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A B S T R A C T
This paper deals with the tracking control problem of small autonomous tethered underwater vehicles.
It proposes a new extended robust integral of the sign of the error (RISE) feedback control. The pro-
posed RISE-based extension benefits from a fuzzy inference system to automatically and online tune
the parameters of the RISE controller. The resulting intelligent control scheme is named Fuzzy RISE
(FRISE) feedback control. Several real-time experimental scenarios, in different operating conditions,
were conducted on Leonard underwater vehicle to demonstrate the efficiency and robustness of the
proposed control scheme. It was also compared with some existing controllers from the literature to
show its performances.

1. Introduction and related work
The underwater environment covers approximately 71%

of the earth surface and supports approximately 90% of all
life forms, making it a strategic and resource-based environ-
ment with great potential benefits for human life [1]. How-
ever, accessing the deeper floors of the ocean presents signif-
icant challenges, including poor visibility, extreme pressure,
low temperature, and unstructured topography, which induce
safety risks to humans and conventional manned vehicles
(submarines) [2]. To overcome these challenges, researchers
have proposed using unmanned underwater vehicles/robots
(UUVs) equipped with intelligent capabilities to explore and
exploit underwater environments. In recent years, the use
of UUVs has become increasingly common due to their
performance and flexibility in various fields such as mil-
itary, commercial, and scientific research applications [3].
They are a viable alternative for carrying out tasks that are
impossible for humans due to potential safety issues. The
advancements in UUVs have revolutionized the exploration
and exploitation of the underwater environment, leading to
significant progress in deep ocean areas and the activities of
maritime industries [4].

Despite the significant advancements in UUVs technol-
ogy [5] several challenges persist during underwater mis-
sions, such as communication, perception, sensing, reliable
autonomy, and control. To perform tasks efficiently, UUVs
require autonomy in positioning the vehicle or tracking a
predefined trajectory for mapping an area of interest, making
control one of the most challenging requirements [6]. There-
fore, researchers have proposed various control techniques
in recent years to address these challenges and improve the
performance of UUVs.

One of the widely used control schemes is classical
control schemes, which includes PD/PID controllers and
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their variants [7],[8]. These controllers are simple to imple-
ment but lack robustness against uncertainties and external
disturbances [9]. Robust control schemes like sliding mode
controllers [10], fuzzy logic controllers [11], [12], neural
network controllers [13], and adaptive techniques [14], [15]
have been proposed to overcome this limitation and provide
better performances. Hybrid intelligent controllers combin-
ing multiple control schemes have also been proposed [16].
However, these advanced controllers are more challenging
to implement and require fine tuning for specific operating
conditions. A detailed review of the literature about AUV
control is available in [17].

The robust integral of the sign of the error (RISE) [18],
is a class of SMC-like techniques that guarantee semi-global
asymptotic tracking for nonlinear uncertain systems. Un-
like other SMC methods, RISE includes a singular integral
signum term that can handle smooth bounded disturbances.
Although the robustness of the standard RISE control is
one of its main characteristics, this is achieved only at the
expense of the introduction of the integral term in the con-
troller; which may grow indefinitely and exceed the mechan-
ical actuator limits in the critical condition of nonlinearities
and disturbances [19]. Therefore, different approaches for
improving the performance of the standard RISE have been
proposed in the literature [20], [21] and [22].

In this study, we propose the design of an intelligent
RISE controller that considers this issue. The proposed
controller combines a standard RISE controller with a fuzzy
logic inference system to dynamically adjust the gains in
the aim of improving the trajectory tracking performance.
The main contributions of this study can be summarized as
follows:

• An enhanced RISE (named intelligent RISE) feedback
control is developed to ensure a better robustness
towards parametric uncertainties and external distur-
bances.

• Several real-time experimental scenarios are con-
ducted to demonstrate the efficiency and robustness
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of the proposed intelligent RISE control scheme w.r.t
existing controllers, namely a PID and a conventional
RISE controller.

2. Vehicle description and modeling
2.1. Vehicle description

The real-time experiments are conducted using one of
LIRMM’s underwater prototypes, named Leonard, as illus-
trated in Fig. 1. Leonard is a tethered underwater vehicle,
entirely designed and built at LIRMM, part of the University
of Montpellier and CNRS, France. Its dimensions are 75cm
long, 55cm width, and 45cm height, and it weighs 28kg.
Table 1 summarizes some of the vehicle’s technical features,
as well as its parameters. For more details about the Leonard
underwater vehicle, the reader can refer to [15] and [10].

Figure 1: Leonard autonomous underwater vehicle.

The propulsion system of this vehicle consists of six
independent propellers Fig. 2, making it a holonomic fully
actuated system capable of maintaining stability in its six de-
grees of freedom (6DOFs). These propellers are controlled
by a computer located at the surface via an umbilical cable
and are capable of maintaining the vehicle in any desired
orientation. The computer is a laptop with an Intel Core i7-
3520M 2.9GHz CPU, 8GB of RAM, running under Win-
dows 10 operating system. The control software is developed
using Visual C++ language. The laptop receives the data
from the underwater vehicle’s sensors, computes the control
laws, and sends control actions to each thruster of Leonard.

Leonard can be operated either remotely or autonomously,
this makes it perfectly suited for a wide range of marine
operations. The design of the vehicle ensures that the center
of buoyancy and the center of gravity help the robot to
remain passively stable in pitch and roll. This feature not
only reduces the vehicle’s energy consumption but also
enables the vehicle to maintain a near-zero roll and pitch
with respect to the horizontal plane.

Figure 2: Illustration of the six actuators of Leonard au-
tonomous underwater vehicle as well as their configuration.

Table 1
The main technical features of Leonard UUV.

Hardware components and
parameters

Descriptions and their
specifications

Attitude Sensor Sparkfun MPU 9250,
MEMS 9-axes gyrometer,
accelerometer and
magnetometer.

Depth Sensor Pressure sensor
MS5803-02BA.

Dimensions 75cm (Length) × 55cm
(Width) × 45cm (Height).

Sampling Periods 40ms (Attitude sensor) and
50ms (Depth sensor).

Floatability 9N.
Mass 28Kg.
Maximal Depth 100m (range also

depending on the depth
sensor).

Power Consumption 24V, 600W.
Tether 50m in testing pool

configuration.
Thrusters 6-Seabotix BTD150

continuous thrust 2.2kgf
each with Syren 10 drivers.

2.2. Vehicle modelling
The kinematics and dynamics of low-inertia underwater

vehicles, such as Leonard, rely on a mathematical repre-
sentation involving 3D reference frames. These frames are
the Earth-fixed frame which is usually placed at the water
surface and the body-fixed frame, generally aligned with the
vehicle’s center of volume. Fig. 3 illustrates the arrangement
of these frames, providing a clear visual representation of
how they are assigned for the vehicle navigation based on
SNAME (Society of Naval Architects and Marine Engi-
neers) standard [23].
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Figure 3: Illustration of the reference frames used in the vehicle
modelling.The Earth-fixed frame is denoted (𝑂𝑖, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and
the body-fixed frame is denoted (𝑂𝑏, 𝑥𝑏, 𝑦𝑏, 𝑧𝑏).

A. Kinematics
From the reference frames 𝑅𝑒 and 𝑅𝑏, as illustrated in

Fig. 3, we can relate the rate of change of the vehicle’s
position and orientation to its linear and angular velocities
as follows:

𝜂̇ = 𝐽 (𝜂)𝑣 (1)
where 𝜼 = [𝜂𝑇1 𝜂𝑇2 ]

𝑇 ∈ ℝ6×1, with 𝜂1 = [𝑥 𝑦 𝑧]𝑇 and
𝜂2 = [𝜙 𝜃 𝜓]𝑇 , is the vector of position and orientation
in the Earth-fixed frame, 𝝂 = [𝜈𝑇1 𝜈𝑇2 ]

𝑇 ∈ ℝ6×1, with
𝜈1 = [𝑢 𝑣 𝑤]𝑇 and 𝜈2 = [𝑝 𝑞 𝑟]𝑇 , is the linear and angular
velocities vector in the body-fixed frame and 𝐽 (𝜼) ∈ ℝ6×6 is
the 3D transformation matrix from 𝑅𝑒 to 𝑅𝑏 given by [23].

𝐽 (𝜂) =
[

𝐽1(𝜂2) 03×3
03×3 𝐽2(𝜂2)

]

(2)

where 𝐽1(𝜂2) and 𝐽2(𝜂2) are given by:

𝐽1(𝜂2) =
⎡

⎢

⎢

⎣

𝑐𝜓𝑐𝜃 𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓𝑐𝜙 𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙
𝑠𝜓𝑐𝜃 𝑠𝜓𝑠𝜃𝑠𝜙 + 𝑐𝜓𝑐𝜙 𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

⎤

⎥

⎥

⎦

(3)

𝐽2(𝜂2) =
⎡

⎢

⎢

⎣

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙∕𝑐𝜃 𝑐𝜙∕𝑐𝜃

⎤

⎥

⎥

⎦

(4)

With 𝑐(⋅) ≡ cos(⋅), 𝑠(⋅) ≡ sin(⋅) and 𝑡(⋅) ≡ tan(⋅).
B. Dynamics

Following the SNAME convention and the representa-
tion proposed in [23], the dynamics of underwater vehicles
in the body-fixed frame, can be expressed as follows:

𝑀𝜈̇ + 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏 +𝑤(𝑡) (5)

where 𝑀 ∈ ℝ6×6 is the inertia matrix including the
effects of both rigid-body and added mass, 𝐶(𝜈) ∈ ℝ6×6

is the Coriolis–centripetal matrix, 𝐷(𝜈) ∈ ℝ6×6 is the
hydrodynamic damping matrix, 𝑔(𝜂) ∈ ℝ6×1 is the vector
of restoring forces and moments, 𝜏 ∈ ℝ6×1 is the control
inputs vector, and 𝑤(𝑡) ∈ ℝ6×1 is a time-varying vector
representing the external disturbances.

Based on the dynamics equation (5), the matrices and
vectors describing the dynamics are given as follows:
The so-called inertia matrix 𝑀 combining the vehicle’s
rigid-body inertia 𝑀𝑅𝐵 and the inertia of the added mass
𝑀𝐴 can be expressed as follows:

𝑀 =𝑀𝑅𝐵 +𝑀𝐴 (6)
Besides, considering that the vehicle is moving at low
speeds, the matrix 𝑀 can be simplified as follows:

𝑀 = diag(𝑚 +𝑋𝑢, 𝑚 + 𝑌𝑣, 𝑚 +𝑍𝑤,
𝐼𝑥𝑥 +𝐾𝑝, 𝐼𝑦𝑦 +𝑀𝑞 , 𝐼𝑧𝑧 +𝑁𝑟)

(7)

where𝑚 is the mass of the vehicle, {𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧} are the ve-
hicle’s rigid-body moments of inertia and {𝑋𝑢̇, 𝑌𝑣̇, 𝑍𝑤̇, 𝐾𝑝̇,
𝑀𝑞̇ , 𝑁𝑟̇} are the hydrodynamics added masses. Similarly,
the damping matrix 𝐷(𝜈) can be approximated in 𝑅𝑏 as
follows:

𝐷(𝜈) = diag(𝑋𝑢, 𝑌𝑣, 𝑍𝑤, 𝐾𝑝,𝑀𝑞 , 𝑁𝑟) (8)
Moreover, the vector of restoring forces and moments 𝑔(𝜂)
can be expressed as follows:

𝑔(𝜂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑓𝑠𝜃
𝑓𝑐𝜃𝑠𝜙
𝑓𝑐𝜃𝑐𝜙

𝑧𝐺𝑊 𝑐𝜃𝑠𝜙
𝑧𝐺𝑊 𝑠𝜃

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

where 𝑓 = 𝑊 − 𝐵, with 𝑊 and 𝐵 representing the weight
and buoyancy of the Leonard UUV and (0, 0, 𝑧𝐺) is the
position of the vehicle’s center of gravity. Finally, 𝜏 refers to
the vector of control inputs responsible for translational and
rotational motions of the vehicle. Thus, 𝜏 can be written as
follows:

𝜏 = 𝑇 .𝑓 (10)
where 𝑇 ∈ ℝ6×6 is the thrusters configuration matrix and
𝑓 = [𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6]𝑇 is a vector of the forces produced
by the six thrusters of the vehicle.

3. Proposed control scheme’s design
This section outlines the design of the advanced RISE

feedback control based on a fuzzy inference system, a novel
contribution of this study. The conventional RISE feedback
control approach, despite its proven effectiveness in various
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applications [20], faces some specific challenges when im-
plemented in real-time systems, particularly those restricted
by cost or hardware. These challenges include a lack of
adaptability due to its fixed gains, complexity in handling
nonlinearities, potential difficulties when confronted with
unexpected system uncertainties and risks of actuators satu-
ration due to uncontrolled integral term growth [19].

To deal with these challenges, we propose a fusion of the
RISE feedback control scheme with a fuzzy logic inference
system. By incorporating fuzzy logic, the gain can be dy-
namically adjusted in real-time, enhancing adaptability and
performance consistency. The inherent capability of fuzzy
logic to work with linguistic variables provides an effective
counter to system nonlinearities [24]. Its integration with
RISE also adds a layer of robustness, enhancing resilience
against unexpected disturbances, and allows for monitoring
and automatically adjusting the gain to mitigate issues asso-
ciated with integral wind-up. Furthermore, the fuzzy logic
controller reduces the reliance on exact mathematical mod-
els, making them particularly advantageous when dealing
with highly complex or ambiguous system dynamics [25].

Guided by these principles, the proposed solution not
only retains the robustness of the traditional RISE control
but also leverages the intuitive intelligence of fuzzy logic
to offer smooth, auto-tuned control. The detailed design is
detailed in the sequel, starting with a background on RISE
feedback control followed by the enhanced controller design
based on a fuzzy inference system.
3.1. Background on RISE feedback control

The RISE (Robust Integral of the Sign of the Error)
feedback control is a robust nonlinear control strategy, devel-
oped for high-order nonlinear MIMO systems. This control
scheme uses a non-model-based state feedback law to ensure
semi-global asymptotic tracking. The RISE control uses a
unique integral of sign of the error as a robustness term,
in addition to the proportional integral part, to compensate
for a wide range of uncertainties and external disturbances
[18]. This makes the RISE control robust, while generating
continuous control signals, avoiding chattering effects, and
improving the tracking performance.

Let us first consider 𝜂𝑑(𝑡) as the desired trajectory for the
vehicle, and 𝜂(𝑡) as its actual trajectory.

𝜂𝑑(𝑡) =
[

𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝑧𝑑(𝑡), 𝜙𝑑(𝑡), 𝜃𝑑(𝑡), 𝜓𝑑(𝑡)
]𝑇 (11)

𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜙(𝑡), 𝜃(𝑡), 𝜓(𝑡)]𝑇 (12)
The vehicle tracking error 𝑒1(𝑡) and its first time-derivative

are defined as follows:
𝑒1(𝑡) = 𝜂𝑑(𝑡) − 𝜂(𝑡) (13)

𝑒̇1(𝑡) = 𝜂̇𝑑(𝑡) − 𝜂̇(𝑡) (14)

Where 𝜂̇𝑑(𝑡) and 𝜂̇(𝑡) are the first time-derivatives of 𝜂𝑑(𝑡)and 𝜂(𝑡), respectively, 𝑒1(𝑡) = [𝑒1𝑥(𝑡), 𝑒1𝑦(𝑡), ..., 𝑒1Ψ(𝑡)]𝑇 and
𝑒̇1(𝑡) = [𝑒̇1𝑥(𝑡), 𝑒̇1𝑦(𝑡), ..., 𝑒̇1Ψ(𝑡)]𝑇 . An auxiliary tracking
error is introduced as follows:

𝑒2(𝑡) = 𝑒̇1(𝑡) + 𝛼1𝑒1(𝑡) (15)
where 𝛼1 > 0 is a positive constant.
Based on the stability analysis established in [18], the RISE
control law can be formulated for the vehicle’s six degrees
of freedom as follows:

𝜏 =(𝑘𝑠 + 𝐼)𝑒2(𝑡) − (𝑘𝑠 + 𝐼)𝑒2(𝑡0)

+ ∫

𝑡

0
(𝑘𝑠 + 𝐼)𝛼2𝑒2(𝜎) 𝑑𝜎

+ ∫

𝑡

0
𝛽sgn(𝑒2(𝜎)) 𝑑𝜎

(16)

Where 𝜏 ∈ ℝ6×6 is the control input vector, 𝐼 ∈ ℝ6×6 is
the identity matrix and sgn(⋅) represents the standard signum
function. Additionally, 𝑘𝑠, 𝛼2 and 𝛽 ∈ ℝ6×6 are positive
definite diagonal feedback gain matrices expressed as:

𝑘𝑠 =

⎡

⎢

⎢

⎢

⎣

𝑘𝑠1 0 ⋯ 0
0 𝑘𝑠2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑘𝑠6

⎤

⎥

⎥

⎥

⎦

𝛽 =

⎡

⎢

⎢

⎢

⎣

𝛽1 0 ⋯ 0
0 𝛽2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛽6

⎤

⎥

⎥

⎥

⎦

𝛼2 =

⎡

⎢

⎢

⎢

⎣

𝛼21 0 ⋯ 0
0 𝛼22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛼26

⎤

⎥

⎥

⎥

⎦

It is worth noting that the second term of equation (16), i.e.,
(𝑘𝑠 + 𝐼)𝑒2(𝑡0) is introduced to ensure a zero-control input at
initial time 𝑡 = 𝑡0 (that is, 𝑢(𝑡0) = 0).
3.2. Proposed control scheme: A fuzzy-based

RISE control
To achieve effective control with the RISE command, its

parameters must be carefully tuned and set to their optimal
values. The feedback gain 𝑘𝑠 is often regarded as having the
most significant influence on the RISE control performance
since it dictates the rate at which the controller reacts to regu-
lation errors. This rate can impact both system’s stability and
accuracy. Too high values of 𝑘𝑠 may lead to oscillations and
instability, while too low values can result in a slow response
and a limited precision [26]. Given these challenges, there
is a compelling need for a method that can automatically
adjust the 𝑘𝑠 gain while considering the dynamic conditions
and ensuring optimal performance. Fuzzy logic emerges as
a promising solution to address this necessity by adjusting
the 𝑘𝑠 feedback gain based on various system states and
behaviors.
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Fuzzy logic is a human-like intelligent inference method
that embodies human control experience and strategy. Un-
like traditional methods relying on precise models of nonlin-
ear control systems, fuzzy control can be applied in the con-
trol process, offering strong robustness and excellent anti-
interference performance [27]. Fuzzy control, with its innate
adaptability and decision-making capabilities, is effective
in settings where precise mathematical models are either
lacking or overly complex.

In this study, a Mamdani-type fuzzy controller is pro-
posed with two-inputs : the robot’s tracking error 𝑒1 and it’s
first time-derivative 𝑒̇1, and a single output : the adaptive
feedback gain 𝑘𝑠. This controller integrates three core com-
ponents: fuzzification, fuzzy inference system, and defuzzi-
fication [28].
A. Fuzzification

For the fuzzification step, the system employs a carefully
selected set of Gaussian membership functions to convert
numerical inputs into fuzzy values. These functions are
chosen based on two primary considerations, including (i)
their ability to ensure a smooth and continuous transition,
thus reducing sudden changes, and (ii) the simplicity of their
mathematical representation which helps in computation.

This conversion process is essential for the application of
fuzzy logic rules within the inference engine. By converting
crisp values, the system’s input parameters such as the
robot’s tracking error 𝑒1 and its first time-derivative 𝑒̇1, into
fuzzy sets, the system can interpret and process these inputs
in terms of linguistic variables like Large Negative, Nega-
tive, Zero, Positive, and Large Positive. This interpretation
aligns with the human-like reasoning approach that fuzzy
logic aims to emulate, where decisions are made based on
degrees of truth rather than binary logic.

To achieve this transformation, five Gaussian member-
ship functions are employed, they are illustrated in Fig. 4.
These functions, denoted as 𝜇𝑒1 for the tracking error and
𝜇𝑒̇1 for its first time-derivative, indicate the degree of mem-
bership of each variable to the fuzzy sets.

To precisely define the Gaussian functions, 𝑎1 and 𝑎2 are
set as the centers for 𝜇𝑒1 curves, determining the peak points
of membership for the tracking error, while 𝑏1 and 𝑏2 are the
centers for 𝜇𝑒̇1 curves, governing the peak points for the first
time-derivative of the tracking error. These central points
are critical as they reflect where the input values have the
highest degree of membership to the corresponding fuzzy
sets, thereby dictating the system’s response to changes in
tracking error and its first time-derivative.
B. Fuzzy inference system

The core of the fuzzy logic system is the fuzzy rule base,
a collection of if-then rules that define how the inputs are
mapped to the output. The rules are formulated based on
expert knowledge and intuition about the control system’s
behavior, ensuring that the system’s responses are both
precise and adaptable to changing conditions. For instance,
if the tracking error is ’Positive Large’ (PL) and the error

Figure 4: Membership functions for input variables.

change rate is ’Positive Small’ (PS), then the feedback
gain might be finely adjusted to a ’Medium’ (M) value, to
correct the trajectory efficiently without causing overshoots
or instability. The rule base effectively captures the relation-
ship between the tracking performance and the necessary
adjustments to the feedback gain, providing a mechanism for
a dynamic adaptation.

By adopting a trial-and-error approach to assess various
fuzzy control rules, a definitive set of rules for UUV path
tracking was formulated. This set results from thorough
testing and fine-tuning, leveraging the inherent strengths
of fuzzy logic designed to mimic human decision-making.
Such a manual selection process is suitably tuned through
observed performance and expert intuition, enabling the
system to automatically compute and adjust the output pa-
rameter, i.e., the gain 𝑘𝑠, based on the values of 𝑒1 and
𝑒̇1. This dynamic adjustment mechanism, summarized in
Table 2, clearly demonstrates the system’s ability to adapt
to real-time changes in the vehicle’s tracking error and its
rate of change, enhancing both effectiveness and reactivity.
C. Defuzzification

For the defuzzification phase, the fuzzy output generated
by the inference engine is transformed back into a crisp
control signal, facilitating practical implementation in the
control system.

The center of gravity method, renowned for producing
smooth outputs that responsively adapt to even minor input
changes, is selected as the defuzzification strategy for this
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Table 2
Table of the fuzzy rules base.

𝑒̇1
𝑒1 Large

Negative Negative Zero Positive Large
Positive

Large
Negative

Very
small

Very
small

Very
small Small Medium

Negative Very
small

Very
small Small Medium Large

Zero Very
small Small Medium Large Very

large

Positive Small Medium Large Very
large

Very
large

Large
Positive Medium Large Very

large
Very
large

Very
large

investigation. This method determines the crisp value by
pinpointing the center of mass along the output membership
function curve. This is achieved by identifying the point
where the cumulative distribution of fuzzy output values
is equally balanced on both sides. Fig. 5 illustrates the
membership functions for the output variable, specifically
the gain 𝑘𝑠. The membership function 𝜇𝑘𝑠 is parameterized
by the constants 𝑐1 through 𝑐5, which correspond to the
centers of the Gaussian curves for the linguistic terms Very
Small (VS), Small (S), Medium (M), Large (L), and Very
Large (VL), respectively. These centers define the points
of highest membership for each term and are critical for
accurately interpreting the output’s degree of membership
in the respective fuzzy sets.

Figure 5: Membership functions for output variable.

The conversion of fuzzy results into a single numer-
ical output is meticulously handled by the COG (Center
of Gravity) method, with the defuzzified output calculated
accordingly:

𝑘𝑠fuzzy =
𝑐1𝜇VS + 𝑐2𝜇S + 𝑐3𝜇M + 𝑐4𝜇L + 𝑐5𝜇VL

𝜇VS + 𝜇S + 𝜇M + 𝜇L + 𝜇VL
(17)

Where VS: Very Small, S: Small, M: Medium, L: Large, VL:
Very Large.

And:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇VS = max(𝜇𝑅1, 𝜇𝑅2, 𝜇𝑅3, 𝜇𝑅6, 𝜇𝑅7, 𝜇𝑅11)
𝜇S = max(𝜇𝑅4, 𝜇𝑅8, 𝜇𝑅12, 𝜇𝑅16)
𝜇M = max(𝜇𝑅5, 𝜇𝑅9, 𝜇𝑅13, 𝜇𝑅17, 𝜇𝑅21)
𝜇L = max(𝜇𝑅10, 𝜇𝑅14, 𝜇𝑅18, 𝜇𝑅22)
𝜇VL = max(𝜇𝑅15, 𝜇𝑅19, 𝜇𝑅20, 𝜇𝑅23, 𝜇𝑅24, 𝜇𝑅25)

(18)

With:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝑅1 = min(𝜇LN(𝑒1), 𝜇LN(𝑒̇1))
𝜇𝑅2 = min(𝜇N(𝑒1), 𝜇LN(𝑒̇1))
⋮
𝜇𝑅25 = min(𝜇LP(𝑒1), 𝜇LP(𝑒̇1))

(19)

The constants 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3, 𝑐4, and 𝑐5 are tuned
using the trial-and-error technique.

The use of the trial-and-error technique for tuning the
fuzzy inference system is particularly effective because it
aligns with the foundational principles of fuzzy logic. Fuzzy
logic is inherently based on reproducing human expertise
and observational learning. Therefore, the trial-and-error
method is a strategic choice that exploits the human-like
decision-making process innate to fuzzy systems. This ap-
proach efficiently captures and translates expert insights into
the control logic.

Ultimately, the resulting control law can be expressed by:

𝜏RISE = (𝑘𝑠(⋅) + 𝐼)𝑒2(𝑡) − (𝑘𝑠(⋅) + 𝐼)𝑒2(𝑡0)

+ ∫

𝑡

0
(𝑘𝑠(⋅) + 𝐼)𝛼2𝑒2(𝜎)𝑑𝜎

+ ∫

𝑡

0
𝛽sgn(𝑒2(𝜎))𝑑𝜎 (20)

Where 𝑘𝑠(⋅) is the output of the fuzzy inference system and
FRISE refers to the enhanced RISE controller using fuzzy
logic.

4. Real-time experimental results
In this section, we present the obtained real-time experi-

mental results including various scenarios using the Leonard
underwater vehicle described in Section 2.1. During the real-
time validation, different scenarios were considered to assess
the effectiveness of the proposed enhanced RISE controller
in comparison to the conventional RISE controller. It was
also evaluated in terms of robustness against uncertainties
and external disturbances. Additionally, the PID controller
was also implemented and serves as a benchmark for com-
parison.
4.1. Some real-time implementation issues

Even though the previous section addressed the theoret-
ical design of the proposed RISE and FRISE controllers for
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all the six DOFs, the real-time validations of the proposed
control schemes will focus only on the autonomous control
of two DOFs for performance evaluation. The two DOFs
in question include one translational DOF (depth) and one
rotational DOF (yaw), for the following technical reasons:
(i) The measurement of the depth (𝑧) is affected by noise,
primarily attributed to the used pressure sensor. (ii) Practical
marine operations often demand precise control of the vehi-
cle’s yaw. For instance, activities like oceanography and dam
inspection [29] heavily rely on accurate yaw control. (iii) In
contrast, the surge (𝑥) and sway (𝑦) DOFs of the vehicle are
both difficult to measure. Besides, the roll (𝜙) and pitch (𝜃)
DOFs exhibit passive stability characteristics thanks to the
design of our vehicle.

During the testing phase, the vehicle is controlled to
track the desired depth and yaw trajectories as accurately
as possible in different operating conditions. They include,
internal/external disturbances, parametric uncertainties, un-
modelled dynamics and unpredictable operating environ-
ments.

All the conducted tests in this study were carried out in
the 4x3x2 m testing pool at LIRMM laboratory for various
scenarios, as illustrated in Fig 6.

Figure 6: Illustration of the experimental environment.

4.2. Proposed experimental scenarios
In order to evaluate the efficiency and robustness of the

proposed control scheme, we propose the following four
main scenarios:

(1) Scenario 1: Nominal case
In this scenario, the robot is guided along a predefined
reference trajectory in depth and yaw (illustrated in
Fig 7) in the absence of external disturbances and
parametric uncertainties. During this test, the con-
troller’s gains are tuned to ensure the best tracking and
are kept unchanged for the other scenarios.

(2) Scenario 2: Robustness towards parametric uncer-
tainties

In this test, the vehicle’s buoyancy and damping are
modified to evaluate the robustness of the proposed
approach towards parametric uncertainties ( Fig 8).

(3) Scenario 3: External disturbances rejection
In this scenario, the Leonard vehicle is evaluated for
its robustness against various external disturbances
in marine settings, such as sudden collisions, tool
manipulations and strong water currents. These situ-
ations are emulated with a strong push applied to the
vehicle’s body using a long stick as shown in Fig 9.
The aim of this scenario is to evaluate the effectiveness
of each controller to keep the vehicle close to the
desired trajectories.

(4) Scenario 4: Combined parametric uncertainties and
external disturbances
In this scenario, the vehicle is subject to a combination
of parametric uncertainties and external disturbances
to evaluate the robustness of the proposed control
scheme in a further challenging scenario. The vehi-
cle’s buoyancy and damping parameters are modified
as in Scenario 2, while the vehicle is exposed to
external disturbances, as described in Scenario 3.

4.3. Tracking performance indices
To numerically quantify the tracking performance of the

proposed control scheme, a performance index known as the
Root Mean Square Error (RMSE) is utilized, it is defined as
follows:

RMS(𝑒1(𝑡))position/orientation =

√

1
𝑇𝑓 ∫

𝑇𝑓

0
||𝑒1(𝑡)||2𝑑𝑡 (21)

where 𝑒1(𝑡) represents the tracking error, and 𝑇𝑓 is the test
duration.

Additionally, energy consumption is evaluated by com-
puting the integral of control input efforts (force and torque)
as follows:

INT(𝜏) = ∫

𝑇𝑓

0
‖𝜏(𝑡)‖ 𝑑𝑡 (22)

where 𝜏 represents the vector of control inputs.
In the subsequent sections, the RMSE for yaw and depth

are denoted RMSE𝜓 and RMSE𝑧, respectively. The terms
INT𝜓 and INT𝑧 represent the integral of control input for
yaw and depth, respectively.
4.4. Tuning of the feedback control gains

The tuning process for the standard RISE control gains
is experimentally conducted according to the following
algorithm:
Algorithm 1 : Feedback Control Parameters Tuning

(1) Initially, set 𝛼2 = 0 and 𝛽 = 0.
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Figure 7: Illustration of the predefined desired trajectories, (a)
desired depth and (b) desired yaw.

(2) Tune 𝛼1 and 𝑘𝑠 as if it were a PD controller, with
𝛼1(𝑘𝑠 + 1) as the proportional gain and (𝑘𝑠 + 1) as the
derivative gain until achieving satisfactory tracking.

(3) Gradually increase 𝛼2 while adjusting 𝛼1 and 𝑘𝑠, either
increasing or decreasing, to optimize performance.

(4) Increase 𝛽 until the input signal exhibits less chatter-
ing and improved performance.

The resulting RISE control parameters used during the real-
time experiments are summarized in Table 5.
4.5. Obtained real-time experimental results
A. Scenario 1: Nominal case

In this scenario, the vehicle is controlled to follow prede-
fined trajectories on both depth and yaw, despite internal dis-
turbances such as measurement noise. External disturbances
and parametric uncertainties are first excluded to obtain the
best feedback gains for use in subsequent scenarios. Initially,
the robot submerges to a depth of 50 cm from the water’s

Figure 8: Illustration of a reconfiguration of the vehicle to
introduce parametric uncertainties: (the floater changes the
vehicle’s floatability by +50%, while the rigid plastic sheet
increases the rotational drag on the yaw by +90%).

Figure 9: Illustration of the applied external disturbances.

surface and stays at this depth for 20 seconds. It then ascends
to 25 cm, maintaining this position until the test concludes.
Concurrently, the robot rotates in yaw from its starting posi-
tion to +60° within 6 seconds and sustains that orientation
for the next 20 seconds. Subsequently, it rotates back to -
60° and holds this position for the remainder of the trial.
This test aims to adjust the feedback gains of each control
solution in real time for a fair comparison. The gains that
ensure the best performance are retained for the subsequent
scenarios. It is worth noting that the parameters 𝛼1, 𝛼2, and
𝛽 for the RISE and FRISE controllers are identical, except
for the feedback gain 𝑘𝑠, which remains for constant for
the standard RISE controller and is adapted online for the
proposed FRISE controller. Additionally, the centers of the
membership functions for the FRISE controller are denoted
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Table 3
Root mean square error (RMSE) and improvement for the
three controllers.

Case 𝑅𝑀𝑆𝐸𝑧 [𝑚] Improvement

PID RISE FRISE 𝐼𝑚𝑝∕𝑃𝐼𝐷 𝐼𝑚𝑝∕𝑅𝐼𝑆𝐸
S1 0.02275 0.01193 0.01077 52.66% 9.72%
S2 0.04480 0.01553 0.01315 70.65% 15.33%
S3 0.03762 0.03594 0.02134 43.27% 40.62%
S4 — — 0.02810 — —

Case 𝑅𝑀𝑆𝐸𝜓 [𝑑𝑒𝑔] Improvement

PID RISE FRISE 𝐼𝑚𝑝∕𝑃𝐼𝐷 𝐼𝑚𝑝∕𝑅𝐼𝑆𝐸
S1 2.46179 1.64854 1.64303 33.26% 0.33%
S2 2.10279 1.86353 1.70606 18.87% 8.45%
S3 3.35944 2.44440 1.96593 41.48% 19.57%
S4 — — 2.63917 — —

Table 4
Energy consumption comparison criteria through the INT
indicator for the three controllers.
𝐼𝑁𝑇 Case PID RISE FRISE

S1 149790.307 162878.784 167944.57
𝐼𝑁𝑇𝑧 S2 297976.241 259551.913 310037.91

S3 186415.499 215950.352 209658.54
S4 — — 274139.36
S1 16442.961 20523.509 21951.78

𝐼𝑁𝑇𝜓 S2 13184.905 17807.280 19489.25
S3 23174.006 25145.814 22175.55
S4 — — 34853.46

Table 5
Control parameters used in the conducted experiments.

PID RISE FRISE
𝑘𝑝,𝑧 = 40 𝑘𝑠,𝑧 = 5 𝑐1,𝑧 = 3

Depth 𝑘𝑖,𝑧 = 1 𝛽𝑧 = 0.01 𝑐2,𝑧 = 4
𝑘𝑑,𝑧 = 2 𝛼1,𝑧 = 10 𝑐3,𝑧 = 5

𝛼2,𝑧 = 0.5 𝑐4,𝑧 = 7
𝑐5,𝑧 = 10

𝑘𝑝,𝜓 = 8 𝑘𝑠,𝜓 = 1.1 𝑐1,𝜓 = 0.7
Yaw 𝑘𝑖,𝜓 = 0.1 𝛽𝜓 = 0.01 𝑐2,𝜓 = 0.9

𝑘𝑑,𝜓 = 4 𝛼1,𝜓 = 5 𝑐3,𝜓 = 1.2
𝛼2,𝜓 = 0.5 𝑐4,𝜓 = 1.4

𝑐5,𝜓 = 1.6

by (𝑐1 to 𝑐5). The resulting parameters of the implemented
controllers are summarized in Table 5, where the index ’z’
refers to the depth and the ’𝜓’ index refers to the yaw. The
obtained results for this scenario are depicted in Fig 10.

From Fig. 10 (top-left graph), it is evident that all the
three controllers effectively guide the vehicle to follow the
desired depth trajectory. However, the depth tracking error
of the PID controller is slightly higher than those of the
other two controllers, as illustrated by the middle-left graph.
In terms of yaw tracking, all controllers demonstrate their
capability to accurately track the desired yaw, as it can be
observed on the top-right graph. Yet, the yaw tracking error

for the PID controller is marginally larger, as depicted in
the middle-right graph. In this context, the proposed FRISE
(fuzzy-RISE) scheme appears to behave similarly to the
RISE controller. Both controllers converge to the reference
trajectory in a short span of time, exhibiting a minor tracking
error as observed in the error plot in the middle plots of
Fig. 10. This observation aligns with the numerical data from
the root mean square error (RMSE) presented in Table 3.
Notably, Table 3 underscores the superior performance of
the proposed FRISE design over the conventional RISE
approach, enhancing the tracking performance for the depth
trajectory by approximately 52.66% compared to the PID
controller, and by 9.72% with respect to the RISE controller.
Similarly, for the yaw tracking performance, FRISE offers
respectively an improvement of 33.26% over PID and 0.33%
over RISE controllers.

Finally, the evolution of the control inputs is displayed
at the bottom plots of Fig. 10. The computed values of
the integral are summarized in Table 4. To compare the
energy consumption for trajectory tracking of depth and yaw
dynamics for both RISE and FRISE controllers, we need to
divide INT𝑧 and INT𝜓 for each methodology as follows:

INT𝑧FRISE
INT𝑧RISE

= 167944.57
162878.78

= 1.03;

INT𝜓FRISE
INT𝜓RISE

= 21951.78
20523.40

= 1.06

This means that energy consumption for trajectory track-
ing in depth, using the FRISE controller, is 1.03 times
the energy consumption using the RISE control. Energy
consumption for trajectory tracking in yaw using the FRISE
controller is 1.06 times the energy consumption using the
RISE controller in the nominal scenario. In summary, along-
side the FRISE controller’s superior tracking performance,
its energy consumption is approximately equivalent to that
of the RISE controller for both depth and yaw tracking. This
shows that the FRISE controller slightly outperforms the
RISE controller and clearly outperforms the PID controller
in terms of tracking accuracy in the nominal scenario.
B. Scenario 2: Robustness towards parametric

uncertainties
The objective of this scenario is to evaluate the robust-

ness of each controller against parametric variations, such as
changes in the vehicle’s floatability and damping. To elabo-
rate this change, we attached a rigid plastic sheet measuring
0.45m × 0.1m to the side of the vehicle. This leads to
an increase in the damping term 𝐷(⋅) by Δ𝐷(⋅) = +90%
of its nominal value. In a similar manner, the floatability
term 𝐵 −𝑊 is increased by +50% of its nominal value by
attaching a float to the top of the vehicle, as illustrated in
Fig. 8. The modified vehicle is controlled to follow the same
reference trajectories as designed in Fig. 7 (similar to the
nominal scenario).

The AUV trajectory tracking for depth and yaw motions
in this scenario are displayed at the top plots of Fig. 11.
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Figure 10: Real-time experimental results for the nominal case: (top graphs) tracking of depth and yaw, (middle graphs)
corresponding tracking errors for depth and yaw, (bottom graphs) evolution versus time of the vehicle’s control inputs.

From this figure, it can be observed that the introduced
uncertainties clearly highlight the weakness of the PID con-
trol scheme, particularly in terms of depth tracking. As can
be seen in the top-left plot, the robot is no longer able
to compensate for the depth position error and operates
5 cm away from the desired trajectory. Consequently, the
controlled output starts to oscillate as the controller attempts
to counteract the effects of parametric uncertainties. This
observation is also confirmed by the middle-left plot of
Fig. 11.

Besides, this test indicates that the tracking precision for
yaw and depth of the conventional RISE controller remains
overall robust despite the presence parametric uncertain-
ties in the vehicle dynamics. Furthermore, incorporating
the fuzzy logic controller into this robust controller fur-
ther enhances both depth and yaw tracking. The enhanced
controller can precisely follow the reference trajectory even
in the presence of parametric uncertainties. The tracking
errors are depicted in the middle graphs of Fig. 11, and
their numerical quantification is presented in Table 3.The
FRISE controller improves depth tracking by 70.65% over
PID and 15.33% over RISE, and the yaw tracking by 18.87%
and 8.45%, respectively. The evolution of the input signals is
displayed at the bottom plots of Fig. 11. Finally, based on the
obtained results displayed in Table 4, the quotients between
INT𝑧 and INT𝜓 from the robustness toward parametric un-
certainties test are:

INT𝑧FRISE
INT𝑧RISE

= 310037.91
295951.91

= 1.04

INT𝜓FRISE
INT𝜓RISE

= 19489.25
17807.28

= 1.09

This means that the energy consumption for depth of the
FRISE control is only 1.04 times higher than the consump-
tion of the RISE. Moreover, the energy consumption for
the heading tracking is also very similar for both schemes.
Finally, this scenario illustrates the superiority of the FRISE
controller compared to PID and RISE controllers in terms of
rejecting parametric uncertainties.
C. Scenario 3: External disturbance rejection

In order to assess in more detail the effectiveness of
the proposed control scheme against external disturbances
during real-time operations, a series of successive external
pushes was applied to the vehicle by a human operator using
a long stick (cf. illustration of Fig. 9), affecting both the
depth and yaw dynamics during the tracking task. However,
it should be noted that achieving a fair comparison is ex-
tremely challenging, if not impossible, due to critical issues
in experimental operating conditions. Specifically, the same
magnitude and characteristics of external disturbances (time,
application point, direction, etc) need to be uniformly ap-
plied across all real-time control schemes, a task practically
unfeasible given the human-generated nature of these distur-
bances. Therefore, while it is difficult to make a strictly fair
comparison based on these experiments, the tests still offer
a qualitative overview of each control approach’s behavior.
The results obtained for each control scheme, presented in
Figs. 12, 13 and 14, demonstrate their respective responses
under similar but not perfectly identical conditions.
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Figure 11: Robustness towards parametric uncertainties: (top graphs) tracking of depth and yaw, (middle graphs) corresponding
tracking errors for depth and yaw, (bottom graphs) evolution versus time of the vehicle’s control inputs.

Based on the graphs of these figures, we observe that
the disturbances applied to the vehicle prevent the PID
from converging to the desired depth until their influence is
cancelled out. A static offset reappears in the depth tracking
of this controller when the disturbance’s effect becomes
active again. In contrast, the other controllers neutralize the
disturbance’s influence and converge to the desired depth in a
short span of time. However, RISE takes slightly longer time
than its enhanced version FRISE to approach the desired
depth due to the fixed feedback gains of the controller, as
depicted in Fig. 13 and Fig. 14 (middle-left graph).

Concerning the yaw tracking, all controllers demonstrate
good performance. The yaw trackings and their associated
errors for all the controllers are presented in Fig. 12, 13 and
14 (top and middle-right graphs, respectively), whereas the
numerical values of RMSE are given in Table 3. Moreover,
the evolution of control input signals over time for depth and
yaw during this mission are illustrated in the bottom graphs.

Finally, from the results displayed in Table 4, the quo-
tients between INT𝑧 and INT𝜓 from the robustness toward
external disturbances test are as followed:

INT𝑧RISE
INT𝑧FRISE

= 215950.35
209658.54

= 1.03

INT𝜓RISE
INT𝜓FRISE

= 25145.81
22175.55

= 1.13

This result means that the energy consumption for the trajec-
tory tracking in depth is almost similar for both controllers.
While the energy consumption for the tracking in heading for

the FRISE is 1.13 times higher than the energy consumption
using the nominal RISE controller. Globally, one observes
that the FRISE controller reduces the time needed to come
back to the reference after a sudden disturbance, compared
to the PID and the RISE controllers.
D. Scenario 4: Combined parametric uncertainties

and external disturbances
In this scenario, the proposed FRISE controller is exclu-

sively evaluated under combined parametric uncertainties
and external disturbances, as described above in Section 4.2.
The primary goal is to assess the controller’s effectiveness
and robustness within a challenging dynamic and uncer-
tain environment that mirrors real-world marine conditions.
During this test, the proposed FRISE controller is subject
to simultaneous changes in buoyancy and damping param-
eters, along with unpredictable external disturbances. The
obtained results are displayed in Fig. 15. The top plots of this
figure clearly show the controller’s rapid response, success-
fully recovering from four distinct disturbances in both depth
and yaw dynamics. The associate tracking errors for both
dynamics are plotted in the middle plots, demonstrating the
controller’s ability to maintain the vehicle around its desired
trajectories. The bottom part of the figure displays the evolu-
tion of the input signals versus time, showing the controller’s
active response in neutralizing the applied disturbances. The
RMSE metric values are summarized in Table 3, showing
a minor increase when compared to the individual tests
of parametric uncertainties and external disturbance. This
attests that the proposed FRISE controller is able to handle
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Figure 12: Robustness of the PID controller towards external disturbances: (top graphs) tracking of depth and yaw, (middle
graphs) corresponding tracking errors for depth and yaw, (bottom graphs) evolution versus time of the vehicle’s control inputs.

multiple challenges concurrently with minimal performance
compromise. Furthermore, the evolution of the input signals
versus time and their numerical quantification, displayed
in Table 4, indicate clearly a marginal increase in energy
consumption due to the compensated uncertainties and ex-
ternal disturbances. However, the increase remains within
the admissible range since the actuators are far from their
saturation limit. To sum up, the proposed FRISE controller
demonstrates robust performance in this challenging sce-
nario, validating its potential for practical applications in
marine environments where both parametric uncertainties
and external disturbances are prevalent.

5. Conclusion and future works
In this paper, we proposed an enhanced RISE controller

for trajectory tracking of an AUV. The design of the nominal
RISE controller is improved by incorporating a fuzzy logic
inference system, which automatically tunes the parameters
of the controller. This proposed controller has been imple-
mented in real-time for trajectory tracking in both depth
and yaw motions using the Leonard underwater vehicle.
Furthermore, the proposed FRISE approach was studied
and compared to both the standard RISE and the classical
PID across various experimental scenarios. Real-time ex-
perimental results showcase the effectiveness, robustness,
and enhancement of the proposed controller in dealing with
uncertainties in system parameters, such as damping and
buoyancy changes, as well as towards external disturbances.
In future work, we may consider further optimizing the

fuzzy logic controller’s rules and membership functions to
improve the performances even more.
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(middle graphs) corresponding tracking errors for depth and yaw, (bottom graphs) evolution versus time of the vehicle’s control
inputs.
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Figure 15: Robustness of the proposed FRISE controller towards external disturbances and parametric uncertainties: (top graphs)
tracking of depth and yaw, (middle graphs) corresponding tracking errors for depth and yaw, (bottom graphs) evolution versus
time of the vehicle’s control inputs.
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