Integer Functions Suitable for Homomorphic Encryption over Finite Fields

I. Iliashenko, C. Nègre, V. Zucca

LIRMM-DALI, Université de Perpignan Via Domitia

Workshop on Encrypted Computing & Applied Homomorphic Cryptography

November 15th 2021

What is Homomorphic Encryption (HE)?

HE allows to compute over encrypted data without the decryption key

Applications:

- Private search queries;
- Secure multi-party computations;
- Delegation of computations over sensitive data.

SHE model of computation

- SHE schemes can compute arithmetic circuits (+ and ×) of bounded multiplicative depth over encrypted messages.
- For security reasons HE ciphertexts contain noise components
 - noise grows after each homomorphic operation
 - noise must remain small enough to guarantee decryption's correctness
- Complexity of homomorphic operations should be assessed regarding
 - their running time
 - the amount of noise introduced
- The complexity to evaluate an arithmetic circuit homomorphically is analyzed with relation to
 - the number of (non-scalar) homomorphic multiplications
 - its multiplicative depth

Purpose of this work

- Our work focuses on the case where the plaintext space is a prime field \mathbb{F}_p for an odd prime p (e.g. BGV, BFV).
- Study some functions having a particular structure when interpolated over \mathbb{F}_p allowing to speed-up their homomorphic evaluation.
 - multiplicative depth will remain unchanged
 - we only reduce the number of homomorphic multiplications
- In [IZ21] we noticed that the comparison function has a particular structure over \mathbb{F}_p permitting to speed-up its homomorphic evaluation
 - natural question: is this true for others functions?
 - proof of some results of [IZ21] which were ommitted
- Similarly to [IZ21] we expect a speed-up proportional to the number of homomorphic multiplications saved.

Interpolation over finite fields

The equality function can be evaluated over \mathbb{F}_p^2 as

$$EQ(x,y) = 1 - (x - y)^{p-1} = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ otherwise} \end{cases}$$

Lemma (Lagrange Interpolation)

Every function $f: \mathbb{F}_p^n \to \mathbb{F}_p$ can be interpolated by a unique polynomial $P_f(X_1, \dots, X_n)$ of degree at most p-1 in each variable

$$P_f(X_1, ... X_n) = \sum_{\mathbf{a} \in \mathbb{F}_p^n} f(\mathbf{a}) \prod_{i=1}^n (1 - (X_i - a_i)^{p-1})$$

The case of unary functions

ullet A function $f:\mathbb{F}_p o\mathbb{F}_p$ can be interpolated with Lagrange as

$$P_f(X) = f(0) - \sum_{i=1}^{p-1} X^i \left(\sum_{a=0}^{p-1} f(a) a^{p-1-i} \right)$$

Complexity: $\mathcal{O}(\sup(P_f)\log(p-1))$ multiplications

 Paterson-Stockmeyer algorithm gives an generic bound on the number of non-scalar multiplications to evaluate a polynomial.

Complexity: $\sqrt{2p-2} + \mathcal{O}(\log p)$ multiplications

• Goal : find functions whose interpolation polynomial can be evaluated more efficiently.

The case of unary functions

$$P_f(X) = f(0) - \sum_{i=1}^{p-1} X^i \underbrace{\sum_{a=0}^{p-1} f(a) a^{p-1-i}}_{P_{f,i}}$$

- $\sum_{a=0}^{p-1} a^{p-1-i} = 0 \mod p$ if $i \neq 0$. f constant $\implies P_f(X) = f(0)$
- What if f is constant on some subsets of \mathbb{F}_p ?

Example
$$f(x) = |x|_2 = \begin{cases} 1 \text{ if } x \text{ is odd} \\ 0 \text{ if } x \text{ is even} \end{cases}$$
 then $P_{f,i} = \sum_{a \text{ odd}} a^{p-1-i}$. $i \text{ even} \implies P_{f,i} = \sum_{a \text{ odd}} ((p-a)^2)^{(p-1-i)/2} = \sum_{a \text{ even}} a^{p-1-i}$
$$\sum_{a=0}^{p-1} a^{p-1-i} = 2 \sum_{a \text{ odd}} a^{p-1-i} = 0 \Leftrightarrow P_{f,i} = 0$$

The case of unary functions

$$i \in [1, p-1) \cap 2\mathbb{Z} \Leftrightarrow P_{f,i} = 0$$

 $P_f(X)$ has only odd degree coefficients plus the constant and leading terms

$$P_f(X) = f(0) - P_{f,p-1}X^{p-1} + Xg(X^2)$$

This observation on $|\cdot|_2$ can be generalized with the following lemma

Lemma

Let \mathbb{F}_p be a prime field, $f: \mathbb{F}_p \to \mathbb{F}_p$ and γ a primitive k-th root of unity (k>0). Let \mathcal{S}_0 , \mathcal{S}_1 , ..., \mathcal{S}_{k-1} be disjoint subsets of \mathbb{F}_p such that

- $S_j = \gamma^j S_0$ for $0 \le j < k$
- $\bullet \ \mathbb{F}_p^{\times} = \mathcal{S}_0 \cup \cdots \cup \mathcal{S}_{k-1}$
- f is constant on each subset S_j with $0 \le j < k$

Then for any $i \in [1, p-2]$ such that $k \mid i \mid P_{f,i} = 0 \mod p$.

The modulo function $f_m(x) = |x|_m$

Consider the modulo m function over \mathbb{F}_p $f(x) = |x|_m$

Proposition

Let m>1 be an integer and p an odd prime such that $p\equiv m-1 \mod m$

$$P_{f_m}(X) = \frac{(p+1)(m-1)}{2}X^{p-1} + X \cdot g(X^2)$$

where g is a degree (p-3)/2 polynomial.

Complexity $\sqrt{p-3} + \mathcal{O}(\log p)$ homomorphic multiplications.

The "Is power of b" function

Let b>1 be an integer and $f_b:[0,p)\to\{0,1\}$ such that

$$f_b(x) = \begin{cases} 1 \text{ if } x = b^a \text{ for some } a \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

Let $\ell = \lfloor \log_b p \rfloor$, using Lagrange interpolation we get

$$P_{f_b}(X) = \sum_{a=0}^{\ell} (1 - (X - b^a)^{p-1})$$

Complexity $\mathcal{O}(\ell \log p) = \mathcal{O}(\log^2 p)$ homomorphic multiplications Can we do better?

The "Is power of b" function

$$P_{f_b}(X) = -\sum_{i=1}^{p-1} X^i \sum_{a=0}^{\ell} (b^a)^{p-1-i}$$

Assuming $b^{\ell+1}=1 \bmod p$, $P_{f_b,i} \neq 0 \Leftrightarrow i=0 \mod \ell+1$.

Proposition

If $p = (b^r - 1)/k$ for some integers k < b and $r \ge 1$ then

$$P_{f_b}(X) = (p-r) \sum_{i=1}^{(p-1)/r} (X^r)^i$$

Example for b = 2 and $p = 31 = (2^5 - 1)/1$ we have:

$$P_{f_2}(X) = 26(X^{30} + X^{25} + X^{20} + X^{15} + X^{10} + X^5)$$

The "Is power of b" function

Complexity:

- 1. Start by computing $Y = X^r$
- 2. Compute $g_e(Y) = Y + Y^2 + ... + Y^e$ with e = (p-1)/r
 - ▶ Precompute the elements $Y^2, Y^4, ..., Y^{2^k}$ with $k = \lfloor \log_2(e) \rfloor$
 - Compute the following

$$\star$$
 $S_1 = (Y + Y^2)$

*
$$S_2 = S_1(1+Y^2) = Y + Y^2 + Y^3 + Y^4$$

***** ...

$$\star S_k = S_{k-1}(1+Y^{2^{k-1}}) = \sum_{i=1}^{2^k} Y^i = g_{2^k}(Y)$$

$$g_e(Y) = S_{k-1} + Y^{2^k} \sum_{i=1}^{e-2^k} Y^i = S_{k-1} + Y^{2^k} g_{e-2^k}(Y)$$

★ g_e can be computed recursively in $log_2(e)$ steps

Overall

- $ullet \lfloor \log_2 r \rfloor + \mathtt{HW}(r) + k + k 1 + \mathtt{HW}(e) 1 = \mathcal{O}(\log p)$ mults
- $\lceil \log_2 r \rceil + \lceil \log_2 e \rceil \approx \log_2(p-1)$ depth

The less than function

Let $\mathcal{S} \subset [0,p) \hookrightarrow \mathbb{F}_p$, the less than function is defined over \mathcal{S}^2 as

$$LT_{\mathcal{S}}(x, y) = \begin{cases} 1 \text{ if } x < y \\ 0 \text{ otherwise} \end{cases}$$

Taking S = [0, p), using Lagrange interpolation we obtain

$$P_{\mathrm{LT}_{\mathcal{S}}}(X,Y) = \sum_{a=0}^{p-2} (1 - (X-a)^{p-1}) \sum_{b=a+1}^{p-1} (1 - (Y-b)^{p-1})$$

- ullet It was shown in [IZ21] that $P_{\mathrm{LT}_{\mathcal{S}}}$ has only total degree p
- [IZ21] claimed $P_{\mathrm{LT}_{\mathcal{S}}}$ could be evaluated using 2p-6 homomorphic mutiplications for $p\geq 5$
- Previous work required 3p 5 multiplications [TLW+20].

The less than function

$$P_{\mathrm{LT}_{\mathcal{S}}}(X,Y) = \sum_{a=0}^{p-2} (1 - (X-a)^{p-1}) \sum_{b=a+1}^{p-1} (1 - (Y-b)^{p-1})$$

- From the definition of P_{LT_S} we know that:
 - $P_{\mathtt{LT}_{\mathcal{S}}}(X,0) = 0 \implies Y \mid P_{\mathtt{LT}_{\mathcal{S}}}(X,Y)$
 - $P_{\mathtt{LT}_{\mathcal{S}}}(p-1,Y) = 0 \implies (X+1) \mid P_{\mathtt{LT}_{\mathcal{S}}}(X,Y)$
- It can be shown that $P_{\mathtt{LT}_{\mathcal{S}}}(X,X)=0$ i.e. $(X-Y)\mid P_{\mathtt{LT}_{\mathcal{S}}}(X,Y)$

Theres exist a polynomial $f \in \mathbb{F}_p(X,Y)$ of total degree p-3 such that

$$P_{\mathrm{LT}_{\mathcal{S}}}(X,Y) = Y(X+1)(X-Y)f(X,Y)$$

The less than function

What does f look like? Below is the table of values of f for p = 7.

x y	0	1	2	3	4	5	6
0	0	6	5	3	3	5	6
1	4	4	5	4	2	4	5
2	2	0	2	3	2	2	3
3	2	0	0	2	3	4	3
4	2	0	0	0	2	5	5
5	4	0	0	0	0	4	6
6	0	4	2	2	2	4	0

- It can be shown that f(X,0) = f(X,X) $\implies Y(X-Y)$ divides g(X,Y) = f(X,Y) - f(X,0)
- This property can be applied recursively to g so that

$$f(X, Y) = \sum_{n=0}^{(p-3)/2} f_n(X)Z^n$$
 with $Z = Y(X - Y)$

Conclusions and perspective

- This work proves that several non-trivial functions can be evaluated efficiently over prime fields
 - Family of functions that can be evaluated in $\mathcal{O}(\sqrt{p})$ hom. mults * "Modulo m" function with $p=-1 \mod m$
 - ▶ All one polynomial over \mathbb{F}_p can be evaluated in $\mathcal{O}(\log p)$ hom. mults * "Is power of b" function with $p = (b^r - 1)/k$
 - When $p = 2^q 1$ is a Mersenne prime then the "Hamming weight" and Mod2 functions can be evaluated in $\mathcal{O}(\sqrt{p/\log p})$
 - ▶ The less-than function can be evaluated in 2p-5 instead of 3p-6 hom. mults
- Future possible interesting lines of work could include
 - lacktriangle extend the search of such functions to extension fields \mathbb{F}_{p^d}
 - ★ take fully advantage of SIMD packing
 - study interpolation over rings \mathbb{Z}_{p^e}
 - ★ current results limited to $f(x) = x |x|_p$