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ABSTRACT

This paper investigates the application of eXplainable Artificial Intelligence (XAI) in the design
of embedded systems using machine learning (ML). As a case study, it addresses the challenging
problem of static silent store prediction. This involves identifying redundant memory writes based
only on static program features. Eliminating such stores enhances performance and energy efficiency
by reducing memory access and bus traffic, especially in the presence of emerging non-volatile
memory technologies.

To achieve this, we propose a methodology consisting of: 1) the development of relevant ML models
for explaining silent store prediction, and 2) the application of XAI to explain these models. We
employ two state-of-the-art model-agnostic XAl methods to analyze the causes of silent stores.
Through the case study, we evaluate the effectiveness of the methods. We find that these methods
provide explanations for silent store predictions, which are consistent with known causes of silent
store occurrences from previous studies. Typically, this allows us to confirm the prevalence of
silent stores in operations that write the zero constant into memory, or the absence of silent stores
in operations involving loop induction variables. This suggests the potential relevance of XAl in
analyzing ML models’ decision in embedded system design. From the case study, we share some
valuable insights and pitfalls we encountered. More generally, this study aims to lay the groundwork
for future research in the emerging field of XAl for embedded system design.
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1 Introduction

Machine learning (ML) is used in the design and optimization of embedded systems and Systems-on-Chip (SoCs) [[1-4].
Examples include identifying memory access patterns for prefetching [5] and optimizing branch prediction [[6]. ML
techniques often handle complex, nonlinear relationships within a system. Complex ML models are difficult to
understand or explain.

To tackle this challenge, eXplainable Artificial Intelligence (XAl) [[7] has emerged, offering insights into model decision-
making, and shedding light on potential biases and errors. The application of XAl to embedded system design aims to
enable designers to optimize nonfunctional properties such as power and energy consumption, as well as interpret and
enhance the functional behavior of the system.

Let us consider the design of an [oT device deployed in a smart home environment, where energy efficiency is critical.
Data-driven modeling of the system design could be analyzed with XAl to examine how system components or functions
contribute to overall energy consumption. Those insights could be used to redesign communication protocols or sensor
sampling strategies during low activity periods. This would minimize energy consumption and reduce environmental
impact. XAl-based iterative design of embedded systems for predicting equipment failures in industrial settings is
another example. After initial deployment, users might find it challenging to trust the predictions due to occasional



unexpected outcomes. XAl can help uncover that some sensor readings, while critical, are not well understood by users.
On the basis of this insight, designers can iterate the model by adding new sensor data or adjusting features to better
match users’ interpretation of equipment health.

1.1 Considered problem

Nowadays, embedded system designs using ML models often ignore the rationale behind the model decisions. Address-
ing this typically relies on costly ad hoc data analyses, as in static silent store prediction [§]. This nontrivial problem
focuses on improving program execution by predicting, at compile time (hence the term static), which memory stores
are likely to write the same value to a given location (hence the term silent).

Reducing silent stores helps mitigate the higher cost of writes compared to reads in emerging non-volatile memories
(NVMs), thus reducing latency and energy consumption [8,|9]. During recent years, emerging NVMs have been
extensively explored to improve the energy efficiency of embedded system architectures [[10}/11]]. In terms of latency
and energy consumption, NVM memory writes are known to be more costly than reads. It also decreases write-backs
and data bus traffic in multiprocessor systems [12]. In the vortex database benchmark from the SPEC CPU9S suite, up
to 67% of memory stores are silent, and potential write-back reductions can reach 81% [12].

Eliminating silent stores is based on the store-verify method, where a store operation is replaced by three steps: a load,
a comparison, and the original store itself. This process involves reading the target memory content, comparing it with
the new value to be written; if they match, the store is skipped; otherwise, it is executed. Note that the store-verify
method is similar to existing approaches such as the differential write method, which also suggests first reading the
previous data in memory cells, comparing it with the new data, and only modifying cells whose values are different [13].
Using such a method, silent stores can be efficiently prevented at the hardware microarchitecture level. Nevertheless, it
is not easily portable compared to software-oriented methods [8}9]], which integrate the store-verify optimization into
program codes, ultimately making them executable on any hardware architecture.

To minimize the performance overhead caused by store-verify, it should only be applied to stores most likely to be silent.
Hence, accurate silent store prediction is crucial, necessitating powerful ML models capable of capturing the intricate,
nonlinear relationships between static program features and silent store occurrences, i.e., the possible causality between
both. In this work, we consider static silent store prediction to demonstrate how XAl can be used in embedded systems
design.

In this work, we tackle the challenge of building and explaining machine learning (ML) models for silent store prediction
based on static program features. We focus on the following questions:

* (RQI1): How can we build relevant ML models for identifying silent store causes based on their predictions?

* (RQ2): How can we effectively apply two state-of-the-art XAl methods for explaining these models?

To deal with the above questions, we rely on a previous study [8]], which already showed that static silent store
prediction is beneficial to the energy efficiency of embedded systems integrating emerging non-volatile memory (NVM)
technologies. To achieve this, the authors proposed experimental data to demonstrate the relevance of designing an
ML-based prediction model to steer the effective application of the store-verify method. They trained a perceptron on a
dataset. Afterward, they showed that depending on the benchmark, the energy cost of memory access can be improved
up to a certain degree. In the present work, we use the same data set. However, we will focus on how to train effective
machine learning models and how to interpret silent store predictions resulting from those models.

By addressing the aforementioned two questions, we identify some preliminary valuable insights into the application of
XAI methods to static silent store prediction. Through this study, we also aim to illustrate how these methods could be
adopted in ML-based embedded system design to explain model decisions.

1.2 Our contribution
We propose a two-step methodology to answer both (RQ1) and (RQ2).

* For (RQ1), we address a rationale for constructing suitable ML models tailored to silent store analysis.
» Regarding (RQ2), we define a sound and easily deployable approach for applying two XAI methods: SHapley
Additive Explanation (SHAP) [14] and Anchors [15].

To validate this methodology, we conduct a case study to explore static program features that might influence silent
store predictions. Our preliminary findings suggest that the used XAI methods provide explanations for silent store



predictions in accordance with previous studies that have identified possible causes of silent stores [8,|16]. For instance,
they establish the frequent occurrence of silent stores in operations that write the zero constant into memory, or the
absence of silent stores in operations involving loop induction variables, i.e., variable increment with integer constants.
This is a key step towards leveraging XAl methods and improving memory access costs. This study not only confirms
the effectiveness of these methods, but also uncovers potential pitfalls that can obscure XAl-based analysis results.
Specifically, if the training dataset is unbalanced, precautions should be taken to ensure adequate prediction models are
constructed for explainability. Finally, we briefly discuss a few design targets related to embedded systems that could
benefit from XAl

1.3 Outline

The rest of this document is organized as follows: Section [2] discusses some background notions and related work;
then, Section [3] summarizes the reasoning methodology adopted in this work; Section [ presents an application of the
methodology in a case study to explain silent store prediction; Section [5]discusses some general observations made
during our study; finally, Section [f] gives some concluding remarks.

2 Background notions and Related work

XALI finds application in a wide range of tasks, including decision support, predictive maintenance, and anomaly
detection [17]]. Depending on the ML models used, explanations can be generated either early in the training process
by using ante hoc XAl methods or during inference by using post hoc methods [[7]]. Ante hoc methods are suitable
for transparent ML models (understandable by human experts), such as k-nearest neighbors, linear regression, and
decision trees. On the other hand, post hoc XAI methods rely on easily interpretable surrogate models that mimic
complex base models with unknown inference mechanisms, like deep neural networks. These methods can be either
model-agnostic, applicable to any ML model, or model-specific. Moreover, explanations can be either local or global.
A local explanation aims to clarify why a model makes a prediction for a particular data instance. A global explanation
seeks to elucidate how the model generates predictions in general, drawing insights from its entire training dataset.

Despite its potential, there is very little (if any) application of XAl to the design of embedded systems [ 18.{19]. The
primary focus in [18]] is on executing XAl on hardware accelerators, particularly to address transparency concerns
with ML models. The concept of "explainable hardware" is introduced in [[19] as a means of achieving system-level
explainability through XAlI, although in the preliminary stages. Our approach aims to construct non-trivial ML models
and explain their predictions based on static program features, addressing an original set of research questions and
providing insights not yet covered.

Furthermore, existing research on silent store detection such as [9}/121[16,[20] is predominantly based on dynamic
analyses, involving the execution and profiling of computer programs. However, a distinctive approach, defined at
compile-time, was introduced in [8]. It aims at predicting silent stores based on static program features. This is very
challenging as silentness is identified based on the syntactic properties of a program. This approach does not address the
explainability of the considered ML models and cannot explain the implicit reasoning behind the silentness prediction.
In the present work, we deal with this issue by using model-agnostic post hoc XAl methods. These explanations might
later serve to avoid silent stores in program construction or compilation.

3 Reasoning methodology

We present a methodology for explaining silent store prediction.
3.1 Step 1: silent store classification

We address a binary classification problem, i.e., predicting whether a store is silent or not. In the latter case, the store is
referred to as noisy. We consider two common metricsﬂ for evaluating binary classifiers: precision and recall. These are
particularly important when dealing with imbalanced data sets, such as the one we borrowed from [§]].

"Note that other metrics could also be considered to evaluate adequate NN models. Indeed, beyond classification, the design
of embedded systems can involve regression or clustering problems. For regression, Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and R2 score are the most commonly used metrics. The first two determine how accurate predicted values
are, and their deviation threshold from actual values. The latter measures the percentage of correct predictions returned by a model.
Clustering problems use similarity score metrics, for example, the silhouette coefficient that measures how well-defined and distinct
clusters are.



We denote true positive (a silent store predicted as silent) and false positive (a noisy store predicted as silent) by T'P
and F'P, respectively. Similarly, we denote true negative (noisy store predicted as noisy) and false negative (silent store
predicted as noisy) by T'N and F'N, respectively. Precision quantifies how many of all predictions are true positives,
while recall measures how many actual silent stores are correctly predicted, i.e.: precision = TP/(TP + FP) and
recall = TP/(TP + FN). Increasing precision by lowering F'P in its denominator will result in a decrease in recall
as T'P will grow by definition but not "N, and vice versa. Then, how to decide a suitable balance between both metrics
w.r.t. model explainability?

Let us consider the issue of silent store elimination for NVMs [8]]. NVMs are known for their significantly higher write
costs, both in terms of latency and energy, compared with read costs [9]]. Upon a false positive prediction, applying the
store-verify method imposes an unnecessary read-and-compare execution overhead. Assuming the compare operation
is negligible compared with reading, let us denote the cost of a read by C,.. Upon a false negative prediction, an
opportunity to replace a store with a more efficient read-and-compare operation is missed. In essence, if C's represents
the cost of a store, failing to make this replacement results in missing a potential savings of Cs — C,. Now, let us
assume a prediction model is prone to making a fixed number m of mistaken predictions, i.e., F'P + F'N. If this model
predicts a percentage p of false positives, compared to a perfect predictor, it incurs overhead as follows:

m x p x C, ey

Likewise, the proportion of F'/N for the same model will incur the following overhead compared with a perfect predictor:

m x (1—p) x (Cs — Cy) ()

The total overhead of the model compared with a perfect predictor is defined by the sum of (I)) and (2)), as follows:

mx (Cs—C.)—mx (Cs—2xC,) xp 3)

If Cs > (2 x C), increasing p in expression (3) will result in lower overhead. According to NVM technology designs,
C;s can be 1.02 to 75 times higher than C,. [9]]. The corresponding prediction model will have lower precision and
higher recall. It is suitable for implementing the store-verify as shown in [8]].

Conversely, when analyzing the significance of static features in relation to silent store prediction, it is advisable to
employ more precise ML models that minimize the percentage p of F'P as much as possible. Such models must have
higher precision than recall. As a result, in this work, we will train ML models taking this objective into account for
explaining silent store predictions.

3.2 Step 2: application of selected XAI methods

Combining global and local model-agnostic XAI methods, we examine the impact of static program features on silent
store prediction. Global explanations are validated using local methods. In addition, we look for expressive and
human-interpretable methods.

A fast global method we mentioned is Accumulated Local Effects (ALE) [21]], which measures the marginal impact
of a single feature on predicted output. By varying the value of the feature while keeping the other features constant,
perturbed data instances are generated. The differences in predictions between perturbed and original instances are
computed to determine local effects of a feature. In static silent store prediction, feature interaction effects are crucial
as they favor silentness [[8]. ALE is not well-suited to this. So, we use the SHapley Additive Explanation (SHAP)
method [ 14]]. This method allows ML models to be interpreted in a unified manner, accounting for isolated feature
effects and feature interactions. SHAP is more computationally expensive than ALE.

To validate SHAP explanations, we exploit a fast local explanation method. The very popular Local Interpretable
Model-agnostic Explanations (LIME) method [22]] and its CLIME variant [23]] are typical candidates. LIME explains
models by learning a linear decision boundary that approximates a model w.r.t. a perturbation space. In CLIME, the
user can specify Boolean constraints on this space to generate more focused perturbations. When applied to the static
silent problem, these methods provide similar explanations for supposedly significant and less significant features.
Consequently, it is difficult to discern the real impact of the different features. This limitation is possibly due to the way
the methods handle feature space perturbation. We select the Anchors method, which explains non-linear boundaries in
ML model behavior [|15]].



3.2.1 SHAP method

Let us consider a reference set ¢ of features. SHAP computes the Shapley value of a feature ¢; € ®, w.r.t. a feature
vector ¢ = (1, ..., ¢r) and a function f corresponding to a prediction model. This value is the average contribution of
feature ¢; to predictions by f w.r.t. ¢, defined by function ¥; [[14]:

|z’!(<I>||q)|!Z’| =D ) Fa(N\ )] @

where ¢’ denotes a simplified interpretable binary vector that maps to the original input vector ¢ using a mapping
function h. Typically, ¢ = hy(¢') transforms a binary input vector ¢’ into the original input feature space, where
¢, = 1 (or 0) in the binary vector indicates the presence (or absence) of feature ¢, in the mapped original vector. The
variable 2’ belongs to the set {0, 1}/®| where |®| is the number of features in ®. The notation | 2’| expresses the number
of 1’s in the binary vector z’; and 2z’ C ¢’ represents the set of all vectors z’ where the 1°s are a subset of those present
in ¢'. Here, fs(2') = f(hg(2")) and the expression [f4(z") — f(2"\ ;)] defines the marginal contribution of feature ¢;
to the prediction function f w.r.t. an input vector z’. Note that 2"\ ¢; means the value at position i in 2’ is set to 0. When
evaluating f on feature vectors with fewer elements than the original input vectors, the missing features are commonly
assigned default values. In this case, we have chosen to use randomly chosen values from the missing features within
the working dataset D as default values.

Ui(f,¢) = Bocy

In this study, each feature ¢; represents a specific static property of a store instruction 1: p[i]=v, where 1, p, 1 and
v respectively denote the instruction label in the program code, the pointer to the uploaded location, the offset added to
the pointer when building the target store address, and the value to upload. Table[I|summarizes the considered feature
categories, based on [8]]. Fig. [1| sketches four static feature vectors associated with store instructions.

#define SIZE 5

int main() {
int values[SIZE] = {1,2,3,4,5}; // (Vin, S10, Smn, Pay, Esl, ...)
int sum = 0; // (0zr, Vin, sz8, S10, Smn, ZER, Scm, ...)
double average;

for (int i = 0; i < SIZE; i++)

{ sum += values[il; } // (Vin, sz8, S11, Smn, Oic, ...)
average = (double)sum / SIZE; // (Vdb, S10, Smn, Scm, DIV ...)

Figure 1: Static feature vectors specified within in C comments (lines 3, 4, 8 & 9)

All the features considered in this study are binary in nature: 1 means a specific feature is satisfied by a store instruction,
while 0 means it is not. In general, as previously observed in [8]], static silent stores are characterized by specific
combinations of features, as illustrated in Fig. [T} Noteworthy feature combinations include:

* nullifier due to null value updates, contains 0zr or ZER; and

* static memory initializer, due to null value assignment in static memory, combines nullifiers with Msc.
As for noisy stores, notable feature combinations include
* induction due to variable increment with integer constants, which often involves ADD, Oin, Oic and INT.

In SHAP, dependence plots are provided that display the relationship between two different features based on the
model’s predictions. Nonetheless, this is not sufficient to address the combined effects of more than two static program
features on store silentness. To overcome this limitation, we compute the combined SHAP value for vectors ¢F of k
features, by proceeding as follows: 1) we define a set of ¢* to analyze; 2) for each such ¢*, we extract from the working
dataset D, all static store data instances d; containing all features of &*:3) finally, for each d;, we average the sum of
the SHAP values of its features to the silent store prediction.

More formally, the above algorithm can be defined as follows, with f representing the silent store prediction model:
1. define a set {¢* = (¢1, ..., #x), k > 2} of k-feature vectors, containing feature combinations of interest; there
are C* possible combinations for each k, where n = |®|;

2. for each vector ¢*, extract from the working dataset D all sets D,y of n-feature vectors containing the
components of ¢*, as follows: Dygr = {djje1.mn € D, s.t. oF C d;};
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3. for each D4k, average the sum of its feature components’ SHAP values as follows:

Ejer.nVi(f,dj)] + ..+ [Zjer. o Pr(f, d;)]
nxk

(&)

To evaluate the soundness of formula (5) w.r.t. combined feature importance, we also compute the exact ratio of d;
instances actually labeled as silent within D)y, as follows:

|{dj)j€1”n S D|¢)k s.t. label(dj,D) = silent}|
| Dygr]

(6)

The validity of formula (3)) is substantiated if the results obtained from formulas (3]) and (6)) are correlated for each
vector ¢”, i.e., vectors exhibiting high (or low) combined SHAP values should correspond to high (or low) ratios of
silent static store instances d;.

3.2.2 Anchors method

Anchors [15] is an XAI method that provides human-understandable local explanations for specific data instances. An
explanation is a predicate (also referred to as "rule") that, when satisfied, results in the same output predicted by the
trained model for a given data instance to be explained.

In Anchors, a user may specify the portion of similar instances yielding the same prediction output, called precision.
When precision requirements need to be high, Anchors generates highly restrictive predicates, which are typically
satisfied by only a small subset of the dataset, commonly referred to as coverage. In particular, Anchors is less
computationally intensive than SHAP.

4 Case study

We summarize the model training process. Then, we apply our methodology to assess feature importance in silent store
prediction.

4.1 Model training for silent store prediction

We use the silent store dataset made available by [8]] for our analysis. This dataset comprises a total of 89K static silent
stores, each initially associated with 127 static program features. These stores were collected through the profiling
of 222 programs. For each static store, the original dataset provides the proportion of silent dynamic stores, i.e., the
number of executed instances of this static store that were silent during data collection. We, therefore, label a static
store as "silent" only if all its dynamic stores are silent. About 10% of static stores are always silent. We reduce
correlated features based on Pearson correlation score. This leads to 76 out of the original 127 features. Note that after
cleaning the dataset, identical 76-feature instances emerged with different silentness labels (even though their original
127-feature versions did not). About 52% of original static store instances fall into this category. For our experiments,
we use Google Colab as our computing platform.

We trained a multi-layer neural network (NN) using the above dataset. The NN model consists of five dense layers
spanning from the input layer to the output layer. These layers have 64, 32, 16, 8, and 1 neurons, respectively. The first
four layers use a relu activation function, while the output layer uses sigmoid. The dataset is split into 80% and 20%
respectively for training and testing. For simplicity, we deliberately omitted a validation data subset. Here, having such
a subset does not change our ML model’s performance. The learning rate is 3e*. The selected optimizer is Adam
We define 3000 training epochs (with early stopping) and a batch size of 20,000. The best precision and recall values
obtained are about 0.60 and 0.29 respectively. These hyperparameters provide us with the best learning outcome among
all the evaluated hyperparameter configurations.

4.2 Feature importance analysis with SHAP

In practice, the evaluation of SHAP values is computationally intensive. To mitigate this issue, we use an explainer of
SHAP Python library [24]], which approximates SHAP values for deep learning models, instead of the SHAP exact
explainer.



4.2.1 Single feature perspective

Fig. 2| shows a SHAP beeswarm plot defined over 10 most influential features, among the 76 features mentioned in
Table[l} The importance of features is shown from top to bottom, ordered by mean absolute SHAP values. It provides
valuable insight into the impact of these features on the output of trained NN. Each point in the plot represents a specific
data instance. Red and blue colors respectively indicate whether a store data instance satisfies or not a feature. The
horizontal axis shows the SHAP value range of the features.

| High
Most Assignment - - - - » Ozr | e+
influential of zero . %/Ep't
P < o
features Zero constant ,+” Msk 3
value , Vin >
’ Pst g
. 4 . W 3
Assignment Oin e 5
H ADD e—
of pointer Msc X .
INT
: Low

0.0 02
SHAP value (impact on model output)

Figure 2: SHAP beeswarm plot over 10 most significant features w.r.t. silentness prediction by the trained NN model

The nullifier features Ozr (i.e., stored value produced by an assignment of zero) and ZER (i.e., stored value is a constant
zero) have the highest impact. When these features are satisfied by data instances, denoted by the presence of red points
in the beeswarm plot, their SHAP values tend to increase. This improves the chance of predicting silent stores. As
observed in [[16], programmers frequently store zero as an explicit value or as a null pointer in their code. On the other
hand, the induction features Oin (i.e., the last instruction that produces the stored value is an integer constant update)
and ADD (that is, an addition operation contributes to stored value) exhibit the opposite trend. When satisfied by stores,
the SHAP values tend to decrease, possibly contributing to store noisiness. Unlike previous work [8L|16], loop-related
features indicating frequent store execution, do not highly contribute to store silentness in Fig. 2}

4.2.2 Combined feature perspective

While Fig. [2] highlights the impact of isolated features, combined feature effects can further increase silentness
prediction chances as discussed below. We apply formulas (3)) and (6) respectively to evaluate first the correlation
between combined SHAP values and exact silentness ratios for various feature vectors. Then, we analyze feature
combinations contributing the most to store silentness.

Given that the complexity of static silent store analysis grows with the number of features to be mined per instruction,
smaller feature vectors are more cost-effective than longer vectors. In the sequel, we consider ¢* feature vectors
with k£ = 3, 4, which are relevant for illustration. There are C?G = 70,300 possible ¢3 vectors. Their enumeration on
Google Colab takes around 30 minutes. For each ¢, we compute formulas (5) and (6). Enumerating all ¢* vectors is
computationally expensive, so we define a subset of ¢* vectors by extending only ¢ vectors with a combined SHAP
value greater than 0.2. Fig. [3|summarizes the evaluation of our NN on three and four feature vectors respectively.

1.0

Highly silent feature 0 1.0 3.75 4,
4 L v n oo )
I combinations N+ 4.0 9 ] - & 350 0
c 08 o3 < Vo8 ) =
© S s o8 T e IS
2 45D 8 s 3251
c 0.6 - EI g 0.6 ',“'ﬁy EI
2 2 I o 3.00 2
G o4 3.0 004 ) 275w
@ © T o " 19)
w 9 w“ . 2509
o 0.2 25 o 0.2 . . 'En'
thaRe)]
X 9 R 2259
0.0 0.0
—0.2-0.10.0 0.1 02 0.3 0.4 05 —0.2-0.100 0.1 02 0.3 0.4 05
Combined SHAP values Combined SHAP values
3 4
(a) ¢° vectors (b) ¢~ vectors

Figure 3: Ratio of silent stores vs combined SHAP values over 3- and 4-feature vectors for NN (each point denotes a vector)

The trend depicted in Fig. [3|reveals a reasonable correlation between the combined SHAP value (X-axis) and the exact
silentness ratio (Y-axis) for ¢ and ¢* feature vectors. Each point on the plot denotes a k-feature vector. Its color
represents the number (log. scale) of static store instances satisfying the vector features. This number varies from 120
to 25000 in Fig. [3] We deliberately omitted vector points associated with less than 120 static store instances as they are
less representative. The correlation exhibited in Fig. [3] validates the soundness of combined SHAP values of features.



We notice that feature vectors with high combined SHAP values, i.e., between 0.38 and 0.55, often include the features
Ozr, Smn, and Msc. Their respective contributions to the combined SHAP values of twelve ¢* sample vectors are shown
in Fig. {i] The nullifier feature Ozr stands out as the major contributor with an individual SHAP value above 0.21. In
contrast, the other two features, Smn and Msc, contribute less than 0.17 individually. Interestingly, in the absence of the
latter two features, the SHAP value of 0zr drops to 0.13.
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Figure 4: Feature contribution to silentness, over a few ¢* vector samples in which Dzr, Smn and Msc always occur

Beyond the above three features, we also observe separately the features ZER, Scm, and Vin in gz54 vectors that exhibit
high combined SHAP values. The former has already been identified as an impactful nullifier feature. As for the other
two features, they respectively describe compulsory store instruction in a program execution flow, and values v of
integer type in a store instruction 1:  p[i]=v. Integer type, due to its smaller value range, contributes more to silent
stores than floating point type. This was previously shown in [[L6]. This may explain the importance of Vin through its
SHAP value.

For ¢4 feature vectors with medium combined SHAP values, i.e., between 0.22 and 0.36, the feature Sz1 emerges as an
additional notable contributor to silent stores. It often characterizes Boolean value updates, favoring silent stores as
observed in [8]].

4.3 Validating SHAP explanations with Anchors

Applying Anchors to the previous NN to generate local explanations requires a background dataset and the instance
to explain. Here, we use the entire silent store dataset as the background dataset. The data instances to be explained
are randomly chosen from those correctly predicted as silent. We impose that the generated "anchors" should have a
precision of 0.95 at least.

The following predicate specifies an explanation generated by Anchors for a specific silent store instance:

(Smn > 0.00) AND (0Ozr > 0.00) AND (ZER > 0.00) AND (Vin > 0.00) AND (Scm > 0.00) AND (INT < 0.00)

This predicate essentially suggests static store instances satisfying (Smn=1, 0zr=1, ZER=1, Vin=1, Scm=1, INT=0),
are likely to be classified as silent by the NN model. It includes nullifier features 0zr and ZER, combined with Smn,
Scm and Vin. It denotes a null integer value assignment in a compulsory store executed in a main function. This is
consistent with the results of the SHAP-based analysis. The combination of nullifier features with Smn and Scm favors
store silentness [8]].

4.4 Leveraging the resulting explanations to avoid silent stores

We observed from the SHAP and Anchor explanations provided in the previous sections that certain features are helpful
indicators of silent stores. It is the case, for example, with nullifier features Ozr and ZER. Furthermore, we identified
some feature combinations that are strongly associated with store silentness. In light of this knowledge, we can define a
static program transformation that efficiently implements the store-verify method through a compiler. Given a program
P, this process consists of the following steps:

1. analyze P and associate each store instruction in P with its corresponding static features;

2. apply the store-verify method to all store instructions with static features that strongly contribute to silent store
occurrences.

By only replacing store instructions with a high silentness probability according to the obtained explanations, the above
program transformation reduces the potential overhead associated with the store-verify method.



5 Overall discussion

We now discuss some insights and pitfalls from our study. The results of this study are useful for the future and the
wider adoption of XAl in embedded system design.

5.1 Some insights and pitfalls

Insight 1: Although our ML models were moderate but acceptable in accuracy, the results obtained with the selected
XAI methods are meaningful in general. We could not obtain very accurate ML models due to the inherent imbalance of
the considered dataset. However, the derived explanations for static silent store causes were relevant and plausible in
general.

User expertise is sometimes necessary to spot potential inconsistencies. For example, the seemingly minor influence of
loop-related features indicated by XAl in our study raises questions about the validity of this observation w.r.t. existing
literature [8},/16].

Insight 2: Training alternative ML models instead of neural networks does not necessarily improve the explanation
of silent stores. Beyond NN, we also evaluated the Random Forest (RF) classification method, which is suitable for
overcoming overfitting in decision tree training. RF harnesses the collective wisdom of weak decision tree learners to
construct an accurate prediction model. Tree-based models inherently offer explainability [25]], which makes RF an
attractive candidate.

Consequently, we trained an RF model in which the resulting precision and recall values were 0.63 and 0.23, respectively
(see Section. Fig. [5|shows a correlation between the silentness ratio and the combined SHAP value for ¢* and ¢*

vectors.
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Figure 5: Ratio of silent stores vs combined SHAP values for RF

The number of ¢* vectors obtained by extending ¢> vectors with combined SHAP values above 0.2, is fewer than that
for NN (see Fig. E]) However, the features that contribute to storage silentness are similar between the RF model and
the NN model.

Insight 3: Choosing the appropriate trade-off between precision and recall in ML model training is crucial for an
acceptable application of XAl to classification tasks, in presence of unbalanced dataset. Models with greater precision
than recall are better suited for explainability given the unbalanced nature of our dataset (see Section [3.1)). To support
this claim, we evaluated the combined SHAP values for an NN with lower precision and greater recall. As depicted in
Fig. @ more ¢> and ¢* are predicted to be silent by this NN due to higher recall. However, the correlation with the ratio
of silent vector instances is not as strong as in Fig. [3]due to a larger dispersion of vector points.

Given this precision/recall trade-off issue in static silent store prediction, does it mean that ML model explainability
and code optimization goals are not compatible? This is a compelling question that deserves further investigation.
More generally, we believe that the suitable trade-off also depends on the requirements of target problems. When false
positives are critical in classification, higher precision is preferable. However, when false negatives are more critical, a
higher recall is the better option.

Pitfall 1: Low combined SHAP values should not be systematically interpreted as noisy static store indications. Authors
in [8] already identified the induction features 0ic and ADD as strong indicators of noisiness. This is confirmed in our
study through their low SHAP values, respectively —0.04 and —0.03 on average. However, this trend does not hold for
combined SHAP values. Indeed, the working dataset D used in our study is imbalanced, with the majority of static
store instances being noisy. To effectively distinguish actual noisy stores from those incorrectly predicted as noisy,
more accurate ML models are necessary. For instance, in Fig. points with a negative combined SHAP values may
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Figure 6: Ratio of silent stores vs combined SHAP values for NN, where precision is less than recall

have a silent store ratio between 0 and 0.6. This discrepancy likely results from inaccuracies in our NN, along with
approximations in the employed SHAP explainer.

Pitfall 2: The outcomes produced by the Anchors method are not always easily exploitable. Beyond the above issue
mostly related to SHAP explanations, Anchors predicates are sometimes needlessly complex, e.g., including several
tens of irrelevant feature terms. From a human analysis standpoint, these lengthy predicates can make it challenging to
extract the significance of highlighted feature properties. As an example, consider the following predicate of 31 feature
terms, of which only two are satisfied, indicating the relevance of nullifiers:

(0zr > 0.00) AND (ZER > 0.00) AND (INT < 0.00) AND (Vpt < 0.00) AND (SUB < 0.00) AND ...

Such complex explanations can lead to confusion rather than insight. Consequently, a method like Anchors should be
carefully manipulated by users for effective analysis.

Pitfall 3: Dataset quality concerning the store silentness problem affects the relevance of XAl-based explanations.
Given the silent store data collection protocol used in [J8]], it appears that several identical feature vectors can land in
different classes, i.e., noisy and silent. Around 60% of the dataset falls into this category. This means the dataset most
likely does not accurately capture which features lead to silent or noisy stores. Among other factors, whether or not a
store is silent also depends on the nature of the manipulated data. Consider the cumulative vector product as follows:

void prod(int* v, int* w, int* x, comst int N) {
for (int i = 0; i < N; ++i)
X += V ¥ w;

3

If either v or w contains zeros, one will have lots of silent stores; otherwise, the stores will be noisy. So, the same
program can have very different behaviors w.r.t. store silentness, depending on its input data.

All features considered in [8] are syntactic, with the assumption that intuitively there is some relation between program
syntax and semantics, although it is not very strong. For example, with the instruction a = a + 1 the chance of a silent
store is null. However, with the instruction a = a + bxc, if either b or c is zero, the store will be silent. Therefore,
deciding whether the store is silent or not is not only affected by a syntactic analysis but also by a semantic analysis.

5.2 Towards XAI for embedded system design

Embedded system devices have unique characteristics, including dedicated functionality and various resource and
behavioral constraints: limited processing power, memory, energy, size, real-time response, etc. In many existing studies,
ML has been applied alone at both design and device operation [[1}|2]]. For instance, ML models can be customized for
performance, temperature, or power prediction, ensuring devices’ constraints are met. They can also focus on anomaly
detection, enabling fault identification during device operation, and facilitating predictive maintenance. To make this
possible, one needs to collect suitable datasets and train ML algorithms accurately based on adequate input features, as
discussed in the following examples.

» To predict execution time, such features may include software characteristics (e.g., code complexity and
size), execution platform specifications (e.g., processor architecture, clock frequency, and cache sizes), and
hardware-related execution events (e.g., cache misses, branch mispredictions and memory accesses) [26]. For
instance, code complexity can be measured using the diversity of instructions, functions or tasks [27]], while
code size can be measured using the number of lines of code. Cache misses are a key source of execution time,
while cache size is a critical factor in determining the number of cache misses during execution.
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» Power consumption prediction [28] can be based on input characteristics such as system configurations (e.g.,
voltage levels and clock frequencies), system operating conditions (e.g., CPU load, memory usage and network
activity), and system environmental factors (e.g., temperature and humidity). Higher voltage levels and clock
frequencies, as well as heavier CPU loads, can typically lead to higher power consumption.

* Embedded system temperature prediction [29] can be achieved using sensor data acquired within an embedded
system, environmental conditions (e.g., ambient temperature and humidity), and system operational parameters
(e.g., CPU usage and workload intensity).

* Input features relevant to security prediction [30] include network data (e.g., incoming and outgoing traffic
patterns and packet headers), system logs (e.g., authentication attempts and access patterns), and behavioral
patterns (e.g., user interactions and any abnormalities within the system). For example, network data could
be used to detect suspicious traffic patterns or authentication attempts in a system. Logs could help identify
compromised user spaces or suspicious system activity.

* Lastly, in the context of reliability prediction [31]], relevant input features include failure data (e.g., previous
instances of system failures or malfunctions), some testing data (e.g., data collected during stress tests or fault
injection experiments), and environmental conditions (e.g., temperature, humidity and vibration levels during
operation). Failure data may contain information about the failure type and when it happened. Testing data
might indicate the performance scores of a system during tests and the number of conducted tests.

The last two examples are potentially relevant to application fields including integrated decision-making processes for
autonomous vehicles, medical diagnosis, or energy distribution in smart grids.

While the majority of existing work focuses on ML model precision, understanding the factors that mostly influence
model decisions is not covered enough. Given the high diversity of input features considered in the above examples, it
is very challenging to address this concern. XAl may fill this need by providing designers with a means to explain or
interpret built ML models. It could contribute to make embedded systems design more transparent and understandable.
Nevertheless, the successful combination of ML and XAI in embedded system design is not trivial. This is illustrated
through the insights and pitfalls reported in our study, on the intricate problem of static silent store prediction. This
preliminary study paves the way to a wider investigation of XAl for embedded system design.

6 Concluding remarks

We considered XAl to study innovative approaches to embedded system design. This was illustrated through a pragmatic
methodology applied to the static silent store prediction issue. Eliminating such redundant stores improves performance
and energy efficiency. Leveraging cutting-edge XAl methods like SHAP and Anchors, we identified influential features
from ML models to uncover some root causes of silent stores, aligning with prior research [8]] and [|16]]. For example,
this allowed us to confirm the frequent occurrence of silent stores in operations that write the zero constant into memory,
or the absence of them in operations involving loop induction variables. The usage of explainable model predictions
for silent store identification and elimination offers a new avenue for optimizing compiler techniques and hardware
architectural design.

While XAI holds promise, this preliminary study emphasized, however, the need for cautious application, highlighting
both valuable lessons and potential pitfalls to know. Finally, it lays the foundation for future research in the emerging
area of XAl for embedded system design. To consolidate our current insights, further ML problems, e.g., including
regressions, must be investigated in the future.
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