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Abstract
We present an optimal writability method for ordinals and Gödel’s

constructible sets Lα by infinite time Turing machines (ITTMs). For
ordinals, we obtain that the time needed to write a writable ordinal is
either ω, or the end of a clockability gap, or a limit of ends of such
gaps. Our result is proved optimal and requires complex techniques for
dealing with long gaps. As for Gödel’s constructible sets Lα, we adapt
our construction for writing ordinals for optimally writing Lα when α
is ITTM-writable. We also obtain an optimal result (for closed enough
α’s): the time needed to compute Lα is the maximum between α and the
ordinal time needed to write α.

1 Introduction
Ever since the birth of Infinite Time Turing Machines (ITTMs for short), many
other infinitary analogues of computability and complexity themes have ap-
peared as well (see the very good reference book [1]). Over the past two and a
half decades, the study of ITTMs inevitably opened the discussion on the link
between transfinite-time computation and set theoretical results. For a detailed
study of this field, refer to the works [7, 11, 10, 12, 8, 2, 4]. ITTMs have proved
to be useful models for both understanding ordinal computation and also for
approaching the fine structure of the constructible hierarchy. Our contribution
is also on this line.

Philip Welch in [13] section 3.1, presents a so-called “theory machine” from
which he derives the “quick writing” of clockable ordinals and constructible sets
– although not in optimal time. In the beginning of [14], more details on the
functioning of this TM are given.
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We introduce and prove the optimal bound for the writability time of any
writable ordinal by ITTM. This result is the key point of the paper. Our
proof also provides an alternative proof for the important theorem of Welch
that states that any ITTM-clockable ordinal is also writable. We get optimality
using a notion of stable writing. We then move on to explore the question of the
ITTM-writability of Lα, the constructible sets of Gödel, which are also indexed
by ordinals (here we restrict to writable ordinals). We present their writability
time and prove optimality using our result on writable ordinals.

We start by introducing the main tools we use in our proofs of section 2 in
the form of explanatory paragraphs and lemmas. After this exposition we enter
the body of the proofs of the section, which consists in propositions 2, 3 and 4,
followed by a synthesis of our main result in the form of a theorem derived from
the precedent propositions. In section 3, we present a compilation of theorems
which are the building blocks of our general scheme for computing a real code
for constructible sets in an explicit way.

2 Stably writing ordinals
In our construction, we make frequent use of a variant of the universal machine
for ITTMs. Note that it simulates all ITTMs in parallel without much loss of
time : in any limit ordinal time, all ω ITTMs have been simulated [7, 2]. Then
we enrich this simulation by observing those ω computations that are run in
parallel. For instance, we can observe gaps in clockable ordinals. We explain
how to construct an order on clockable ordinals ”on-line”. The term on-line
means that a real encoding an ordinal α will be produced in time exactly α
when α is a limit ordinal (it is also called real-time computation).

To understand the way this universal machine – which we will denote by
Uol – works, we can see the scratch tape and the output tape as a collection
of ω scratch tapes and ω output tapes, each one pointed to by a cell n in the
global tapes, which represent and simulate the computations of the infinite time
Turing machine number n on a given input.

Uol executes ω-run after ω-run of ω ITTM computations working in parallel
(e.g. simulating n steps of the n first machines and then increasing n). At each
ω-run, infinitely many machines may reach a halting state while infinitely many
others do not. Uol does not halt by design, it computes until we artificially
put an end to it when the computation reaches a length of ordinal type some
clockable ordinal.

To write reals using ITTMs, we need an “order-constructing” machine, de-
noted by Uck (for clockable) inspired by the one defined in [4], which uses Uol
but adds some features: Uck executes the code of each ITTM in the appropriate
cell, and observes the first ITTM which halts on clockable time τ for each τ in
order to build a well-order with these ITTM numbers. This order is isomorphic
to the set of clockable ordinals : to each clockable ordinal we assign the number
of the first ITTM which halts on time exactly this ordinal as observed by Uck.
We also use this machine to observe the occurrence of gaps during its computa-

2



tions, allowing us to halt the program at our convenience and observe different
results on its output tape.

We say that an ITTM writes a real r in a stable way if, during the writing
procedure, the value of any cell of the output tape converges towards its final
value; meaning that the sup rule is not applied to obtain the final output of
the machine (no cofinal blinking in cells). This will obviously be the case in
our first constructions since we write on the output tape but do not change
the result later on : whenever a bit is printed out as 1 in the input tape, it
is never changed. This stability will be much more difficult to obtain in the
last construction aimed at long and complicated gaps (Proposition4) and will
be discussed there.

This stability of our constructions is the key to proving the optimality of our
main results on writing the ordinals and constructible sets in minimal ordinal
time. We use the following lemma on ITTM-constructibility.

Lemma 1. Let f : R 7→ R be a total recursive function. If a real r is stably
writable in a limit time τ then f(r) is also stably writable in time τ .

Proof. We consider one of the Turing machines that compute the f function. We
build an ITTM which takes r as input and a natural number n, and computes
the n first bits of f(r). The real r is constructed by another ITTM little by little
and instead of writing it on the output tape, we write it in a work tape. We
run the Turing machine for f on this partial information (so the computation
of f might be wrong) and we output the result (if any) on the output tape of
the ITTM at position n. This process is run on parallel with the rest of the
ITTM computation. Remark that only a finite number of bits of r are needed to
compute the nth bit of f(r). After some time, when the adequate bits of r have
stabilized, our output stops fluctuating, it also stabilizes. The new ITTM halts
in time τ because that’s the time necessary to get all the information contained
in the oracle r and the parallel run works correctly for limit ordinals.

In this article, we often make implicit use of the result stating that any
ordinal γ starting a gap in the clockable ordinals is admissible. To see the full
proof, it appears as Theorem 50 in [13].

Let us now detail the writing of the ordinal ωCK
1 using the property that it

starts the first gap in clockable ordinals. In what follows we denote by τα the
end of a clockability gap that starts at α which is the ordinal segment [α, τα[.

Proposition 1 (Writing of ωCK
1 ). There exists a machine mωCK

1
that halts in

time τωCK
1

= ωCK
1 + ω and stably writes a real code for ωCK

1 .

This property can be obtained directly from [7] with a different construction,
but we present our own detailed proof as it will be a stepping stone to understand
the following constructions proving the more general results. Our statement is
actually a direct corollary of our property 2 but we present a direct proof below.
Presenting the details of the writing algorithm at many stages before the most
general one is very important because we will use more elaborate tools as we go
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along, in this manner the reader can see the progression of the writability and
how the algorithmic power and complexity snowballs as the ordinals we consider
get bigger.

Proof. Let’s describe the algorithm for mωCK
1

. Uck produces an order on ITTM
numbers such as only one of the ITTMs halting in a certain clockable ordinal
τ will have its number represented in the order, and that’s the first one Uol
encounters. We use this machine to start building an order isomorphic to the
set of clockable ordinals and we will halt this computation at the right ordinal
time in order to have exactly a code for ωCK

1 on the output tape upon halting.
One way to detect this halting time is to launch, at the beginning of our

computation, another ITTM called a timer, which halts after τωCK
1

= ωCK
1 + ω

steps of computation, causing our machine to halt as well. We could use the
technics from [7] for this but we choose to adapt Uol which runs inside Uck in
order for it to detect a gap in clockable ordinals. A gap is detected exactly ω
steps after the ordinal which began the gap since in our simulation we have to
be sure that none of our ω simulated ITTMs has reached a halting state in that
ordinal computing time.

At time τωCK
1

, what is written on the output tape is exactly the order repre-
senting ωCK

1 since it represents all clockable ordinals smaller than ωCK
1 .

The writing procedure is stable because as a new clockable ordinal is detected
through the first machine which halts in that time, the corresponding bits are
stably changed from 0 to 1. More precisely, when a new clockable ordinal is
observed, ω bits are changed in the output to mark that it is greater than all
preexisting ordinals in the order.

In our precedent proof many variants are possible. For instance we could
insert in the order ω elements as soon as a single halting machine is discovered
in a ω-run, or just insert a single element (it would not harm the construction
that much since gaps start on admissible ordinals which are closed enough [7]).

For the development of our proofs, we should be more precise on what hap-
pens before a gap and the following Lemma will be needed for that.

Lemma 2. The ordinal type of the set of clockable ordinals occurring before a
gap – which is began by an (admissible) ordinal α – is α itself. The ordinal type
of the set of clockable ordinals occurring before a limit of gaps – which are began
by (admissible) ordinals αi – is the limit supαi itself.

This property can be proved in many different ways, and is a nice exercise
to understand the closeness property of admissibles.

Proof. Let us first consider an ordinal α, the beginning of some isolated gap.
This ordinal α is admissible. Consider β a clockable ordinal with no gap between
β and α. The set γ, β ≤ γ < α is a segment of clockable ordinals. Let us denote
by δ its OT. We get that β + δ = α. But α is admissible, so by definition
undecomposable into a finite sum of smaller ordinals. So δ = α and the lemma
is proved.
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Now consider α being a limit of gaps. Since an isolated gap follows any gap,
then α is also a growing limit of isolated gaps. We apply the result just above
for those gaps and get the result.

In the sequel we use Lemma 2 only for isolated gaps and for recursively
inaccessible ordinals. The reader should keep in mind (from [2] for instance)
that the length of an isolated gap is always ω: we can first clock an ordinal before
the gap and then search for the next gap; identifying the gap requires ω steps.
Limits of gaps are either non admissibles and thus clockable or admissibles and
thus (recursively) inaccessible. The latter may start gaps of length ω (as does
for instance the first recursively inaccessible) or much longer.

Proposition 2 (Writing time of beginnings of gaps). Let α be an admissible
ordinal starting a gap. There exists a machine mα which halts in time τα and
stably writes a real code for α.

Proof. Let’s consider τα, the ordinal which closes the gap started at some ordinal
α. Let nτα be the number of an ITTM program which halts in time τα. Now
let’s run Uck and nτα at the same time. We make Uck halt exactly as nτα halts,
and thus a code for all clockable ordinals smaller than α is written on the output
tape. From Lemma 2 that’s a code for α. The stability stems from the same
reason as stated in the proof of Prop. 1.

Proposition 3 (Writability time of ends of small gaps). Let α be an admissible
ordinal starting a gap which doesn’t contain other admissible ordinals. There
exists a machine which halts in time τα and stably writes a real code for τα.

Proof. Consider ordinals within the segment [α, τα] (and also those ordinals be-
fore the next gap). They are recursive in α since the gap contains no admissible
ordinals: in order to go beyond recursion in α, we need to go beyond ωCK,α

1 :
an admissible.

Hence we can apply Lemma 1 to them and transform our machine that writes
the beginning of the gap (in our Prop. 2) into a machine that writes any of such
ordinals, including τα. Still by Lemma 1, the writing is stable

Proposition 4 (Writability time of ends of long gaps). Let α be an admissible
ordinal starting a gap, α < γ∞. There exists a machine which halts in time τα
and stably writes a real code for τα.

Here we deal with the more complex case when α starts a long gap. In
particular, we recall that α is (recursively) inaccessible. The gap started in α
can be arbitrarily large as we approach γ∞ from below : the gap size is only
bounded by γ∞, see [2]. This means we have no algorithmic way of computing
the size of the gap [α, τα[ in advance, even if α is given as input, before reaching
τα.

Remark that our result is optimal (as was the result of our previous proposi-
tions). If the writing time were less than τα then it would be a clockable ordinal
γ with γ < α. But the ordinal type of clockable ordinals in [γ, α] is exactly α
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by admissibility. Thus we could program an ITTM that writes τα (or even α
itself) and then count through this ordinal the clockable ordinals given by Uol
up to α. This machine would halt in exactly α steps. This would contradict the
admissibility of α.

Proof. In the previous constructions, we used an order based on ITTMs’ halting
times. We handle ITTMs by their number (an integer) in the Gödel enumeration
of ITTMs. We order these integers by the halting time of the corresponding
ITTM when it runs on input 0. We need a unique integer representative for any
clockable ordinal: we consider only the first ITTM that we discover halting in
this time when running our universal machine.

Now that the gaps can be very long, their end is no more recursive in its
starting point. We’ll switch to oracle computation inside the gap, using the
fact that the starting point of the gap (an admissible ordinal) is written on the
tape (as in proof of proposition 2. This oracle computation will be used to
find the next admissible inside the gap, etc. We’ll explain later how to do this,
but for now, please imagine that we keep trace of all admissibles and limits of
admissibles, even when the limit is not admissible (we’ll treat the same way all
limits of admissibles, even if they are not recursively inaccessible).

We would like to represent both the number of the ITTM and the oracle it
runs on – handled by an integer number. We thus encode both informations on
a single integer number, by standard bijection between ω2 and ω – denoted by
n = 〈a,b〉 with a = Π1(n), b = Π2(n).

Note that at each end of gap we can erase all these extra ordinal represen-
tations that are only used to count through large gaps. Indeed after a gap we
can come back to the counting of clockable ordinals and ignore ordinals in gaps
below (our lemma 2).

Digression : if a reader would like to get a one-to-one correspondence between
integers and writable ordinals we could keep the numbering obtained inside a
gap. These ordinals would then be represented by triplets 〈g, a,m〉 where g is
the name of the gap, a the rank number of the admissible or limit of admissibles
that serves as oracle, and m the number of the ITTM working on oracle number
a in the gap g that halts in this ordinal time. For g we can use the number
of an ITTM that halts at the end of the gap – it provides a unique numbering
for gaps. As this number is discovered after the gap, we could use a temporary
special integer (e.g. 0) for the current gap and transform this integer into the
correct value for g after the gap (it requires ω steps).

The first ordinals in the gap are the α-recursive ordinals. They are computed
with ITTMs much in the same way that recursive ordinals are computed on
oracle 0. Our aim is to order them with the associated information : “the
ordinal denoted by the halting of the machine n on the β’s admissible (or limit
of admissibles) of the gap that ends with the halting of machine m”. Let us
discuss this more precisely. The machine n runs on an oracle. The first oracle
chosen is α which is written on the tape. But we have to give a name to this
α so that it is associated to this particular gap (and not a previous one). The
name we chose for a gap is the end of the gap since it is clockable (by m). We
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do not know m in advance, but m can be seen as a general parameter for the
machine we construct. We need to prove that such a machine exists, there is no
need (and no way) to construct if from below. The oracle α will be considered
as the 0-th admissible of the gap. Now after the oracle α, when we arrive at
ωCK,α
1 , we change our oracle and switch to ωCK,α

1 in order to switch to a notation
that means “the ordinal denoted by the halting of the machine n on the first
admissible (or limit of admissibles) of the gap that ends with the halting of
machine m”. Then we switch to the second admissible, the ω-th, etc. For the
sake of homogeneity, we switch our oracle as soon as an admissible or a limit of
admissibles is found.

Now, it only remains to explain what integer notation we consider for β in
the sentence “the ordinal denoted by the halting of the machine n on the β-th
admissible (or limit of admissibles) of the gap that ends with the halting of
machine m”.

The first natural attempt would be to consider the number of β inside the
order that we are currently constructing. This seems to be powerful enough since
we can number more than α admissibles and thus overcome the problematic long
gaps described in [2]. Unfortunately, this construction does not work : there are
gaps that contain as many admissibles (in the sense of ordinal type) as the end
of the gap. This can be proved easily using the techniques invented in [2] : the
length of the gaps is unbounded in γ∞ so if this construction had no fixed point,
then we could observe this sequence of length of gaps (in terms of the order type
of the admissibles they contain) and halt when the observed length is as long
as the starting point of a gap. This would occur exactly in γ∞ – impossible.

It remains to elucidate how in this numbering we can always get fresh num-
bers to use on every new oracle we need to insert in the construction of our
order. This is easy for “relatively small” gaps, for instance if the number of
admissibles inside the gap is bounded by α we could use the order for α that we
use as first oracle. Unfortunately, the length of the gap, and even the number of
admissibles inside cannot be bounded by any ITTM-computable function that
take as input α and halts before the end on the gap. This is because those
admissibles inside the gap can be detected and if such an ITTM-computable
bound would exist, we would get an ITTM that halts after γ∞ (again see [2]).

Thus, we have to renumber admissible ordinals in the gaps from time to time.
This could be a problem: if we consider the sup of the ω first renumberings,
because of the limsup rule, all the notations are messed up. We then have to
reconstruct the order by a new computation and we explain how below. Please
note that we can keep trace of these renumbering times and detect when we get
to a limit of renumbering.

Let γ be a limit of such renumberings. We propose an ITTM algorithm to
write γ stably in time γ + ω. For this, we consider µ, one of the ITTMs that
halts exactly at the end of the gap (note that for main part of the proof we
can choose any machine that halts after the gap or any non-looping machine
such as the universal ITTM). We call rβ its tape-configuration for limit time
β. As µ is halting, all the rβ ’s are different (otherwise it would loop forever).
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Now we get that each rβ can be uniquely described by a Σ2-formula in Lγ . We
call the number of this formula nβ , and this integer nβ will be used as a sort
of index. We can compute nβ before β+ (next admissible after β). For all cells
of the machine that is 1 at a limit time, we can observe if it is obtained by
stabilization or by the limsup operation.

Now we consider only times β when a renumbering was necessary (the set
of β’s is closed). If β is isolated, then we know how to renumber and we get
a representation of β called Rβ in time ω this easy renumbering takes time ω.
Now we construct the triplet (nβ ,Rβ , Sβ) where Sβ is an extra information on
the stabilisation of cells in the configuration of µ called rβ . For each cell at 0,
we store the list of nγ (in incleasing order for the integer nγ) such that the 0
has flashed 1 at least once between nγ and nβ , the ordinal γ being in the list of
renumbering as is β. Indeed we can observe if the cell has flashed 1 at least once
since last renumbering and borrow the rest of the list from the triplet stored
previously. For each cell at 1, we store only the bit information whether it was
stabilising or obtained by limsup.

This triplet can be constructed stably as rβs and by consequence the nβs
are all different (those reals are never erased). In other terms, the triplets
we construct correspond to a bunch of ordinal representation stored in a non
structured form, along with information on the limit behaviour of the non-
looping ITTM µ.

Now let us consider γ which is limit in the β’s (renumbering times). We can
read the µ configuration rγ and we know which 1’s have stabilised before and
which come from the limsup. We will use this precise information on rγ and
the triplets below to construct a sequence (βm)m∈ω, cofinal in γ and the sum of
their representation

∑
m∈ω Rβm which will be a representation of γ denoted by

Rγ .
We select among the stored nβ ’s the triplet (order considered here is the

normal order on integers considering nβ) such that the sequence Sβ shows sta-
bilisation for all stabilised 0’s and 1’s of rγ and such that the m first oscillating
bits (that will produce 1’s) are correct (either at value 1 or at value 0 unsta-
bilised since last chosen nβ for m − 1). We can write this Rγ stably because
when we remove a β because if it does not respect the conditions above on all
the cells then we erase it forever.

Remark on the literature. Instead of counting time through halting machines
with oracles, Philip Welch used an idea of ‘Bigsum” machine. He then gets a
procedure of renumbering analogous to ours necessary only on Σ2-admissible
ordinals. Then he constructs the set of true Σ2 formulas in Lγ in real-time and
uses lemma 1 of [6] to get an ITTM that extracts a real representation of γ from
the set of true Σ2 formulas in Lγ .

Now the proof is almost completed. We got a stable representation of all
ordinals in the gap with delay at most ω with the help of the halting ITTM µ.
Let us denote by λ the sup of rearrangements of the gap. If the end of the gap
τα occurs at least ω steps after the last rearrangement (τα > λ + ω) then an
order for τα is (stably) written on the output tape when µ halts. But if τα = λ
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then there is a small problem since the rearrangement requires ω steps.
The solution comes form an idea of Philip Welch in [13] (lemma 48 case 1).

We observe the halting of µ. Instead of taking into account the whole limit
configuration, we observe the first cell of each tape of µ. As they contain
sufficient information for halting, one of them is at 1 for the first time and
thus comes from cofinal blinking. Assume that the other one is stabilized at 0
(we can adapt µ to be in this case). Then we will stably build a cofinal sum∑

m∈ω Rβm by selecting the βm’s online when the µ cell at 1 has flashed at
least m times with the µ cell at 0 has been unchanged. This case is easier than
the general case and occurs some times, for instance when the order type of
admissible ordinals in a gap is equal to the end of the gap (and this happens).

To summarise our construction, we get an online counting of time with
sometimes a delay ω, but when the delay is problematic to get the writing on
time (end of the gap) then we use a simplified algorithm that uses the halting
machine.

Our result is somehow a modification the Welch’s theorem which states that
any clockable ordinal is writable : λ∞ = γ∞ and of constructions presented by
the same author in [13]. Our construction improves and simplifies (from our
computability point of view) some of Welch’s results.

Corrolary 1. There exists a machine m that produces the real code of any
writable ordinal in real-time.

The term real-time in this corollary means that inside gaps, those codes
are indeed produced with small delays < ω, but cannot be showed (no ITTM
can halt) before the end of the gaps – and that outside gaps such codes have
been produced before. This result is not completely obvious from our proof
that depends on a chosen µ that halts at the end of the gap but as mentionned
earlier, it can be replaced by the universal ITTM (since it does not loop before
λ∞.

We can also get other results already proven in the literature concerning the
size of the loops of non halting machines and relativise our construction to any
oracle computation. Given a real number A, we can place it on the input tape
at the begining of all computations and for instance get that λA

∞ = γA
∞ We now

state our main theorem.

Theorem 1 (Writability time of ordinals). If an ordinal is writable by ITTM,
then its writability time is exactly the supremum of all ends of gaps that start
before him (him included). If no gap exists before this ordinal, its writability
time is exactly ω. The above writings can be made stable.

The proof of this main theorem is nothing else than the combination of our
Prop. 2, 3 and 4 using our stability lemma (lemma 1). It has been announced
in [4] with a reference to [5], which unfortunately has not been published. The
current paper is supposed to replace the latter.

In other terms, the writability times are exactly the ends of gaps and the
limits of ends of gaps (and also ω for small enough ordinals. If an ordinal is not
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in a gap then its writability time is exactly the sup of ends of gaps before, and
if it is in a gap, then its writability time is exactly the end of that gap.

3 Writing Gödel’s constructible universe
In this section, our focus is the ITTM-writability of Lα sets which contain the
constructible sets of level α (see for instance Devlin’s book [3]. Such sets do
not necessarily represent an ordinal or even a real, but as our α’s are countable,
they can be encoded in a real. The considered constructible levels are those Lα

for α ∈ λ∞.

3.1 Results and theorems
We present the statements of our results of the section, and the proofs follow.

Theorem 2. Given a code for an ordinal α ∈ ω1 as input, Lα is ITTM-writable
in time recursive in α (less than ωCK,α

1 ).

Two interesting theorems by Kœpke [9] on this topic are the ones which state
that the set of codes of well-orders is computable by an ITRM, and second, that
every Π1

1 set A ⊂ P(ω) is ITRM-computable. In our article, we use ITTMs
which are different models than ITRMs. Kœpke actually proves that any halting
problem for ITRMs is ITTM-decidable with the same oracle (Th.3 in [9]).

We present our specific encoding of the sets Lα which enables us to write
them into a real in optimal time using ITTMs. We do not start from Kœpke’s
theorems but from a theorem of evaluation from [1]. Constructible sets are
generated by the constructibility operator Def, that we directly compute with
ITTMs.

Theorem 3. On input 0, the writing time of Lα, α ∈ λ∞, is recursive in α’s
writing time.

Theorem 1 gives us a writing algorithm for α in time τα which we combine
with the result from Th. 2 to obtain our Th. 3.

Theorem 4. On input 0, the writing time of Lα, when α ∈ λ∞ is closed enough,
is precisely max(α,τα), where τα is the writing time of α.

This theorem 4 is just a reinforcement of the previous one, given the con-
struction. The hypothesis closed enough means that α should be closed in the
computing time of Th 3. If this computing time were α3 (we did not compute it
precisely but it seems it is much less than this bound), then our bound concerns
those α such that α = supβ<α β3.

3.2 Construction of an Lα

In order to construct inductively Lα+1 from Lα we need to evaluate the validity
of a formula.
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Proposition 5 (Reformulation of Th. 2.3.28 in [1]). There exists an ITTM
E which computes the evaluation of formulas over Lα. More precisely E takes
as input : Lα, a formula φ, and n integers ki, where n is the number of the
free variables xi in ϕ. The machine E halts on all such inputs, outputing 1 if
Lα |= φ[ki/xi] and 0 otherwise, where ki represents the i-th element pf Lα. The
halting time of E is < ωCK,α

1 .

Proof. A formula over Lα has a number in the enumeration of formulas, a certain
number of variables and parameters. In order to evaluate it, we should be able
to access the given code of each value for parameters. These codes are for
elements in Lα, which is taken as input. So that code is accessible to E . In
addition, formulas are always the same countable sequences of symbols. What
changes from a constructible level to the next is simply the sets in which the
variables/parameters can be taken.

The computation of the formula itself is a very simple loop depending on its
quantifier’s alternation, and only relies on the fact that the machine can extract
ki from the code of Lα – this will be explained in the sequel. Remark that going
through all ki generates a loop of length only ω and not of length α since we do
not have do go through any specific ordering of the elements.

3.2.1 Finite levels of constructible sets

The first constructible set is L0 = ∅. Next levels are indexed by integers and
∀n < ω Ln = Vn, meaning that finite constructible sets are exactly the 2n finite
sets added by the power set operation at each level. We can enumerate them
by ITTM and hence write them all in time ω. We thus get a real that encodes
Lω ordered first by power set level and then by alphabetic order.

This real representing Lω is the base case for our transfinite recursion with
which we will be able to write other (infinite) levels of constructible sets. With
this real, we can effectively access the encoding of different levels of constructible
sets < ω. Moreover, we can also obtain the k-th element of the n-th level in
finite time by and ITTM that gets Lω (encoded in a real as explained above) as
input.

3.2.2 Successor levels : an explicit encoding

We suppose that we dispose of the encoding rLα
of the constructible set of level

some α > ω. We give the algorithm which writes the real, rLα+1 , of the successor
of α

Lα+1 = Def (Lα)

This means that Lα+1 is precisely the set of all elements (which are also sets)
a ∈ Lα which are produced by a formula such that

∃n a = {x ∈ Lα| |=Lα
φn(ẋ)}

The expression φn(ẋ) represents the resulting set obtained by applying the
formula number n of our language to the constant symbol of the set x. As the
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constructible set that we are currently building is Lα+1, let’s denote its elements
by ai. To point out elements of the predecessor level Lα, we will use variables
bi. An element an of Lα+1 has its elements defined by a formula φn and has
the form

an = {b0, b1, b2...} ⊆ Lα

This set is a subset of Lα which can be represented by a real, and its elements
are exactly those elements of Lα which satisfy the associated formula φn.

Let’s consider the grid ω2. We use it to encode our successor set Lα+1.
On the horizontal axis are represented the ω formulas of LLα which each

have a number. Each set produced by a formula will be represented by a real
encoded in the column numbered by its index.

As for the lines, for each line of index m, there will be a 1 in 〈n,m〉 if and
only if the set bm (of Lα) is an element of an, and 0 otherwise. The answer to
this question is given by our Prop 5. What needs to be done at present is to
enumerate and evaluate all possible formulas. To do so, we may use theorem 5.
In this way, we obtain an encoding in ω2 bits of our desired set Lα+1, and as
it is clear that ω2 is isomorphic to ω, we can in turn obtain a real encoding for
our desired set, which was the goal all along. To decode it, we must only know
of the fixed bijection we used to encode the ω2 bits into ω.

3.2.3 Successor levels : encoding with references

Let α be some ordinal. We would like to build the encoding of Lα+1 implicitly
by referring to the code of Lα without rewriting the entire code for each con-
structible element. For doing this, we use the construction of our Prop. 4 which
constructs incrementally a representation for ordinals. In this representation,
we use ω bits in order to store Lα. We get these ω bits very easily : our order
representing a level α is based on the halting of ITTMs at that time with a given
oracle. But get ω machines that halt at the same time. In our construction,
we chose the first discovered machine (with our machine Uck). In the current
construction, we use all these numbers to store the ω bits of Lα.

3.2.4 Limit levels

Let λ be a limit ordinal. We aim in this section to exhibit a technique of
encoding for the constructible Lλ into an ITTM-computable real, given rλ.

Each ordinal α ≺ λ has a number in rλ. We can use these very numbers
to vertically store the reals of each constructible level Lα. We construct in this
way a code of length ω2 for Lλ, where in each column number n is stored the
corresponding code of the level Lα where α is the ordinal number n in rλ. To
obtain a real for a limit level constructible set using this technique, it will only
remain to project its result using 〈·, ·〉.
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3.2.5 Improved encoding of limit levels

In our technique presented above, There is nothing specific to do in limit levels,
excepted to keep a correct ordering. But for the sake of homogeneity, we would
like to indicate what is the element number n of such a Lα. It should be the m’s
element of a Lβ for a β < α and this β has an integer number in α. So we can
solve this indirection and give directly the proper reference to the n’s element
(as a pointer resolution).

Proof of Th. 3. We have just explained how the Lα’s are constructed and what
is their encoding. Both go together since the encoding relies on the construction
itself in a sophisticated reference system. The evaluation of a formula is given in
our Prop. 5. We can now combine these results and get Th. 3. The time bound
stated is rough : we just stated that it is recursive in α which is completely
clear, given the structure of the described algorithm.

The structure of the construction algorithm of embedded controlled loops
gives for sure a polynomial time bound (in α). We think it is as simple of α3 or
even α2 which is of little importance.

3.3 Time of writability of constructible sets
Proof of Th. 4. Let α ∈ λ∞ be an ordinal closed by the complexity function of
the construction discussed above. We characterize its ITTM-writability time by
the ordinal max(τα,α). Beware that when α is not clockable then α < τα but
when α is clockable then τα ≤ α.

In the first case, α is in a gap. Thus if we denote by α0 the beginning of
the gap, we could construct simultaneously α0 and Lα0

at time α0 (α0 being
admissible is closed enough). Please note that this is a construction “at the
limit” and we cannot halt at this point. The same property holds for β being
the sup of all admissibles of the gap that may occur before α. Then the rest
relies on the closure property of α.

Now if α is clockable, τα ≤ α. Now remark that α is recursive in β (still
defined as the sup of all admissibles before α). The set Lβ is constructed “at
the limit” in time β and thus we can use our theorem 3 to get the result.
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