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Abstract—Nowadays, 3D objects are frequently stored and
shared online, where they become vulnerable to attacks. There-
fore, applying security measures such as encryption is crucial.
Once the 3D object is encrypted and stored online, a third party
who is not authorized to access the content of the 3D object may
need to embed hidden data in the 3D object. In this paper, we
propose a new MSB-based reversible data-hiding in the encrypted
domain method for 3D objects, which uses a Hamiltonian path
to establish a unique order for the vertices of a 3D object. For
the reconstruction step, we select the smallest distance between
vertices to accurately predict the MSB value of the mantissa
for each coordinate. Our proposed method is format compliant,
avoids any size expansion, and does not require auxiliary file,
while guaranteeing the reversibility of the marked encrypted 3D
object, even when tested on a large database of 3D objects.

Index Terms—Multimedia security, 3D object, reversible data-
hiding in the encrypted domain, Hamiltonian path.

I. INTRODUCTION

Over the last few decades, multimedia data, in particular
3D objects, are transmitted, stored and shared online. They
are then vulnerable to attacks such as copying or modification.
The security of 3D objects is therefore essential, not to say
unavoidable. A 3D object can be secured with encryption
methods by converting it to unintelligible ciphertext. Once the
multimedia is encrypted and stored online, a third party, for
example the server, who does not have the right to access
the clear 3D object may need to embed hidden data in the
multimedia. Reversible data-hiding in the encrypted domain
(RDH-ED) methods can be used to embed data into an
encrypted media, without knowing its original content.

In order to reconstruct the original content, many methods
for multimedia RDH-ED are based on prediction. The original
pixel values, in the case of images, or vertices, in the case of
3D objects, are estimated according to a prediction criteria
once the content has been decrypted. In 2018, Puteaux and
Puech proposed a high capacity RDH-ED method for images
based on MSB prediction [1]. They used the high local corre-
lation between a pixel and its neighbors in the clear domain in
order to predict the MSB values of a pixel based on the previ-
ously decrypted neighboring pixels. For 3D objects, defining a
neighbor is more challenging than for images, as they consist
of an unordered set of vertices. Itier et al. proposed using
a Hamiltonian path to create a unique synchronisation order
for the vertices of a 3D object [2]. Itier and Puech then used
this Hamiltonian path construction to embed data in the point

cloud of a 3D object [3]. Most RDH-ED methods for 3D
objects consist of dividing the vertices into an embedding set
and a prediction set, where vertices in the prediction set are
used to correct the marked vertices in the embedding set. In
2018, Jiang et al. proposed the first RDH-ED method for 3D
objects, based on LSB substitution, where a vertex is added
to the embedding set and its one-ring to the reference set [4].
Xu et al. then used the higher correlation between the MSB
in the plaintext domain to perform a vertex prediction on the
MSB instead of multiple LSB [5]. In 2022, Tsai and Liu pro-
posed randomly choosing a percentage of neighbors according
a given threshold and basing the prediction on the center of
gravity of the neighboring vertices [6]. Lyu et al. proposed
optimizing the distribution between the embedding set and
the prediction set by using the vertices’ parity as the division
criteria [7]. In 2020, Tsai proposed a RDH-ED method for
3D objects based on spatial subdivision and space encoding
of the 3D object [8]. Some RDH-ED methods for 3D objects
are based on the Paillier homomorphic cryptosystem. In 2018,
Shah et al. proposed a two tier homomorphic RDH-ED scheme
method for 3D objects [9]. In 2023, Jansen van Rensburg et al.
proposed a multi-message RDH-ED method where the 3D
object remains watermarked once decrypted [10].

In this paper, we propose a new RDH-ED method for
3D objects which is based on a Hamiltonian path used to
define a unique order for vertices in the 3D object. We then
use the small distances between the vertices to predict the
correct MSB value of the mantissa of each of their coordinates
during the reconstruction step. The proposed method is format
compliant, has no size expansion and does not require an
auxiliary file.

II. THE PROPOSED 3D DATA-HIDING METHOD
IN THE ENCRYPTED DOMAIN

In this section, we present the proposed RDH-ED method
based on an MSB prediction using a Hamiltonian path.
A. Overview of the proposed encoding phase

Fig. 1 presents an overview of the encoding phase of our
proposed method. First, the 3D object undergoes a preprocess-
ing step. Then, the spatial processing order of the vertices of
the 3D object needs to be established in order to accurately
predict the value of the next vertex during the decoding phase.
We note that this is more challenging than in 2D images, as
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Fig. 1: General overview of the encoding phase of the pro-
posed RDH-ED method.

3D objects are composed of an unordered set of vertices. We
therefore use a Hamiltonian path to order the vertices of the
3D object [2]. The Hamiltonian path guarantees that the next
vertex in the path has the smallest Euclidean distance to the
previous vertex, among the remaining vertices. This property
is used to accurately predict the value of the vertices during
the decoding phase, as the 3D object’s vertices are ordered
directly in its file when the encoded object is saved. Then,
the vertices that cannot be predicted during the reconstruction
step are identified. The preprocessed and ordered 3D object
is encrypted with a secret encryption key K1 and both the
positions and the values of the incorrectly predicted vertices,
called auxiliary information, are embedded by substitution of
the MSB values of the first encrypted vertices coordinates.
During the data-hiding step, a secret message (encrypted with
a secret data-hiding key K2) can be embedded in a similar
way in all remaining encrypted vertices of the 3D object.

B. Hamiltonian path construction
We note the original 3D object O, which is represented by

a set of n vertices V = {v1, ..., vn} and l binary associations
between these vertices, a set of edges E = {e1, ..., el}. Each
vertex consists of three coordinates x, y and z, where each
of which can be represented by a 32-bit floating point fp,
which consists of a sign s (1 bit), an exponent e (8 bits) and a
mantissa mant (23 bits) where: fp = (−1)s×mant×2e−127.

In this paper, we propose constructing the Hamiltonian
path [3] of a 3D object in order to define the processing order
of the vertices. We rely on this order to predict the recon-
struction of the vertices during the decoding phase. The con-
struction of a Hamiltonian path is described in Algorithm 1.
For each vertex vi in the Hamiltonian path, the vertex vi+1

is the closest to vi in terms of the Euclidean distance, where
vi+1 is not already in the Hamiltonian path (vi+1 ̸∈ HPath).
During the decoding phase, we exploit this property in order
to predict each vertex value and thus accurately reconstruct the
original 3D object. We note that the Hamiltonian path produces
a single vertex order for the 3D object for every given starting
vertex vk. We define µH as the average Euclidean distance of
a connection vi → vi+1 in the Hamiltonian path, and σH the
standard deviation of the Euclidean distance distribution for
all Hamiltonian connections.

Algorithm 1 Hamiltonian path construction

Require: A 3D object O = {V,E}, a starting vertex vk
and a function nearestNeighbor(v,X) to get the nearest
neighbor of v in the set X .

Ensure: A 3D Hamiltonian path of the 3D object O
1: HPath← {vk}
2: V ′ ← V
3: E′ ← E
4: vi ← vk
5: while V ′ ̸= ∅ do
6: V ′ ← V ′ \ {vi}
7: vi+1 ← nearestNeighbor(vi, V

′)
8: HPath← HPath ∪ {vi+1}
9: vi ← vi+1

10: end while
11: return HPath

C. Vertex prediction
During the data-hiding step, the p MSB of the mantissa of

each encrypted coordinate are substituted with the message
(auxiliary information + secret message) to be embedded.
Therefore, during the 3D object reconstruction step, the correct
MSB values of each vertex need to be predicted. In this
paper, we present a p MSB prediction for each vertex in
the 3D object, based on the constructed Hamiltonian path.

Fig. 2: Prediction example, with p = 1, on a predictable vertex.

Fig. 2 illustrates the prediction step for a vertex vi+1 in the
Hamiltonian path, based on the previous vertex vi. We assume
that all previously predicted vertices in the Hamiltonian path
are correct. As p MSB of the mantissa of each coordinate
need to be predicted, the vertex vi+1 has 23×p possible
reconstructions.

According to Algorithm 1, vi+1 is the vertex with the min-
imum Euclidean distance from vi among these 23×p possible
reconstructions. In order to increase the probability that the
correct reconstruction of vi+1 is the possible reconstruction
with the minimum Euclidean distance to vi, and consequently
avoid incorrect predicted values, the 3D object is first trans-
lated by a twice the value of the diagonal of the bounding box
during the processing step:

D =
√

(xmax − xmin)
2 + (ymax − ymin)

2 + (zmax − zmin)
2,
(1)

where xmin is the minimum x coordinate among all x coor-
dinates of all vertices (similarly for ymin and zmin, but with



y and z coordinates respectively). The values of xmax, ymax

and zmax are obtained in the same way, but for maximum x,
y and z coordinates respectively. This translation increases the
value of the exponent e of the coordinates and consequently
increases the impact of the MSB in the mantissa. Therefore,
the probability of selecting the correct predicted value of vi+1

during the reconstruction step is increased, as the correct
predicted vertex is more likely to be the closest predicted
vertex to the previous vertex vi. In order for the translation
to be most effective, we assume that the 3D objects are
centered on (0, 0, 0) (i.e. −xmin ≃ xmax, −ymin ≃ ymax,
−zmin ≃ zmax).

However, while the translation operation increases the
chances of a correct prediction, some vertices vi+1 in the
Hamiltonian path remain unpredictable. There are two cat-
egories of unpredictable vertices. There are topological dis-
continuities when two consecutive vertices vi and vi+1 do not
share an edge. If all the vertices that share an edge with vi
are already in the Hamiltonian path, then a vertex vi+1 which
does not share an edge is selected. This type of connection
produces topological discontinuities in the Hamiltonian path.
It is also common in 3D objects where different sections of
the 3D object’s geometry are close and do not share a direct
connection, such as, for example, a 3D object representing a
hand with closely spaced fingers. We define large distances
connections when the distance between vi and vi+1 is greater
than (µH + k × σH), where k ∈ N is a threshold. These
connections may or may not share an edge. They are more
common at the end of the Hamiltonian path, however may
also appear earlier in the Hamiltonian path, depending on
the shape of the 3D object. These connections are more
difficult to predict in the reconstruction step. To ensure the
reversibility of our method, the first bits of the embedded
message are dedicated to highlighting all the unpredictable
vertices, by storing both their positions and their values as
auxiliary information.

D. Data-hiding in the encrypted domain
After the detection of all the unpredictable vertices, the

preprocessed and ordered 3D object is encrypted. With the
help of a secret encryption key K1, a pseudo-random binary
sequence is generated. This sequence is used for the encryption
of each vertex by performing an exclusive-OR operation with
the bits of the mantissa of each coordinate. During the data-
hiding step in the encrypted domain, the embedded message
is composed of two different parts:

• The auxiliary information (i.e. unpredictable vertex
information): binary information used to reconstruct the
n′ unpredictable connections.

• The secret message: the message embedded by the user.
For each vertex vi, the message is embedded in the mantissa

of each coordinate by means of an MSB substitution, as
proposed by Puteaux and Puech for data-hiding in encrypted
images [1]. We note p the number of MSB per coordinate
substituted during the embedding process. Therefore, the em-
bedding rate, which is determined by the total number of bits

per vertex (bpv) reserved for the message embedding, is noted
3× p bpv. Consequently, the maximum message length is:

mlength = (n− 1)× (3× p), (2)

where n is the number of vertices in the 3D object. We
note that (n − 1) vertices are used for embedding, as the
first vertex needs to be intact in order to predict the second
vertex. Fig. 3 illustrates the data-hiding step. The auxiliary
information includes the number of unpredictable vertices, as
well as their position and their values.

Fig. 3: Message embedding step.

The number n′ of unpredictable vertices, as well as their
positions, is embedded using ⌈log2(n)⌉ bits, as the maximum
value of a vertex position is n. This size is also useful during
the decoding phase, as n is known in the file format. The bit
size A of the auxiliary information is given by:

A = ⌈log2(n)⌉+ (⌈log2(n)⌉+ (3× p))× n′. (3)

After the embedding of the auxiliary information, one can
embed bits of the secret message in every remaining encrypted
vertex, without knowing the original 3D object in clear nor
the secret encryption key K1. Note that, for the sake of
confidentiality, this secret message is encrypted using a secret
data-hiding key K2 before being embedded. The bit size S of
this secret message part is given by: S = mlength − A. The
payload, corresponding to the number of bits of the secret
message embedded in a vertex is:

payload =
S

n
=

(n− 1)× (3× p)−A

n
. (4)

We observe that when n is large, payload ≈ 3 bpv. This is
also true when A is null. We can also compute the maximum
value of n′, which depends on n and p:

n′
max =

(n− 1)× (3× p)− ⌈log2(n)⌉
⌈log2(n)⌉+ (3× p)

. (5)

E. Message extraction and object reconstruction
To extract the message, the p MSB of each coordinate of

every vertex are read, with the exception of the first vertex. If
we possess the secret data-hiding key K2, the secret message



(after the auxiliary information) is then decrypted using K2 to
reconstruct the secret message in clear. Note that, in this case,
the content of the original 3D object remains protected.

If we possess the secret encryption key K1, then for each
coordinate of each vertex in the 3D object, the mantissa
is decrypted using K1. The decrypted vertices can then be
reconstructed. For the unpredictable vertices, we read the
auxiliary information from the extracted message and recon-
struct them with Eq. 3. In order for all the remaining vertices
to be reconstructed, their 23×p possible reconstructions are
calculated. In this paper, we take p = 1 and therefore there
are 8 possible combinations for the reconstruction. To select
the right reconstruction, we refer to the same Hamiltonian
path of the 3D object as the encoding phase, deduced from
the 3D object file due to the vertex reordering. The vertex
vi+1 is considered to be the possible reconstruction with the
minimum Euclidean distance from vi. Once all the vertices
are reconstructed, the bounding box of the reconstructed 3D
object is calculated, and inverse translation is performed.

If we possess both keys, then the secret message can be
retrieved and the 3D object can be reconstructed.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results of the
proposed RDH-ED method.

A. A full example on a single 3D object
We present a full example of our proposed method when

applied to the 3D object Cow from the Stanford database [11].
The 3D object Cow, illustrated in Fig. 4a, is composed of
2,903 vertices and is approximately centered in zero, with
a bounding box of: xmin = −0.690, ymin = −0.583,
zmin = −0.272, xmax = 0.980, ymax = 0.440 and
zmax = 0.272. We note that the mean Euclidean distance
between two vertices that share an edge is 34.934× 10−3.

In our experimental results, we set the embedding parameter
p = 1 which means that the message is embedded in one MSB
of the mantissa per coordinate. The message has then a length
of 2, 902× 3 = 8, 706 bits (according to Eq. 2), and therefore
during the reconstruction step there are 23 = 8 possible values
for a vertex vi+1 to be predicted. We note that in this case,
the maximum number of unpredictable vertices allowed is
n′
max = 2,902×3−12

12+3 = 579 vertices (according to Eq. 5).
Fig. 4b illustrates the results of the constructed Hamiltonian

path, starting at the vertex #546 (red dot) of the 3D object Cow
(Fig. 4a). The mean Euclidean distance between two connected
vertices in the Hamiltonian path is µH = 25.092× 10−3 and
the standard deviation is σH = 23.935× 10−3. The minimum
distance between two connected vertices is 3.271× 10−3 and
the maximum is 0.345. We note that for this 3D object, the
value of µH is similar to the mean length of an edge. Fig. 4c
illustrates the various topological discontinuities in the Hamil-
tonian path (in red). With vertex #546 as the starting vertex
for the Hamiltonian path, we have 269 (9.266%) topological
discontinuities. Fig. 4d presents, with colors, the Euclidean
distances of the vertex connections in the Hamiltonian path.
The smallest connections tend towards blue, while the larger

(a) (b)

(c) (d)

Fig. 4: a) The original 3D object Cow [11], b) The Hamiltonian
order starting from the vertex #546 (red dot), c) Topological
discontinuities (red) in the Hamiltonian path, d) Distances
between connected vertices in the Hamiltonian path (from blue
to red).

connections tend towards red. We can observe from the many
dark blue vertex connections that most vertex connections have
a distance close to the minimum distance.

1) Without the preprocessing step: We first present the
results obtained for the encoding and reconstruction step,
without the preprocessing step, the detection of the unpre-
dictable vertices or the threshold on the distance connections.
Fig. 5a presents the marked encrypted 3D object Cow. We can

(a) (b)
Fig. 5: Illustration of the encoding phase and the reconstruc-
tion step of our proposed method without the preprocessing
step, the detection of the unpredictable vertices or the thresh-
old on the distance connections: a) Marked encrypted Cow,
b) Reconstructed Cow.

notice that the 3D object does not have a confidential visual
security level [12], as the form of the 3D object is still visually
accessible. Fig. 5b presents the results of the vertex prediction
without any preprocessing steps. In this case, we have 994
incorrect reconstructions (34.24%) and obtain an RMSE of
40.104 × 10−3 and a Hausdorff distance of 0.102 between
the original 3D object and the reconstructed version. There
is no auxiliary information embedded and so the embedded
message is actually the secret message. Therefore the payload
is 2,902×3

2,903 = 2.99 bpv (according to Eq. 4).



(a) (b)
Fig. 6: Illustration of the encoding phase and the reconstruc-
tion step of our proposed method with a translation and a
topological discontinuity detection: a) Marked encrypted Cow,
b) Reconstructed Cow.

2) With a translation and a topological discontinuity de-
tection: In order to correctly reconstruct the 3D object, we
perform a translation, as well as a topological discontinuity
detection (Fig. 4c). These topological discontinuities constitute
the auxiliary information of the embedded message. Fig. 6a
presents the visual results of the encryption. We can observe
that the visual security level of the marked encrypted 3D
object is confidential because no information about the original
content at all can be recognized. The reconstruction of the
3D object Cow is presented in Fig. 6b with an RMSE of
0.2×10−6 and a Hausdorff distance of 0.373×10−6 between
the original 3D object and its reconstructed version. In this
case, 269 vertices are unpredictable, and therefore the size of
the auxiliary information is equal to A = 4, 047 bits (Eq. 3).
Thus, we have a lower payload of: payload = 1.60 bpv.
We observe that the RMSE and Hausdorff distance of the
reconstructed 3D object are very small. This is due to the
translation, which increases the exponent of the floating point
coordinate values.

3) With a translation and a large distance detection: In
order to reduce the size of the auxiliary information, we
perform a large distance detection according to a threshold on
the distance connections. Only the vertex connections whose
distance is greater than the threshold are included in the
auxiliary information. Indeed, we can observe in Fig. 4d that
some large distances (green and red vertex connections) exist.
However, the distribution of these vertex connection distances
is not as sparse, with only a few values above the mean value.
For the 3D object Cow, they are a subset of the topolog-
ical discontinuities illustrated in Fig. 4c. These topological
discontinuities represent all possible vertex connections that
could be difficult to reconstruct. In order to reduce the number
of unpredictable vertex connections, we can then apply a
threshold to these distances. This allows for a greater payload
and then, a larger secret message can be embedded, as the
size of the auxiliary information is smaller than when we
detect all the topological discontinuities. Fig. 7a presents the
marked encrypted 3D object Cow, where a threshold on the
distance connections is applied. The visual security level of
the marked encrypted 3D object is also confidential. For a
threshold parameter k = 1, we have n′ = 205 vertices,
A = 3, 087 bits and payload = 1.96 bpv. For a threshold

parameter k = 2, we have n′ = 64 vertices, A = 972 bits and
payload = 2.66 bpv. Finally, if we take k = 3, then we have
n′ = 40 vertices, A = 612 bits and payload = 2.79 bpv
(Fig. 7b). The RMSE and the Hausdorff distance between
the original 3D object and the associated reconstructed 3D
objects are 0.2× 10−6 and 0.373× 10−6 respectively, which
are also the same values as for the reconstruction without using
a threshold. The threshold allows us to increase the payload
without changing the quality of the reconstructed 3D object.

(a) (b)
Fig. 7: Illustration of the encoding phase and the recon-
struction step of our proposed method with a translation
and a large distance detection: a) Marked encrypted Cow,
b) Reconstructed Cow.

B. Results on an entire database: Princeton [13]
The Princeton database is composed of 380 3D objects,

ranging from 1, 343 to 27, 824 vertices (10, 224 on aver-
age) [13].

(a) (b)

Fig. 8: Statistical analysis of the Princeton database [13]: a)
Diagonal length, b) Mean distance between vertices sharing
an edge.

All the 3D objects of the Princeton database [13] are more or
less centered on zero, with diagonal sizes ranging from 0.199
to 2.994 (Fig. 8a). For these 3D objects, the mean Euclidean
distance between two vertices sharing an edge ranges from
3.563 × 10−3 to 74.385 × 10−3 (Fig. 8b) and the standard
deviation ranges from 1.536 × 10−3 to 77 × 10−3. We also
observe that the distance between two vertices sharing an edge
in a 3D object is uniform over the same 3D object.

By applying our RDH-ED method to the entire database,
we can embed an average of 2.838 bpv (±0.046 bpv). We re-
construct these 3D objects with an RMSE of 0.581×10−6 and
a Hausdorff distance of 0.79×10−6 on average. These values
are very close to zero indicating near-perfect reconstruction,
whatever the considered 3D object. Fig. 9 presents the 3D
object #317 from the Princeton database (left-hand image), and
the results we obtained after applying the encoding phase of



our RDH-ED method on this object with a threshold parameter
k = 3 (right-hand image). The 3D object #317 is the head
Max, which has a large number of vertices (27, 726) and
triangular faces (55, 448), in comparison with the other 3D
objects in the Princeton database. The two images in the center
correspond to the Hamiltonian path constructed for this 3D
object, starting from the vertex displayed in red. At the top,
the distance between connected vertices in the Hamiltonian
path are represented from blue to red. Below, the topological
discontinuities are illustrated in red.

Fig. 9: Illustration of the encoding phase of our proposed
method applied to the 3D object #317 of the Princeton
database [13].

It has an Euclidean diagonal size of 2.487, for
n′
max = 4, 620 vertices. If we take the vertex #11,400 as

the starting vertex of the Hamiltonian path (in red), we have
µH = 16.882 × 10−3 and σH = 14.941 × 10−3,
for 2, 746 topological discontinuities (9.904%). We have
n′ = 278, A = 5, 019 bits, S = 78, 156 bits and obtain
a payload = 2.901 bpv. We observe for this 3D object
that the large distance connections (green and red connections
in the top-middle image) are not a subset of the topological
discontinuities (in red in the bottom-middle image). This is
due to the circularly divided form of this object. We have
n′ = 16, A = 252 bits, S = 7, 449 bits and obtain a
payload = 2.901 bpv.

To conclude our experimental results, our proposed RDH-
ED method achieves a payload close to the maximum value
(which is very close to 3 bpv) that can be obtained for p = 1.
The part of the message that is sacrificed is allocated to the
embedding of auxiliary information, useful for the reconstruc-
tion of the original 3D object from the marked encrypted 3D
object. We observe that considering large distance connections
(i.e. those greater than µH + 3 × σH ) as unpredictable con-
nections, always allows for a correct reconstruction, with low
RMSE and Hausdorff distance values, while minimizing the
size of the auxiliary information. Note that the reconstruction
is reversible regardless of the 3D object geometry or shape.
If we compare the results we obtained with those achieved
by the current methods of the state-of-the-art, even if we
do not manage to improve the payload value, we achieve
a much better visual quality during the original 3D object
reconstruction phase.

IV. CONCLUSION

In this paper, we proposed a new RDH-ED method for 3D
objects based on an MSB prediction. First of all, we construct
a Hamiltonian path to define an order for the vertices of the 3D
object. This path allows us to accurately predict each vertex
during the reconstruction phase. The unpredictable vertices are
identified by observing the topological discontinuities and the
large distance connections between two consecutive vertices in
the Hamiltonian path. Then, the preprocessed and ordered 3D
object is encrypted and both the positions and the values of the
unpredictable vertices are embedded by a MSB substitution in
the coordinates of the first vertices as auxiliary information.
A secret message can then be embedded in the remaining
vertices, just after the auxiliary information, directly in the
encrypted domain. Note that our proposed method is fully
format compliant, size preserving and the visual security level
of the marked encrypted 3D object is confidential. Finally, a
very good reconstruction of the original 3D object in terms of
RMSE and Hausdorff distance values (less than 0.5 × 10−6)
is achieved.
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