
HAL Id: lirmm-04423308
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04423308

Submitted on 29 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DaPPA: A Data-Parallel Framework for
Processing-in-Memory Architectures

Geraldo Oliveira, Alain Kohli, David Novo, Juan Gómez-Luna, Onur Mutlu

To cite this version:
Geraldo Oliveira, Alain Kohli, David Novo, Juan Gómez-Luna, Onur Mutlu. DaPPA: A Data-
Parallel Framework for Processing-in-Memory Architectures. PACT 2023 - 32nd International Con-
ference on Parallel Architectures and Compilation Techniques, Oct 2023, Vienna, Austria. , 2023,
�10.48550/arXiv.2310.10168�. �lirmm-04423308�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04423308
https://hal.archives-ouvertes.fr

DaPPA: A Data-Parallel Framework for Processing-in-Memory Architectures
Geraldo F. Oliveira⋆ Alain Kohli⋆ David Novo‡ Juan Gómez-Luna⋆ Onur Mutlu⋆

⋆ETH Zürich ‡LIRMM, Univ. Montpellier, CNRS

1. Motivation & Problem
The increasing prevalence and growing size of data in mod-
ern applications have led to high costs for computation in
traditional processor-centric computing systems. To mitigate
these costs, the processing-in-memory (PIM) [1–6] paradigm
moves computation closer to where the data resides, reducing
the need to move data between memory and the processor.
Even though the concept of PIM has been first proposed in
the 1960s [7, 8], real-world PIM systems have only recently
been manufactured [9–13]. The UPMEM PIM system [9,
10, 14] is the first PIM architecture to become commercially
available. It consists of UPMEM modules, which are stan-
dard DDR4-2400 DIMMs with 16 PIM chips. A PIM chip
consists of eight small multithreaded general-purpose in-order
processors called DPUs. Each DPU has exclusive access to a
64 MB DRAM bank (called MRAM), a 24 kB instruction mem-
ory (called IRAM), and a 64 kB scratchpad memory (called
WRAM). A common UPEM-capable system has 20 DRAM
modules with 128 DPUs and 8 GB of memory each, totaling
2,560 DPUs with 160 GB of memory.

To program the DPUs in a UPMEM-capable system, UP-
MEM has developed a single-instruction multiple-thread
(SIMT) programming model. The programming model uses
a C-like interface and exposes to the programmer a series of
APIs to manage data allocation and data movement between
the host CPU/DPUs and within the memory hierarchy of the
DPUs. A programmer needs to follow four main steps to
implement a given application targeting the UPMEM system.
The programmer needs to: (i) partition the computation (and
input data) across the DPUs in the system, manually exposing
thread-level parallelism (TLP) to the system; (ii) distribute
(copy) the appropriate input data from the CPU’s main mem-
ory into the DPU’s memory space; (iii) launch the computation
kernel that the DPUs will execute; and (iv) gather (copy) out-
put data from the DPUs to the CPU main memory once the
DPUs execute the kernel.

Even though UPMEM’s programming model resembles that
of widely employed architectures, such as GPUs, it requires
the programmer to (i) have prior knowledge of the underlying
UPMEM hardware and (ii) manage data movement at a fine-
grained granularity manually. Such limitations can difficult
the adoption of PIM architectures in general-purpose systems.
Therefore, our goal in this work is to ease programmability for
the UPMEM architecture, allowing a programmer to write effi-
cient PIM-friendly code without the need to manage hardware
resources explicitly.

2. DaPPA: A Data-Parallel PIM Framework
To ease the programmability of PIM architectures, we propose
DaPPA (data-parallel processing-in-memory architecture), a
framework that can, for a given application, automatically
distribute input and gather output data, handle memory man-
agement, and parallelize work across the DPUs. The key
idea behind DaPPA is to remove the responsibility of man-
aging hardware resources from the programmer by providing
an intuitive data-parallel pattern-based programming inter-

face [15, 16] that abstracts the hardware components of the
UPMEM system. Using this key idea, DaPPA transforms a
data-parallel pattern-based application code into the appro-
priate UPMEM-target code, including the required APIs for
data management and code partition, which can then be com-
piled into a UPMEM-based binary transparently from the
programmer. While generating UPMEM-target code, DaPPA
implements several code optimizations to improve end-to-end
performance.

2.1. DaPPA Overview

Figure 1 shows an overview of our DaPPA framework. DaPPA
takes as input C/C++ code, which describes the target compu-
tation using a collection of data-parallel patterns and DaPPA’s
programming interface, and generates as output the requested
computation. DaPPA consists of three main components:
(i) DaPPA’s data-parallel pattern APIs, (ii) DaPPA’s dataflow
programming interface, and (iii) DaPPA’s dynamic template-
based compilation.

Data-Parallel Pattern APIs. DaPPA’s data-parallel pattern
APIs (1 in Figure 1) are a collection of pre-defined func-
tions that implement high-level data-parallel pattern primitives.
Each primitive allows the user to express how data is trans-
formed during computation. DaPPA supports five primary
data-parallel pattern primitives, including: (i) map, which ap-
plies a function f to each individual input element i, producing
unique output elements yi = f (xi); (ii) filter, which selects
input elements based on a predicate; (iii) reduce, which re-
duces input elements to a scalar; (iv) window, which maps
and output element as the reduction of W overlapping input
elements; (v) group, which maps and output element as the
reduction of G non-overlapping input elements. The user can
combine all five data-parallel primitives to describe complex
data transformations in an application. DaPPA is responsible
for translating and parallelizing each data-parallel primitive to
efficient CPU and UPMEM code.

Dataflow Programming Interface. DaPPA exposes a
dataflow-based programming interface to the user (2 in Fig-
ure 1). In this programming interface, the main compo-
nent is the Pipeline class, which represents a sequence of
data-parallel patterns that will be executed on the DPUs. A
given Pipeline has one or more stages. Each stage uti-
lizes a given data-parallel pattern primitive to transform input
operands following a user-defined computation. Stages are
executed in order, in a pipeline fashion.

Dynamic Template-Based Compilation. DaPPA uses a dy-
namic template-based compilation (3 in Figure 1) to generate
DPU code in two main steps. In the first step, DaPPA creates a
base DPU code based on a basic skeleton of a DPU application.
In the second step, DaPPA uses a series of transformations
to (i) extract the required information that will be fed to the
DPU code template from the user program; (ii) calculate the
appropriate offsets used when managing data across MRAMs
and WRAMs; and (iii) divide computation between CPU and
DPUs.

1

ar
X

iv
:2

31
0.

10
16

8v
1

 [
cs

.A
R

]
 1

6
O

ct
 2

02
3

C = A0B0 +
 A1B1 +
 A2B2 +
 A3B3

m
ap

reduce UPMEM::Pipeline p(datasize);
p.stage(MAP(([](int *c, int *a, int *b){

*c = *a * *b;
}), OUTPUT(int, &c),
INPUT(int, a), INPUT(int, b)));
p.stage(REDUCE(([](int *sum, int *c){

*sum += *c;
}), REDUCE_OUT(int, &sum), INPUT(int, &c)));

stringification

type removal

mem. arrange.

int main(){

{for arg in kernel}

mram_read_full()

…

mram_write_full()

}

f f f f

map

f

reduce

f f f f

filter

f f f f

window

f f

group
data-parallel pattern APIs

target
computation dataflow programming interface dynamic template-based compilation

templateoptimizations

co
m

pi
le

r

UPMEM
binary

in-DRAM exec.

1

2 3
Figure 1: Overview of the DaPPA framework.

Putting All Together. Using DaPPA’s data-parallel pattern
APIs, data-flow programming interface, and dynamic template-
based compilation, the user can quickly implement and deploy
applications to the UPMEM system without any knowledge of
the underlying architecture. Figure 1 showcases an example
of implementing a simple vector dot product application using
DaPPA. In this example, the user defines a Pipeline with two
stages: a map stage and a reduce stage. DaPPA generates
the appropriate binary for the UPMEM system, executes the
target computation in the DPUs, and copies the final output
from the DPUs to the CPU.

3. Key Results & Contributions

Methodology. To demonstrate DaPPA’s benefits, we imple-
ment a subset of the workloads (i.e., vector addition, select,
reduce, unique, imagine histogram small, and gemv) presented
in the UPMEM-based PrIM benchmark suite [17] using our
data-parallel pattern model. We conduct our evaluation on a
UPMEM PIM system that includes a 2-socket Intel Xeon Sil-
ver 4110 CPU at 2.10 GHz (host CPU), standard main memory
(DDR4-2400) of 128 GB, and 20 UPMEM PIM DIMMs with
160 GB PIM-capable memory and 2560 DPUs. We compare
DaPPA’s performance and programming complexity to that of
the hand-tuned implementations present in PrIM.

Key Results. First, compared to the hand-tuned PriM work-
loads, DaPPA improves end-to-end performance by 2.1×, on
average across all six workloads (min. 0.8×, max. 10.6×).
DaPPA’s performance improvement is due to code optimiza-
tions, such as parallel data transfer and workload partition
between CPU and DPUs. Second, DaPPA significantly re-
duces programming complexity (measured using line-of-code)
on average by 94.4% (min. 92.3%, max. 96.1%). We con-
clude that DaPPA is an efficient framework that eases the
programmability of PIM architectures.

We make the following key contributions:
• To our knowledge, this is the first work to propose a data-

parallel pattern-based framework to generate code for the
UPMEM architecture automatically.

• We propose DaPPA (data-parallel processing-in-memory

architecture), a framework that automatically distributes
input and gathers output data, handles memory management,
and parallelizes work across DPUs.

• We equip DaPPA with a series of code optimizations that
improve the performance of workloads running on the UP-
MEM system.

• We evaluate DaPPA using six workloads from the PrIM
benchmark suite, and we observe that DaPPA improves
performance by 2.1× and reduces line-of-code by 94.4%,
on average, compared to the hand-tuned PrIM workloads.

References
[1] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,”

IBM JRD, 2019.
[2] O. Mutlu et al., “A Modern Primer on Processing in Memory,” Emerging

Computing: From Devices to Systems - Looking Beyond Moore and Von
Neumann, 2021.

[3] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[4] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to
Enable Adoption,” in Beyond-CMOS Technologies for Next Generation
Computer Design, 2019.

[5] O. Mutlu et al., “Enabling Practical Processing in and Near Memory for
Data-Intensive Computing,” in DAC, 2019.

[6] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[7] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[8] H. S. Stone, “A logic-in-memory computer.”
[9] UPMEM, “UPMEM Website,” https://www.upmem.com, 2023.

[10] UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM)
on DRAM Accelerator (White Paper),” 2018.

[11] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

[12] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[13] L. Ke et al., “Near-Memory Processing in Action: Accelerating Personal-
ized Recommendation with AxDIMM,” IEEE Micro, 2021.

[14] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Ex-
perimental Analysis of a Real Processing-in-Memory Architecture,”
arXiv:2105.03814 [cs.AR], 2021.

[15] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. Pitman London, 1989.

[16] M. Cole, “Bringing Skeletons Out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming,” Parallel Computing, 2004.

[17] SAFARI Research Group, “PrIM Benchmark Suite,”
https://github.com/CMU-SAFARI/prim-benchmarks.

2

https://www.upmem.com

	Motivation & Problem
	DaPPA: A Data-Parallel PIM Framework
	DaPPA Overview

	Key Results & Contributions

