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Abstract. Symmetric ciphers operating in (small or mid-size) prime
fields have been shown to be promising candidates to maintain security
against low-noise (or even noise-free) side-channel leakage. In order to de-
sign prime ciphers that best trade physical security and implementation
efficiency, it is essential to understand how side-channel security evolves
with the field size (i.e., scaling trends). Unfortunately, it has also been
shown that such scaling trends depend on the leakage functions and
cannot be explained by the standard metrics used to analyze Boolean
masking with noise. In this work, we therefore initiate a formal study
of prime field masking for two canonical leakage functions: bit leakages
and Hamming weight leakages. By leveraging theoretical results from the
leakage-resilient secret sharing literature, we explain formally why (1) bit
leakages correspond to a worst-case and do not encourage operating in
larger fields, and (2) an opposite conclusion holds for Hamming weight
leakages, where increasing the prime field modulus p can contribute to a
security amplification that is exponential in the number of shares, with
log(p) seen as security parameter like the noise variance in Boolean mask-
ing. We combine these theoretical results with simulated experiments and
show that the interest masking in larger prime fields can degrade grace-
fully when leakage functions slightly deviate from the Hamming weight
abstraction, motivating further research towards characterizing (ideally
wide) classes of leakage functions offering such guarantees.

1 Introduction

Security against differential side-channel analysis [26], where an adversary con-
tinuously accumulates leakage about a long-term secret, is needed for any sym-
metric authentication or encryption scheme with embedded security guaran-
tees [5]. Masking is the main countermeasure to mitigate such attacks [16,23].1
It can be viewed as multi-party computation on silicon, where the (e.g., symmet-
ric) cryptographic algorithm is executed on d shares. Informally, masking forces
1 The only known alternative is to rely on fresh re-keying with a leakage-resilient

PRF [4], which is only exploitable in tailored designs such as ISAP [17].
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the adversary to combine the leakage of different shares in order to gain infor-
mation on the long-term secret. A broad sequence of works has investigated the
theoretical security guarantees that such schemes provide and connected them
to practical (e.g., noisy leakage) models [25,40,18,19,39,34]: they show that un-
der some noise and independence assumptions, masking can lead to exponential
security amplification. The independence assumption has been the focus of sig-
nificant research efforts over the last decade and established design and proof
techniques enable to ensure it to a sufficient extent [38,21,36,14]. The noise con-
dition has been more investigated from the adversarial viewpoint and several
works showed that the requirement is strict for binary ciphers [2,24,35,11], hence
calling for masked operations that manipulate each share minimally [1,13].

Concretely, the weakness of masking in low-noise settings is due to the strong
algebraic compatibility between leakage functions observed in practice, such as
the Hamming Weight (HW) leakage function, and operations performed in bi-
nary fields. For example, say an adversary is able to observe the noise-free HW
of Boolean shares (processed in serial or in parallel). Then, just observing the
parity of the leakages provides easily exploitable information about the secret,
regardless of the number of shares [43]. By adding noise to the leakages, de-
signers essentially ensure that this algebraic compatibility is sufficiently hidden
so that the only remaining attack path is statistical (i.e., requires to estimate
a high-order moment of the leakage distribution [41,37]). A bit more formally,
the reason of this weakness is that the finite group over which masking operates
has non-trivial subgroups in the binary case. If the support of the Probability
Mass Function (PMF) of each share given the leakage is contained in a coset of a
non-trivial subgroup, then the PMF of the corresponding secret is also contained
in a coset of the same subgroup [44]. As a consequence, the support of the secret
PMF cannot be full, which results in an amount of informative leakage about
the secret that cannot be arbitrarily low, regardless of the number of shares.

In order to circumvent this issue, Dziembowski et al. showed that the finite
group in which the masking operates should not have any non-trivial subgroup,
which characterizes prime fields [20]. This seed result has recently triggered an
interest for prime-field masking in symmetric cryptography. Early works in this
direction show that ciphers that natively operate in prime fields have a good
potential to leverage the excellent properties of prime-field masking. They could
in turn enable better implementation security vs. efficiency tradeoffs than binary
ciphers, especially in low-noise settings, and with only mild overheads when
side-channel attacks are not a concern [33,12]. Yet, these results also show that
taking full advantage of this potential requires understanding the scaling trends
of prime-field masking. In particular, one central open question of which the
answer could guide the design of new prime ciphers is whether increasing the
prime modulus is beneficial to side-channel security (and by how much)?

Both the empirical evaluations in [33] and the theoretical results in [20] sug-
gest that answering this question is non-trivial. On the empirical side, Masure
et al. showed that the interest of increasing the prime modulus depends on the
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leakage function. For example, a larger modulus improves the security amplifi-
cation of masking for (noise-free) HW leakages while it does not for (noise-free)
LSB leakages. Such a dependency on the (deterministic part of) the leakage func-
tion implies that the standard tools and metrics used to characterize Boolean
masking are unlikely to explain the scaling trends of prime-field masking. This
is because Boolean masking is only effective if leakages are sufficiently noisy, so
that the deterministic part of the leakage function is essentially lifted in this
case. As a result, the security amplification of Boolean masking only depends on
the informativeness of the shares’ leakages, classically measured with the Mutual
Information (MI) or Statistical Distance (SD). But the HW of a value is more
informative than a single-bit leakage according to these metrics, which does not
back up the observations of [33]. As for the theoretical side, the noise amplifi-
cation bounds provided in [20] are not tight for our purpose and do not suggest
that increasing the size of the field in which masking operates is beneficial.

Based on this state of the art, the main goal of this paper is to provide theo-
retical explanations for previous empirical observations on prime-field masking,
in order to establish foundations on which prime ciphers could be designed. In-
terestingly, it turns out that the case of bit (e.g., LSB) leakages has been the
topic of (for now mostly theoretical) investigations in the context of leakage-
resilient secret sharing, and extended towards any deterministic leakage model
with a bounded range [7,27,31,8,28,30,29]. Among others, these works show that
bit leakages are in some sense the most powerful leakage functions with bounded
range, which therefore raises the question whether more positive results could
be obtained for other, ideally more realistic, leakage functions.

In order to provide a complete analysis, we study the leakage resilience with
respect to average-case and worst-case metrics. The average-case metric consid-
ers leakage from a masked random secret and is prominently used by the physical
security community (since choosing plaintexts otherwise than uniformly at ran-
dom has been shown to bring limited gains in this context [45]). On the other
hand, worst-case security considers the resistance of masking for a worst-case
choice of the secret. The latter is a standard notion in the cryptographic theory
community, and, e.g., is used by the aforementioned results on leakage-resilient
secret sharing. Interestingly, we show that for the LSB leakage function the anal-
ysis can be tightened when considering the weaker, yet realistic, average-case
metric. To sum up, we achieve the following theoretical results:

– For bit leakages, we show that for both the average-case and worst-case
metric, increasing the prime modulus in prime-field masking cannot lead
to increased security. This confirms formally the experimental observations
from [33]. On the positive side, our analysis for the average-case improves
existing bounds from the worst-case setting by a constant factor.

– For Hamming weight leakages (which, to the best of our knowledge, were
not formally studied so far), we show that for both the average-case and
worst-case metric, increasing the prime modulus p can contribute to a secu-
rity amplification that is exponential in the number of shares, with log(p)
serving as a security parameter like the noise variance in Boolean masking.
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In contrast to prior work on leakage-resilient secret sharing, our analysis
takes into account that the range of the HW leakage function scales with
the underlying field size. Concretely, we show that the distinguishing ad-
vantage approaches 0, while naively applying bounds from the literature on
leakage-resilient secret sharing only gives a trivial upper bound of 1.

In Table 1, we provide a summary of our contribution within the existing
literature, with references to the corresponding theorems in this paper. We re-
mark that, for Hamming weight leakage, this work only considers upper bounds.
The rationale behind this decision is our primary focus in arguing about how the
security improves when increasing the field size. Nonetheless, we recognize the
interest in quantifying the minimal information derived from a Hamming-weight
leakage attack, which we leave as an open research question.

Bit Leakage Hamming Weight
Worst-case upper bound: Theorem 1 [7] upper bound: Theorem 6

lower bound: Theorem 4 [29] lower bound: open problem
Average-case upper bound: Theorem 1 [7] upper bound: Theorem 8

lower bound: Theorem 5 lower bound: open problem

Table 1: Overview of the results for the security of additive secret sharing against
bit and HW leakage, for both the worst-case and the average-case metric.

Hence, our results indicate that for the Hamming weight leakage function,
there is theoretical support to design ciphers that operate in larger prime fields
(which should then be weighted with the performance overheads this increase
leads to). Quite naturally, they also raise the question whether concrete leakage
functions that are close to but not exactly equal to the Hamming weight function
maintain this interest. In order to stimulate research in this direction, we combine
our theoretical analyzes with a simulated experiment, where we evaluate linear
leakage functions that gradually deviate from the Hamming weight function.
While extreme deviations lead to bit-like leakages where increasing p does not
help (e.g., if a single bit leaks with such a high contribution to the overall leakage
that it can be isolated), we show that this loss is gradual and that a broad class
of leakage functions maintains the interest of Hamming weight leakages.

Finally, and despite we primarily use techniques in the context of leakage-
resilient secret sharing to improve the understanding of masking in prime fields,
our results come with observations that could be relevant for (more theoretical)
research on leakage-resilient secret sharing as well. For example, the average-
case security notion allows us to obtain tighter bounds for LSB leakages, and it
would be interesting to study whether similar gains can be obtained for other
practically-relevant leakage functions. In this respect, we note that for many
applications of leakage-resilient secret sharing (e.g., in threshold cryptography
for sharing a random secret key), the average-case notion suffices. In addition,
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our work highlights the importance of achieving good bounds when the range of
a leakage function increases with the underlying field. We believe this is a quite
natural generalization that could also be relevant in the domain of leakage-
resilient secret sharing and opens up avenues for future research.

2 Background

Notations. In this paper, calligraphic letters like S denote sets, small letters
like x denote elements of a given set, and capital letters like X denote random
variables over a given set. The notation X← S means that X is uniformly drawn
from S. If f : A → B denotes a function mapping a set A to an image set B,
and y ∈ B, f−1(y) denotes the pre-image set of all values x ∈ A such that
f(x) = y. For a set S ⊆ A, we denote by 1S : A → {0, 1} the function mapping
any x ∈ A to 1 if and only if (i.f.f.) x ∈ S and to 0 otherwise. In particular,
when considering characteristic functions over pre-image sets, we may use the
shortcut notation 1y to denote 1f−1(y) as long as there is no ambiguity on f .

Masking. For a finite field Y = Fp of prime size p, let Y ∈ Y be a sensitive
value — i.e., depending on a chunk of secret. To protect Y against a too much
informative leakage, let Y1, . . . ,Yd be d random variables uniformly drawn from
Y, such that Y = Y1+ . . .+Yd. This encoding is commonly referred to as mask-
ing, and the corresponding random variables are called shares. The adversary is
then given access to a random vector L = (L1, . . . ,Ld) such that each random
variable Li, also known as leakage, solely depends on the realization of Yi. In
the remaining of this paper, we make the additional assumption that we are in
a low-noise setting, i.e. that each leakage Li is a deterministic (non-injective)
function randomized by its input Yi.2

2.1 Quantifying the Distance to Uniform

To quantify the distance to the uniform distribution over Y, we will use different
metrics. Let p,m be two Probability Mass Functions (PMFs) over the finite set
Y. We denote by TV(p;m) the Total Variation (TV) between p and m:

TV(p;m) =
1

2

∑
y∈Y
|p(y)−m(y)| . (1)

We will sometimes denote with TV
(
X(0);X(1)

)
the total variation for the PMFs

corresponding to the random variables X(0),X(1). Adapting the terminology from
2 The literature of noise amplification bounds does not directly assume a noise-free

setting, as it can be encompassed in the noisy leakage framework. On the opposite,
to the best of our knowledge it is more common in the literature about the leakage-
resilience of linear secret sharing schemes to rely on this assumption [8,29].
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Prouff & Rivain [40], we define the statistical bias as Duc et al. [18]:

β(Y|L) = E
L

[
TV
(
pY | L; pY

)]
= TV

(
pY,L; pY⊗ pL

)
, (2)

where ⊗ denotes the Cartesian product between two marginal probability distri-
butions.3 Notice that β is symmetric in its arguments, i.e., β(Y|L) = β(L|Y) =

E
Y

[
TV
(
pL | Y; pL

)]
. In the particular case of masking — which will be the main

focus in this paper — the latter one can be rephrased as

E
y←Y

[TV(L (AddEnc (y)) ;L (AddEnc (Y)))] ,

where AddEnc (·) is a random function that maps a secret value with one of
its additive encodings. The bias is actually the average Total Variation (TV)
between two PMFs. This definition is usual in papers dealing with masking
against side-channel analysis. Note that this metric depends not only on the
chosen leakage model, but also on the underlying distribution of the secret.
That is why some related works [7] also considered a variant of this metric that
we call worst-case bias:

M∞ (L) = max
y(0),y(1)∈Y

TV
(
L
(
AddEnc

(
y(0)

))
;L
(
AddEnc

(
y(1)

)))
.

Here, the expectation is replaced by a maximum over the product set of secrets
Y. As a result, it follows that for all random variable Y:

β(Y|L) ≤ M∞ (L) ≤ p · β(Y|L) . (3)

2.2 The Limits of Generic Noise Amplification Bounds

So far, the literature of masking security proofs provides bounds on the statistical
bias of the following shape:

β(Y|L) ≤ f(δ1, . . . , δd), if δi < t for all i ,

where δi stands for the statistical bias between one share Yi and its correspond-
ing leakage Li, t is a threshold for which the bound is valid, and f is a decreasing
function with its arguments and converging exponentially fast with d towards
0 [20,3]. These so-called noise amplification bounds in the literature have the
main strength of being tight, i.e., there exists a leakage model such that the in-
equality becomes an equality. They also have the advantage of being universal,
which means that they do not depend on the nature of the underlying leakage
3 The first equality is used in noise amplification papers [40,20,34] and aims at quanti-

fying how the distribution of the secret deviates from the prior knowledge whenever
some side information L is available. The second equality is used in simulation-based
proofs [18], and rather aims at quantifying how the side information L changes when-
ever the secret is known.
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model, provided that the latter one verifies β(Yi|Li) ≤ δi for all i ∈ J0, dK. This
would strongly suggest the intuitive idea that when comparing two leakage mod-
els applied on each share, the higher the δi for all i, the higher the bias β(Y|L).
In other words, the leakier each share, the leakier the resulting secret.

To discuss this intuition, let us take as an example two well-known leakage
models. The first one is the Hamming Weight (HW), the leakage function re-
turning the sum of bits of the underlying leaky variable, i.e., HW(y) =

∑n
i=0 yi.

Lemma 1 (Bias of Hamming weight). For n ∈ N⋆ and p = 2n − 1, let
Y← Zp and let L = HW(Y). Then the statistical bias between Y and L verifies

β(Y|L) = 1−
(
2n
n

)
− 1

(2n − 1)
2 ≈ 1− 1√

πn
. (4)

We also consider a second leakage model where a proportion α of the n bits
leaks. In other words, the leakage function ℓS returns the bits ys1 , . . . , ysαn

where
S = {s1, . . . , sαn} is a set of αn indices.

Lemma 2 (Proportion of leaky bits). For n ∈ N⋆ and p = 2n − 1, let
Y← Zp and let L = (Ys1 , . . . ,Ysαn

). Then the statistical bias between Y and L
verifies

β(Y|L) = 1− 2n(1−α)

2n − 1
+

2n(1−α) − 1

(2n − 1)
2 . (5)

In particular, for the LSB leakage model, α = 1
n , we have β(Y|L) ≈ 1

2 −2−(n+1).

Lemma 1 and Lemma 2, proven in Appendix B, tell us that a share leak-
ing in Hamming Weight (HW) is leakier than the same share leaking in Least
Significant Bit (LSB).4 Even more, for the HW leakage model, the amount of
leakage increases with the field size, whereas it remains nearly constant in the
LSB leakage model. We would therefore expect a target device protected with
masking and leaking the LSB of each share to be more secure than the same
device leaking in HW. Furthermore, we would expect that in the latter case,
increasing the field size could be harmful. But the observations of Masure et
al. [33, Fig. 3] — measured in terms of MI — contradict both intuitions: not
only the HW behaves not worse than the LSB leakage with masking in Fp , but
increasing the field size seems helpful to get a better leakage-resilience.

2.3 Refined Bounds through Fourier Analysis

A recent line of works have studied the so-called local leakage resilience of secret-
sharing schemes designed over prime fields [7]. As a perhaps unexpected appli-
cation of their framework (initially devoted to the security of MPC protocols),

4 This is true regardless of the choice of the metric, i.e., similar trends hold when
considering the Mutual Information (MI).
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Benhamouda et al.’s framework can be used to refine the noise amplification
bounds prone to the limitations emphasized at the previous subsection.

Their framework relies on the Fourier analysis of leakage functions of each
share. That is why we first recall a few facts about Fourier analysis.

Definition 1 (Discrete Fourier Transform). Let f : Zp → C be a function
over the cyclic group Zp. Then the Discrete Fourier Transform (DFT) of f of
harmonic α — or the α-th Fourier coefficient of f for short — is defined as

f̂(α) =
1

p

∑
y∈Zp

f(y)e−
2παy

p i . (6)

Next, we list some interesting properties of the discrete Fourier transform.

Proposition 1 (Parseval). Let f, g : Zp → C. Then

1

p

∑
y∈Zp

f(y) · g(y) =
∑
α∈Zp

f̂(α) · ĝ(α) .

In particular, this implies

1

p

∑
y∈Zp

|f(y)|2 =
∑
α∈Zp

∣∣∣f̂(α)∣∣∣2 . (7)

Proposition 1 tells us that the DFT is an isometry for the Euclidean norm, up to
a normalizing field-size factor. We next need another well-known formula from
Fourier analysis, namely the Poisson summation formula.5

Proposition 2 (Poisson Summation Formula). Let F be a finite field, and
let C ⊆ Fd be a linear code with dual code C⊥. Let f1, . . . , fd : F → C be
functions. Then the following inequality holds:

E
x←C

 d∏
j=1

fj(xj)

 =
∑

α∈C⊥

d∏
j=1

f̂j(αj) .

As observed in [7], the Poisson Summation Formula can be leveraged to link
total variation and Fourier coefficients.

Proposition 3. Let Fp be a prime field of size p. Then, for all y(0), y(1) ∈ Fp :

TV
(
L
(
AddEnc

(
y(0)

))
;L
(
AddEnc

(
y(1)

)))
=

1

2

∑
ℓ∈Ld

∣∣∣∣∣∣
∑
α∈F⋆

 d∏
j=1

̂1L−1
j (ℓj)

(α)

(e− 2iπαy(0)

p − e−
2iπαy(1)

p

)∣∣∣∣∣∣
. (8)

5 For a more general statement of Proposition 2 concerning any linear code, see [7].
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Furthermore, if Y follows the uniform distribution over Fp , then for every y ∈
Fp , TV(L (AddEnc (y)) ;L (AddEnc (Y))) equals

1

2

∑
ℓ∈Ld

∣∣∣∣∣∣
∑
α∈F⋆

 d∏
j=1

̂1L−1
j (ℓj)

(α)

 e−
2iπαy

p

∣∣∣∣∣∣ . (9)

Stated as is, the right-hand sides of the equalities in Proposition 3 are not
numerically tractable, as they sum over Ld, which becomes quickly hard when
the range of L or d increase. Monte-Carlo estimations can be used to partially
circumvent the problem [33]. But the core idea of such simulations is to leverage
the phenomenon of concentration of probability distributions in high-dimensional
spaces [9]. In this respect, they are efficient whenever the dimensionality of the
leakage space — d here — increases, but not necessarily whenever the range of
L increases, which is the core question of this paper. That is why we leverage
another corollary from Benhamouda et al.6

Corollary 1 (Cauchy-Schwarz [8, p. 30, restated]). Let L = (L1, . . . ,Ld)
be any family of leakage. Then, M∞ (L) is upper bounded by

1

p

(∑
ℓ1

∥∥∥1L−1
1 (ℓ1)

∥∥∥
2

)
·

(∑
ℓ2

∥∥∥1L−1
2 (ℓ2)

∥∥∥
2

)
·

d∏
j=3

∑
ℓj

max
α∈F⋆

∣∣∣ ̂1L−1
j (ℓj)

(α)
∣∣∣
 . (10)

Corollary 1 provides an upper bound for the worst-case metric as a product
of d sums over L, whose complexity grows linearly with both the range of L and
d. Hence, the right-hand side of Equation 10 is much more tractable and can be
exactly computed — up to negligible numerical errors. Benhamouda et al. also
leverage Corollary 1 to establish an upper bound of the worst-case metric for
any noise-free m-bounded leakage function, i.e., any function that can take up
to 2m different values, for some integer m.

Theorem 1 ([7, Thm. 4.7], restated). For a secret Y ← Fp protected with
additive secret sharing, let L = (L1, . . . ,Ld) be any family of leakage functions
where Li : Fp → {0, 1}m. Let cm = 2m sin(π/2m)

p sin(π/p) < 1 (when 2m < p). Then,

M∞ (L) ≤ 2m · cd−2m . (11)

For the average-case metric with uniform Y, the upper bound stays the same,
but with the additional multiplicative factor 1

2 .

Equation 11 provides a non-trivial upper bound on the worst-case bias when-
ever the field size p increases. This upper bound is asymptotically tight, as Maji
et al. have exhibited a leakage function, namely the LSB, for which there is a
lower bound asymptotically matching the right-hand side of Equation 11, up to a
6 The Cauchy-Schwarz trick has already been used in the noise amplification bound

of Prouff & Rivain [40, Thm. 1], although applied to another metric.
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small constant factor. Theorem 1 thereby provides an upper bound on the statis-
tical bias, as it can be trivially upper bounded by the worst-case bias. Therefore,
the only missing inequality to get a comprehensive view of the leakage-resilience
of m-bounded leakage functions is a lower bound on the statistical bias. This will
be the focus of section 3. Furthermore, we note that in Theorem 1 the right-hand
side of Equation 11 is non-trivial when p increases if and only if the range m
of the leakage function is constant. This assumption does not always hold, and
there are concrete counter-examples of leakage functions for which the range m
depends on the field size, such as the HW — where m ≈ log log p. As a result,
one should go back to Corollary 1 to tighten the upper bound through a refined
analysis of the Fourier coefficients of the specific leakage function under study.
We will instantiate this approach for the HW leakage in section 4.

3 Bit leakages

In this section, we investigate how the information derived from bit leakage
is affected by the field size. Our findings indicate that this leakage model ex-
hibits limited sensitivity to changes in the field size, up to the point that we can
lower-bound the amount of information by a constant in p. As an initial step, we
provide an outlook on a prior result of Maji et al. [29]. In their work, they already
showed that the information deriving from LSB leakage can be lower-bounded
by a constant in p in the worst-case scenario. Following, we demonstrate that
the weak noise amplification observed in the worst-case setting actually occurs
for a large fraction of secrets. In other words, we provide a lower bound that is
independent of p for the LSB in the average-case metricl. Eventually, we move
out of the LSB leakage model and achieve the same lower bounds for the more
general case of bit probing. We conclude that there is a barrier beyond which
security against bit probing cannot be enhanced by increasing the field size.

In the first part of this section, we consistently work in the LSB leakage
model. Henceforth, unless specified differently, we use the more general notation
L : Fd+1

p → {0, 1}d+1 for the function returning the LSB of every component.

3.1 Worst-case characterization

With the following theorem, we recall the LSB analysis in the worst-case metric
of [29]. Their main observation is that the information obtained from LSB leakage
can be lower-bounded by a constant in p in the worst-case scenario.

Theorem 2 ([29, Thm. 10], restated). Let p be a prime ≥ 3. Then, for
every number of shares d ∈ N

M∞ (L) ≥ 1

2
·
(
2

π

)d

·

[
3

2
− 4

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]

. (12)
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We note that the above result is non-trivial only when the right-hand side
is non negative, which happens for every d ≥ 3. We remark that Theorem 2
slightly differs from [29, Thm. 10]. This is because the latter is only stated
asymptotically, while the actual parameters only appear inside the corresponding
proof. In Theorem 2, we condense the information from [29] to provide a more
comprehensive version of the same statement.

3.2 Average-case characterization

Given that M∞ (L) ≤ p · β(Y|L) (from Eq. (1)), Theorem 2 already yields a
lower bound to the average-case metric, that is

β(Y|L) ≥ 1

2p
·
(
2

π

)d

·

[
3

2
− 4

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]

. (13)

In contrast with the worst-case result, this lower bound could suggest that in-
creasing the field size may result in a more effective strategy against LSB attacks
for random secrets. In other words, the possible tightness of Eq. (13) would re-
veal that only a handful of secrets yield the weak noise amplification observed
in the worst-case scenario. In fact, we show that the lower bound of Eq. (13) can
be improved to remove the dependence on p. This means that the weak noise
amplification involves the majority of secrets, and thus must be considered in
the randomized setting as well. We make this finding formal with Theorem 3.
From a technical standpoint, our key observation is that Eq. (12) can be slightly
modified to lower-bound the information derived from at least half of the pos-
sible secrets. Later in the section, we provide a discussion of our results, and
explore their applicability within the broader bit-probing model.

Theorem 3. Let p be a prime ≥ 3 and d ∈ N be any number of shares. Let Y
be the uniform distribution over Fp . Then β(Y|L) is lower-bounded by

1

2
·
(
2

π

)d

·

[
p+ 1

2p
·
√
2 ·

√
1− sin

(
π

2p

)
− 2 ·

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]

.

As for the worst-case analysis of [29], this lower bound is non-trivial whenever
d ≥ 3.

We now outline the proof of Theorem 3. As in [29], the first step is to rewrite
the Statistical Distance (SD) in the Fourier domain. Using Eq. (9) from Propo-
sition 3, we get

β(Y|L) =
1

2p

∑
y∈Fp

∑
ℓ∈{0,1}d

∣∣∣∣∣∣
∑
α∈F⋆

 d∏
j=1

̂1L−1
j (ℓj)

(α)

 e−
2iπαy

p

∣∣∣∣∣∣ . (14)

As observed in [29, Claim 15], the LSB Fourier coefficients for α ∈ F∗ satisfy

1̂L−1
j (0)(α) = −1̂L−1

j (1)(α) =
1

2p
· 1

cos(πα/p)
· e

iπα
p .
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Therefore, Eq. (14) becomes

β(Y|L) =
2d−1

p

∑
y∈Fp

∣∣∣∣∣∣
∑
α∈F⋆

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

e−
2iπαy

p

∣∣∣∣∣∣ .
Similar to [29], we observe that the dominant terms are those corresponding

to α =
{

p−1
2 , p+1

2

}
. However, since we consider an average-case metric, the

above observation needs to hold for a large enough set of field elements y ∈ Y.
Therefore, the proof relies on the following lemmas.

Lemma 3. Let p ≥ 3. There exist a subset Ỹ ⊆ Fp such that every y ∈ Ỹ
satisfies ∣∣∣∣∣∣∣

∑
α∈{ p−1

2 , p+1
2 }

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

· e−
2iπαy

p

∣∣∣∣∣∣∣
≥ π−d ·

√
2 ·

√
1− sin

(
π

2p

)
.

(15)

Lemma 4. Let p ≥ 3. For every secret y ∈ Fp , it holds∣∣∣∣∣∣∣
∑

α∈F⋆\{ p−1
2 , p+1

2 }

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

· e−
2iπαy

p

∣∣∣∣∣∣∣
≤ 2π−d ·

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)
.

Given that Lemma 3 holds for p+1
2 elements, and Lemma 4 is true for every

field element, Theorem 3 follows by triangular inequality

Proof of Theorem 3.

β(Y|L) ≥ 2d−1

p

∑
y∈Fp

∣∣∣∣∣∣∣
∑

α∈{ p−1
2 , p+1

2 }

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

e−
2iπαy

p

∣∣∣∣∣∣∣
− 2d−1

p

∑
y∈Fp

∣∣∣∣∣∣∣
∑

α∈F⋆
p\{ p−1

2 , p+1
2 }

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

e−
2iπαy

p

∣∣∣∣∣∣∣ .
≥ 1

2

(
2

π

)d
[
p+ 1

2p

√
2

√
1− sin

(
π

2p

)
− 2

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]
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To complete the analysis, we present the proofs of Lemma 3 and Lemma 4.

Proof of Lemma 3. We first restate the left-hand side of Eq. (15) as∣∣∣∣∣∣ 12p · 1

sin
(

π
2p

)
∣∣∣∣∣∣
d

·
∣∣∣1 + (−1)de

iπd
p e−

2iπy
p

∣∣∣
and observe that it can be lower-bounded by π−d ·

∣∣∣1 + eiπ(d+
d
p−

2y
p )
∣∣∣ because

1
x sin (1/x) is a decreasing function in x, and limx→∞

1
x sin (1/x) = 1. So it remains

to find Ỹ so that, for every y ∈ Ỹ, we can lower-bound
∣∣∣1 + eiπ(d+

d
p−

2y
p )
∣∣∣.

We use the fact that, whenever x lies in
[
−p+1

2p , p+1
2p

]
, then

∣∣1 + eiπx
∣∣ = √2 ·√1 + cos (πx) ≥

√
2 ·

√
1− sin

(
π

2p

)
,

as cos is symmetric in
[
−p+1

2p π, p+1
2p π

]
and decreasing in

[
0, p+1

2p π
]
.

This means that, whenever y belongs to the interval

I =

[
p

2

(
−p+ 1

2p
+ d+

d

p

)
,
p

2

(
p+ 1

2p
+ d+

d

p

)]
mod p,

then ∣∣∣1 + eiπ(d+
d
p−

2y
p )
∣∣∣ ≥ √2 ·√1− sin

(
π

2p

)
.

Let Ỹ = Fp ∩ I. Since I has length p+1
2 , then Ỹ has at least p+1

2 elements. This
concludes the proof.

Proof of Lemma 4. Using the triangular inequality on the left-hand side of Lemma 4,
we get ∣∣∣∣∣∣∣

∑
α∈F⋆\{ p−1

2 , p+1
2 }

(
1

2p
· 1

cos(πα/p)
· e

iπα
p

)d

· e−
2iπαy

p

∣∣∣∣∣∣∣
≤

∑
α∈F⋆\{ p−1

2 , p+1
2 }

∣∣∣∣ 12p · 1

cos(πα/p)
· e

iπα
p

∣∣∣∣d .
Then, the lemma follows from the following observation of [29] (proof of Claim 17)∑

α∈F⋆\{ p−1
2 , p+1

2 }

∣∣∣∣ 12p · 1

cos(πα/p)
· e

iπα
p

∣∣∣∣d

≤ 2π−d ·

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)
.
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3.3 Discussion

On the field size (in)dependence. Asymptotically in p, both the worst-case and
the average-case metrics are lower-bounded by a value independent of p. The
latter defines a barrier beyond which security cannot be enhanced by increasing
the field size. This property is inherent to the LSB leakage model, as its maximal
Fourier coefficients over F∗p do not converge towards zero as p approaches infinity.
This observation is already made formal in Theorem 2 and Theorem 3, but we
can provide a more pictorial intuition of why it’s true.
First note that, for every α ∈ Fp and for every S ⊆ Fp , we can restate

1̂S(α) =
|S|
p
· 1

|S|
∑
z∈αS

e−
2πzi

p .

That is, 1̂S(α) equals the barycenter of the roots of unity corresponding to αS

up to the multiplicative factor |S|p . When S = lsb−1(0), then both p−1
2 S and

p+1
2 S yield sets of p+1

2 consecutive field elements. That is, the corresponding
Fourier coefficients converge to the barycenter of half of the unit circle up to a
constant, which is not zero. Fig. 1 shows the Fourier spectrum of 1L−1

j (0) in the
LSB model for different primes p.

0 2 4 6 8
0

0.1

0.2

0.3

α

1̂
L
−

1
j

(0
)
(α

)

0 10 20 30
0

0.1

0.2

0.3

α
0 20 40 60 80 100 120

0

0.1

0.2

0.3

α

Fig. 1: α vs 1̂L−1
j (0)(α) for α ∈ F∗ in the LSB leakage model, for p = 7, 31, 127.

On tightness. As observed in [29], the lower bounds for the LSB leakage model
can be used to argue about the tightness of the upper bounds of [7]. In partic-
ular, Theorem 1 states that the information provided by any leakage function
with range 1 satisfies

M∞ (L) ≤ 2 ·

 2

p · sin
(

π
p

)
d−2

,
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which converges to π2

2 ·
(
2
π

)d asymptotically in p. When excluding the factor
2, the same upper bound extends to the average-case metric. As seen in this
section, both the worst-case and the average-case metric in the LSB model are
lower-bounded by

(
2
π

)d modulo a factor that only depends on d. Therefore, these
result witness that Theorem 1 is asymptotically tight for leakage functions with
range 1, modulo a factor that only depends on d.

In Fig. 2, we compare the LSB lower and upper bounds with the correspond-
ing numerical computation in both the average and worst-case metrics.

upper bound numerically computed lower bound

3 5 7 13
0

0.1

0.2

0.3

0.4

n
3 5 7 13

0

0.1

0.2

0.3

0.4

n

Fig. 2: Both images illustrate the comparison between the upper bound from [7]
and the lower bounds discussed in this section with the corresponding numerical
computation. The values displayed correspond to different field size values, com-
puted as p = 2n − 1, and fixed number of shares d = 6. The left image pertains
to the average-case metric, while the right one refers to the worst-case metric.

On arbitrary bit leakage. As observed in [22], the above remark readily extends
to the case where the adversary can probe an arbitrary bit location. This follows
from the fact that shifting backwards n−k times a string whose k-th significant
bit is zero yields one whose LSB is zero. More formally, denote with ksb the
function returning the k-th significant bit. Then

2kksb−1(0) = lsb−1(0).

This property defines a bijection between the Fourier coefficients of all single-bit
probing models, i.e. for every α ∈ Fp and k ∈ J1, nK,

̂1lsb−1(0)(α) = ̂1ksb−1(0)(2
kα).

As a consequence, the maximizing Fourier coefficients in the ksb leakage model
are those for α ∈

{
2k−1, p− 2k−1

}
, and there is no convergence towards zero

when the field size goes to infinity. In line with this observation, we can ex-
tend Theorem 2 and Theorem 3 to the ksb leakage model.
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Theorem 4 (Generalizing Theorem 2 to the ksb model). Let p be a
prime ≥ 3 and let L : Fd

p → {0, 1}d be the function returning the ksb of every
component. Then, for every d ∈ N

M∞ (L) ≥ 1

2
·
(
2

π

)d

·

[
3

2
− 4

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]

.

Theorem 5 (Generalizing Theorem 3 to the ksb model). Let p be a prime
≥ 3, L : Fd

p → {0, 1}d be the function returning the ksb of every component, and
d ∈ N be the number of shares. Let Y be the uniform distribution over Fp . Then,
β(Y|L) is lower-bounded by

1

2
·
(
2

π

)d

·

[
p+ 1

2p
·
√
2 ·

√
1− sin

(
π

2p

)
− 2 ·

((
2

3

)d

+
1

d+ 1

(
1

3

)d+1
)]

.

Proof sketch. The proofs of Theorem 4 and Theorem 5 follow the same structure
as those for the LSB leakage model, but instead of isolating α ∈

{
p−1
2 , p+1

2

}
, we

isolate the terms corresponding to the maximal Fourier coefficients in the ksb
model, i.e. α ∈

{
2k−1, p− 2k−1

}
. We upper-bound the sum of the terms differ-

ent from
{
2k−1, p− 2k−1

}
using the same strategy as in the proof of Lemma 4.

Namely, we upper-bound it with the sum of all the corresponding Fourier coef-
ficients. Given the bijection with the non-dominant Fourier coefficients for LSB,
the same upper bound holds. It remains to lower-bound the summands cor-
responding to

{
2k−1, p− 2k−1

}
. Note that by changing the variable y to 2ky,

the problem reduces to the estimation of the dominant terms corresponding to{
p−1
2 , p+1

2

}
in the LSB model. Therefore, the same statement holds.

From Leaking a Single-bit to a Proportion of Bits. We close this section by
discussing to which extent the results established for a single-bit leakage apply
as well when several of the bits are revealed to the adversary. In this respect,
we first emphasize that the upper bound from Theorem 1 already covers this
case. As for the lower bound, we observe that a “single-bit” adversary can be
trivially simulated by an adversary having access to several bits of each share.
As a consequence, the lower bounds of Theorems 4 and 5 remain true.7 Hence,
leaking a proportion of bits keeps the conclusion of this section unchanged.

4 Hamming Weight Leakages

The previous section has focused on the LSB leakage function, as it is “a real-
istic and analytically-tractable leakage function” [29, p. 2]. From the physical
viewpoint, observing such bit leakages is quite challenging though, and a more
realistic leakage function, on which we focus in this section, is the HW, which
maps a value to the sum of its bits [32]. As argued at the end of section 2, The-
orem 1 does not cover such leakage functions, as their range increases with the
7 This can be formalized by applying the data processing inequality to the TV.
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field size leading ultimately to trivial bounds. To circumvent this issue, we need
to go one step backwards by starting our analysis from Corollary 1, and trying
to refine the Fourier analysis of our specific leakage function under scrutiny.

Hereupon, notice how the right-hand side of Equation 10 depends on the
quantity

∑
h maxα ̸=0

∣∣∣ ̂1HW−1(h)(α)
∣∣∣. This quantity illustrates how sensitive is

the highest Fourier coefficient of the leakage function for the resulting security
bound. In order to get some insights into the quantity behavior, Figure 3 plots
the exemplary Fourier spectra for the bit leakage function studied in the previous
section, and for the Hamming weight model that we study now.

HW LSB

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

10−4

10−2

α

Fig. 3: First half of Fourier spectra of 1HW−1(n/2) (Hamming weight leakage) and
1LSB−1(0) (bit leakage) for n = 13, p = 2n − 1 (the second half is symmetric).

On the one hand, the orange curve denotes the spectrum of a pre-image set
of the LSB. This spectrum is described by a very smooth curve with a peak close
to the value p/2, as more formally discussed in the proof outline of section 3. On
the other hand, the blue curve denotes the spectrum of a pre-image set of the
HW leakage function. This curve is much less smooth than the orange curve, but
even worse, there is no concentration of the spectrum around one peak as for the
LSB leakage. The missing peak means that we cannot isolate dominant terms
as in Lemma 3 and Lemma 4 with α ∈ {p−12 , p+1

2 }. Hence, the proof technique
used in section 3 does not provide sufficiently tight security bounds for the HW
leakage function, and this section requires an alternative approach.
Nevertheless, the security bound is strongly related to the quantity∑

h

max
α̸=0

∣∣∣ ̂1HW−1(h)(α)
∣∣∣ .

That is why Figure 4 numerically plots this quantity of interest for an increasing
Mersenne number. This will help us derive some insights before diving into a
more formal result, as it shows that the quantity decreases with increasing field
sizes. In particular, the blue curve denoting the quantity of interest is decreasing
at a polynomial rate between O

(
1√
n

)
and O

(
1
n

)
, represented as the green and
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100.5 101 101.5
10−1.5

10−1

10−0.5

1
n
0.6√

n∑n−1
h=0

maxα∈F⋆p

∣∣∣1̂h(α)
∣∣∣

Fig. 4:
∑n−1

h=0 maxα ̸=0

∣∣∣1̂h(α)
∣∣∣ vs. n ∈ J3, 29K odd, and p = 2n − 1.

orange curve, respectively. In other words, the plot provides a numerical evidence
of a bias in O

(
log(p)−r·d

)
, where r ∈

[
1
2 , 1
]
. In the remaining part of this section,

we move towards the formalization of this observation, which in turn allows us
to provide a proof for a more conservative upper bound.

4.1 Worst-Case Characterization

We start with an upper bound valid for the worst-case bias.

Theorem 6. For n odd, let p = 2n − 1 be a Mersenne number. Let L : Fd
p →

J0, n − 1Kd be the function returning HW(·) for each component. Then the fol-
lowing inequality is valid:

M∞ (L) ≤ 1

2
·

(
n−1∑
h=0

√(
n

h

))d

· p− d
2 · (2n) d

2 = O
(
n1− d

4

)
. (16)

Compared to the numerical computations depicted in Figure 4 suggesting
a convergence in O

(
log(p)−r·d

)
for r ∈

[
1
2 , 1
]
, Theorem 6 only guarantees that

r ≥ 1
4 , and would require at least d ≥ 5 to be non-trivial. So our provable

bound is not completely tight. Still, it proves that the HW leakage model is
more leakage-resilient with the help of masking in Mersenne prime fields.

The remaining of this subsection gives an outline of the proof of Theorem 6.
It is derived from Corollary 1 thanks to the following theorem bounding the
highest Fourier coefficient of each pre-image set of the HW leakage model.

Theorem 7. For n odd, p = 2n − 1 a Mersenne number and 0 ≤ h ≤ n− 1,

max
α̸=0

∣∣∣1̂h(α)
∣∣∣2 ≤ (nh)

p
·
1− (nh)

p

2 · n
· (17)
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The full proof of Theorem 7 is deferred to Appendix B. In essence, it starts
from Equation 7 in Parseval’s theorem applied to the characteristic function 1h,
and leverages the following lemma, stating that each term in the right-hand side
of Equation 7 applied to 1HW−1(h) has 2 · n similar values in other terms.

Lemma 5. Let p = 2n − 1. Then, for all α ∈ F⋆
p and for all k ∈ N,∣∣∣1̂h

(
2kα

)∣∣∣ = ∣∣∣1̂h(α)
∣∣∣ . (18)

Proof of Lemma 5. We leverage the property spotted in [33]: multiplying x by
a power of two modulo a Mersenne number, i.e. of the shape, p = 2n− 1, is just
a rotation of the bits of x. Hence it is invariant for the Hamming weight. Let us
then express the left hand-side of Equation 18. For any k ∈ N,

1̂h

(
2kα

)
=

1

p

∑
x:HW(x)=h

e−
2iπ2kαx

p . (19)

We make the following change of variable: let x′ = 2kx. Then the sum goes over
the same values for x′ as for x since multiplying by a power of two modulo a
Mersenne prime keeps the Hamming weight unchanged. Meanwhile, the expo-
nent in each term becomes − 2iπαx′

p . We thus identify the Fourier coefficient of
harmonic α.

100 101 102 103 104 105

10 6

10 4

10 2

Fig. 5: First half of the Fourier spectrum of 1⌊n2 ⌋, n = 19, p = 2n − 1. Notice
some regular patterns in the peaks, when displaying the x-axis in log-scale.

As a result of Lemma 5 (illustrated in Figure 5), the sum of squared Fourier
coefficients can be factorized by 2 · n, hence the denominator in Equation 17,
making the upper-bound non-trivial for all the observed leakage values h.

4.2 Average-case characterization

As discussed in subsection 4.1, we have established an upper bound for the
worst-case bias, which approaches zero as the field size p tends to infinity. Since
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the average-case bias can be trivially upper bounded by the worst-case bias with
β(Y|L) ≤ M∞ (L) (Eq. 3), the upper bound derived in the right-hand side of
Theorem 6 (Eq. 16) is also a valid upper bound of the average-case bias.

Theorem 8. For n odd, let p = 2n − 1 be a Mersenne number. Let L : Fd
p →

J0, n − 1Kd be the function returning HW(·) for each component. Then the fol-
lowing inequality is valid:

β(Y|L) ≤ 1

2
·

(
n−1∑
h=0

√(
n

h

))d

· p− d
2 · (2n) d

2 = O
(
n1− d

4

)
. (20)

4.3 Discussion

On the field size dependence. Asymptotically with the field size p, the worst-case
bias is upper bounded by a value following a poly-log trend, whereas asymp-
totically with the number of shares, the bias goes to zero exponentially fast.
In a sense, the n = log(p) value in Equation 16 and Equation 20 may be seen
as a surrogate of the Gaussian noise parameter in the early security analysis of
Chari et al. [16], hence the interest of turning masking into prime fields in the
particular setting of noise-free Hamming weight leakages.

On the Tightness. So far in this section, we have explained why the techniques
used for the LSB analysis could not be applied for the HW, before providing
upper bounds for the latter leakage using another approach through Parseval’s
identity, and we have said that the derived upper bounds are not completely
tight with what is observed on numerical computation. We may therefore wonder
where this gap comes from. Essentially, the core idea of our proof was to upper
bound the maximum Fourier coefficient — in squared absolute value — by a sum
provably containing this maximum coefficient. This approach provides a tight
bound only if the Fourier spectrum is concentrated in its maximum coefficient —
like for the bit leakage. Looking at Figure 5, it is clear that many more Fourier
coefficients are dominant, i.e., of the same order of magnitude as the maximum
one, without being exactly equal to the maximum. Therefore, one possible way
to improve the inequalities could be to first prove which value of α maximizes
the Fourier transform.8 Then, one could find other values of α for which the
Fourier transform is close in absolute value to the maximum coefficient, and to
bound them by a quantity depending the latter one. Hence the hope would be
to increase the 2 · n denominator of the right-hand side of Equation 17.

5 Empirical Evaluation

The results in Sections 3 and 4 provide formal confirmation that increasing the
size of the modulus used in prime-field masking leads to significant security gains
8 We conjecture based on the numerical calculations of the spectrum that for n ≥ 13,∣∣∣1̂h(1)

∣∣∣ maximizes the Fourier transform.
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for the HW leakage function and does not lead to any gains for the LSB one.
While the HW function is a more realistic abstraction for the power consumption
of actual implementations [32], it remains a quite abstract one and in practice,
implementations may show up leakage models that are highly correlated with the
HW function without exactly matching it [10]. This raises the question whether
such small deviations from the HW leakage function directly bring us back to
the LSB case, or whether a more graceful degradation takes place. Formally
answering this question will require to characterize classes of leakage functions
for which similar results as in Sections 3 and 4 can be obtained. As a first
step in this direction, we next extend the simulated experiments of Masure et al.
from [33] towards linear leakage functions that generalize the HW one. Precisely,
and inspired by [42], we consider a leakage function that outputs a weighted sum
of bits, like the HW one, but with less constraints on the weights:

L(Y) =

⌈log(p)⌉∑
i=1

ωi · Y (i),

with Y (i) the ith bit of Y . In the HW case, ωi = 1 for all i’s. We propose two
generalizations: the Skewed Hamming Weight (SHW) function where only the
LSB gets a higher weight s, and the the Random Linear (Rlin) functions where
all coefficients are picked up uniformly at random between 1 and s.

We then ran Monte-Carlo simulations: we uniformly drew N = 1, 000 additive
encodings AddEnc (Y)i ← Fd

p for which we applied the leakage model L under
study to each share. It leads to a dataset of leakages {L1, . . . ,LN} and their
corresponding PMF. The statistical bias is therefore estimated as follows:

β(Y|L) = E
L

[
TV
(
pY | L; pY

)]
≈ 1

N

N∑
i=1

TV
(
pY | L=ℓi ; pY

)
.

The simulations are repeated for different field sizes, and for different number
of shares d. The masked PMF takes the shape of a discrete convolution product
that can be seen as an instance of a so-called SASCA attack, which is efficiently
implemented in the SCALib library for estimating this statistical bias up to d = 6
shares [15]. All simulations depicted in Figure 6 assume noise-free leakages.

Starting with the upper plots, which correspond to the SHW case, we can
see that increasing s gradually decreases the interest of increasing the prime
modulus p. This can be explained by the “isolating effect” of increasing s (i.e.,
with sufficiently large s, a single-bit is leaked on top of the HW information).
There is a single curve per size of p in this case since we only vary the single
coefficient ω1. A similar gradual degradation effect can be observed for the lower
plots, which correspond to the RLin case. Here we have multiple curves per size
of p since coefficients ωi are picked up uniformly at random.

Both sets of plots motivate the further characterization of these generalized
leakages. For the SHW case, it is for example questionable whether the “isolating
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Fig. 6: Estimation of the average-case bias vs. number of shares d.

effect” that is caused by an increase of s can be mitigated by an increase of the
field size. But experimenting with large fields is computationally-intensive and
putting forward a theoretical trend would be handy. For the Rlin case, we observe
a significant variation for different functions with coefficients having the same
range. So it suggests a need to characterize the leakage functions with another
parameter than s in order to capture our empirical observations.

6 Conclusions and open problems

By combining theoretical advances from the leakage-resilient secret sharing liter-
ature with a formal analysis of two representative leakage functions, our results
make an important step towards understanding the potential of prime-field mask-
ing and motivating the design of dedicated ciphers for this purpose. In particu-
lar, they show that for practically-relevant leakage functions like the Hamming
weight one (and small variations thereof), increasing the size of the prime mod-
ulus p can lead to important security gains, so that log(p) can serve as a security
parameter like the noise variance in Boolean masking. Such increases should in
turn be compared with the (possibly limited [12]) performance overheads that
computations in prime field imply. We conjecture that using small primes (e.g.,
8- to 16-bit) can lead to excellent results for hardware implementations and that
software implementations (with efficient multipliers) will benefit from prime sizes
up to 32-bit. The careful investigations of symmetric designs enabling to back
up this claim is an important scope for further investigations.

Besides, our formal results are for now limited to two canonical leakage func-
tions, and we rely on our empirical evaluations to gain confidence that the good
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properties of the Hamming weight leakage function can be generalized. This
leads to the other important open problem of formalizing this generalization
and providing theoretical evidence that large classes of practically-relevant leak-
age functions can actually benefit from prime-field masking in larger fields. We
believe the investigation of linear leakage functions that we initiate in work are
natural candidates for this purpose, as they provide a good characterization of
the physical measurements met in practice [42]. In this respect, another impor-
tant problem will be to investigate how much the increase of the prime modulus p
can be combined with an increase of the noise level. On the one hand, both have
been shown to combine gracefully in the experiments of [33]. On the other hand,
linear leakage functions with increasing granularity (i.e., larger s parameter in
the experiments of Section 5) will inevitably end up being bijective (and there-
fore trivially insecure) in the noise-free setting. Yet, it is unlikely that it poses
an insurmountable security issue, since for many relevant leakage functions, we
expected that a mild noise addition will be enough to lift this granularity.

We hope these questions and observations stimulate further research towards
analyzing prime-field masking under increasingly realistic assumptions.
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A Proofs of section 2

Proof of Lemma 1. By definition we have

Pr(Y = y | L = h) =
1HW y=h(

n
h

) , h ∈ J0, n− 1K ,

Pr(Y = y) =
1

2n − 1
,

Pr(L = h) =

(
n
h

)
2n − 1

, h ∈ J0, n− 1K .
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It follows that the statistical distance for Hamming weight is

β(Y|L) = 1

2

n−1∑
h=0

∑
y∈Y

∣∣∣∣∣1HW y=h

2n − 1
−

(
n
h

)
(2n − 1)2

∣∣∣∣∣
=

1

2n − 1

n−1∑
h=0

(
n

h

)(
1−

(
n
h

)
2n − 1

)
.

We may then leverage Vandermonde’s convolution equality to replace the sum
of squared binomial coefficients by

(
2n
n

)
− 1. Finally, using Stirling’s formula, we

get the desired result.
As per the MI, notice that it is equal to the entropy of a binomial distribution,

truncated from its maximum value n, and re-normalized by a factor 2n

2n−1 ≈ 1+

2−n. We argue hereafter that this slight change to the binomial distribution does
not change the entropy approximation. First, the re-normalization factor does
not change much the non-truncated terms of the entropy. As per the truncated
term, it initially contributed to the entropy at a value n

2n ≪ log(n).

Proof of Lemma 2. The MI of this leakage model is trivially α · n. As per the
bias, first, assume α < 1. Then, for every h ∈ {0, 1}αn

Pr(Y = y) =
1

2n − 1
,

Pr(Y = y | L = h) =


0 if h ̸= ℓS(y)

1
2n(1−α) else if h ̸= 1αn

1
2n(1−α)−1 else if h = 1αn

,

Pr(L = h) =


2n(1−α)

2n−1 if h ̸= 1αn

2n(1−α)−1
2n−1 if h = 1αn.

Therefore

β(Y|L) = 1

2

∑
h∈{0,1}αn

h̸=1αn

∑
y∈Y

∣∣∣∣1ℓS(y)=h

2n − 1
− 2n(1−α)

(2n − 1)2

∣∣∣∣+ 1

2

∑
y∈Y

∣∣∣∣1ℓS(y)=1αn

2n − 1
− 2n(1−α) − 1

(2n − 1)2

∣∣∣∣ .
The result follows from further algebraic computation.

If α = 1, then the event {L = 1n} has probability 0, and thus we cannot
directly use the above analysis. On the other hand, α = 1 describes the case
where the secret is completely leaked, that is

β(Y|L) = 1− 1

|Fp |
.

Since the above equation corresponds to Eq. (5) for α = 1, the lemma follows.
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B Proofs of section 4

The following lemma tells us that the symmetry property of the HW leakage
function, coming from the symmetry of the binomial distribution, also translates
in the Fourier transform.

Lemma 6 (Symmetry). Let n ∈ N and p = 2n − 1. Then, for all h ∈ J0, nK,
and for all α ∈ Zp, ∣∣∣1̂h(α)

∣∣∣ = ∣∣∣1̂n−h(α)
∣∣∣ . (21)

Proof. We start by recalling the identity HW(x⊕ y) = HW(x) + HW(y) −
2HW(x ∧ y). In particular, for y = 2n − 1 = 1...1, and by observing that
1...1⊕ x = 2n − 1− x, we get that

HW(x) = n− HW(2n − 1− x) .

Therefore, applying the change of variable x 7→ 2n − 1 − x in Equation 6 gives
us that

1̂n−h(α) = 1̂h(α) .

Finally, taking the absolute value in both side gives us the desired result.

Proof of Theorem 7. Using the Parseval formula, and the fact that 1̂h(0) =
(nh)
p

by definition of a PMF, we get that((
n
h

)
p

)2

+

p−1∑
α=1

∣∣∣1̂h(α)
∣∣∣2 =

1

p
·
p−1∑
i=0

|1h(i)|2 =

(
n
h

)
p

. (22)

We will use the fact that the maximum squared absolute value of the Fourier
coefficients (for non-zero harmonic) is upper bounded by the sum in the left
hand-side of Equation 22. However, stated as such, Equation 22 would imply
trivial upper bounds. Nevertheless, we will show that the sum of the left hand-
side contains many identical terms. Thus by factoring the sum, we will tighten
the bound.

Let 1 ≤ α ≤ p−1. Lemma 5 tells us that we can find at least n other Fourier
coefficients sharing the same absolute value as

∣∣∣1̂h(α)
∣∣∣— they can be derived by

cyclically shifting the bits of α. Therefore, we can partition the set J1, p− 1K of
harmonics into classes of harmonics α sharing the same absolute value of Fourier
coefficients, each classes containing at least n elements. We shall prove that each
class actually contains at least 2 · n elements.

Claim. Each class contains at least 2 · n elements.

Proof. Since 1h is real-valued, we have for all α ̸= 0,
∣∣∣1̂h(α)

∣∣∣ = ∣∣∣1̂h(p− α)
∣∣∣.

In other words, for each of the n harmonics that are in the same class, we can
derive another harmonic having the same Fourier coefficient in absolute value,
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hence in the class as well. We shall prove that this conjugate harmonic does not
coincide with any of the first n harmonics emphasized. To see why, observe that

HW(p− α) = n− HW(α)

(cf . proof of Lemma 6). Moreover, by assumption n is odd, so the parity of both
hand-sides differ. It implies that the Hamming weight of α is always different
from the Hamming weight of p − α. As a consequence, none of the harmonics
derived by shifting the bits of p−α can never coincide with any of the harmonics
derived by shifting the bits of α. Hence, there is at least 2 · n elements in each
class.

We can now conclude the proof. Let Fα =
{
α′ ∈ Fp :

∣∣∣1̂h(α
′)
∣∣∣ = ∣∣∣1̂h(α)

∣∣∣}.

Then for all class Fi, let αFα = |Fi|
2n . Observe that αFα ≥ 1 by virtue of the

claim.9 Then we can rephrase Equation 22 as follows:((
n
h

)
p

)2

+ 2n ·
∑
Fα

αi

∣∣∣1̂h(α)
∣∣∣2 =

(
n
h

)
p

, (23)

therefore for any α, we get that

∣∣∣1̂h(α)
∣∣∣2 ≤∑

Fα

αFα

∣∣∣1̂h(α)
∣∣∣2 ≤

(nh)
p
−

((
n
h

)
p

)2
 · 1

2n
.

Remark 1. We may even prove that for Mersenne primes, the αFα
coefficients

in Equation 23 are integer values. To see why, observe that if p is a Mersenne
prime, then n is necessarily an odd prime. It follows from Fermat’s little theorem
that 2n divides p− 1, i.e. the number of terms in Equation 22.

Proof of Theorem 6. We start from Equation 17 from which we derive the fol-
lowing inequality.

∑
ℓ

max
α∈F⋆

∣∣∣ ̂1HW−1(ℓ)

∣∣∣ ≤ 1√
2np

n−1∑
h=0

√(
n

h

)
.

The latter inequality is injected into Equation 10, where we also use the following
equality, by definition of the Hamming weight leakage model:

∑
ℓ

∥∥1HW−1(ℓ)

∥∥
2
=

1
√
p

n−1∑
h=0

√(
n

h

)
.

9 We empirically observe that all the αi are equal to one, however this stronger claim
would not seem to improve the upper bound.
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It then comes that

MY
∞ (L,Y) ≤ 1

2
·

(
n−1∑
h=0

√(
n

h

))d+1

· 1

2
d+1
2 −1

· 1

p
d+1
2

· 1

n
d+1
2 −1

,

hence the inequality in Equation 16. The asymptotic estimation of the right
hand-side is then derived from the following claim [6, Sec. 3.1]:

n∑
h=0

√(
n

h

)
∼ 2

n
2 + 1

4 · (πn)1/4 .
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