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Simulated Annealing Combined with a Constructive Algorithm for
Optimising Assembly Workcell Layout
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This paper addresses the development of a tool for optimising
assembly workcell layout in the context of an industrial robotic
CAD/CAM/CAE software product. The criterion to be mini-
mised is the cycle time for completing a given sequence of
operations, which is achieved by determining the relative pos-
itions of peripheral machines on the cell floor. The algorithm
is constructive: the machines are placed one at a time in the
robot neighbourhood, by means of a modified simulated
annealing (SA) method. This method yields several possible
and optimal positions for a machine, and several layouts are
thus obtained at the end of execution. The optimisation tool
has been implemented in IGRIP, and a case study illustrates
its performance.

Keywords: Assembly workcell layout; CAD/CAM/CAE; Con-
structive approach; Simulated annealing

1. Introduction

In assembly task applications, robotic manipulators perform a
repetitive sequence of operations on and between a set of
peripheral machines. The productivity of such tasks can be
considerably improved by minimising the cycle time.

For a given manipulator, cycle time depends on many para-
meters, such as the position of the manipulator relative to the
task, the sequence in which the operations are performed, the
maximum velocities and accelerations of the actuators, or the
configuration of the arm along the path. It also depends greatly
on the relative position of the points that the robot must access,
and, thus, on the workcell layout in the case of an assembly
task: the robot must stop at the access points of different
machines with which it interacts.

The design process used so far in industry for robot workcell
layout contains some interactive check and change loops that
must be performed by the user. Such a process is time consum-
ing and the quality of the layout depends heavily on the human
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designer [1,2]. To achieve an integrated design process for
workcells, an automatic layout-planning tool is required in
CAD/CAM/CAE systems.

Although robotic assembly workcells are widespread in
industry, the problem of optimising their layout has received
surprisingly little attention. Chittajallu and Sommer [3] first
locate odd-shaped devices circumscribed in circles to minimise
a statistically weighted distance function. Then, the relative
orientations of the devices are calculated. Although the circle
representation provides a simple means of detecting overlapping
of machines, there is much excess space circumscribed by the
circle in practical cases, and the devices need to be brought
closer to one another and reoriented. Lueth [4] proposes an
approach to plan robot workcells in the Cartesian configuration
space, where the problem is formulated as the quadratic set
covering problem (QSP) [5]. An algorithm minimises the length
of all the collision-free paths required, and the machines are
placed one at a time using a local optimisation algorithm. Tay
and Ngoi [6] describe a heuristic algorithm that attempts to
minimise the total Euclidean distance travelled by a robot arm
to perform a given sequence of operations. The method applied
is constructive: the machines are positioned and oriented one
at a time, according to a limited list of possible empty areas.
The robot type that can be considered is limited to Cartesian
structures. Finally, Drezner and Nof [7] study the problem of
planning a robot assembly station in which component parts
are picked from bins and assembled. Several approaches to
the problem of optimising the bin organisation, the picking
sequence and the route are considered. Nevertheless, they do
not attempt to optimise the layout of every component in the
cell, and the problems considered are rather different.

The well-known facility layout problem (FLP) is very similar
to the robotic assembly workcell layout problem, and the latter
can be considered as an extension in the 3D world of the
former. A standard form of FLP involvesn facilities (indexed
1,. . .,n), an areaai for each facility i, and a fixed flow fij
between each distinct pair of facilities. The problem is known
to be NP-hard [8], and optimisation methods can be successful
only in cases of simple cells. Early work on the FLP used the
rather inflexible “cell assignment” representation strategy and
focused on constructive algorithms and/or iterative improve-
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ment methods [5,9–11], where an “iterative improvement
method” consists in improving an initial layout by successive
pairwise exchanges of facilities.

FLP research has since progressed by using a more sophisti-
cated problem solving framework, such as genetic algorithms
(GAs) [12–14] or simulated annealing (SA) [15–18], and by
using better layout representations [18].

In this paper, we present a constructive algorithm to optimise
the layout of a robotic assembly workcell that consists of a
robot and peripheral machines. As mentioned above, the prob-
lem is an extension in the 3D world of FLP, and it can thus
be considered at least as complex. The criterion considered is
strictly the cycle time of a task. The algorithm uses a modified
SA method [19] that yields several possible placements for a
machine, and several layouts are thus obtained. All the con-
straints (accessibility of the machine access points, collision
avoidance, and feasibility of the task) are handled, in order to
produce reliable solutions to real cases in the context of an
industrial CAD/CAM/CAE system.

2. The Assembly Workcell Layout
Problem

The assembly workcell layout problem consists in determining
the relative positions of peripheral machines in the neighbour-
hood of the robot that interacts with them. The aim is to
optimise one or more of the workcell performance indices. In
this paper, we consider a single criterion: the cycle time
corresponding to the assembly task that has to be fulfilled.
The effort required for calculating cycle time can be quite
substantial in an industrial CAD/CAM/CAE system. Indeed,
each evaluation implies a simulation of the robot movement,
as controller manufacturers provide their own simulation mod-
ules for their robots.

The following factors must be considered [6]:

1. The shape of the machines can be complicated. This intro-
duces the problem of finding a method of representation
that limits the number of possible orientations of the
machines relative to the robot, and raises the problem of
detecting the overlapping of the machines efficienlty.

2. Every machine has at least one access/delivery point, which
is the point that a robot must reach to carry out the task
associated with the machine.

3. Machines should be arranged with enough space between
them to allow for maintenance, repair, or operator move-
ment. The clearances may differ for different machines.

4. There may be more than one robot involved in the
assembly task.

5. The machine access/delivery points must be placed in the
workspace of the robot that must reach them.

The general assembly workcell layout problem is very com-
plex and combinatorial (FLP is NP-hard). Therefore, some
simplifications and assumptions are made here which do not
prevent the resolution of most practical cases [6]:

1. The workcell consists of one fixed-based robot and a set
of peripheral machines.

2. The operation sequence associated with the assembly task
is fixed.

3. The type and shape of machine considered are not limited.
4. A machine has only one access/delivery point. This assump-

tion is reasonable as most machines have only one such
point. The position of the access point on a machine is not
limited at the “centre” of the machine.

5. Space clearance between machines is to be specified by the
user. The internal representation of a machine will be
determined taking account of the space allowances.

6. The floor space available for computing the layout is
assumed to be unlimited. Slight shifting of the machines to
suit the available floor space will not affect the result
significantly. Moreover, the layout may be displaced as a
whole to fit a given floor area.

To provide a reliable solution to practical and industrial
cases, the following constraints must be taken into account:

1. Accessibility of the machine access points.
2. Collision avoidance between the robot and its environment,

when the robot tool reaches the point where work is to
be performed.

3. Collision avoidance between the robot and its environment,
when the robot arm is moving from access point to
access point.

Finally, the following initial data are to be provided by the
user: the assembly robot model, the geometry of the machines
with which it interacts, and the operation/interaction sequence
corresponding to the assembly task to be performed.

3. Definition of an Operation Sequence

Noting the inadequacy of standard CAD/CAM/CAE tools to
describe a sequence of operations associated with an assembly
task, a new user interface was designed to minimise the number
of interactions necessary to the user.

This interface allows the user to define what are termed
“machine–machine interactions”, which are to be performed by
the robot, instead of work points in the robot workspace. Such
interactions occur when the robot brings an element (a piece
or a tool) from a given machine to a second one. An interaction
where the robot moves between machines without carrying
anything is not a machine–machine interaction. Indeed, such
an interaction can be deduced from the previous ones, and it
is not necessary to specify it explicitly.

Let us now consider a simple example. The workcell consists
of a robot and three peripheral machines (machine 1, machine
2, and machine 3). The task to be performed is as follows:
grasp a piece from machine 1 twice in succession; place the
pieces on machine 2; grasp a tool on machine 3 and assemble
the pieces on machine 2; bring the tool back to machine 3.

The interface allows the user to describe a machine–machine
interaction by simply clicking successively on the initial and
goal machine names, and by entering the number of repetitions
of the interaction. These steps are illustrated in Fig. 1 for the
interaction between machines 1 and 2.



Fig. 1. Machine–machine interaction definition.

Fig. 2. Interaction sequence description.

While describing the interaction sequence, the user can check
the interactions defined so far, as shown in Fig. 2. All the
interactions are displayed.

The machine sequence (i.e. the order in which the robot
must go to the machines) is then deduced directly from the
interaction sequence. For the example used so far, the sequence
is the following:

mac.1-mac.2-mac.1-mac.2-mac.3-mac.2-mac.3

Next, a rank table, that is used to calculate the cycle time,
is automatically generated (Fig. 3). Thei,i element of the table
is the number of times the robot accesses machinei. The i,j
and j,i elements correspond to the number of movements (not
interactions) between machinei and machinej, whatever the
order. For instance, the 1,2 element is equal to 3: the robot
goes first from machine 1 to machine 2, then from machine 2
to machine 1, and finally from machine 1 to machine 2 again.

4. Workcell Internal Representation

4.1 Machine Geometry Simplification

The 2D machine internal representation proposed is aimed at
simplifying the numerous collision calculations during optimis-
ation. It describes exactly the shape of all rectilinear machines,
i.e. machines composed of some low-level rectangular elements

Fig. 3.The rank table.

(rectangles, for short), such as rectangle-shaped, L-shaped or
T-shaped machines. Shapes such as circles or polygons are
represented only by bounding rectangles, though, such an
approximation is minimal in that the shape of most machines
is rectilinear.

First, the 2D approximate contours of the machines on the
floor space are calculated:

B = { bi /1 # i # m}

where
bi is the bounding rectangle of machinei
m is the number of machines

Next, the set of rectangles that makes upbi is deduced, if
necessary, from the 3D initial representation of the machinei:

Bi = { bij /1 # j # mi}

where
bij is the decomposed rectanglej for the machinei
mi is the number of decomposed rectangles for the machinei

For each partitioned rectanglebij, xij, and yij are thex- and
y-coordinates of the centre of rectanglebij. Let wij and l ij be
the width and the length of rectanglebij. Unless machine
rotation is considered, the structures of their decomposed rec-
tangles would never be changed. We can define the decom-
posed rectangles in a rectilinear machine assolid-connected,
in which, the offsets among these rectangles are kept constant.
Thus, during the placement process, we should keep the offsets
among all the rectanglesbij in a setBi. For simplification, let
xoij and yoij be two constants to represent thex and y offsets
from the centre ofbi to the centre ofbij. For the bounding
rectanglebi of the machinei, xi and yi are thex- and they-
coordinates of the centre ofbi. The width and the length of
bi are wi and li. Then, we can define the centre of a rectilinear
machine i as the centre of its related bounding rectanglebi,
and define thex-offset and they-offset from bi to bij as
xoij = xbij − xi and yoij = ybij − yi, respectively. Figure 4 presents
a simple example to demonstrate the relationship between a
rectilinear machine and its partitioned rectangular cells. All the
variables and constants used in this example are labelled to
illustrate the relationship of these notations.

Fig. 4.The relationship between the bounding rectangleb1 of the
rectilinear machine 1, and its corresponding rectanglesb11 and b12.



4.2 Detection of Overlapping Machines

The previous representation provides a simple function to detect
in 2D the overlap of machines. Indeed, the robot workcell
layout problem is to minimise the cycle time necessary to
achieve a predefined task, under the constraint that the machine
overlap indexCmo is zero. We can defineCmo as follows [20]:

Cmo = Om
i=1

Omi

j=1

Om
k=i+1

Omk

l=1

odij ,kl (1)

In (1), the overlap distance,odij,kl, is a symbolic represen-
tation of the machine overlap betweenbkl and bij. It can be
defined as follows:

odij ,kl = (idij ,kl − dij ,kl) × fh (idij ,kl − dij ,kl) (2)

idij ,kl = minS lbij + lbkl

2 × udxij ,klu
,
wbij + wbkl

2 × udyij ,klu
D × dij ,kl (3)

where idij,kl is the ideal minimum distance betweenbkl and bij

that sets the machine overlap to zero, and functionfh(.) used
in (2) is the 0–1-hardlimit threshold function wherefh(x) = 1
if x . 0, fh(x) = 0 otherwise.

The Euclidean distancedij,kl betweenbkl andbij is defined as:

dij ,kl = Î(dx2
ij ,kl + dy2

ij ,kl) (4)

where dxij,kl = xbkl − xbij and dyij,kl = ybkl − ybij are defined as
the x- and y- coordinate displacements from the centre ofbkl

to the centre ofbij, respectively. Figure 5 presents an example
with a simple L-shaped machine and a rectangular machine to
demonstrate this representation method.

4.3 Workcell Floor Representation

The workcell layout optimisation method presented in this
paper requires the calculation of an initial placement for each
machine. This placement must, in particular, avoid machine
overlaps.

To determine such placements, a workcell floor represen-
tation, derived from the “spatial representation method”
presented in [21], is used. A 2D matrix is updated each time
a machine is added, representing the current layout of the
machines on the floor space. The first row and first column

Fig. 5. An illustration of the overlap distance and the ideal distance.

Fig. 6.Empty floor space representation.

Fig. 7. Representation of a machine placed on the floor space.

of the matrix correspond to thex- and y-coordinates of the
layout. Remaining matrix cells contain “0” or “ 1”, depending
on their occupation by a machine (“0” represents empty
spaces).

Figure 6 shows how the initial floor space is represented.
The initial 2D matrix is shown in a schematic manner, for
better understanding. As mentioned above, the space available
is supposed to be unlimited.

Assume now that a rectangle-shaped machine, named
“machine 1”, dimensions of which arel1 = 40 andw1 = 50, is
placed on the floor such thatx1 = 520 andy1 = 520. The 2D
matrix expands to a 3× 3 matrix, and the floor space is divided
into 9 sections indicated by the dotted lines on the floor
area (Fig. 7).

If an L-shaped machine, named “machine 2”, dimensions of
which are l21 = 30, w21 = 60, l22 = 40 and w22 = 30, is placed
such thatx2 = 300 andy2 = 700, the matrix obtained is 7× 7,
as illustrated in Fig. 8.

As more peripheral machines are placed on the floor space,
the 2D matrix expands step by step to accommodate the
additional information. When a machine is to be placed on the
floor, only empty cells are selected. Thus, this floor represen-
tation will give a fast way of determining possible initial
positions for a machine when the optimisation method is
applied.

Fig. 8. Representation of two machines placed on the floor space.



5. A Constructive Approach Using a
Modified Simulated Annealing Method

5.1 Algorithm Objectives

Whatever the problem to be solved, the basic concept of
constructive algorithms consists in setting up step by step,
subsets of variables until a complete solution is obtained. This
paper concentrates on such a constructive algorithm, where, at
each step, a machine is first selected and then located.

A major advantage of these algorithms is the considerably
lower computational effort required to execute them, in
comparison with iterative improvement methods. Nevertheless,
constructive algorithms are, by their nature, not necessarily
optimal.

Consequently, the scheme for locating the selected machine
must be as unrestrictive as possible and a sufficient number
of possible placements must be encountered. Indeed, a bad
position for the first machines could lead to a high-cost final
workcell layout.

Furthermore, numerous non-reversible choices are made dur-
ing construction, with no knowledge of their consequences.

Accordingly, the main objectives of the method proposed are:

1. To apply at each step an algorithm able to yield the optimal
placement of a machine.

2. To allow multiple possible solutions for the positioning of
a machine, and to delay the choice of a solution as much
as possible in the optimisation process.

The standard constructive algorithms we propose for optimising
assembly workcell layout consists mainly of a rule for selecting
a yet unplaced peripheral machine and a scheme for positioning
and orienting the selected machine on the floor space. These
elements were thus defined with the previous objectives in
mind.

5.2 Machine Selection Rule

An existing rule [6] is used to select successively the machines
to be placed in the workcell. It proved to be quite efficient,
and there was no need to define a new one. We recall its
principle in this section.

The selection of the first machine to be placed is rather
different from the selection of subsequent machines. It is based
on the demand of the machine, i.e. the number of times the
robot must access the machine. The reason for using the
highest-demand value as the criterion is because a machine
with the greatest demand will have the highest interaction with
other machines. Thus, it should be placed first, so that other
machines that have interactions with it can be placed around
it. Should there be more than one machine having the same
highest-demand value, the machine with the smallest base area
will be chosen.

The subsequent machines are chosen according to the follow-
ing criterion:

Ci = On
j=1

Iij

Imaxj

+ kSi (5)

where
Iij is the number of interactions of machinei with the already
placed machinej (i ± j)
Imaxj is the largest interaction value associated with machinej
n is the total number of machines
k is a weighting value assigned to size, and is equal to 0.5
Si is the normalised base area of machinei, defined as follows:

Si =
Amin

Ai

(6)

where
Amin is the smallest base area among the machines
Ai is the area of the machinei

Note: Equations (5) and (6) are privilege machines with small
areas. Hence, large machines will rather be placed at the
periphery of the workcell.

5.3 Machine Placement Scheme

The first machine is placed so that the robot is positioned at
the centre of an “acceptable base location domain section”
[19], as shown in Fig. 9. This choice is purely heuristic: no
cost function calculation is possible yet, as there are no
machines placed on the floor space.

In [6], the method proposed for placing the other machines
yields a single solution. Furthermore, this solution is selected
after exhaustive evaluation of a search space, limited arbitrarily
to make machine boundaries coincide. Indeed, as the criterion
to optimise is the cycle time, nothing ensures that machine
boundaries coincide. The placement obtained is certainly the
optimal solution in the restricted search space, but one can
wonder why it would be at least locally optimal in the space
of all the possible positions for a machine.

Consequently, we propose to use a modified simulated
annealing algorithm, initially designed for optimising welding
robot placement [19]. This algorithm will be described below,
following a brief review of the standard SA method.

The concept of the SA method was described for the first
time in [22]. It involves the Metropolis rule [23] and occurs
in the following way. First, a starting solution for the optimis-
ation is chosen, and labelled as the current solution. Next, a
new solution is picked randomly in the neighbourhood of the
solution. If the new solution has a lower function value than
the current point, it is automatically adopted as the “current”
solution for the next step. If not, then a random number is

Fig. 9. “Centre” of an “acceptable base location domain section”.



computed. That random number determines whether the new
solution will be adopted as the current solution. This gives SA
the ability to jump out of local minima.

The implementation of SA involves prescribing three para-
meters: the probability that a new solution will be accepted;
the so-called temperature reduction function, and the number
of temperature reductions. They are described as follows:

1. The probability that a new solution will be accepted. If
the difference between the cost of the new solutionj and the
cost of the current solutioni is less than zero, then the
probability of acceptance is 1. If the difference is greater than
zero, the probability of acceptance is

p(Dcij,T) = expS−Dcij

T D (7)

where

Dcij = c(j) − c(i)

T is simply a control parameter, which is refered to as the
“temperature”, in the same units as the cost function.

In the beginning, the value ofT is relatively large, so
that many cost-increasing moves are accepted. During the
optimisation process the temperature is decreased gradually so
that fewer and fewer costly moves are accepted.
2. The temperature reduction function. Kirkpatrick [22] pro-
posed a rate of temperature reduction of 0.95. Sechen [24]
pointed out that the system required fewer state changes at
high or low temperatures. However, state change is crucial at
a medium temperature. Therefore, the temperature reduction
rate can be set at 0.8 at the highest and lowest temperatures,
but at 0.95 at a medium temperature. Thus,

Tn = a(T)Tn−1 (0 , a(T) . 1) (8)

where a(T) denotes the temperature reduction rate.
The initial temperature is empirically chosen so as to accept

the first ten layouts encountered at the beginning of the
calculation.
3. The number of temperature reductions. The aim is to
decrease the temperature to 5% of its initial value. Therefore,
the number of temperature reductions can be deduced directly
from the temperature reduction function (8).

As mentioned previously, the algorithm used involves
changes and enhancements to the SA method, so as to improve
the method by increasing the probability of finding the optimal
placement for a peripheral machine. These changes were made
for several reasons. Obtaining several possible positions for
the selected machine fulfils one of the initial objectives: i.e.
multiple choices for the positioning of a machine are made
possible.

In addition, SA requires long computation times. One reason
for the extensive computation is that SA cannot distinguish a
local minimum from an ordinary solution, unless it visits the
very bottom of the local minimum. During the initial phase,
when the temperature is high, SA samples a large area of the
search space, but goes deep into the local only much later,
when the temperature has been lowered. This means that, even
if the machine enters the global minimum’s attraction valley
early, SA will not perform a local search, but will continue

to search the entire domain. This is highly undesirable. It
would be advantageous to build some “opportunism” into the
conventional SA method, so that it commits itself to local
explorations in the early stages of the search.

The optimisation algorithm was designed to achieve this
purpose, with two new features:

1. Freeze-heat cycles. In order to produce a solution to the
local-exploration problem, two factors are important. The
first is that, committing to a local search, means, in practice,
performing a gradient descent. The second factor is that SA
is equivalent to a gradient descent when the temperature is
close to zero. Thus, in order to add opportunism to the SA
algorithm, it is enough to take the temperature down to
nearly zero for as long as it is required, to reach the bottom
of the local minimum. Afterwards, the temperature can
resume its initial decay schedule. This scheme is called the
“freeze–heat cycle”.

2. Remembering local minima. Ideally, it would be advan-
tageous to explore a minimum pit as fast as possible
(freezing), escape from it as fast as possible (heating), and
never visit it again. In order to avoid revisiting the same
local minima, a list of all the local minima found so far is
stored, together with an estimate of their attraction domains.
For this purpose, the attraction domain of a local minimum
is defined as the set of all the machine locations from
which a gradient descent is supposed to terminate at this
local minimum. Practically, such sets are impossible to
describe analytically, and an attraction domain will corre-
spond to a circle centred on the local minimum, which
passes via the initial base location of the gradient descent.
Any time later during the search that gradient descent from
another location, which is outside an attraction domainA,
terminates in a configuration which is insideA, the size of
attraction domainA is updated to include the location,
resulting in an expanded attraction domain. Such attraction
domains may overestimate the size of a real local minimum
attraction domain. However, the modified method is formu-
lated so that this does not affect the convergence properties
of the SA method, while giving better results. Gradient
descent will indeed be initiated only from configurations
that are outside any existing attraction domain; while a
configuration is within an attraction domain, SA will keep
performing random steps, yielding possibly a new minimum.

We recall that the major feature of the modified SA proposed
is its ability to find a set of possible placements for the
selected machine. Furthermore, the positions calculated are
local minima of the cost function, in a search space limited
only by the constraints mentioned in Section 2.

The cost function is calculated from Eq. (9) below:

Fi = On
j=1

tij × Iij (9)

where
tij is the time necessary for the robot to move from machine
i to machinej
Iij is the number of interactions of machinei with the already
placed machinej (i ± j)



n is the number of already placed machines
Note: the value oftij is obtained using the standard functionality
available in CAD/CAM/CAE systems.

Before evaluatingFi for a given placement of the selected
machine, the accessibility of the access point and the absence of
overlapping are verified. The feasibility of the robot movements
between the placed machines is also guaranteed; the standard
functionality used to calculate move times returns an error
message if a robot movement is impossible.

The initial machine position and orientation that are used as
the initial solution by the modified SA are determined using
the workcell floor representation described in Section 4.3. A
sufficient number of empty matrix cells are selected, so that
one of the boundaries of the machine to be placed coincides
with an already placed machine. Even if such a location does
not guarantee a good function value, it is privileged at the
beginning to minimise the spaces between the machines.

5.4 Partial Layout Selection Rule

At each step of the constructive algorithm, a machine is
selected (Section 5.2) and the modified SA is used to determine
several possible placements of the selected machine (Section
5.3). Hence, a partially constructed layout, that containsn
already placed machines, yields a set ofm layouts containing
n + 1 machines, wherem corresponds to the number of possible
locations for the machine to place.

Constructing the layouts for all the machine placements
found would be computationally explosive. Therefore, a partial
layout selection rule is necessary. This rule is an additional
feature in comparison with standard constructive methods.

The scheme is as follows: among all the partial layouts
generated after a construction step, keep thek best ones. The
most efficient value fork proved experimentally to be 5. It
yielded the best “cycle time/CPU time” ratio.

At the end of execution, five optimal workcell layouts are
thus provided to the user. Such a result is useful since,
generally, the geometric modelling of the workcell does not
represent the real-world with enough accuracy. Computing a
single solution could give a result which is not achievable in
the real-world if the neighbourhood of the solution is not
well conditioned.

6. A Case Study

6.1 Assembly Workcell Description

Three-dimensional assembly workcell elements (Fig. 10) were
designed in IGRIP from the 2D representation of a representa-
tive robotic assembly cell proposed in [24] (Fig. 11). This
workcell has already been relaid out by Tay and Ngoi [6],
considering a Cartesian robot and the Euclidean distance
between the machine access points as the criterion to be mini-
mised.

A modification of the example from [25] was made so that
it is more realistic: i.e. replacing the SCARA robot used in

Fig. 10.Three-dimensional assembly workcell components.

Fig. 11.Initial workcell layout representation in 2D.

the example by an anthropomorphic robot (ACMA X58), which
is the most widespread robot type in industry.

The operation sequence of the example is as follows [6]:

1. The robot grasps drive shafts 6 times in succession from
machine 6 and places them in the 6 assembly fixtures on
the circular index table (machine 1).

2. A combination of bearings and thrust washers is obtained
from machine 7 and fitted onto the fixture at machine 1, 6
times in succession.

3. The robot then grasps the grease-metering unit, machine 2,
and applies grease to all the housing inner teeth of the 6
fixtures at machine 1.

4. A stepped shaft is grasped 6 times at machine 8 and fitted
to the housing at machine 1.

5. Three cylindrical pins are grasped in sequence at machine
4 and fitted into the stepped shaft at machine 1. This
procedure is repeated 6 times in sequence.

6. Three gear wheels are grasped 6 times in succession from
machine 3 and placed onto the pins.

7. A fan wheel is gripped 6 times at machine 9 and fitted to
the drive shaft at machine 1.

8. A spring nut obtained from machine 5 is fitted to each
drive shaft at machine 1.



Fig. 12.The size table.

9. The final assembled unit is removed from the index table
and placed on the conveyor belt (machine 10).

Figures 12 and 13 show the size and the rank tables gener-
ated from the above operation sequence, respectively.

From the previous tables, the values ofCi (see Eq. (5)) can
be calculated at each step of the program. The order in which
the machines are placed is as follows:

mac.1− mac.7− mac.4− mac.5− mac.9− mac.6− mac.8−
mac.3− mac.10−mac.2

6.2 Analysis of the Results

Modified SA is a stochastic method. Hence, results from the
algorithm proposed may vary, depending on the execution.
Both layouts presented in this section were obtained from a
single application, in order to illustrate the results. Figure 14
shows the optimal layout, whereas Figure 15 presents another
of the five solutions calculated, which is nearly optimal. Note
that there are spaces between the machines for both layouts.

The method proposed by Tay and Ngoi [6] was modified
and implemented in IGRIP so that comparison was possible:
the robot used is an ACMA X58, instead of a Cartesian robot;
the cost function is the cycle time. The layout obtained, which
was termed “T&N layout”, is shown in Fig. 16.

Table 1 gives the cycle times for the layouts shown in Figs
14, 15, and 16. Table 2 indicates the computation times neces-
sary for both methods for optimising the workcell layout.

Accordingly, the optimal layout results in a reduction in the
cycle time of 24.65 s compared to the T&N layout, which is
an improvement of 10.2%. Nevertheless, it can be noted that
the total area of the optimal layout is greater than the area of
the T&N layout, as spaces appear between some of the
machines.

The near-optimal layout, shown in Fig. 15, may be a very
good solution in the event of additional constraints not con-

Fig. 13.The rank table.

Fig. 14.The optimal layout generated by the program.

Fig. 15.Another layout generated by the program.

sidered in this study. Indeed, such constraints may show the
inadequacy of the optimal layout, and the near-optimal layout
might become, in such a case, a new optimal solution.

The computation time corresponding to the algorithm pro-
posed is much greater than T&N. Nevertheless:

1. It is compatible with the use of the algorithm in the context
of an industrial CAD/CAM/CAE system.

2. Several layouts are obtained.
3. The search space associated with the problem, i.e. the search

space containing all the possible layouts, is explored widely,
unlike the T&N method. Then, the computation time



Fig. 16.The T&N layout.

Table 1.Cycle times.

Optimal layout Near-optimal T&N layout
layout

Cycle time (s) 216.7 219.25 241.35

Table 2.Computation times.

Presented algorithm T&N algorithm

CPU time (s) 282.6 55.8

Table 3.Cycle times.

Mean (s) Standard deviation (s)

Optimal layout 214.22 2.64
Worst near-optimal layout 216.31 1.89

obtained is thereby a larger proportion of the time necessary
to reach an optimal solution of an assembly workcell
layout problem.

6.3 Statistical Results

As mentioned previously, the method is stochastic. Hence,
statistical results are essential to study its performance. The
program was executed 50 times in succession. Table 3 gives
means and standard deviations of the cycle times. “Optimal
layout” means, in fact, “best layout of the five obtained”, and
“worst near-optimal layout” means, “worst layout of the five
obtained”. Table 4 corresponds to computation time.

Table 4.Computation time.

Mean (s) Standard deviation (s)

276.23 8.72

The results obtained in the previous section are confirmed
by these results. Note that the algorithm proposed yields on
average an improvement of 11.2% compared to the T&N
method, and that the best layout obtained resulted in a cycle
time of 209.65 s.

7. Conclusion

In this paper, a method for optimising assembly workcell
layout has been presented. Given a fixed sequence of oper-
ations, peripheral machines are positioned around the robot
performing the task, with the aim of minimising the cycle
time. The algorithm combines a constructive approach with a
modified simulated annealing method. For the example used,
this hybrid algorithm gave an important improvement in the
cost function, together with other near-optimal layouts.

The major contribution of this work is that the problem is
solved using an industrial CAD/CAM/CAE software product,
IGRIP, with few restrictive working hypotheses. Applying the
method yields several reliable optimal solutions to complex
industrial cases.
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