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Abstract

Current public key cryptographic algorithms (RSA, DSA, ECDSA) can be threaten by side channel analyses.
The main approach to counter-act such attacks consists in randomizing sensitive data and address bits used in
loads and stores of an exponentiation algorithm. In this paper we study a recent counter-measure ”Boolean split
exponent” (Tunstall et al. 2018) preventing differential power analysis on address bits. We show that one of
their proposed protections has a flaw. We derive an attack exploiting this flaw and we successfully apply it on a
simulated power consumption of an RSA modular exponentiation.

1 INTRODUCTION
Side channel analysis is a serious threat for devices performing cryptographic computation. Specifically, it can
threaten exponentiation xκ involved in currently used cryptosystems (RSA, DSA and ECDSA). In 1996, in a
seminal work (Kocher, 1996) Kocher showed that a statistical analysis of the computation time can leak out the
secret key used in RSA cryptosystem. Afterwards, it was shown that the power consumption can be used to extract
secret information: with simple power analysis (SPA) (Kocher et al., 1999) one can read on the power trace the
sequence of operations (squaring/multiplication) performed during an exponentiation and then deduce the secret
exponent. In (Kocher et al., 1999) the authors introduce the differential power analysis (DPA) which computes
differences on the power traces to determine the bits of the key.

To counter-act these side channel analyses, the basic approach is to randomly mask sensitive data: we can
blind the point x by multiplying it by a random element (Coron, 1999) or use randomized representation (Clavier
et al., 2010), and we can use additive or multiplicative mask of the exponent (Coron, 1999; Tunstall and Joye,
2010). But this is not always sufficient, since it was shown (Itoh et al., 2003) that the loads and stores performed
during the exponentiation induce a power consumption correlated to the corresponding address bits. This can
be exploited to mount a differential power analysis on the address bits (ADPA). Recently some strategies (Izumi
et al., 2010; Tunstall et al., 2018) were proposed to counter-act this attack by randomizing the address bits used in
the loads and stores of the exponentiation algorithm.

Contribution. In this paper we analyse a potential flaw in the signed version of the boolean exponent splitting
approach of (Tunstall et al., 2018). We show that the sequence of operations (squarings and multiplications) are
not fully regular: we show that if we can distinguish a squaring from a multiplication we can deduce the bit used
to randomize the address bits. Then a classical differential power analysis on the address bits can be performed
to determine the secret exponent. We validate this attack by simulating power traces based on the Hamming
weight model. We provide a method for distinguishing a squaring from a multiplication which has a high level of
confidence. Then we show that an ADPA attack can be performed and successfully deduce the secret exponent
with a few thousand power traces.

Organization of the paper. In Section 2 we review power analyses on exponentiation algorithm and related
counter-measures. In Section 3 we show that there is a flaw in the counter-measures “boolean splitting exponent”
of (Tunstall et al., 2018). In Section 4 we present our approach for power consumption simulation of modular
exponentiation, and we apply an attack on the “boolean splitting exponent” exploiting the flaw shown in Section 3.
We ends the paper in Section 5, with a few concluding remarks.
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2 REVIEW OF POWER ANALYSES
In currently used public key cryptosystems (e.g. RSA, DSA, ECDSA), the sensitive operation is an exponentiation
xκ for x ∈ G a finite group or ring and κ a secret exponent. With the square-and-multiply algorithm one can
compute xκ as a sequence of squarings R← R2 followed by a multiplication g← g× x when the i-th bit κi = 1.
This basic approach is not secure when considering side channel analysis. For example, if we monitor the power
consumption of an exponentiation, then, a simple power analysis (Kocher et al., 1999) can identify on the trace the
operations performed (square or multiplication) on the device and then deduce the secret exponent κ. To counteract
this attack modified versions of the square-and-multiply exponentiation are recommended for which the sequence
of computed operations is not related to bits of the exponent κ. The most popular method is the Montgomery
ladder (Joye and Yen, 2002) which involves two variables R0 and R1, for which, during the exponentiation, we
always have R1 = xR0 and the loop iteration is always a multiplication followed by a squaring (cf. Algorithm 1).

Algorithm 1 Montgomery-ladder

Require: x ∈G, one n-bit integers κ = ∑
n−1
i=0 κi2i

Ensure: xκ

1: R0← 1G; R1← x;
2: for i = n−1 down to 0 do
3: R1−κi ← Rκi ·R¬κi ;
4: Rκi ← R2

κi
;

5: return R0

The Montgomery ladder is a good protection against SPA, but it is not robust against attack like differential
power analysis (DPA) (Kocher et al., 1999), collision attack (Fouque and Valette, 2003; Yen et al., 2006). Indeed
these attacks guess one or several bits of the key and they predict the power consumption at some iteration of the
exponentation. If this prediction is correct this means that the guessed bits are also correct otherwise one can try
another guess. To counteract such attacks at the algorithmic level, the best approaches randomize data in order to
render power consumption unpredictable:

• Point blinding. The strategy here is to hide the data x and R0,R1 by either multiplying x by a random
element (Coron, 1999), adding a random mask or by randomizing the representation of x (Clavier et al.,
2010).

• Exponent masking. In this case we randomly modify the exponent. (Coron, 1999) proposed to add to κ a
random mutiple r×N where N is the order of G. One can also (Tunstall and Joye, 2010) randomize the
exponent as κ′ = β−1κ mod N and compute xκ as (xβ)κ′ .

Point blinding and Exponent masking counter-measures induce an overhead which, for the later, is important since
the level of randomization have to be larger than the longest run of 0 or 1 in κ (Smart et al., 2008).

Point blinding approaches used alone are not sufficient to counter-act DPA attack on the address bits (ADPA (Itoh
et al., 2003)). Indeed guessing a few key bits leads to a prediction of the address bits involved in the loads and
stores performed during the exponentiation. Predicting these address bits, leads to predicting the behavior of the
power consumption during the loads or stores and performing a DPA on several power traces validates the guessed
key bit or not. Since point blinding counter-measures do not modify the sequence of operations done during the
exponentiation, they do not protect the implementation from an ADPA.

Consequently, to counter-act such DPA on address bits, the authors in (Izumi et al., 2010) proposed a first
version of the Montgomery-ladder which randomizes the loads and stores. This work was subsequently improved
in (Tunstall et al., 2018) which provides two kinds of randomized Montgomery-ladder. In their first approach
they use one random bit ai to split the key bit κi = ai⊕ bi and which decides the order of loads R0 and R1 for
the multiplication R0×R1 in Step 3 of Algorithm 1. This bit ai is also used to randomly store the results of the
squaring in Step 4 and the multiplication in Step 3 of Algorithm 1 done in one iteration of the Montgomery ladder.
This requires a bit b′ which memorizes how the value are stored in the two registers R0 and R1 at the end of a loop
iteration. This approach is shown in Algorithm 2.

The authors in (Tunstall et al., 2018) propose a second approach (Algorithm 3) which randomizes the signed
version of the Montgomery ladder. This algorithm perform the exponentiation as a sequence of two multiplications
one between R0 and R1 and between R0 and either U0 = x or U1 = x−1. In Algorithm 3 the addresses used in the
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Algorithm 2 Montgomery-ladder with XOR split exponent I (Tunstall et al., 2018)

Require: x ∈G, two n-bit integers A = ∑
n−1
i=0 ai2i and B = ∑

n−1
i=0 ai2i

Ensure: xκ where κ = A⊕B
1: R0← 1G; R1← 1G; R2← 1G; b′←R {0,1}; R¬b′ ← x;
2: for i = n−1 down to 0 do
3: R2← Rai ·R¬ai ;
4: Rai ← R2

(bi⊕b′)⊕ai
;

5: R¬ai ← R2;
6: b′← bi;
7: return Rb′

store instructions are fixed and then they are not correlated to the bits of the exponent. The random bit ai (and thus
bi = κi⊕ai) is used to randomize the load instructions in Step 4 and Step 5. The bit b′ is used to memorize how
the data are placed in the registers R0 and R1 at the end of a loop iteration.

Algorithm 3 Montgomery-ladder with XOR split exponent II (Tunstall et al., 2018)

Require: x ∈G, two n-bit integers A = ∑
n−1
i=0 ai2i and B = ∑

n−1
i=0 ai2i

Ensure: xκ where κ = A⊕B
1: R0← 1G; R1← 1G; R2← 1G; b′←R {0,1}; R¬b′ ← x;
2: for i = n−1 down to 0 do
3: R0← Rbi⊕b′ ·R(bi⊕b′)⊕ai ;
4: R1← R0 ·Ubi ;
5: b′← bi;
6: return Rb′

3 WEAKNESSES OF BOOLEAN SPLIT RANDOMIZATION
In (Tunstall et al., 2018) the authors claim that their algorithm combined with a point blinding technique has the
same security level but with a lower cost as the method based on randomizing the exponent (Coron, 1999; Tunstall
and Joye, 2010). For Algorithm 2 and 3, this is not entirely true:

• Randomizing the exponent alone prevents from the three attacks : DPA, collision and ADPA. This approach
ensure that the sequence of points R0,i and R1,i in G for i = n−1, . . . ,0 computed during the exponentiation
are always different. This renders impossible to predict the power consumption of operation involving R0,i
and R1,i and then prevents DPA and collision attack. Randomizing the exponent also randomly changes the
bits of the exponent, which implies that the stores and loads are also randomized and thus unpredictable.

• Randomizing the loads and stores like it is done in Algorithm 2 and 3 does not modify the sequence of
computed element R0,i and R1,i of G. So a correct guess of the bits of the exponent would lead to a correct
guess of R0 and R1 at the considered iteration. So if we want to hide these values we have to inject a
high level of randomization otherwise a small amount of leakage could be exploited and would lead to a
successful DPA. The only approach which produces a randomized and unpredictable sequence of computed
points R0,i and R1,i in the exponentiation is the point blinding of (Coron, 1999) which multiply x by a random
value.

The table below summarizes the strength of the counter measures reviewed in Section 2 when they are used
alone. This table shows that exponent randomizations are the most robust methods.

Counter-measure DPA and CA ADPA
Point blinding yes no

Exponent randomization yes yes
Address randomization no yes

Algorithm 3 has a more important flaw. The main problem of Algorithm 3 is that in Step 3, a multiplication
of two different data R0 and R1 is done when ai = 1 but when ai = 0 this multiplication is either R0×R0 or
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R1×R1, which are squarings done using a multiplication routine. But distinguishig such a squaring done with
multiplication routine from a genuine multiplication can be detected by power analysis. In (Hanley et al., 2011) the
authors showed that the power consumption of these operations can be distinguished using template methodology.

If we successfully distinguish the power trace of R0×R1 from either R1×R1 or R0×R0, for unknown R0 and
R1, we can deduce the value of ai for i = n− 1, . . . ,0. Then the randomization of loads and stores is broken and
DPA can be conducted on the address bits of Algorithm 3.

4 EXPERIMENTATION
In this section we present experimental results of the proposed attack on address randomization of Algorithm 3.
The attack is performed on a simulated power traces using the hamming weight leakage model.

4.1 Simulation of power consumption
We target an RSA modular exponentiation with an RSA modulus N of bit length 1024. We consider an imple-
mentation of the modular exponentiation RSA based on a word-level Montgomery modular multiplication algo-
rithm (Bosselaers et al., 1993). Then in order to simulate the power consumption of a full modular multiplication
we only need to generate the power consumption of w-bit additions and multiplications.

Figure 1: 32-bit sequential multiplier

FA FAFAFA

FA = Full Adder

v31 v30 v1 v0c0c1c31

a0a1a31
0, ..., 0, b31, ..., b0

r63, . . . , r0

a30

c30

32-bit multiplier and adder. We defined a circuit performing multiplication of 32-bit integers and a circuit perform-
ing addition of 32-bit integers. The multiplier shown in Fig. 1 is a bit sequential multiplier. It computes r = a×b
where a=(a31, . . . ,a0)2 and b=(b0, . . . ,b1)2 as shown in the following pseudo-code:

for i = 0 to 32 do
r← r+2i(bi×a)

The i-th bit ri is output after the i-th clock-cycle. The additions in Fig. 1 are done through carry save adder in order
to reduce the critical path delay. This means that the carries are not propagated and but are saved in the flip-flops
ci for i = 0, . . . ,31. After the first 32 iterations the first 32 bits r0, . . . ,r31 of r are generated and output. But it
remains to perform 32 more iterations, with input 0 in place of bi ,to propate the carries and generate r32, . . . ,r63.

We do not provide the circuit of the 32-bit adder, since it is a classical 32 bit adder, which can be easily found
in the literature.

To get the power consumption of one clock-cycle of the multiplier we compute the hamming weight of signal
flowing in the wires. We split the clock cycle into four parts P1,P2,P3 and P4. We assume that at beginning
of a cycle there are only 0 on all wires. Then we propagate data from the flip-flop and deduce the simulated
consumption:

• Each wire containing a signal 1 and connecting a flip-flop and a first gate contributes to 1 on the consumption
of P1,P2,P3 and P4.

• Each wire containing a 1 and connecting a first gate and a second gate contributes to to the consumption of
P2,P3 and P4.

• Each wire containing a 1 and connecting a second gate and a third gate contributes to 1 to the consumption
of P3 and P4.

• Each wire containing a 1 and connecting a third gate and the flip-flop contributes to 1 to the consumption of
P4.
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Figure 2: Power trace of a 32-bit multiplication

The above simulation of the consumption is highly simplified but we believe that it is sufficient to validate the
potential threat of the proposed attack on Algorithm 3. We show in Fig. 2 an example of the simulated power
consumption of one w-bit multiplication.

Word level Montgomery modular multiplication. For a modular multiplication we use the word level version (Bosse-
laers et al., 1993) of the Montgomery modular multiplication with word size w. Given two integers A and B
consisting of s words the modular multiplication are performed as follows

1: R← (0, . . . ,0)2w

2: for i = 0 to s−1 do
3: q← (R+A[i]×B)×N′ mod 2w

4: R← (R+q×N +A[i]×B)/2w

Step 3 consists of two w-bit multiplications and one w-bit addition. Step 4 involves two products of a ws-bit
integer by a w-bit integer and two additions of two ws-bit integers. Each of these operations are computed through
a sequence of w-bit multiplications and/or additions.

4.2 Distinguishing a square from a multiplication
We would like to distinguish a multiplication (A×B) mod N from a squaring (A×A) mod N. The main idea to
get such distinguisher is that during the multiplication of (A×A) mod N for each i 6= j the same product is done
twice as A[i]×A[ j] and in reverse operand A[ j]×A[i] in Step 3 the word level Montgomery multiplication. But
since these multiplications involve the same data their power trace must be correlated.

Then we tried to compute the covariance of the power traces of the 32-bit multiplication in order to determine
if they are correlated or not. But this strategy was not successful. Probably this is due to the non symmetric form
of the considered 32-bit multiplier. We tried another strategy where we evaluate the difference of the mean of the
power traces:

σi, j(A,B)=|
∫

Tr(Mult(A[i],B[ j])|− |
∫

Tr(Mult(B[i],A[ j])| .
This computed value might be low if A= B, since, in this case, many computed bits appearing in the multiplication
Mult(A[i],A[ j]) also appear in Mult(A[ j],A[i]) and they cancel out in the difference of σi, j(A,A). If A 6= B these
bits do not cancel out resulting in a higher value for σi, j(A,B). This effect is amplified if we add up σi, j(A,B) over
all i < j:

σ(A,B) = ∑
0≤i< j≤s

σi, j(A,B).

In order to check this fact we performed the following experiment: for a sufficiently large number of time
(∼= 10000) we chose randomly A and B and computed σ(A,B) and σ(A,A). We obtained the resulting density
distribution function shown in Fig. 3.

Fig. 3 clearly shows that we can easily distinguish a squaring from a genuine multiplication. We estimated the
mean value m and the standard deviation d for the two cases: squaring (S) and genuine multiplication (M):

mS = 310000,dS = 28000
mM = 710038,dM = 82000

Given a power trace for a multiplication A×B mod N, we compute σ(A,B) and we deduce that A = B if σ(A,B)
is close to mS and A 6= B if it is close to mM . To a get an estimation of the probability of success of this approach,
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Figure 3: Square and non square repartition of power consumption
.

we use the following inequality of Bienaymé-Tchebychev for a random variable X with mean m and standard
deviation d:

P(|X−m|> kd)< 1/k2.

We chose k = 3 leading to a level of confidence in our distinguisher of 1−1/9.This is validated by an experiment
for 5000 samples for which we get 99.5% of success.

4.3 FINAL STEP : ADPA
Now, since we have a reliable distinguisher, we can proceed to the next step: finding the bits of the exponent with
a DPA attack on the address bits. Given a power trace of an exponentiation xκ mod N we can find the random
bit ai used in Algorithm 3 for all i = 0, . . . ,n−1. Our goal now is to find difference of the power trace related to
the address bits involved in loads or stores. Let us analyze the loads and stores in order to select interisting power
traces and compute a difference producing a peak if the guess is incorrect and a flat trace if the guess is correct.

The table below shows the relation between the (i+1)-th iteration and i-th iteration for the operation done in
Step 5 in Algorithm 3 depending on the value of b′,ki and ai. If we focus on the cases ai = 0 (the row in bold in

(i+1)-th iter. i-th iter.
bit Op. (Step 5) bits Op. (Step 4)

b′ = 0 R1← R0U0 ki = 0,ai = 0 R1← R0U0
b′ = 0 R1← R0U0 ki = 0,ai = 1 R1← R0U1
b′ = 1 R1← R0U1 ki = 0,ai = 0 R1← R0U0
b′ = 1 R1← R0U1 ki = 0,ai = 1 R1← R0U1

b′ = 0 R1← R0U0 ki = 1,ai = 0 R1← R0U1
b′ = 0 R1← R0U0 ki = 1,ai = 1 R1← R0U0
b′ = 1 R1← R0U1 ki = 1,ai = 0 R1← R0U1
b′ = 1 R1← R0U1 ki = 1,ai = 1 R1← R0U0

the table), we can notice that:

• Case 1: b′⊕ki = 0. The operations in Step 5 of the two iterations are the same. In particular the address for
Ui is the same.

• Case 2. b′⊕ki = 1. The operations in Step 5 of the two iterations are different. In particular the address bits
for Ui are different.

Consequently, we proceed by guessing the value of g = ki⊕ki+1. Then we select the power traces such that ai = 0
and such that ai+1⊕g = 0. If our guess is correct we will have:

0 = ai+1⊕g = ai+1⊕ ki+1⊕ ki
= bi+1⊕ ki = b′⊕ ki.

This means that if the guess g is correct, then Case 1 applies, which means that computing the difference of the
power traces of loop i and i+1 would lead to a zero difference for the address of Ui, and the difference will be flat.
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Figure 4: Difference obtained for a correct guess on ki+1⊕ ki

Figure 5: Difference obtained for a wrong guess on ki+1⊕ ki

If the guess is not correct, we are in Case 2, and the difference would be equal to the consumption of the address
of U0 minus the one for U1. Adding a sufficient number of such differences would lead to a flat difference if the
guess is correct and a peak if it is not correct.

In Fig. 4 and Fig. 5 we provide the ADPA obtained for an RSA of size 1024 bits and using 4000 traces. We
can see the peak in Fig. 5 showing that the guess g is not correct. There is no peak in Fig. 4 which means that the
guess is correct.

This experimentation shows that the proposed approach is effective to extract the whole key. This means that
Algorithm 3 does not provide the claimed protection from ADPA. This attack works even if the elements are
blinded at the beginning of the exponentiation, by either a randomized representation or a multiplication with a
random element.

5 CONCLUSION
In this paper we considered two exponentiation algorithms (Algorithm 2 and 3) proposed in (Tunstall et al., 2018)
with randomized store and load in order to counter-act address bit differential power analysis. We analyzed the
security of these approaches, and we showed that Algorithm 3 has a an important flaw. Indeed, the operation done
in Step 3 of Algorithm 3 is a square or multiplication depending on the bit used for load and store randomization.
With a simulated power consumption we showed that we can distinguish a square from a multiplication. This
means that the randomization of loads and stores in Algorithm 3 is not effective anymore and an ADPA can be
conducted to recover the whole secret key with a few thousand power traces.
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