
HAL Id: lirmm-04462477
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04462477

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Side Channel Counter-measures based on Randomized
AMNS Modular Multiplication

Christophe Negre

To cite this version:
Christophe Negre. Side Channel Counter-measures based on Randomized AMNS Modular Multipli-
cation. SECRYPT 2021 - 18th International Conference on Security and Cryptography, Jul 2021,
Online Streaming, France. pp.611-619, �10.5220/0010599706110619�. �lirmm-04462477�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04462477
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Side Channel Counter-Measures based on Randomized AMNS
Modular Multiplication*

February 16, 2024

Christophe Negre (Univ. Perpignan, France)

Abstract

The paper presents counter-measures based on dynamic randomization against side channel analysis like dif-
ferential and correlation power analysis. The building block of the proposed counter-measure is a randomization
of the modular multiplication in AMNS for a prime p. We use this randomized modular multiplication to inject
randomization during the whole computation in DSA exponentiation and Co-Z elliptic curve scalar multipli-
cation. We analyze the level of randomization injected and, through implementations results, we evaluate the
penalty in terms of performance of the proposed counter-measures.

1 Introduction
Modern cryptographic protocols like Digital Signature Algorithm (DSA) (NIST.FIPS.186.4, 2012), Elliptic
Cryptography (ECC) (Miller, 1986; Koblitz, 1987) or post-quantum SIDH (Jao and Feo, 2011) necessitate to
perform hundreds of multiplications modulo a prime integer p. Such modular multiplications involve quite large
integers : 256 to 500 bits for ECC and SIDH and 2000 bits to 8000 bits for DSA. Computing a modular multipli-
cation modulo p consists in first computing a product of integers C = A×B which produces C of size p2. The
product C is reduced to an integer R of size p by subtracting a multiple of p which clears out parts of the bits of
C. Indeed, in Barrett approach (Barrett, 1987) computing R = C− pQ clears out the most significant bits of C,
whereas in Montgomery approach (Montgomery, 1985) computing R = C− pQ clears out the least significant
bit, in this latter case the output is R/φ≡ ABφ−1 mod p where φ is a power 2.

Alternative number system can be used to improve such modular multiplication. Indeed, in the Adapted
Modular Number System (Bajard et al., 2004) for a prime p, the elements are represented with a larger radix
γ modulo p than the usual 2w-radix for multi-precision integer representation. The initial goal of the ANMNS
was to simplify carry propagation in integer multiplications and reductions. Recently (Didier et al., 2019), it was
shown that the Montgomery-like approach for modular multiplication in AMNS was competitive compared to
state of the art approaches.

Cryptographic protocols can be threaten by side channel analysis when they are executed on an embedded
device. Indeed when monitoring either power consumption (Kocher et al., 1999), electronic emanation (Man-
gard, 2003) or computation time (Kocher, 1996), it is possible to recover part of the secret data involved in the
computation. For example Differential Power Analysis (DPA) (Kocher et al., 1999) or Correlation Power Analy-
sis (CPA) (Brier et al., 2004; Clavier et al., 2010) guess some secret bits, and they check if this guess leads to data
correlated to leaked out power consumption. The main strategy to counteract these attacks consists in random-
izing the data involved in cryptographic computation, which reduces the correlation between the secret data and
the power consumption or electronic emanation. The main methods for randomizing data (i.e. integer modulo
p or exponent in DSA) consists in masking data with additive mask (Tunstall and Joye, 2010; Clavier et al.,
2010) or multiplicative mask, but this induces additional computations and penalty in terms of performance. At
SECRYPT 2016, the method proposed in (Lesavourey et al., 2016) combines Montgomery and Barrett modular
multiplication to induces multiplicative mask of the form 2t with random t. The interest of this approach is that
it is almost free of computation, and it produces a mask which randomly changes during the whole computation.

Contributions. In this paper we extend the approach presented at SECRYPT 2016 (Lesavourey et al., 2016)
to the case of modular arithmetic in AMNS for a prime p. Since this requires a combination of Barrett and

*extended version of the paper of SECRYPT 2021 containing the proofs of the validity of Barrett multiplication in AMNS.

1

Montgomery approach of modular multiplication we first establishes the validity of the Barrett-like modular
multiplication in AMNS which was sketched in (Plantard, 2005). Then we provide a randomized version of
both Montgomery-like (resp. Barrett-like) multiplication in AMNS producing multiplicative mask φ−1γ−s (resp.
γ−s) for a random s. The proposed randomization does not induce a significant penalty in terms of performance.
Afterwards we present modular exponentiation for DSA and scalar multiplication on elliptic curve both using the
proposed randomized multiplication to produce multiplicative random mask during the whole computation. We
evaluate the level of randomization produced by the proposed approach and also present implementation results.

Organization of the paper. In Section 2 we review Barrett-like and Montgomery-like modular multiplication in
an AMNS and we establishe the validity of the Barrett-like modular multiplication in an AMNS. In Section 3
we present a strategy to randomized Barrett-like and Montgomery-like modular multiplication in AMNS. In
Section 4 we adapt the Montgomery ladder for modular exponentation in order to use the proposed randomized
AMNS multiplications. In Section 5 we present a randomization of scalar multiplication on elliptic curve over
a prime field based on the randomized multiplication in AMNS. In the last section we give some concluding
remarks.

2 Arithmetic in Adapted Modular Number System
In this section we review the Adapted Modular Number System and related algorithms for multiplication modulo
a prime integer p.

2.1 Definition
Arithmetic of integers are generally based on radix representation : in radix β an integer A is expressed as
A = ∑

−1
i=0 aiβ

i where 0 ≤ ai < β. On computers the radix β is generally chosen as β = 2w where w is the word
size of the computer. In 2004 (Bajard et al., 2004), Bajard, Imbert and Plantard introduced an Adapted Modular
Number System to represent integers modulo p. This system somehow extends the radix representation to a
larger set of radix γ ∈ {0,1, . . . , p−1}. The definition of an AMNS is given below.

Definition 1 (AMNS (Bajard et al., 2004)). An Adapted Modular Number System B = (p,n,ρ,γ,λ) is such that

i) p is prime integer.

ii) n is the number of coefficients of the system.

iii) ρ the upper bound of the absolute value of the coefficients.

iv) γ is the radix of the system and λ is a small integer such that

γ
n = λ mod p. (1)

v) Any integer A modulo p can be written as

A≡
n−1

∑
i=0

aiγ
i mod p with |ai|< ρ.

The elements of an AMNS are seen as degree n− 1 polynomials A(X) = ∑
n−1
i=0 aiX i in X with coefficients

smaller that ρ. To get their integer expression we have to evaluate A(X) at γ modulo p.

Example 1. We illustrate the fact that the quadruplet (p,n,ρ,γ,λ) = (19,3,2,7,1) is an AMNS. One can check
that

γn mod p = 73 mod 19
= 1 = λ

In Table 1 we provide the representative of all elements modulo 19 in this system. To check the reported values
one can use that 72mod19 = 11

In particular, we can check that if we evaluate (−1+X +X2) in γ, we have −1+ γ+ γ2 = −1+ 7+ 49 =
55≡ 17 mod 19. We have also deg(−1+X +X2) = 2 < 3 and ‖−1+X +X2‖∞ = 1 < ρ.

2

Table 1: The elements of Z19 in B = AMNS(p = 19,n = 3,ρ = 2,γ = 7,λ = 1)

0 1 2 3 4
0 1 1−X−X2 −1−X +X2 −X +X2

5 6 7 8 9
1−X +X2 −1+X X −X2 1−X2

10 11 12 13 14
−1+X2 −X2 −X 1−X −1+X−X2

15 16 17 18
1−X−X2 1+X−X2 −1+X +X2 −1

2.2 AMNS Lattice and short polynomial
Given an AMNS B = (p,n,γ,λ) the authors in (Nègre and Plantard, 2008) define the following rank n lattice

Lp,n,ρ,γ,λ = {V (X) ∈ Z[X] s.t. degV (X)< n
and V (γ)≡ 0 mod p} .

A lattice can be seen as integer linear combinations of vector in Zn. Below we provide a basis of the lattice
Lp,n,ρ,γ,λ :

B =



p 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0

...
. . .

...
−γn−2 0 0 . . . 1 0
−γn−1 0 0 . . . 0 1



← p
← X− γ

← X2− γ2

...
← Xn−2− γn−2

← Xn−1− γn−1

.

The above basis tells us that the volume of the lattice is

det(B) = p.

With Minkowsky’s inequality, the authors (Nègre and Plantard, 2008) then obtained a short non-zero vector (or
polynomial) in Lp,n,ρ,γ,λ by applying a reduction algorithm such as LLL (Lenstra et al., 1982) or BKZ (Schnorr
and Euchner, 1994):

M = m0 +m1X + · · ·+mn−1Xn−1 (2)

such at
‖M‖∞

∼= n
√

det(Lp,n,γ,λ) =
n
√

p

which satisfies M(γ) = 0 mod p.

2.3 Montgomery-Like Multiplication in AMNS
The condition iv) on γ in Definition 1 is meant to ease the multiplication modulo p in the AMNS. Indeed, let us
call E the polynomial Xn−λ: this means that, from condition iv) in Definition 1, γ is a root of the polynomial E in
Z/pZ. As described in (Bajard et al., 2004) a multiplication of two elements in AMNS consists of a polynomial
multiplication modulo E(X) = Xn−λ

C(X) = A(X)×B(X) mod E(X)

and a reduction of the coefficients. Since ‖A‖∞,‖B‖∞ < ρ, the coefficients of C lie in the interval]−nρ2λ,nρ2λ[,
they must be reduced such that they have absolute value smaller than ρ.

A first method to reduce the coefficient was proposed in (Nègre and Plantard, 2008), this approach use the
short polynomial M(X) of (2) which satisfies M(γ) = 0 mod p and ‖M‖∞ is small. This method is depicted
in Algorithm 1: it computes Q such that the lower parts of the coefficient (C+Q×M) mod E are all zero (or
equivalently are equal to 0 modulo φ = 2k). But adding Q×M modulo E does not change the value modulo p
since M(γ) = 0 mod p and E(γ) = 0 mod p. At the end the polynomial

R = (C+Q×M mod E)/φ

evaluated at γ leads to
R(γ) =C(γ)φ−1 mod p = A(γ)×B(γ)φ−1 mod p.

The authors in (Nègre and Plantard, 2008) showed that the above algorithm output R in the AMNS (i.e. with
‖R‖∞ < ρ) under the following condition

ρ > 2|λ|nσ and φ > 2|λ|nρ

3

Algorithm 1 AMNS MonMul

Require: A,B ∈ B = AMNS(p,n,γ,λ,ρ) with E = Xn − λ M such that M(γ) ≡ 0 (mod p) an integer φ and
M′ =−M−1 mod (E,φ)

Ensure: R such that R(γ) = A(γ)B(γ)φ−1 mod p
1: C← A×B mod E
2: Q←C×M′ mod (E,φ)
3: R← (C+Q×M mod E)/φ

2.4 Barrett-Like Multiplication in AMNS
A second approach to perform the reduction of the coefficients in an AMNS multiplication was proposed in (Plan-
tard, 2005). This method adapts the Barrett method (Barrett, 1987) to the case of multiplication in AMNS. This
approach use the short polynomial M defined in (2) to reduce the upper part of the coefficients of the following
polynomial:

C = A(X)×B(X) mod E(X).

The method of (Plantard, 2005) is shown in Algorithm 2, this method computes a polynomial Q such that in
C− ((Q×M) mod E) the most significant bits of the coefficients are set to zero. In the sequel we will assume
β = 2, indeed, in this case a division by power of β is just a right shift.

Algorithm 2 AMNS BarMul

Require: A(X),B(X) two elements in an AMNS (p,n,ρ,γ,λ), a radix β, a polynomial M such that M(γ) = 0
mod p and V = b(M−1 mod E)×β2ke

Ensure: R such that R(γ) = A(γ)×B(γ) mod p.
1: C← (A×B) mod E
2: U ← bC/βk−1e
3: W ← (U×V) mod E
4: Q← bW/βk+1e
5: R←C− ((Q×M) mod E)
6: return (R)

To the best of our knowledge the validity of Algorithm 2 has never been thoroughly established. We provide
a proof of the validity of Algorithm 2 in the following lemma, for ρ = βk, under some condition on the size of
βk.

Lemma 1. If we assume that the input A and B in Algorithm 2 satisfy ‖A‖∞ < ρ and ‖B‖∞ < ρ with ρ = βk and
if we further assume the following:

ρ > 2n2
λ

2‖M‖∞

then, the polynomial R output by Algorithm 2 satisfies ‖R‖∞ < ρ and R(γ) = A(γ)×B(γ) mod p.

The following proof is a bit technical, the reader interested by the main results of the paper may skip it.

Proof. We proceed in two steps: in Step 1, we show that R(γ) = A(γ)×B(γ) mod p and in Step 2 we prove that
‖R‖∞ < ρ.

• Step 1. We first check that R(γ) = A(γ)×B(γ) mod p. From Step 4 of Algorithm 2 we have:

R(X) = (A(X)×B(X)+U(X)×E(X))
−Q(X)×M(X)−U ′(X)×E(X)

for some U(X) involved in the reduction modulo E(X) in Step 1 and U ′(X) involved in the reduction
modulo E(X) in Step 5 of Algorithm 2. If we evaluate this expression at γ modulo p, using the fact that
M(γ) = 0 mod p and E(γ) = 0 mod p, we get:

R(γ) mod p = A(γ)×B(γ)+U(γ)×E(γ)
−Q(γ)×M(γ)−U ′(γ)E(γ) mod p

= A(γ)×B(γ) mod p

4

• Step 2. Now we look at the size of the coefficients of R. Let us consider the polynomial Q:

Q =

⌊ ⌊
C

βk−1

⌉
bβ2k(M−1 mod E)e

βk+1

⌉
. (3)

We denote the rounding errors δ,µ,ρ ∈ [0,1[in terms of (3) as:

δ = b C
βk−1 e− C

βk−1 ,

µ = bβ2k(M−1 mod E)e
−(β2k(M−1 mod E)),

ε =

⌊ ⌊
C

βk−1

⌉
bβ2k(M−1 mod E)e

βk+1

⌉

−
⌊

C
βk−1

⌉
bβ2k(M−1 mod E)e

βk+1 .

We can then rewrite Q as follows:

Q=(C
βk−1 +δ)× ((β2k(M−1 mod E))+µ)

βk+1 + ε

=C(M−1 mod E)+ C
β2k µ

+δβk−1(M−1 mod E)+ δµ
βk+1 + ε

Now let us express R in terms of the above expression of Q, we get:

R =C− (Q×M mod E)
= C− (C(M−1 mod E)M mod E)− (C×M mod E)

β2k µ

−(δβk−1(M−1 mod E)M mod E)− δµM
βk+1 − εM

=− (C×M mod E)
β2k µ−δβk−1− δµM

βk+1 − εM

Finally, we use that ‖(C×M mod E)‖∞ ≤ n|λ|‖C‖∞‖M‖∞ and that

‖C‖∞ ≤ n|λ|‖A‖∞‖B‖∞ < n|λ|ρ2

to derive the following bound on ‖R‖∞:

‖R‖∞≤ n|λ|‖C‖∞‖M‖∞|µ|
β2k + |δ|βk−1 +

|δµ|‖M‖∞

βk+1 + |ε|‖M‖∞

≤ n2λ2ρ2‖M‖∞|µ|
β2k + |δ|βk−1 +

|δµ|‖M‖∞

βk+1 + |ε|‖M‖∞

Then since ρ = βk and ρ > 2n2λ2‖M‖∞ this implies that

‖R̂‖∞ ≤ ρ|µ|
2 + |δ| ρ2 +

|δµ|
2 + |ε| ρn

≤ ρ(
|µ|(|δ|+1)

2 +
|δ|
2 +

|ε|
n)+

|δµ|
2

≤ ρ(3
8 +

1
4 +

1
4)+

1
8 = ρ+ 1

8 −
ρ

8
< ρ

In order to get efficient implementation, it also necessary to know the size of certain data in Algorithm 2:
specifically V should have coefficient of size of the order of ρ. In the appendix we provide an upper bound on
M(X)−1 mod E(X) which leads to an upper on V (X). Those upper bounds remain theoretical, in practice the
coefficients of V are much smaller.

3 Randomized Modular Multiplication in AMNS
In this section we present a randomization of modular multiplication in AMNS. This approach extend the idea
of (Lesavourey et al., 2016), where they flip a coin t ∈ {0,1} and then randomly choose Barrett (t = 0) or Mont-
gomery (t = 1) modular multiplication algorithm. They get R(γ) ≡ A(γ)B(γ)φ−t mod p which has a random
multiplicative mask φ−t with φ a power of 2. With repeated multiplications they obtained random multiplicative
mask φT with larger T , providing stronger protection against side channel analysis. But the level of randomiza-
tion T was kept small, since to get the final results we have to remove the random mask, which is only possible
if T is small.

5

In the sequel we extend the idea of (Lesavourey et al., 2016) to AMNS BarMul and AMNS MonMul modular
multiplications. We show that the use of AMNS induce another random multiplicative mask leading to larger
level of randomization. For the remaining of the paper that, we assume that:

λ = 2. (4)

3.1 Randomized polynomial multiplication modulo E
We propose to change Step 1 in AMNS MonMul and AMNS BarMul, which consists of:

C← A×B mod E,

with
C← 2× (A×B)/X s mod E. (5)

for s ∈ {0, . . . ,n−1}. Let us first see how to compute C in (5). We consider the product U(X) = A(X)×B(X),
then we rewrite 2×U(X) as follows:

2×U(X) = (
s−1

∑
i=0

2uiX i)︸ ︷︷ ︸
U0

+(
n+s−1

∑
i=s

2uiX i)︸ ︷︷ ︸
U1

+(
2n−1

∑
i=n+s

2uiX i)︸ ︷︷ ︸
U2

.

Then using (4), we have 2≡ Xn mod E(X), we can replace each 2 with Xn in U0 and we can also replace each
Xn with 2 in U2. We get:

2×U(X) ≡ (∑n−1
i=s (2ui +4ui+n)X i)

+(∑n+s−1
i=n (2ui +ui−n)X i) mod E

Which leads to the following

(2U(X))X−s mod E= (∑n−s−1
i=0 (2ui+s +4ui+n+s)X i)

+(∑n−1
i=n−s(2ui+s +ui+s−n)X i)

(6)

Complexity of randomized the multiplication. We evaluate the cost of the computation of randomized multipli-
cation (A×B)/X s mod E and of the regular multiplication A×B mod E. We assume that each coefficient of A
and B are smaller than 2w where w is the computer word size. A multiplication by 2 or by 4 of a coefficient is
done by a left shift by 1 or 2 on the computer word. Then both multiplications require n2 word multiplications
and n(n−1) word additions to compute U(X) = A(X)×B(X) with schoolbook method. For the non-randomized
case the reduction U(X) mod E, requires n−1 shifts and n additions. The proposed randomized reduction in (6)
requires 2n− s shifts and n additions. This leads to the complexities in Table 2.

Table 2: Complexity of randomized and non-randomized multiplication mod E

Operation # mul. # add. # shifts
A×B mod E n2 n2 n

(A×B)/X s mod E n2 n2 2n− s

We can notice that a randomized multiplication has a complexity closed to a non-randomized multiplication:
we just have a penalty of n− s shifts.

3.2 Randomized AMNS-Montgomery and AMNS-Barret multiplication.
We can use this randomized multiplication modulo E(X) to randomize AMNS MonMul and multiplication.
To reach this goal we replace the first step of AMNS MonMul with C ← (A× B)/X s mod E. We show in
Algorithm 3 the resulting randomized AMNS MonMul. The proposed modification change the output of the
algorithm. The output of Rd AMNS MonMul is:

R = C+Q×M mod E
= ((A×B)+W ×E)/X s +Q×M+W ′×E

6

where in the last expression W (X) and W ′(X) are due to the reduction by E(X). If we evaluate the above
expression of R at γ the terms Q×M, W ×E, and W ′×E vanish since M(γ) = 0 and E(γ) = 0. This leads to the
following:

R(γ) = A(γ)B(γ)φ−1
γ
−s mod p.

Algorithm 3 Rd AMNS MonMul

Require: A,B ∈ B = AMNS(p,n,γ,λ,ρ) with E = Xn−λ and λ = 2, s a randomizing integer, M a polynomial
such that M(γ)≡ 0 (mod p), an integer φ and M′ =−M−1 mod (E,φ)

Ensure: R such that R(γ) = A(γ)B(γ)φ−1γ−s mod p
1: C← (A×B)/X s mod E
2: Q←C×M′ mod (E,φ)
3: R← (C+Q×M mod E)/φ

4: return R

We can do the exact same modification in AMNS BarMul. The only change is on the output of the algorithm
which in this case produce a polynomial R(X) satisfying:

R(γ) = A(γ)B(γ)γ−s mod p

This algorithm is shown below.

Algorithm 4 Rd AMNS BarMul

Require: A,B∈B = AMNS(p,n,γ,λ,ρ) with E = Xn−λ and λ = 2, s a randomizing integer, M such that M(γ) =
0 mod p, V = b(M−1 mod E)×β2ke.

Ensure: R such that R(γ) = A(γ)×B(γ)γ−s mod p
1: C← (A×B)/X s mod E
2: U ← bC/βk−1e
3: W ← (U×V) mod E
4: Q← bW/βk+1e
5: R←C− ((Q×M) mod E)
6: return R

3.3 Implementation results
We implemented in C Algorithm 3 and 4 along with non-randomized Algorithm 1 and 2.We used the following
strategies for large and small fields:

• Small fields: Fp with p of bit-length 256 and 500 bits. AMNS elements are stored in an arrays of n
64-bit word integers. Polynomial multiplication is done using schoolbook method using 64-bits integer
multiplication instruction of the processor.

• Larger fields: Fp with p of bit-length 2048 bits, 3096 bits. AMNS elements are stored in arrays of n
128-bit word integers in order to keep n small. We implemented multiplication of unsigned 128 bits
integers through several 64-bit instructions. This approach reduces the efficiency of Barrett multiplication
compared to Montgomery multiplication since it involves more signed 128 integer multiplications which
are, in this case, less efficient.

We compiled our C code with gcc 9.3.0, and run it on an Ubuntu 20.04 and an Intel Westmere processor. The
timings are averages of 2000 multiplications with randomized input.

The above timing results show that for larger fields, the penalty due to signed 128 bits multiplication render
non-randomized and randomized Barret AMNS multiplication significantly slower. On small fields one can
notice that the randomization on AMNS BarMul and AMNS MonMul reduce slightly their efficiency compared
to non-randomized counter parts.

4 Randomized DSA Exponentiation
We consider in this section the modular exponentiation involved in Digital Signature Algorithm (DSA (NIST.FIPS.186.4,
2012)). We present a randomized exponentiation based on the randomized Montgomery and Barrett multiplica-
tions in AMNS introduced in Subsection 3.2.

7

Table 3: Timings of AMNS multiplication

Field and AMNS Algorithm #CC
log2(p) ρ n λ

3040 2110 30 2

AMNS MonMul 75527
Rd AMNS MonMul 74930

AMNS BarMul 107429
Rd AMNS BarMul 107625

2020 2109 20 2

AMNS MonMul 33372
Rd AMNS MonMul 34334

AMNS BarMul 47661
Rd AMNS BarMul 47624

510 253 10 2

AMNS MonMul 1041
Rd AMNS MonMul 1176

AMNS BarMul 1507
Rd AMNS BarMul 1632

256 257 5 2

AMNS MonMul 207
Rd AMNS MonMul 230

AMNS BarMul 201
Rd AMNS BarMul 228

4.1 Background on DSA and Side Channel Analysis
DSA security is based on the difficulty of the discrete logarithm problem. Given a prime p, and an element G
of order q in the finite field Fp, then, computing the discrete logarithm of R ∈ 〈G〉 in base G consists to find the
exponent E satisfying R = GE mod p. For a security level larger than 128-bit the prime p has a bit-length is
larger than 2048 bits and q has a bit-length larger than 256 bits.

The main computation in DSA is an exponentiation modulo p. Specifically, we have to compute:

R = GE mod p (7)

where G has order q|(p−1) and e ∈ [0,q−1]. The basic approach to compute the modular exponentiation in (7)
consists in a sequence of squares and multiplications in order to reconstruct from the most significant bits to the
least significant bits the exponent E = (e`−1, . . . ,e0)2 of R (cf. Algorithm 5).

Algorithm 5 Square-and-multiply

Require: G ∈ Fp and E = (e`−1, . . . ,e0)2 a positive integer.
Ensure: R such that R = GE mod p

R← 1
for i = 0 to ` do

R← R2×Gei mod p
return R

Side channel analysis. Sensitive computation on an embedded device can be threaten by side channel analysis.
Indeed, such attacks use either power consumption, electromagnetic emanation or computation time to recover
part of the secret data involved in the computation. An example of such attacks is the simple power analysis on
Square-and-multiply exponentiation: assuming that multiplication consume more power than a square we can
identify on the power trace the loop iteration involving a multiplication, which are loop iteration corresponding
to ei = 1 (cf. Fig. 1).

Figure 1: Simple power analysis (Kocher et al., 1999)

The basic protection against SPA consists in rendering the sequence of squares and multiplications of the
exponentiation independent to the bits of the exponent. A popular approach to reach this goal is the Montgomery
ladder (Algorithm 6) which uses two intermediate variables R0 corresponding to R in the Square-and-multiply
exponentiation and R1 always satisfying R1 = R0×G mod p. At each loop iteration we have a multiplication
followed by a square, which then does not leak out the corresponding bit ei of E.

8

Algorithm 6 Montgomery-ladder (Joye and Yen, 2002)

Require: An base GFp and an exponent E = (e`−1, . . . ,e0)2
Ensure: R0 = GE mod N

1: R0← 1,R1← G
2: for i from 0 to `−1 do
3: R1−ei ← R0×R1 mod p
4: Rei ← R2

ei
mod p

5: return R0

There are more powerful attacks like the Differential Power Analysis (DPA) (Kocher et al., 1999) which
guesses a bit of the exponent and correctly predict power consumption of a loop iteration. Or the Correlation
Power Analysis (CPA) (Brier et al., 2004) which recovers a bit of exponent by correlating power consumption of
two consecutive loop iterations. To counteract these attacks the main strategy consists in randomizing the data
involved in the exponentiation (the exponent E and intermediate variables R0 and R1).

Specifically, the three main strategies to randomize the data are the following:

• Exponent blinding: this strategy (Coron, 1999) modifies E either by adding a random multiple of q the
order of G

E ′ = E +β×q⇒ GE ′ mod p = GE mod p

or by multiplying it by β−1 mod q with β a small random value :

E ′ = Eβ
−1 mod q⇒ (Gβ)E ′ mod p = GE mod p

• Base blinding: The idea is from (Coron, 1999) and consists in multiplying G with a random α, assuming
that β = αE mod p is precomputed. Then we have

G′ = G×α mod p⇒ G′E(β−1) mod p = GE mod p

In (Lesavourey et al., 2016) the authors propose to randomly update the multiplicative mask α with the
Montgomery factor induced by Montgomery multiplication. Their randomization is limited by the fact that
this randomly updated should be equal to 1 at the end of the exponentiation and is reduced to a small set
of values.

4.2 Randomized Montgomery Ladder for DSA
Our approach consists in running the Montgomery ladder with input given in an AMNS (p,n,ρ,γ,λ). At each
loop iteration we pick two random bits ti and si and then the two modular multiplications are computed as
follows:

• If ti = 1 we apply Rd AMNS MonMul with randomizing parameter si, in this case the output has a multi-
plicative mask equal to φ−1× γ−si .

• If ti = 0 we apply Rd AMNS BarMul with randomizing parameter si, in this case the output has a multi-
plicative mask equal to γ−si .

The resulting randomized Montgomery ladder is shown in Algorithm 7.
At each iteration of the above algorithm R0 R1 are multiplied by a factor which can be 1, φ−1, γ−1 or

φ−1γ−1. These multiplications contribute to randomly modify a multiplicative mask on R0 and R1 providing a
protection against side channel analyses like DPA or CPA. But this mask should be equal to 1 at the end of the
exponentiation in order to have R0 equal to the correct output GE mod p. Steps 1 and 2 of the algorithm set the
necessary conditions on the random bits in ti and si which ensure that the random mask induced by the factors
φ−ti γ−si and β is equal to 1 at the end. This is shown in the following lemma.

Lemma 2. Algorithm 7 correctly outputs R = GE mod p.

Proof. Let us first unroll the algorithm to understand how the random mask evolves during the exponentiation:

• After loop i = `−1 we have
R0=β2Ge`−1(γ−1)s`−1(φ−1)t`−1 ,
R1=β2Ge`−1+1(γ−1)s`−1(φ−1)t`−1 .

• After loop i = `−2 whe have

R0=β4G2e`−1+e`−2(γ−1)2s`−1+s`−2(φ−1)2t`−1+t`−2 ,

R1=β4G2e`−1+e`−2+1(γ−1)2s`−1+s`−2(φ−1)2t`−1+t`−2 .

9

Algorithm 7 Randomized Montgomery Ladder

Require: G of order q in Fp where q of bit-length `, an exponent E = (e`−1, ..,e1e0)2, w the bit-length of the com-
puter words, an AMNS (p,n,ρ,γ,λ) with λ = 2 and precomputed data u← b(p−1)/2`c,v← (p−1) mod 2`

and β = γ−u mod p.
Ensure: R = GE mod p

1: T ← Random(0, ...,b(v/(nw)c)
2: S← v−nwT
3: R0(X)← AMNS(1×β mod p)
4: R1(X)← AMNS(G mod p)
5: for i = `−1 to 0 do
6: if ti = 1 then
7: Rei ← Rd AMNS MonMul(Rei ,R1−ei ,si)
8: R1−ei ← Rd AMNS MonMul(Rei ,Rei ,si)
9: else

10: Rei ← Rd AMNS BarMul(Rei ,R1−ei ,si)
11: R1−ei ← Rd AMNS BarMul(Rei ,Rei ,si)
12: R← R0(γ) mod p
13: return R

• ...

• After loop i = 0, we have
R0=β2`GE(γ−1)S(φ−1)T ,

R1=β2`GE+1(γ−1)S(φ−1)T .

We consider the last multiplicative mask of R0

β
2`(γ−1)S(φ−1)T

we use the fact that β = γ−u and φ = 2w and 2 = γn mod p which leads to

β2`(γ−1)S(φ−1)T = 2−2`uγ−S2−wT

= γ−2`uγ−Sγ−nwT

= γ−(2
`u+S+nwT)

= γ−(2
`u+v) (from Step 2)

= γ−(p−1) = 1

Let us discuss the level of randomization induced with the proposed strategy. At the beginning of the Mont-
gomery ladder there are no random mask on R0 and R1 (β is a public value), but the random mask is growing by
one bits after each iteration. This means that the level of randomization injected at the end is 2` which correspond
to the size of the random data T . This is a larger level of dynamic randomization than the one of (Lesavourey
et al., 2016).

4.3 Implementation results
We implemented in C the randomized and non-randomized form of Montgomery ladder using AMNS modular
multiplication. We considered DSA exponentiation for the two cryptographic size 2048 bits and 3096 bits for
p. We also considered (non-DSA) exponentiation on small field from 256 bits and 500 bits since for these size
AMNS Barrett multiplications is as efficient as their AMNS Montgomery counter-parts.

We compiled our C code with gcc 9.3.0, and run it on an Ubuntu 20.04 on an Intel Westmere processor. The
resulting clock-cycles are the average of 2000 multiplications with randomized input. These timings are reported
in Table 4.

We notice that for large fields, the use of slow AMNS Barrett multiplication render the proposed approach
not efficient. For smaller fields, particularly for field of size 256-bits the randomized approach is competitive.
This means that if we could improve signed 128-bit multiplication we could get randomized exponentiation on
large field with smaller penalty.

10

Table 4: Timings of exponentiation

Field and AMNS Algorithm #CC
log2(p) log2(q) ρ n λ

3040 300 2110 30 2 Mont. Ladder 46036405
Rand. Mont. Ladder 57285659

2020 256 2109 20 2 Mont. Ladder 15911757
Rand. Mont. Ladder 21920264

510 510 253 10 2 Mont. Ladder 1211894
Rand. Mont. Ladder 1662200

256 256 257 5 2 Mont. Ladder 106877
Rand. Mont. Ladder 116832

5 Randomized Scalar Multiplication
We present in this section a strategy to dynamically randomize data in scalar multiplication on an elliptic curve
E(Fp). First, we provide the necessary background on elliptic curve and related algorithms.

5.1 Background on elliptic curve
An elliptic curve E(Fp) is the set of points (x,y) ∈ F2

p, along with a point at infinity O, which satisfy an equation
of the form:

y2 = x3 +ax+b where a,b ∈ Fp

with ∆ = −16(4a3 + 27b2) 6= 0. There is a additive group law on E(Fp) which is derived from the chord and
tangent rules: a line crossing two points P,Q on the curve intersects the curve on a third point R′, then R = P+Q
is defined as the x-axis symmetric of R′. The coordinates of R = (x3,y3) can be computed with a few operations
in Fp from the coordinates of P = (x1,y1) and Q = (x2,y2){

x3=λ− x1− x2
y3=y1−λ(x3− x1)

with λ =

{ y1−y2
x1−x2

if P 6= Q
3x2

1+a
2y1

if P = Q

To improve the efficiency of these operations, a various set of projective coordinate system was used in order
to avoid costly inversions. Among them there is the Jacobian coordinates (X ,Y,Z) which corresponds to affine
coordinates (x,y) = (X/Z2,Y/Z3).

Definition 2. Two points given in Jacobian coordinates are equivalent (X ,Y,Z)∼ (X ′,Y ′,Z′) if there is β ∈ Fp
such that

(X ′,Y ′,Z′) = (Xβ
2,Y β

3,Zβ)

these two Jacobian coordinates correspond to the same affine point

(x,y) = (X/Z2,Y/Z3) = (X ′/Z′2,Y ′/Z′3).

The use of Jacobian coordinates avoids inversion in Fp but, in counterpart, this increases the number of
multiplications per point operations. In the literature, several improvements were proposed to simplify these
Jacobian formula. We will focus here on the co-Z formula for addition which was first proposed in (Méloni,
2007) and then extended in (Goundar et al., 2011) to a few other co-Z point operations. Co-Z point formula take
as input two points in Jacobian coordinates sharing the same Z coordinate. In (Méloni, 2007) they show that
this simplifies Jacobian addition and leads to the formula shown in Algorithm 8. The last operations in Step 8 of
Algorithm 8 are meant to update the input P such that it shares the same Z coordinate as R = P+Q.

In (Goundar et al., 2011) the authors adapt the ZADDU approach to the computation of P+Q and P−Q
with shared Z. They use the fact that most computation for P+Q and P−Q are the same, unless for P−Q we
have to negate the Y coordinate of Q. This leads to the terms D in place of D and subsequent modified terms X3
and Y 3 of R′ = P−Q as shown in Algorithm 9.

In (Goundar et al., 2011) the authors take advantage of ZADDU and ZADDC to get a variant of the Mont-
gomery ladder for scalar multiplication. Indeed, the two operations R1−b ← Rb +R1−b and Rb ← 2Rb in the
Montgomery ladder can be done as follows:

(R1−b,Rb)←ZADDC(Rb,R1−b)
= (Rb +R1−b,Rb−R1−b),

(Rb,R1−b)←ZADDU(R1−b,Rb)
= (Rb +R1−b +Rb−R1−b,Rb−R1−b)
= (2Rb,Rb +R1−b).

11

Algorithm 8 Co-Z addition with update (ZADDU) (Méloni, 2007)

Require: P = (X1,Y1,Z) and Q = (X2,Y2,Z)
Ensure: (R,P′) such that R = P+Q and P′ ∼ P

1: C← (X1−X2)
2

2: W1← X1C, W2← X2C
3: D← (Y1−Y2)

2, A1← Y1(W1←W2)
4: X3← D−W1−W2
5: Y3← (Y1−Y2)(W1−X3)−A1
6: Z3← Z(X1−X2)
7: X1←W1, Y1← A1, Z1← Z3
8: R← (X3,Y3,Z3),P′← (X1,Y1,Z1)
9: return R,P′

Algorithm 9 Conjugate Co-Z addition (ZADDC) (Goundar et al., 2011)

Require: P = (X1,Y1,Z) and Q = (X2,Y2,Z)
Ensure: (R,R′) such that R = P+Q and R′ = P−Q

1: C← (X1−X2)
2

2: W1← X1C,W2← X2C
3: D← (Y1−Y2)

2,A1← Y1(W1←W2)
4: X3← D−W1−W2
5: Y3← (Y1−Y2)(W1−X3)−A1
6: Z3← Z(X1−X2)
7: D← (Y1 +Y2)

2

8: X3← D−W1−W2
9: Y 3← (Y1 +Y2)(W1−X3)−A1

10: R← (X3,Y3,Z3),R′← (X3,Y 3,Z3)
11: return R,R′

12

This method is shown in Algorithm 10, the first step (R1,R0)← DBLU(P) simply set (R0,R1) = (P,2P) with
shared Z-coordinates.

Algorithm 10 Co-Z Montgomery ladder (Goundar et al., 2011)

Require: P = (xP,yP) ∈ E(Fp) and e = (e`−1, . . . ,e0) ∈ N with e`−1 = 1.
Ensure: Q = eP

1: (R1,R0)← DBLU(P)
2: for i = `−2 to 0 do
3: b← ei
4: (R1−b,Rb)← ZADDC(Rb,R1−b)
5: (Rb,R1−b)← ZADDU(R1−b,Rb)
6: return Jac2a f f (R0)

5.2 Randomized scalar multiplication on elliptic curve
Jacobian coordinates can be used to randomly mask a point. Indeed, given a point P = (X ,Y,Z), we randomly
pick β ∈ Fp then we compute P′ = (Xβ2,Y β3,Zβ) which are equivalent Jacobian coordinates of the affine point
(X/Z2,Y/Z3).

We propose to use Rand AMNS BarMul to dynamicly randomize the coordinates of the points R0 and R1
during the scalar multiplication. We first focus on randomizing the ZADDU curve operation. Given a randomiz-
ing integer t, we perform all multiplications involved in ZADDU with Rd AMNS BarMul with parameter s = t,
only, the square in Step 3 is computed with parameter s = 2t. This approach is shown in Algorithm 11.

Algorithm 11 Randomized Co-Z addition with update (Rand ZADDU)

Require: P′ = (X ′1,Y
′
1,Z
′) and Q′ = (X ′2,Y

′
2,Z
′) with coordinates in an AMNS (p,n,ρ,γ,λ) with λ = 2.

Ensure: (R′,P′) such that R = P+Q and P′ ∼= P
1: C′← Rd AMNS BarMul((X ′1−X ′2),(X

′
1−X ′2), t)

2: W ′1← Rd AMNS BarMul(X ′1,C
′, t),

3: W ′2← Rd AMNS BarMul(X ′2,C
′, t)

4: D′← Rd AMNS BarMul((Y ′1−Y ′2),(Y
′
1−Y ′2),2t)

5: A′1← Rd AMNS BarMul(Y ′1,(W
′
1−W ′2), t)

6: X ′3← D′−W ′1−W ′2
7: Y ′3← Rd AMNS BarMul(Y ′1−Y ′2),(W

′
1−X ′3), t)−A′1

8: Z′3← Rd AMNS BarMul(Z′,(X ′1−X ′2), t)
9: X ′′1 ←W ′1, Y ′′1 ← A′1, Z′′1 ← Z′3

10: R′← (X ′3,Y
′
3,Z
′
3),P

′′← (X ′1,Y
′
1,Z
′
1)

11: return R′,P′′

Let us show that the two points R′ and P′′ output by Algorithm 7 have Jacobian coordinates equivalent to the
points R and P output by ZADDU. We assume that the input points P′ and Q′ are equivalent to P and Q. Which
means for P′ that there exists β such that

Z′ = Zβ,X ′1 = X1β
2 and Y ′1 = Y1β

3

and the same β applies for the equivalent of Q′ and Q. Now, one can notice that:

C′ = (X ′1−X ′2)
2γ−t =Cβ4γ−t ,

W ′1 = X ′1C′γ−t = X1Cβ6γ−2t =W1β6γ−2t

W ′2 = X ′2C′γ−t = X2Cβ6γ−2t =W2β6γ−2t

D′ = (Y ′1−Y ′2)
2γ−2t = Dβ6γ−2t

A′1 = (Y ′1−Y ′2)(W
′
1−W ′2)γ

−t = A1β9γ−3t

Then we can express the coordinates of R′ in terms of the ones of R:

X ′3 = Dβ6γ−2t −W1β6γ−2t −W2β6γ−2t

= X3β6γ−2t ,
Y ′3 = (Y ′1−Y ′2)(W

′
1−X ′3)γ

−t −A′1
= (Y1−Y2)(W1−X3)β

9γ−3t −A1β9γ−3t ,

= Y3β9γ−3t

Z′3 = Z′(X ′1−X ′2)γ
−t = Z3β3γ−t ,

13

But the above condition show that R′ ∼ R with β′ = β3γ−t . Similarly for P′′ we have

X ′′1 = W ′1 =W1β6γ−2t

Y ′′1 = A′1 = A1β9γ3t

which means that the Jacobian coordinates P′′ are equivalent to the ones of P′ output by ZADDU with β′= β3γ−t .

The same strategy can be applied to the conjugate addition ZADDC leading to the same Jacobian coordinates
factor β3γ−t . Now using these Rand ZADDU and Rand ZADDC we can randomize the co-Z Montgomery
ladder as shown in Algorithm 12.

Algorithm 12 Randomized co-Z Montgomery ladder

Require: P = (xP,yP) ∈ E(Fp) and e = (e`−1, . . . ,e0) ∈ N with e`−1 = 1.
Ensure: Q = eP

1: (R1,R0)← DBLU(P)
2: (t2`−1, . . . , t0)3← Random(32`)
3: for i = `−1 to 0 do
4: b← ki
5: (R1−b,Rb)← Rand ZADDC(Rb,R1−b, t2i+1)
6: (Rb,R1−b)← Rand ZADDU(R1−b,Rb, t2i)
7: return Jac2a f f (R0)

From the analysis on Rand ZADDU and Rand ZADDC we know that they output points equivalent to non-
randomized ZADDU and ZADDC, which means that the randomized Co-Z Montgomery ladder correctly output
the point R = eP.

Level of randomization. At each loop iteration the random multiplicative mask β evolves as β3 × γ−ti for
Rand ZADDC and Rand ZADDU. Since ti is in {0,1,2}, this sequence of operations for i = `− 1, ...0 con-
sists in a cube and multiply exponentiation of γ. Which means that in loop i, the random factor is β = γ−Ti for
some Ti of size ∼ 32(`−i) and at the end we have β = γ−T for t ∼ 32`.

In other words, the level of randomization is low during the first loops of the algorithm but it grows quickly
and it is really large at the end. The lack of randomization at the beginning can be overcome by picking an
random β and compute an equivalent Jacobian coordinates R′0 and R′1 with factor β at just after Step 1.

5.3 Implementation results
Our implementation are done in C using our code for randomized and non-randomized AMNS multiplication
presented in Subsection 3.3. The timings of randomized scalar multiplication are reported in Table 5. For field
size 510 bits, the proposed randomization is significantly slower, but we don’t know what is the reason for that.
But for field size 256 bits the proposed randomization is competitive with the non-randomized version.

Table 5: Timings of scalar multiplication

Field and AMNS Algorithm #CC
log2(p) ρ n λ

510 510 253 10 2 co-Z Mont. Ladder 8891506
Rd. co-Z Mont. Ladder 12683841

256 256 257 5 2 co-Z Mont. Ladder 939424
Rd. co-Z Mont. Ladder 885270

6 Conclusion
In this paper we considered randomization for DSA exponentiation and elliptic curve scalar multiplication. Our
randomization take advantage of the modular multiplication in AMNS. We showed the validity of Barrett multi-
plication in AMNS. We then present a randomized AMNS multiplication using modified polynomial reduction
and random choice between Barrett and Montgomery multiplication. This leads to a randomizing factor φ−tγ−s

for some t ∈ {0,1} and s ∈ {0, . . . ,n−1}. We then presented randomized DSA exponentiation and co-Z elliptic
curve scalar multiplication using these modified AMNS multiplications. This improves the level of randomiza-
tion, and in the best case, with a limited loss of performance.

14

REFERENCES
Bajard, J., Imbert, L., and Plantard, T. (2004). Modular Number Systems: Beyond the Mersenne Family. In SAC

2004, volume 3357 of LNCS, pages 159–169. Springer.
Barrett, P. (1987). Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard

Digital Signal Processor. In CRYPTO ’86, pages 311–323. Springer.
Brier, E., Clavier, C., and Olivier, F. (2004). Correlation Power Analysis with a Leakage Model. In CHES 2004,

volume 3156 of LNCS, pages 16–29. Springer.
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., and Verneuil, V. (2010). Horizontal Correlation Analysis on

Exponentiation. In ICICS 2010, volume 6476 of LNCS, pages 46–61. Springer.
Coron, J.-S. (1999). Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In CHES,

pages 292–302.
Didier, L.-S., Dosso, F.-Y., Mrabet, N. E., Marrez, J., and Véron, P. (2019). Randomization of arithmetic over

polynomial modular number system. In ARITH 2019, pages 199–206. IEEE.
Goundar, R. R., Joye, M., Miyaji, A., Rivain, M., and Venelli, A. (2011). Scalar multiplication on Weierstraß

elliptic curves from Co-Z arithmetic. J. Cryptogr. Eng., 1(2):161–176.
Jao, D. and Feo, L. D. (2011). Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve

Isogenies. In Post-Quantum Cryptography 2011, volume 7071 of LNCS, pages 19–34. Springer.
Joye, M. and Yen, S. (2002). The Montgomery Powering Ladder. In CHES 2002, volume 2523 of LNCS, pages

291–302. Springer.
Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209.
Kocher, P. (1996). Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In

Advances in Cryptology - CRYPTO ’96, volume 1109 of LNCS, pages 104–113. Springer.
Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differential Power Analysis. In Advances in Cryptology, CRYPTO’99,

volume 1666 of LNCS, pages 388–397. Springer.
Lenstra, A. K., Lenstra, H. W., and Lovasz, L. (1982). Factoring polynomials with rational coefficients. Math.

Ann., 261:515–534.
Lesavourey, A., Nègre, C., and Plantard, T. (2016). Efficient Randomized Regular Modular Exponentiation using

Combined Montgomery and Barrett Multiplications. In SECRYPT 2016, pages 368–375. SciTePress.
Mangard, S. (2003). Exploiting Radiated Emissions - EM Attacks on Cryptographic ICs. In Austrochip 2003,

Linz, Austria, October 1st, pages 13–16.
Miller, V. (1986). Use of elliptic curves in cryptography. In CRYPTO’85, volume 218 of LNCS, pages 417–426.

Springer.
Montgomery, P. (1985). Modular Multiplication Without Trial Division. Math. Computation, 44:519–521.
Méloni, N. (2007). New Point Addition Formulae for ECC Applications. In WAIFI 2007, volume 4547 of LNCS,

pages 189–201. Springer.
Nègre, C. and Plantard, T. (2008). Efficient Modular Arithmetic in Adapted Modular Number System Using

Lagrange Representation. In ACISP 2008, volume 5107 of LNCS, pages 463–477. Springer.
NIST.FIPS.186.4 (2012). Digital Signature Standad (DSS). Standard, NIST.
Plantard, T. (2005). Arithmétique modulaire pour la cryptographie. PhD thesis, Montpellier 2 University, France.
Schnorr, C.-P. and Euchner, M. (1994). Lattice basis reduction: Improved practical algorithms and solving subset

sum problems. Math. Program., 66:181–199.
Tunstall, M. and Joye, M. (2010). Coordinate blinding over large prime fields. In CHES 2010, volume 6225 of

LNCS, pages 443–455. Springer.
von zur Gathen, J. and Gerhard, J. (2013). Modern Computer Algebra (3. ed.). Cambridge University Press.

APPENDIX
Upper bound on the coefficients of M−1 mod E.

In order to know the size of the coefficients of the intermediate variable V and Q in Algorithm 2 we need to
bound the coefficients of (M(X)−1 mod E). Our methodology to get such a bound is as follows:

• We show that the coefficients of M−1 mod E are on a column of an inverse matrix M−1, where M is the
multiplication matrix by M(X) modulo E.

• We use Hadamar inequality (von zur Gathen and Gerhard, 2013, Chap. 16) to bound the coefficients this
inverse matrix.

15

Lemma 3. Let M(X) = ∑
n−1
i=0 miX i be a short polynomial of an AMNS (p,n,ρ,γ,λ). The following matrix M

M =


m0 m1 . . . mn−2 mn−1

λmn−1 m0 . . . mn−3 mn−2
...

...
λm1 λm2 . . . λmn−1 m0

 (8)

is the matrix in the base (1,X , . . . ,Xn−1) of the multiplication by M(X) modulo E:

A(X)×M(X) mod E(X) =
[

a0 a1 · · · an−1
]
·M

Let M−1 be the inverse matrix of M. Then the first row of the inverse matrix M−1 contains the coefficients of
M(X)−1 mod E.

Proof. We get the i-th row of the matrix of the multiplication by M(X) mod E(X) by computing M(X)×X i

mod E(X) = (∑n−1
j=0 m jX j+i) mod (Xn−λ) = ∑

i−1
j=0 λmn−1+ jX j +∑

n−1
j=i m j−iX j. But this is the i-th row of M.

We have M−1 ·M = Idn, which means that if r is the first row of M−1 we have

r ·M =
[

1 0 · · · 0
]
.

But it terms of polynomial this means that (∑n−1
i=0 riX i)×M(X) mod E(X) = 1 and this concludes the proof.

Lemma 4. Let M(X) be a short polynomial of an AMNS (p,n,ρ,γ,λ). The coefficients of M′(X) = M(X)−1

mod E(X) are bounded above as follows

‖M′‖∞ ≤
λn−1‖M‖n−1

2
p

Proof. From Lemma 3 to get an upper bound on the coefficients of M(X)−1 mod E(X) we just have to bound
the coefficients of the inverse matrix M−1 of the matrix defined in 8.

We use the expression of M−1 as the co-matrix of M divided by det(M). Indeed, let M(i, j) be the (n−1)×
(n−1) matrix deduced from M after removing i-th row and j-th column. The inverse of M is then given by

M−1 = [det(M(i, j)
i, j /det(M)]i, j=1,...,n.

To get an upper bound on det(M(i, j)
i, j /det(M) we need to get a lower bound on the denominator |det(M)| and

upper bound on the numerator |det(M(i, j)
i, j |.

• Lower bound on the denominator |det(M)|. We consider the lattice L ′ generated by the n polynomials
bi = M(X)X i mod E for i = 0, . . . ,n−1. We have that each bi ∈ L and thus L ′ ⊂ Lp,n,ρ,γ,λ. The matrix
for L ′ is the following :

M =


m0 m1 . . . mn−2 mn−1

λmn−1 m0 . . . mn−3 mn−2
...

...
λm1 λm2 . . . λmn−1 m0


Then we have p = |det(L | divides |det(L ′)|= det(M) and in particular |det(M)|>= p.

• Upper bound on the numerator det(M(i, j))|. Let r′1, . . . ,r′n−1 the n− 1 row of M(i, j). The Hadamard
upper bound leads to

|det(M(i, j))| ≤ ‖r1‖2‖r2‖2 · · ·‖r1‖n

By definition of M(i, j), the row rk is equal to one row of M without the j coefficient. Consequently using
the definition of M in 8 we obtain

|rk|2 ≤

√√√√n−1

∑
i=0

λ2m2
i = |λ|‖M‖2

We then obtain:
|det(M(i, j))| ≤ λ

n−1‖M‖n−1
2

Finally, we obtain the following bound on the (i, j)-coefficient of M−1:

det(M(i, j)
i, j)

det(M)
≤

λn−1‖M‖n−1
2

p

16

