Integer Functions Suitable for Homomorphic Encryption over Finite Fields

I. Iliashenko, C. Nègre, V. Zucca

LIRMM-DALI, Université de Perpignan Via Domitia
Workshop on Encrypted Computing \& Applied Homomorphic Cryptography

November 15th 2021

UNIVERSITE
PERPIGNAN

What is Homomorphic Encryption (HE)?

HE allows to compute over encrypted data without the decryption key

Applications:

- Private search queries;
- Secure multi-party computations;
- Delegation of computations over sensitive data.

$\operatorname{Enc}(f(\boldsymbol{x}, \boldsymbol{y}))$

SHE model of computation

- SHE schemes can compute arithmetic circuits (+ and \times) of bounded multiplicative depth over encrypted messages.
- For security reasons HE ciphertexts contain noise components
- noise grows after each homomorphic operation
- noise must remain small enough to guarantee decryption's correctness
- Complexity of homomorphic operations should be assessed regarding
- their running time
- the amount of noise introduced
- The complexity to evaluate an arithmetic circuit homomorphically is analyzed with relation to
- the number of (non-scalar) homomorphic multiplications
- its multiplicative depth

Purpose of this work

- Our work focuses on the case where the plaintext space is a prime field \mathbb{F}_{p} for an odd prime p (e.g. BGV, BFV).
- Study some functions having a particular structure when interpolated over \mathbb{F}_{p} allowing to speed-up their homomorphic evaluation.
- multiplicative depth will remain unchanged
- we only reduce the number of homomorphic multiplications
- In [IZ21] we noticed that the comparison function has a particular structure over \mathbb{F}_{p} permitting to speed-up its homomorphic evaluation
- natural question: is this true for others functions?
- proof of some results of [IZ21] which were ommitted
- Similarly to [IZ21] we expect a speed-up proportional to the number of homomorphic multiplications saved.

Interpolation over finite fields

The equality function can be evaluated over \mathbb{F}_{p}^{2} as

$$
\mathrm{EQ}(x, y)=1-(x-y)^{p-1}=\left\{\begin{array}{l}
1 \text { if } x=y \\
0 \text { otherwise }
\end{array}\right.
$$

Lemma (Lagrange Interpolation)

Every function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ can be interpolated by a unique polynomial $P_{f}\left(X_{1}, \ldots, X_{n}\right)$ of degree at most $p-1$ in each variable

$$
P_{f}\left(X_{1}, \ldots X_{n}\right)=\sum_{\mathbf{a} \in \mathbb{F}_{p}^{n}} f(\boldsymbol{a}) \prod_{i=1}^{n}\left(1-\left(X_{i}-a_{i}\right)^{p-1}\right)
$$

The case of unary functions

- A function $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ can be interpolated with Lagrange as

$$
P_{f}(X)=f(0)-\sum_{i=1}^{p-1} X^{i}\left(\sum_{a=0}^{p-1} f(a) a^{p-1-i}\right)
$$

Complexity: $\mathcal{O}\left(\operatorname{supp}\left(P_{f}\right) \log (p-1)\right)$ multiplications

- Paterson-Stockmeyer algorithm gives an generic bound on the number of non-scalar multiplications to evaluate a polynomial.

Complexity: $\sqrt{2 p-2}+\mathcal{O}(\log p)$ multiplications

- Goal : find functions whose interpolation polynomial can be evaluated more efficiently.

The case of unary functions

$$
P_{f}(X)=f(0)-\sum_{i=1}^{p-1} X^{i} \underbrace{\sum_{a=0}^{p-1} f(a) a^{p-1-i}}_{P_{f, i}}
$$

- $\sum_{a=0}^{p-1} a^{p-1-i}=0 \bmod p$ if $i \neq 0 . f$ constant $\Longrightarrow P_{f}(X)=f(0)$
- What if f is constant on some subsets of \mathbb{F}_{p} ?

Example $f(x)=|x|_{2}=\left\{\begin{array}{l}1 \text { if } x \text { is odd } \\ 0 \text { if } x \text { is even }\end{array}\right.$ then $P_{f, i}=\sum_{a \text { odd }} a^{p-1-i}$.

$$
i \text { even } \Longrightarrow P_{f, i}=\sum_{a \text { odd }}\left((p-a)^{2}\right)^{(p-1-i) / 2}=\sum_{a \text { even }} a^{p-1-i}
$$

$$
\sum_{a=0}^{p-1} a^{p-1-i}=2 \sum_{a \text { odd }} a^{p-1-i}=0 \Leftrightarrow P_{f, i}=0
$$

The case of unary functions

$$
i \in[1, p-1) \cap 2 \mathbb{Z} \Leftrightarrow P_{f, i}=0
$$

$P_{f}(X)$ has only odd degree coefficients plus the constant and leading terms

$$
P_{f}(X)=f(0)-P_{f, p-1} X^{p-1}+X g\left(X^{2}\right)
$$

This observation on $|\cdot|_{2}$ can be generalized with the following lemma

Lemma

Let \mathbb{F}_{p} be a prime field, $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ and γ a primitive k-th root of unity $(k>0)$. Let $\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{k-1}$ be disjoint subsets of \mathbb{F}_{p} such that

- $\mathcal{S}_{j}=\gamma^{j} \mathcal{S}_{0}$ for $0 \leq j<k$
- $\mathbb{F}_{p}^{\times}=\mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{k-1}$
- f is constant on each subset S_{j} with $0 \leq j<k$

Then for any $i \in[1, p-2]$ such that $k \mid i P_{f, i}=0 \bmod p$.

The modulo function $f_{m}(x)=|x|_{m}$

Consider the modulo m function over $\mathbb{F}_{p} f(x)=|x|_{m}$

Proposition

Let $m>1$ be an integer and p an odd prime such that $p \equiv m-1 \bmod m$

$$
P_{f_{m}}(X)=\frac{(p+1)(m-1)}{2} X^{p-1}+X \cdot g\left(X^{2}\right)
$$

where g is a degree $(p-3) / 2$ polynomial.

Complexity $\sqrt{p-3}+\mathcal{O}(\log p)$ homomorphic multiplications.

The "Is power of b " function

Let $b>1$ be an integer and $f_{b}:[0, p) \rightarrow\{0,1\}$ such that

$$
f_{b}(x)=\left\{\begin{array}{l}
1 \text { if } x=b^{a} \text { for some } a \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

Let $\ell=\left\lfloor\log _{b} p\right\rfloor$, using Lagrange interpolation we get

$$
P_{f_{b}}(X)=\sum_{a=0}^{\ell}\left(1-\left(X-b^{a}\right)^{p-1}\right)
$$

Complexity $\mathcal{O}(\ell \log p)=\mathcal{O}\left(\log ^{2} p\right)$ homomorphic multiplications
Can we do better?

The "Is power of b " function

$$
P_{f_{b}}(X)=-\sum_{i=1}^{p-1} x^{i} \sum_{a=0}^{\ell}\left(b^{a}\right)^{p-1-i}
$$

Assuming $b^{\ell+1}=1 \bmod p, P_{f_{b}, i} \neq 0 \Leftrightarrow i=0 \bmod \ell+1$.

Proposition

If $p=\left(b^{r}-1\right) / k$ for some integers $k<b$ and $r \geq 1$ then

$$
P_{f_{b}}(X)=(p-r) \sum_{i=1}^{(p-1) / r}\left(X^{r}\right)^{i}
$$

Example for $b=2$ and $p=31=\left(2^{5}-1\right) / 1$ we have:

$$
P_{f_{2}}(X)=26\left(X^{30}+X^{25}+X^{20}+X^{15}+X^{10}+X^{5}\right)
$$

The "Is power of b " function

Complexity:

1. Start by computing $Y=X^{r}$
2. Compute $g_{e}(Y)=Y+Y^{2}+\ldots+Y^{e}$ with $e=(p-1) / r$

- Precompute the elements $Y^{2}, Y^{4}, \ldots, Y^{2^{k}}$ with $k=\left\lfloor\log _{2}(e)\right\rfloor$
- Compute the following
* $S_{1}=\left(Y+Y^{2}\right)$
* $S_{2}=S_{1}\left(1+Y^{2}\right)=Y+Y^{2}+Y^{3}+Y^{4}$
$\star S_{k}=S_{k-1}\left(1+Y^{2^{k-1}}\right)=\sum_{i=1}^{2^{k}} Y^{i}=g_{2^{k}}(Y)$
${ }^{-} g_{e}(Y)=S_{k-1}+Y^{2^{k}} \sum_{i=1}^{e-2^{k}} Y^{i}=S_{k-1}+Y^{2^{k}} g_{e-2^{k}}(Y)$
$\star g_{e}$ can be computed recursively in $\log _{2}(e)$ steps

Overall

- $\left\lfloor\log _{2} r\right\rfloor+\mathrm{HW}(r)+k+k-1+\mathrm{HW}(e)-1=\mathcal{O}(\log p)$ mults
- $\left\lceil\log _{2} r\right\rceil+\left\lceil\log _{2} e\right\rceil \approx \log _{2}(p-1)$ depth

The less than function

Let $\mathcal{S} \subset[0, p) \hookrightarrow \mathbb{F}_{p}$, the less than function is defined over \mathcal{S}^{2} as

$$
\operatorname{LT}_{\mathcal{S}}(x, y)=\left\{\begin{array}{l}
1 \text { if } x<y \\
0 \text { otherwise }
\end{array}\right.
$$

Taking $\mathcal{S}=[0, p)$, using Lagrange interpolation we obtain

$$
P_{\mathrm{LT}_{\mathcal{S}}}(X, Y)=\sum_{a=0}^{p-2}\left(1-(X-a)^{p-1}\right) \sum_{b=a+1}^{p-1}\left(1-(Y-b)^{p-1}\right)
$$

- It was shown in [IZ21] that $P_{\mathrm{LT} \mathrm{T}_{\mathcal{S}}}$ has only total degree p
- [IZ21] claimed $P_{\mathrm{LT}_{\mathcal{S}}}$ could be evaluated using $2 p-6$ homomorphic mutiplications for $p \geq 5$
- Previous work required $3 p-5$ multiplications [TLW+20].

The less than function

$$
P_{\mathrm{LT}_{\mathcal{S}}}(X, Y)=\sum_{a=0}^{p-2}\left(1-(X-a)^{p-1}\right) \sum_{b=a+1}^{p-1}\left(1-(Y-b)^{p-1}\right)
$$

- From the definition of $P_{\mathrm{LT}_{\mathcal{S}}}$ we know that:

$$
\begin{aligned}
& \Rightarrow P_{\mathrm{LT}_{\mathcal{S}}}(X, 0)=0 \Longrightarrow Y \mid P_{\mathrm{LT}_{\mathcal{S}}}(X, Y) \\
& \Rightarrow P_{\mathrm{LT}_{\mathcal{S}}}(p-1, Y)=0 \Longrightarrow(X+1) \mid P_{\mathrm{LT} T_{\mathcal{S}}}(X, Y)
\end{aligned}
$$

- It can be shown that $P_{\mathrm{LT}_{\mathcal{S}}}(X, X)=0$ i.e. $(X-Y) \mid P_{\mathrm{LT}_{\mathcal{S}}}(X, Y)$

Theres exist a polynomial $f \in \mathbb{F}_{p}(X, Y)$ of total degree $p-3$ such that

$$
P_{\mathrm{LT}_{\mathcal{S}}}(X, Y)=Y(X+1)(X-Y) f(X, Y)
$$

The less than function

What does f look like? Below is the table of values of f for $p=7$.

	y	0	1	2	3	4	5
x							
0	0	6	5	3	3	5	6
1	4	4	5	4	2	4	5
2	2	0	2	3	2	2	3
3	2	0	0	2	3	4	3
4	2	0	0	0	2	5	5
5	4	0	0	0	0	4	6
6	0	4	2	2	2	4	0

- It can be shown that $f(X, 0)=f(X, X)$
$\Longrightarrow Y(X-Y)$ divides $g(X, Y)=f(X, Y)-f(X, 0)$
- This property can be applied recursively to g so that

$$
f(X, Y)=\sum_{n=0}^{(p-3) / 2} f_{n}(X) Z^{n} \text { with } Z=Y(X-Y)
$$

Conclusions and perspective

- This work proves that several non-trivial functions can be evaluated efficiently over prime fields
- Familly of functions that can be evaluated in $\mathcal{O}(\sqrt{p})$ hom. mults
* "Modulo m " function with $p=-1 \bmod m$
- All one polynomial over \mathbb{F}_{p} can be evaluated in $\mathcal{O}(\log p)$ hom. mults
* "Is power of b " function with $p=\left(b^{r}-1\right) / k$
- When $p=2^{q}-1$ is a Mersenne prime then the "Hamming weight" and Mod2 functions can be evaluated in $\mathcal{O}(\sqrt{p / \log p})$
- The less-than function can be evaluated in $2 p-5$ instead of $3 p-6$ hom. mults
- Future possible interesting lines of work could include
- extend the search of such functions to extension fields $\mathbb{F}_{p^{d}}$
* take fully advantage of SIMD packing
- study interpolation over rings $\mathbb{Z}_{p^{e}}$
\star current results limited to $f(x)=x-|x|_{p}$

