNet, VGG Net, ResNet, and GoogleNet for image classifica-
tion and detection [3]. Since 2010, IE-based hardware is using prominently for the CNN
models. ASIC-based CNN inference engines are challenging to implement for a specific
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image application. This implementation has concentrated on major factors to improve
the CNN accelerator efficiently such as reducing arithmetic precision, energy efficiency,
silicon area, and performance [4]. A generic CNN structure consists of a stack of convo-
lutional layers with activation, pooling layers, and fully connected layers. Input feature
maps (IFMs)/Output feature maps (OFMs) from the previous layer and weights/filters
(FL) are input to the convolution layer and fully connected layer. It is computed using
Multiply- Accumulate unit (MAC) followed by Rectified Linear Unit (RELU) activation
function present in the convolutional and fully connected layer. Weights/filters (FL) are
extracted from the pre-trained CNN models. Convolutional and fully connected layers
are repetitive and used n-times based on the CNN models. Finally, the vector-based
fully connected layer classifies the image based on the probability of output value. The
general structure for the CNN convolution layer is shown in Fig. 1.

Fig. 1. Generic structure of the convolutional layer in the CNN model.

In this Fig. 1, the Input feature map (IFM h × IFMw × IFM d ) are convoluted with
each set of weights/filters (FL = FLh × FLw × FLd × K) to produce the output feature
map (OFM = OFMh × OFMw × OFMd ). Each depth of the filter has equal to the IFM
depth (IFM d = FLd = N ) and the number of filters has equal to the output feature map
depth (K = OFMd ). For example, IFM = 55×55×64 convolutedFL = 3×3×64×512
with one stride (S) and gives OFM = 53 × 53 × 512. Therefore, the convolution
layer needs many MAC computations to process IFMs and weights. It is challenging to
organize the data flow to the processing elements (MAC units) array processor during
the inference stage.

Each convolutional layer requires hundreds of MAC computations in gigabytes.
It could impact the performance, and memory storage of the CNN accelerator when
the data are not stored in an orderly for the further process [5]. Such that impacts the
final accuracy in the CNN model which deploys the resource-limited device and IoT-
based CNN models. From the above consideration, improvement can be accomplished
by fine-tuning the following factors: 1. Optimum data format to represent the IFMs
and weights for maintaining the accuracy of the CNN models, 2. Data-flow movement
between memory to processing elements (PEs) for improving the data reuse capability,
3. Pipelining and parallel scheduling for near 100% utilization of PEs, 4. Designing
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the sparse accelerator by skipping the trivial MAC computation. To achieve the above-
mentioned concern, several hardware accelerators are proposed in the previous works
as follows

The representation of short floating-point (4-bit exponent and 4-bit mantissa) was
proposed in [11]which reduces the computation complexity of the processor andmemory
storage. But the short floating-point [11] achieves the accuracy of the AlexNet model
by 79% and the VGG-16 model by 88%. A 16-bit Fix/Float [12] represents the IFMs
as 16-bit fixed points and weights as half-precision floating points. The representation
achieves an accuracy near 97%. The hardware performance and energy efficiency have
improved by 750MOP/s and 24TOPS/W at 250MHz.

Eyeriss processor [6] uses the efficient dataflow called row-stationarywhich involves
the data reuse concept and the high parallelism level. Eyeriss accelerator accepts 168
PEs which adopts the flexibility of the kernel size from 3 × 3 to 11 × 11. Eyeriss
achieves 0.0029 DRAM access/MAC access and 35 frames/s for the convolutional layer
in AlexNet at 250MHz with a power consumption of 278mW. KOP3 processor [13]
uses the n-tile parallel structure to improve the speed for the convolutional and fully
connected layers. Also, it adopts the kernel size of 3 × 3 and a circular buffer strategy to
reduce the power consumption and memory access in the CNN accelerator. The average
speedup of the hardware implementation achieves by 3.77TOPS/W. However, the above
methods have been discussed to reduce the off-chip memory access or on-chip memory
access, data flow, and data reuse approach [7–10]. The contributions are framed based
on the challenges of reducing the data flow computation complexity between the on-chip
memory and PEs, and achieving maximum data reuse in IFMs and FL

The key contribution of this article is as follows

• Analyze and choose the optimum 3-Dimensional (3D) feature array (Fa) of 8×8×32
with consideration of the four key factors including data reuse, the number of Fa
required per CNN layer, hardware utilization, and memory requirements. 3D feature
array has to improve the efficiency of the computation between on-chip memory to a
processor for CNN inference.

• The combinations of data-flow scheduling strategies (I to VII) have been examined
using the optimum 3D feature array (8 × 8 × 32) with a (4 × 8) PE processor.
Strategy-V (depth-wise parallelly and row/column-wise sequence) has been adopted
to maximize the data reuse in both IFMs and FLs.

• Also, scheduling strategy-V has been analyzed for the worst-case convolutional layer
present in the standard CNN model (Input workload- IFM : 55 × 55 × 512 and
FL : 3 × 3 × 512 × 512). It balanced both data transfer rate and processor cost.

• The proposed strategy-V has been validated with standard and existing data-flow
model [6, 14, 15]which is adopted from the previous implementation.All the analyses
were done using the MATLAB-based design modeling algorithm.

Section 2 discussed the analysis of the optimum 3-Dimensional feature array (Fa)
of size 8 × 8 × 32 and different combination data-flow movement strategies I to VII
are examined in a MATLAB-based environment and describes the mathematical model.
MATLAB-based simulation results are illustrated and discussed for the CNN-based
inference engine in terms of processing element, data reuse, and memory requirement
in Sect. 3. Finally, Sect. 4 concludes the findings
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2 Analysis of 3-dimensional Feature Array Size and Data-Flow
Movement Scheduling Strategy

To improve the efficiency of the processor array and memory requirement, the optimum
3D feature array for computation is chosen from the various combination of feature
array sizes. From the optimum 3D feature array size, different data flow movement, and
scheduling strategies I to strategies VII have been modeled (parallel data flow/sequence
data flow/ combination of parallel and sequential data flow). The appropriate 3D feature
array (Fa) and suitable scheduling strategy are chosen based on the prime factors as
follows

(1) Maximize the data reuse capability of both IFMs and weights,
(2) Maximize the processing element utilization,
(3) Reduce the intermediate memory storage, and
(4) Minimize the number of data transaction

Fig. 2. MATLAB analysis for selection of 3- dimensional feature array (Fa) and data-flow
movement strategies for the convolutional layer

For Fa and scheduling strategy analysis, the standard CNN models such as VGG-16
&19, SqueezeNet, and ResNet- 18 &50 are adopted. We propose a MATLAB-based
model for choosing the suitable 3D feature array (Fa) and data flow scheduling strategy
between on-chip memory to PE processor array. 3-channel images of 226 × 226 pixels
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for VGG-16&19, SqueezeNet, and ResNet- 18&50 is chosen as inputs. For the analysis,
the worst-case convolutional layer concerning a maximum number of sets of filter and
filter depth, and IFM depth is taken from the above-mentioned standard CNN models.
The corresponding set of filters/weights is extracted from the pre-trained CNN models.
The worst-case input load of size 55 × 55 × 512 for IFM and 3 × 3 × 512 × 512 for
FL is considered for the selection of the 3D feature array. The optimum 3D feature array
of size Fa:8 × 8 × 32 has been considered based on the above four major factors. The
major four factors have mainly related to the on-chip memory inside the processor. The
optimum feature array size is required to transfer the group of IFM and weights from
off-chip to on-chip memory/on-chip to PE array. Considering the 3D Fa:8 × 8 × 32, the
combination of different data scheduling strategies I toVII are analyzed on theworst-case
input load. From the strategies analysis, strategy-V (depth-wise= 3 times parallelly and
row/column-wise= 4 times sequence) gives a promising outcome compared to the other
strategy combination (I to IV, and VI to VII). The proposed MATLAB-based analysis
for the selection of a 3D feature array and data-flow scheduling strategy for an efficient
CNN-based inference engine is depicted in Fig. 2. The optimum 3D feature array (Fa)
selection and data flow scheduling strategy of V are explained in the subsection.

2.1 Choosing the Optimum 3D Feature Array (Fa)

Based on the factors of an efficient CNN accelerator, we present the selection of feature
arrays for the on-chip memory techniques that optimize the off-chip memory bandwidth
as a result of the computations. There are two standard potential feature array compu-
tation strategies (1) IFM major feature array computation and (2) weight/filter major
feature array computation that utilizes data reuse of either the weights or the IFMs for
the convolutional layers are provided in this section

In IFM major computation approach [16], each set of weights FLw × FLh × FLd
performs the element-wise multiplication with each of the K weights/filters, producing
the OFM (1 × 1) of length K. This computation operation is replicated for each OFM,
where the IFM frames are shifted by a stride (S= 1). In the standard approach, theweight
values are reused for every iteration of the output (OFMh, OFMw) as shown in Fig. 3(a).
In the filter-major computation approach in [16], one set of filter/weight is convolved
across the entire IFM frames (IFMw × IFMh × IFMd), producing a single OFM frame
of size OFMw × OFMh. This computation operation is repeated for each of the k sets
of filters. In this approach, the IFM values are reused multiple times for each set of
filter/weights as shown in Fig. 3(b). In Fig. 3(b), IFMs andweights are processed through
single frame-wise computation. So, it requires larger memory issues to store the IFMs
and weights as well as an intermediate buffer to store the partial OFMs. Considering
these approaches, we proposed the optimum 3D structure computation gives a more
advantageous data reusing approach on both IFM and weights as shown in Fig. 3(c).
The 3D structure depends on the depth ‘p’ of the IFMs and weights. The filters/weights
are sized in this method so that the working set of filters (FLa = FLh × FLw × p) fits
on the on-chip memory (288 KB). In the same way, we need to size the IFM to be able
to hold only the 3D feature array (Fa) size of IFM, namely Fa = Fah × Faw × p. For
example, Fah × Faw × p = 8 × 8 × 32 with a 16-bit fixed-point required 4 KB. This
ensures that each input feature map is only read from off-chip once. We can process all
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frames in the Fa with all on-chip resident filters while loading the next set of Fa and its
corresponding filters/weights in parallel, resulting in the next set of IFM and filters based
on Fa size on the on-chip by the end. This method has improved the reuse of both the
IFM values k times and weight values OFaw times to reduce off-chip bandwidth usage.

Fig. 3. Different combinations of IFM & FL reuse computation and its computation order.

For both IFM and weight reuse approach, the different size of the 3D feature array
(Fa) is formed based on the convolutional layer input load. The different size of Fa =
Fah × Faw × p varies from (6 × 6 × 8) to (20 × 20 × 32). Fah and Faw are varying by
the addition of 2. Likewise, p is varying by multiplies of 2. p denotes the depth of the
3D feature (Fa) array. Fah and Faw denote the height and weight of the 3D feature array
(Fa). Worst-case input load (IFM : 55×55×512 and FL : 3×3×512×512) has been
processed with each combination of Fa. Each 3D Fa combination has undergone the
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trade-off analysis in terms of data reuse (both IFMs and weights), memory requirement,
and the number of times Fa requirement per input load using aMATLAB-based analysis
as plotted in Fig. 4. MATLAB-based analysis helps to understand the impacts on each
3D feature array (Fa). From the understanding, 8 × 8 × 32 has balanced the required
key factors optimally. 10 × 10 × 8 has next close to a better feature array. But data
reuse and the number of 3D-Fa are high compared to chosen feature array 8 × 8 × 32.
Equation (1) to (3) defines the number of times Fa processes depth-wise (x), row-wise
(y), and column-wise (z) on the chosen convolutional layer in the CNN model. N refers
to the depth of the IFM (IFM d ), p represents the depth of the 3D feature array, and Pd
represents padding (0 or 1). For example, Input load IFM= 16× 16× 64 & FL= 3× 3
× 9 × 64, then Fa requires 2 times for depth wise (x) computation, 3 times for row-wise
(y) and column-wise (z) computation. The Fa required 3 × 3 × 2 times for the 16 ×
16 × 64 and each Fa output size (OFa = 6 × 6 × 9). In this approach, an optimum 3D
feature array has improved the data reuse on both IFM and weights as well as minimizes
the off-chip bandwidth access and maximizes the hardware utilization of the PE array

x = ⌈N
p

⌉where, p = 32 (1)

y = ⌈ IFM h + Pd

FaH − 2
⌉, row − wisePd = [0, 0] (2)

z = ⌈ IFMw + Pd

FaW − 2
⌉, column − wisePd = [0, 0] (3)

Furthermore, 8 × 8 × 32 feature array size is used for the different combinations
of data-flow scheduling strategies to reduce the intermediate memory utilization and
efficient PE computation as explained in the next section.

Fig. 4. Optimum feature array, Fa plot for the worst-case input load from the CNN model.
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2.2 Data-Flow Scheduling Using 8 × 8 × 32 3D Feature Array

Once chosen the optimum 3D feature array (Fa), the hardware CNN-based inference
engine can also be improved by data movement and scheduling strategies between on-
chip memory to processor element array/on-chip to off-chip memory efficiently. There-
fore, the different combinations of data movement and scheduling have been examined
based on the parallel/sequence order to process the PEs/MACs computation for the cho-
sen convolutional layer. Strategies (I to VII) strategies have been validated using the x,
y, and z values from the optimum 3D feature array formation. Each strategy outcome
has been understood by the improvements of the major key factors as follows: (1) pro-
cessor hardware cost, (2) data transfer rate, and (3) Number of times data transactions
between on-chipmemory to the processor array.MATLAB-basedmathematical analysis
for processor array cost and data transfer rate were done based on the above-mentioned
factors as described in Eqs. (4) are related to the on-chip storage, and processor array
cost in terms of unit cost using the 3D feature array. According to the 3D- Fa approach,
the estimation of the data transfer (number of times) for the IFM and filter is based
on (x.y.z) and x. Mon−chiptoPE refers to the size of the memory access required in the
on-chip. Dtperlayer refers to the number of times data is transferred from off-chip to
on-chip memory/buffer. OFa = (Fa − 2) × (Fa − 2) refers to the output feature map
and intermediate registers. PEarea refers to the number of PEs present in the processor,
FLa = 3 × 3 × p refers to the size of the weight/kernel required for processing the Fa

Mon−chiptoPE =
(
(Fa + OFa + FLa)memory access + PEarea

)
(4)

Fig. 5. Strategy-V (depth-wise ‘x’ parallel and row/column-wise ‘q’ sequence): Data-flow
movement and scheduling method with k set of filters using Fa.

Considering the different strategies, strategy V archives a better data transfer rate
and on-chip memory compared with strategies (I to IV &VI to VII) as shown in Table 1.
The analysis of different combinations has been done in a MATLAB environment with
consideration of different CNN parameters. The Mon−chiptoPE and Dtperlayer are calcu-
lated in terms of unit cost and unit data transfer rate in unit times. So, the evaluation is
common for all the data formats and word lengths. Strategies are adopted to different
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Fig. 6. Visual depiction of the frame-wise computation based on the 3D- Fa with strategy V
approach.

Fig. 7. Overall CNN inference engine for strategy V with 4 × 8 processor array.

feature array sizes in the standard CNNmodel such as AlexNet, VGG-16 & 19, ResNet,
SqueezeNet, and GoogleNet

The scheduling strategy of V is illustrated in Fig. 5. In Fig. 5, the 3D- Fa is convoluted
depth-wise ‘x’ with a k set of filters based on the x, and then Fa follows the row-wise and
column-wise based on the y and z values. For example, input load (IFM : 55×55×512
and FL : 3 × 3 × 512) has been processed the depth-wise-parallel at x = 16 and row-
wise/column-wise sequence at y = z = 10. It means that the data transfer rate for IFM
and weight is 1600 times and 16 times. These 3D feature arrays have been processed
with 4×8 processing elements. The processor contains 32 PEs. Each PEs is consisting of
a 3× 3 MAC unit and adopts a 16-bit fixed point. Under this circumstance, an optimum
8 × 8 × 32- 3D feature array with the set of filters calculates the OFM using the PE
array. It performs the MAC computation with consideration of the depth (p) of Fa, as
listed in Algorithm I
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Algorithm I for subset-1 using optimum 8×8×32 3D-Fa structure

(a) Calculate 4×8 processor 
for X in 1 to x do
for (L, K) in (0,0) to (Faw -2, FaH-2) do
p=32, FLw= FLh= 3 
PEp-31=Frame1(LX+1:FLh+LX, KX+1:FLw+KX)*FLX
PEp-30=Frame2(LX+1:FLh+LX, KX+1:FLw+KX)*FLX
PEp-29=Frame3(LX+1:FLh+LX, KX+1:FLw+KX)*FLX

PEp=Frame32(LX +1:FLh+LX, KX+1:FLw+KX)*FLX
In=add/Sub (PEp-31, PEp-30, PEp-29,…, PEp)
end
end
return In
(b) Calculate OFM 
for (Y, Z) in (1, 1) to (y, z) do
for X in 1 to x do
calculate 4×8 processor In
OFM+=In
end
end
return OFM 

With each PE processing a 2-D frame, multiple PEs can be aggregated to complete the
3D input with corresponding shown in Fig. 6. The 3D feature array of size 8 × 8 ×
32 has p frames. Each frame is processed with the corresponding set of weights using
the stride ‘1’ and produces the partial output feature maps. Each partial sum from each
is further accumulated across the PEs vertically. The partial OFa of all the frames is
added together to extract the OFM. Likewise, the next set of 3D- Fa is processing the
same. For example, PE1,1: Frame 1 from the 3D- Fa of size 8 × 8 is convoluted with the
weight of size 3 × 3 (FL1,1 to FLk,1), PE2,1: Frame 1 from the 3D- Fa of size 8 × 8 is
convoluted with the weight of size 3 × 3 (FL1,1 to FLk,1) up to frame 32. All the frames
in the 3D-Fa are processed using the 4 × 8 processing element parallelly and attain the
reuse on both weights and IFMs. Initially, pre-trained IFMs and weights are stored in
the off-chip memory (DRAM). Based on the 4 × 8 PEs size, on-chip memory (SRAM/
buffer size) for IFMs and weights are chosen as shown in Fig. 7. Finally, OFM has to be
stored in the off-chip which is IFM to the next CNN layer

3 Simulation Results and Discussion

In this section, the optimum 3D feature array of size 8 × 8 × 32 and the approach
of data-flow scheduling in depth-wise (x) parallel and row/column-wise (y) sequence
under the strategy-V has been evaluated for the efficient CNN hardware implementation.



104 D. Selvaraj et al.

The proposed 3D- Fa and data-flow scheduling strategy-V has been adopted and tested
with the critical layer (IFM : 55 × 55 × 512,Filter/weight : 3 × 3 × 512) present
in the state-of-the-art CNN models such as VGG-16 &VGG-19, ResNet-18 &50, and
SqueezeNet. The critical layer results are evidence that scheduling strategy-V is suitable
for the other layers present in the CNN models. Also, the results demonstrated that our
data-flow scheduling strategy-V with optimum 3D feature array can efficiently reduce
the off-chip to on-chip data movement and processor cost with higher utilization of the
PEs

3.1 Evaluation of 3-D Feature Array (Fa) for the CNN Model

Array (8 × 8 × 32), the major key factors are followed as explained in Sect. 2. The
software-basedmodel for different pre-trainedCNNmodels has been implemented using
the MATLAB environment as depicted in Fig. 2. The software environment has the
flexibility to adapt the different data formats and word lengths to maintain the accuracy
of the model before implementation in the hardware module. In this subsection, the
optimum feature array size of 8× 8 × 32 is selected based on the memory requirement
per Fa and the number of times Fa is required per layer and data reuse. By varying the
11 different combinations of 3-dimensional feature arrays, the optimum size has been
chosen from the trade-off plot as shown in Fig. 4. Considering all the factors, 8×8×32
reuses the k set of filters/weights by k × 6 times and reuses the IFM k times per Fa, and
storage required for IFMs andweights of size 0.25KB and 18KB, respectively. Likewise,
6× 6× 32 reuses the k set of filters/weights by k × 4 times with a small area overhead.
From the plot Fig. 5., 8 × 8 × 32 achieves the better trade-off of the abovementioned
three factors compared to the other 3D feature array. In the existing method [6, 14, 16],
IFM major and filter/weight major reuse computations are followed in the CNN models
as shown in Fig. 2. IFMs major computation requires a larger memory size of 3 × 3 ×
k × N for the set of the filters but our method requires the memory size of 3 × 3 × p ×
k. compared to the [16], on-chip memory requirement has 16 times lesser and 2 times
higher data transfer rate in our optimummethod. Similarly, filter major computation has
adopted all the IFM values in the on-chip. It is an expensive approach compared to our
optimum 3D feature array

Likewise, [14] has adopted the depth-wise data-flow strategy. Therefore, this method
has implemented that the IFMsize is the same as the filter/weight size, so theweight reuse
method has not been adopted. But the depth-wise strategy optimizes the memory with
maximum utilization of PEs. [6, 15] uses the row-stationary (RS) and Weight stationery
(WS) data-flow strategy to reduce the expensive data movement by reusing the data
maximally and this strategy are suitable for efficient DRAM access. Considering all
the methods, our optimum 3D feature array is suitable for the trade-off of the above-
mentioned prime factors which are the major parameters in the efficient CNN hardware
models

3.2 Analysis and Evaluation of Strategies for the CNN Layer

To improve the data-flow scheduling between the memories, the different combinations
of strategies are framed based on the data transfer rate (off-chip to on-chip memory)
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and processor cost (on-chip memory and processor area). From the strategy (I to VII)
analysis, strategy-V is chosen by considering the trade-off of the key factors as discussed
in Sect. 2.2. The specification for each supported data-flow scheduling strategy is listed
in Table 1

Generally, the data-flow scheduling depends on the stage-wise row/column and depth
in a parallel/sequence manner from the off-chip memory to the on-chip memory for the
CNNmodels. The IFMandweights of eachCNN layer bringwith deluge amount of data.
Therefore, the different combinations of stage-wise data scheduling are arranged with
parallel or sequencemode using a 3D feature array (Fa) as illustrated inTable 1. Processor
cost (Mon−chiptoPE) and data tranfer rate (Dtperlayer) are evaluated from each scheduling
combination. Strategy V gives a better trade-off between twomajor parameters as shown
in Fig. 8. The analysis is done in software-based implementation. Hence, the unit for the
Mon−chiptoPE and Dtperlayer are in terms of unit cost and unit times

Fig. 8. Trade-off plot for cost and data transfer rate in the different scheduling strategies (I to VII)
using the (8 × 8 × 32) 3D- Fa.

Generally, the data-flow scheduling depends on the stage-wise row/column and depth
in a parallel/sequence manner from the off-chip memory to the on-chip memory for the
CNNmodels. The IFMandweights of eachCNN layer bringwith deluge amount of data.
Therefore, the different combinations of stage-wise data scheduling are arranged with
parallel or sequencemode using a 3D feature array (Fa) as illustrated inTable 1. Processor
cost (Mon−chiptoPE) and data tranfer rate (Dtperlayer) are evaluated from each scheduling
combination. Strategy V gives a better trade-off between twomajor parameters as shown
in Fig. 8. The analysis is done in software-based implementation. Hence, the unit for the
Mon−chiptoPE and Dtperlayer are in terms of unit cost and unit times

In Table 1, Strategy-I [14] has adopted first- row-wise, depth-wise, and then column-
wise in a sequence manner. This strategy I and II give better processor memory but the
data transfer rate is higher (3.3 times) due to the off-chip to on-chip data-flow scheduling
than strategy-V. Similarly, strategy III is accepted both parallelly and sequence transfer
and it achieves a data transfer rate the same as strategy V. But, moderately higher in
the processor cost. Strategy-VI [6, 15] uses the weight stationary (kernel reuse) and row
stationery (input reuse) which utilizes more processor cost (1.05 times) than strategy V.
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But the data transfer rate (1.44 times higher) has the same moderate as in the strategy V.
Compared to all the combination of the data-flow scheduling, strategy-V with optimum
3D feature array achieves the better trade-off between the data transfer and processor
cost

Table 1. Different combinations of scheduling strategies with a 3D feature array of 8 × 8 × 32.

Strategy Different scheduling methods using 3D- Feature
array of size 8 × 8 × 32

Mon−chiptoPE
in terms of unit
cost

Dtperlayer in
terms of unit
times

I [14] 1st: Row-wise, y
(sequence)

2nd:
Depth-wise, x
(sequence)

3st:
Column-wise,
z
(sequence)

Low High

II 1st:
Column-wise, z
(sequence)

2nd:
Depth-wise, x
(sequence)

3st: Row-wise,
y (sequence)

Low High

III 1st: Depth-wise,
x
(sequence)

2st:
Column-wise,
z
(parallel)

3st: Row-wise,
y
(sequence)

Moderate Moderate

IV 1st Row-wise, y
(parallel)

2nd:
Column-wise,
z
(parallel)

3nd:
Depth-wise, x
(sequence)

High Low

V 1st: Depth-wise,
x
(parallel)

2st:
Row-wise, y
(sequence)

3st: Column-
wise, z
(sequence)

Low Moderate

VI
[6, 15]

1st: Row &
column-wise,
y × x (sequence)

2nd:
Depth-wise, x
(parallel)

- High Moderate

VII 1st: Row-wise, y
(parallel)

2nd:
Depth-wise, x
(parallel)

3st:
Column-wise,
z
(parallel)

High Low

Note:
1. A feature block of size 55 × 55 × 512 with a kernel size of 3 × 3 × 512 is considered for
analysis.
2. Everything on-chip produces 100% high memory with a 0% low transfer rate from off-chip to
on-chip.
3. Considering this as a baseline, the memory and data transfer rate for the strategies (I to VII) are
categorized into: High is 70 to 100; Moderate is 30 to 70, and Low is 0 to 30.
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4 Conclusion

In this paper, optimization of the data-flow approaches for the CNNmodels has been dis-
cussed. Data-flow complexity depends on the size of on-chip memory and its controller
in the processing elements (PEs). Data reuse, and data-flow strategies can influence the
size of on-chip memory. First, to improve the data reuse on both IFMs and weights a
3D feature array (Fa) of size 8 × 8 × 32 is proposed. Secondly, the different (I to VII)
data-flow strategies using the proposed 3D feature array are analyzed in the understand-
ing of the requirements of processor cost and data transfer rate (off-chip to on-chip).
From the analysis of data scheduling strategies, strategy V uses the optimum number of
PEs and on-chip memory size. It works on the input features and weights of the CNN
workload layer in a depth-wise parallelly and row/column-wise sequence manner. The
proposed strategy-V utilizes the 3-dimensional feature array size with considering the
examination of prime factors including the number of Fa required per CNN workload
layer, data reuse, and PEs utilization. Also, the strategy-V data-flowmodel of 8×8×32
size provides a better trade-off between the processor cost in terms of unit cost and data
transfer rate in terms of unit times. The MATLAB- based software analysis shows that
the strategy-V can achieve the data transfer rate by 3.3 times (faster) compared to the
Eyeriss processor data-flow strategy with a small area overhead and the requirement of
on-chip memory has 16 times (lesser) than the Mem-Opt processor. In this paper, we
present heuristic design principles that aim to optimize for particular dataflow scenarios.
So, the scope of the future is to implement the optimum 3D feature array (Fa) and data
scheduling based on strategy V in hardware inference for pre-trained CNN models
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