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Abstract. This paper shows how to include a crude but efficient communication 
component into reactive robotic multi-agent systems. The basis of the work relies 
on the concept of self-satisfaction of an agent composed of a selfish tendency and 
an altruistic one. A signal, representing the variation of an agent's "interactive 
satisfaction", is emitted in its neighborhood. It measures the expected efficiency 
of cooperation. The information propagates from agent to agent within a certain 
range. It is shown how the information is converted into a vector able to alter 
instantaneously the agent's motion when added to the classical vectors which gen­
erate the selfish motion: move-to-goal and avoid-obstacle. Then the paper presents 
the architecture for implementing such mechanisms to achieve robust adaptive co­
operation. The results of simulation experiments are presented which demonstrate 
the efficiency of the generalized dynamic potential field including communication 
of satisfaction. In particular, the method allows the agents to escape from a dead­
lock situation, and makes the collective behavior converge towards a steady flow of 
traffic. 
Keywords: multi-agent systems, cooperating mobile robots, robot communication, 
reactive architecture, self-organizing robots 

1 Introduction 

In the field of distributed autonomous systems, cooperation appears to be 
one of the most important way to perform meaningful tasks. 

As it is emphasized in [11], many robotic applications are inherently dis­
tributed in space, time, or functionality, thus requiring distributed solutions. 
Adaptive cooperation techniques allow to handle repetitive tasks or tasks 
which need cooperation of several robots for their completion [3][11]. 

Many animats which have been implemented with reactive behavioral 
control techniques have only local interactions with the environment and the 
other agents. Nevertheless, they can perform complex foraging tasks [4][6][12], 
multi-robot navigation [1], cooperation tasks [6][9], and distributed problem 
solving [7]. 

However, the poor level of communication and cognition of reactive ar­
chitectures cannot so far handle easily goal-driven behavior [10] and does 
not allow explicit cooperation [4] to perform complex tasks. The aim of this 
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work is to include a robust but simple intentional cooperation into a reactive 
architecture without degrading its intrinsic qualities. 

In a previous work [13], we have introduced the self satisfaction which 
expresses the performance of the agent's current task, and the interactive 
satisfaction which results from agent interactions. This last information is 
broadcast as a simple signal in order to be directly converted by agents into 
vectors which may be combined to other vectors (goal attraction, obstacle 
avoidance). 

This paper concentrates on the process of satisfaction propagation and 
shows that it contributes to adaptive cooperation, while avoiding deadlocks 
("intelligent behavior"). 

The paper is organized as follows: Section 2 presents the model of com­
munication and the related altruistic behavior vector. We then describe the 
cooperative architecture in section 3. Section 4 shows some typical simula­
tions and discusses experimental results. 

2 From Satisfaction to Altruism 

This section presents a formal description of the components of an agent's 
satisfaction, and how they are converted into vectors consistent with those 
resulting from other needs: avoiding collisions and reaching a destination. 

2.1 Cooperation and Satisfaction 

The satisfaction approach. From the designer's point of view, the agent 
behavior must satisfy goal-oriented, conservative and cooperative functions. 
The principle of our agent model relies on the maximization of agent satis­
factions. At any time, the agent tries to maximize 

• either its selfish interests: by selecting the optimal task and by emitting 
repulsive signals to agents which hinder its work or attractive signals to 
altruistic agents which can help it, 

• or the collective interests: by helping other agents, i.e. by reading agent 
signals and then computing altruistic behaviors. 

Sub-satisfactions. As introduced in [13], we distinguish the personal satis­
faction, the interactive satisfaction and the empathy satisfaction. 

The personal satisfaction P measures the progress of the agent's task. 
The empathy satisfaction E is the average value of personal satisfaction of 
its acquaintances, it expresses the altruism of the agent. The instantaneous 
satisfaction of an agent i at time t is Sati(t) = (1 - a).Pi (t) + a.Ei(t), where 
a is the altruistic factor of the agent (a E [0, 1]). 

The interactive satisfaction I results from agent interactions. An agent 
computes the interactive satisfaction as a reaction or an intention to other 
agents. 
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Fig. 1. Broadcasting of agent signals 

Signals of Interactive Satisfaction. Each agent i broadcasts only its in­
teractive satisfaction Ii(t) because it is an intentional signal to alter agent 
interactions. This signal is broadcast within a bounded distance from the 
agent (Fig. 1). The intensity and the variation of the signal define the mean­
ing of the communication. 

2.2 Altruistic Behavior 

Each agent alters its selfish behavior by processing the signals received from 
its neighbors, that generates a component of its velocity vector. 

Agent-agent altruism: Agents use interactive satisfaction either to emit 
a repulsive signal (LlI\.-) or to emit an attractive call (LlI )'). The motion 
behavior clearly depends on the other agent interactive satisfaction variation 
LlIA(t)r = IA(t) - IA(t - T). 

Thus, in the vector model, this cooperative behavior is defined with the 
altruism vector of an agent (B) relative to another agent (A) t?B/~ (t): 

.".----t I I A ( t) I =-f 
t?B/A(t) = k.S(LlIA(t)r). 2·BA 

II fill II 
S t = {Sign(X(t)) if x(t) to 

(x()) Sign(x(t-T)) ifx(t) =0 (to ensure continuity) 

(1) 

Equation 1, where k is a gain, defines a force field. The interest of equation 
1 lies in the fact that it can be used for various situations: i) just one agent 
moves ii) both agents move iii) none of the agents move but they notice 
significant interactive satisfactions. 

Multi-agent altruism: A situated agent close to others can simulta­
neously perceive several attractions and repulsions. In order to define a new 
altruism vector we split the multi-agent problem into a set of agent-agent 
problems. The altruistic reaction of an agent (B) close to N acquaintances 
noted A is computed as follows 

(2) 
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Fig. 2. (a) Intentional propagation for attraction (b) Implicit propagation ofrepul­
sion (the arrows are numbered following the sequence of emitted signals) 

2.3 Sequential Signal-Passing 

Sequential passing of attractions: When an agent perceives an increasing 
signal, it may decide to follow the call. In this case, the agent also emits an 
attractive signal in order to call its own acquaintances (implicit recruitment), 
The force of the signal variation decreases during the propagation so as to 
limit the number of attracted agents (see. Fig, 2.(a)). 
Sequential passing of repulsions: If an agent is immobilized by another, it 
can emit a dissatisfaction signal to query a movement of the hindering agent. 
But, if this other agent is also immobilized, a chain process of dissatisfaction 
emission is performed until an agent is able to move (Fig, 2,(b)), This implicit 
passing of dissatisfaction to all involved agents releases the deadlock situation. 

3 Principle of the Architecture 

Our architecture is based on a classical schema-based reactive control [4] 
using vector combination [1][8][14]. Actions are selected and computed from 
proprioceptive information (energy, conservative functions) and exteroceptive 
information (obstacles, goals), with the addition of the new vector called 
altruistic vector. It represents the cooperative part of the agent's behavior. 

3.1 Primitive Behavior 

Each task (primitive behavior) is an action which may be triggered by an 
internal or environmental stimulus. The test to release an action is defined 



39 

by a set of boolean conditions on perceptions, Cand(task). Moreover, each 
condition induces a measure of intensity computed from perceptions and 
called I nt( task) (defined on the interval [0, 1]). 

Some tasks are functions for survival, i.e. they are useful for robot work­
ing. These tasks have priority on others (with a subsumption control [5]). 

3.2 Algorithm of Action Selection and Combination 

Data : taske, P, I, Sensors 

1 if survival function triggered then 
I if motion task then compute 17 goal 

7 

8 

end 
else 

2 taskm ~ {Vi Int(taskm) ~ Int(taski ) and Cand(taskm) = true} 
3 if Int(taskm) > P then taskn=taskm ; F=Int(taskm) 

else taskn=taske ; F=P 
Read signals: h, I2,·· 

4 if taske is altruism and sign(LlIe(t)) = sign(LlIe(t - T)) then 
continue taske 

else 
5 Imax =MaxnhJ,JI2J, . .) 
6 if a.JImaxJ > (1 - a).F then 17 goal = -.;J [rna. 

else 

I taske =taskn 
if taske is a motion then 17 goal = 17 taske 

end 
end 

end 

if moving action then 
Integrate signal repulsions : 
R = { U Id LlIi < O} ; 17 alt = 2: R -.;J Ri 

Integrate obstacles sliding : 
Compute 17 obs for avoiding obstacles 

end 

9 if moving action then Compute 17 = 1'1.17 goal + 1'2.17 obs + 1'3.17 alt 
o Perform behavior 

Algorithm 1: Generic Algorithm of Altruistic Robots 

Task Selection. If no survival function is released, the algorithm (Alg. 1) 
selects the next task to perform (a new one or the current one). 
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First, the task which has the maximum perceived intensity among the 
triggered tasks is computed (line 2). If this task has an intensity greater than 
the current task performance index (= personal satisfaction P) it becomes 
the new candidate task, noted taskn (line 3). But this task may be replaced 
by an altruistic behavior. For this purpose, we compute the intensity F of 
taskn selection (line 3). 

Altruistic Behavior Selection. If the agent is already performing an al­
truistic task and the relative perceived signal (Ie) keeps the same sign of 
variation, it keeps the same behavior (line 4). 

Otherwhise, as the agent perceives interactive satisfactions I from others, 
it can reply to those signals by exhibiting an appropriate behavior. Line 5 
computes the absolute value IImaxl of the more powerful signal perceived. 

An altruistic behavior replaces the potential new task taskn when the 
signal intensity IImax I is greater than taskn intensity F. This comparison 
is adjusted by using the altruistic factor a (line 6). Then, agents may have 
different kinds of behavior just according to this factor. 

If the altruistic behavior is selected, the new behavior is the altruism 
vector 19I~a~ computed with equation 1 section 2.2. 

Vector Combination. If the selected task is a vector motion (Vgoa~), it 
may be added with other compatible agent drives (motion-to-goal, obstacle 
avoidance and repulsive signals). 

From perceived signals which are repulsive (set R computed line 7), the 
agent computes a repulsive vector using multi~ent altruism equation 2 given 
above in section 2.2. In practice, this vector Valt is shorter than Vgoa~ vector. 

To avoid obstacles, a vector for sliding along obstacles is computed line 
8, see Fig. 3.(a). The technique is fully presented in [14]. 

iso-potential obstacle 

, , 
go-away sliding force 

Fig. 3. (a) Sliding along an obstacle (b) Multiple influences on agent A 

These three vectors are combined line 9 to compute the agent's velocity 
vector V, where 11, 12 and 13 are scalar weights. The principle of combining 
signal and goal drives is represented in Fig. 3.(b). 
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Finally, in line 10, the agent performs its current task. 
Note that the process of action selection and combination is computed by 

using only the personal satisfaction P, the perceived signals I, the altruism 
factor a and internal or environmental stimuli. Personal satisfaction P and 
interactive satisfaction I are computed from internal and external perceptions 
as shown below. 

4 Experimental Simulations 

4.1 Extractor Robots 

Consider the foraging and consuming application where each robot has to 
leave a fixed base and explore an area which is a priori unknown in order to 
find a mine, extract raw material and transport this material back to the base. 
Clearly, the problem is defined by N robots (with a limited rate of extraction 
r), obstacles, attractive zones (mines), and a base which emits a particular 
signal for its localization. Moreover, each mine has a limited volume of raw 
material and a maximal rate of extraction. The energy available E on board 
each robot is bounded by Emax, and so periodic returns to the base power 
supply are necessary. 

survival functions 

Fig. 4. Primitive behaviors of extractor robots 

Extractor robots are implemented following our architecture and simple 
primitive behaviors (tasks). They are able to scan their environment within a 
short bounded distance. Figure 4 presents the global behavior of an extractor 
robot by giving its primitive behaviors and their stimulus. The volume of 
raw material extracted by a robot is noted V (with Vmax the volume of the 
container) . 

Computation of personal satisfaction P(t): For the moving tasks 
move-to-base, move-to-mine and return-to-base, the robot computes its pro­
gression: if it cannot move, P(t) = -1 else P(t) = cos (V motion(t), l7 goal(t)). 
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For other tasks involving moves: if the robot can move P(t) = P(t - T) 
+K.(0.5 - P(t - T)) (i.e. P increases to 0.5) else P decreases to -1: P(t) = 
P(t - T) - K.(1 + P(t - T)), with 0 < K < 1 (K = 0.2 for the simulations). 

For extraction of raw material (load-container), P(t) depends on the 
real rate of extraction e(t): P = ~. With other static primitive actions 
in progress, P(t) = 1. 

Computation of intemctive. satisfaction I(t): Robots compute an in­
crease of interactive satisfaction when they are at an exploitable mine, so 
that they attract other robots: I(t) = I(t - T) + K'.(1- I(t - T)). 

They compute a decrease of their signal when they are hindered by others 
robots, or when a detected mine is empty or saturated: I(t) = I(t - T) -
K'.(1 + I(t - T)). 

Otherwise, when a robot performs an altruistic behavior upon the request 
of an increasing signal Ip(t), it also emits an increase of its interactive satis­
faction: I(t) = Ip(t)/2. Thus, this robot may attract its idle acquaintances. 

Note that while a robot has no interaction with others, its interactive 
satisfaction is not emitted and it tends towards 0 (neutral value of 1). 

4.2 Results 

Cooperation, Altruism and Resolution. Situations of conflict or of coop­
eration are visualized as a surface with the X,Y axes reflecting the simulated 
environment. The Z axis indicates the negative value of the sum of interactive 
satisfaction signals emitted by agents. Peaks of the surface Z(X,Y) indicate 
blocking zones (because of the emission of negative values) and pits indicate 
attractive zones between robots. Thus, the altruistic vector is computed as if 
the robot was a ball rolling on this dynamic surface. Furthermore, as robot 
locations take a part in surface deformation, their altruistic motions tend 
to flatten the surface. Thus, robots avoid conflicting trajectories and move 
towards attractive zones (like attractive fields). 

When robots have incompatible trajectories, peaks appear in the dissat­
isfaction surface (dashed lines 3 and 4 in Fig. 5). The robots at mines (in the 
left of the environment) broadcast attractive signals (pits in the surface at 
dashed lines 1 and 2 in Fig. 5). 

In every simulation run, robots efficiently explore the environment, slide 
around obstacles and around other robots by using altruistic vectors. When 
a robot finds an exploitable mine, its interactive satisfaction increases and, 
as expected, neighbor robots are attracted, and by propagation they attract 
remote robots. If a mine is empty or saturated, the robots close to it emit a 
decreasing interactive satisfaction which repel new arriving robots. Finally, 
robots adapt their behavior to each environmental evolution: moves of robots, 
working out of mines and need for energy. 
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Fig. 5. Snapshot of an extractor robots simulation (50 robots, Q = 0.7). 
1 robot=l pixel, plotted with its velocity vector. Dark areas are the obstacles. 

Study of Repulsion Signal-Passing. In order to evaluate performance 
of repulsive signals (situation Fig. 2.(b)), we have designed a long narrow 
environment (fig. 6). Thus, we measure the average time for at least one robot 
reach the mine at the right side of the environment. We have compared this 
time performance for different types of robots (over 500 simulations for each 
one). 

Robots of the first type move randomly without broadcasting signals (time 
of reference: 226 iterations). The second type of robot avoids obstacles by us­
ing sliding vectors: 5.9% of improvement. The third type of robot includes 
altruism vector as goal behavior: 13.6% of improvement. In the last case, 
robots use all repulsive signals to compute their trajectory: 17.5% of im­
provement (see snapshots of these robots in figure 6). 

Fig. 6. Simulation of 30 altruistic robots (at iterations 12 and 170) 

5 Conclusion 

In this paper, we have described an architecture for multiple mobile robots. 
It takes into account the concept of satisfaction, and allows an agent to com-
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municate simply its state of satisfaction and its intentions to its neighbors. 
The received information is directly converted into an altruistic control signal 
altering the otherwise selfish behavior of each agent, that drastically improves 
the cooperation. The architecture is simple and robust, it makes the robots 
immediately react to unexpected events, avoid conflicting situations and ex­
hibit self-organization. We have demonstrated the qualities of the proposed 
architecture through simulations. These intensive simulations have also shown 
(not discussed here) that the group performance is not very sensitive to vari­
ations of the altruistic factor. Future work will include experiments with real 
robots and refinement of the processing of the communication signals. 
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