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Abstract. Joseph Harrison published in 1967 a quite famous result in
classical recursion theory on recursive reals. It shows the counter-intuitive
result that the well-ordered initial segment of a recursive order is not
necessarily of recursive ordinal type. This segment can be as long as the
supremum of recursive ordinals, hence of non-recursive length, even if
the order is itself recursive.
In the literature, a few different – but equivalent – proofs of this result
can be found using arguments strictly in second order arithmetic, more
precisely the fact that Σ1

1 ̸= Π1
1 . In this article, we sketch a different and

more elementary proof of this result, using infinite time Turing machines
(ITTMs) – full proof is in [2].
To achieve this, we need to reprove, using elementary arguments only,
several results on infinite (countable) binary relations, and more specif-
ically on linear orders. This exploration leads us to an original priority
proof of Spector’s theorem which exposes the collapse of arithmetically
defined ordinals on the recursive ones.
In the context of reverse mathematics, we show that our proofs are more
elementary than those mentioned before, in the sense that they reside
in the proof system ACA0, which is not only strictly weaker than ATR0
where all the previous proofs of both theorems reside, but is also a natural
lower theory for proving Harrison’s theorem.

1 Introduction

Our goal in this paper is to explain with elementary arguments why recursive
orders with a non-recursive well ordered initial segment do exist, thus proving
Harrison’s theorem. In terms of reverse mathematics, our proof resides in the
logic system ACA0 – the lowest proof system for proving this theorem. ACA0 is
equiconsistent with first order Peano arithmetic. It contains the latter plus the
comprehension scheme for arithmetical formulas. Our proof is a construction
from below, and furthermore, we explicitly construct the order by an infinite
time Turing machine using techniques developped in [6,4,5].

In the literature, one can find several proofs of Harrison’s theorem, by Harri-
son himself [7] and others in textbooks. All these proofs reside in ATR0 because
they require a rather strong theory with arithmetical transfinite recursion – in



other terms, they are second order over integers (in Π1
1 ). ATR0 is a strictly

stronger theory than ACA0 because it proves the consistency of ACA0.

2 Recursive relations, orders and ordinals

We start our contribution by an exploration of the properties of linear orders
which lead us to the crucial Spector’s theorem. Our proof uses finite priority
arguments and seems to be new.

In all our paper we deal only with relations, orders and ordinals of countable
support. We denote by ⟨a, b⟩ the classical pairing function which is bijective form
N2 to N. A real is an infinite sequence of bits indexed by integers and a countable
relation (order, ordinal) is encoded by a real r in such a way that r⟨a,b⟩ = 1 iff
aRb (or a ≺ b depending on the context). A relation is total if its support is N
and by support we mean those integers that are in relation with another integer.

An enumerable binary relation can be recursively transformed into a total
binary relation. This precisely means that if there exists an enumerable real r
representing an infinite binary relation, then there exists an enumerable real r′

isomorphic to the restriction of r to its support, which encodes a total relation.
In other term, we can recursively rename points of the support using all integers
and thus keep the relation enumerable.

Enumerable ordinals are recursive. This also holds in the wider case of anti-
symmetric irreflexive binary relations. We first transform the enumerable ordinal
into a total ordinal as explained above and then we decide this total order – a
standard basic recursion theory proof: to decide if a ≺ b, we enumerate the total
order and wait until either a ≺ b or b ≺ a is enumerated.

All initial segments of recursive ordinals are also recursive. If we deal with
the initial segment Im = {x, x ≺ m} we just have to construct the order defined
by a ≺′ b iff a ≺ m ∧ b ≺ m ∧ a ≺ b. This is a recursive construction.

Theorem 1 (Spector). Let φ be a formula in the arithmetical hierarchy and
φ characterises an ordinal α, then α is a recursive ordinal.

Unlike the original proof, we construct this result from below. We first prove
that if φ is in 0′ then α < α′ where α′ is an enumerable ordinal bounded
by α.ω. This is the difficult part of the proof – we use a finite injury priority
argument. This result is mentioned in [1] as theorem 9.11, but the proof itself
cannot be found. According to above results, α′ is also recursive, hence α is an
initial segment of α′ and is also recursive. Then we remark that our proof can
be relativised. Thus, if φ is in the arithmetical hierarchy, it is also in some set
O(n) and by finite induction, α is recursive.

Please note that this transformation is not effective: we cannot transform
recursively φ into a program of a Turing machine that computes α.



3 Ordinal type of the well-ordered initial segment

Theorem 2 (Harrison). There exists a recursive linear order of which the
ordinal type of the well-ordered initial segment is exactly ωCK

1 (the latter being
defined as the supremum of recursive ordinals).

Another formulation of this theorem which is more adapted for proving in our
announced proof system ACA0 is as follows: there exists a recursive order such
that any recursive ordinal is a prefix of this order. This formulation may seem
weaker than the theorem, but it is not since any initial segment of a recursive
order is also recursive. The supremum of the initial recursive ordinals in the
Harrison order is thus not a single point and we can deduce that this order
consists of ωCK

1 followed by a non-well order (such as Q). The present reasoning
requires manipulation of ωCK

1 and thus is of higher order.
To prove this theorem, we need to place our reasoning in a logical framework

strong enough to allow sufficient machinery to form sets based on arithmeti-
cal properties. Since recursive sets and their properties are arithmetical, the
minimum requirement would be a proof sub-system allowing comprehension for
arithmetical (first order definable) sets. This is exactly ACA0.

It is a natural lower bound for proving the existence of such orders, and this
is where our proof by infinite time Turing machines (ITTM) resides. Our chosen
computation machines, ITTMs, can be much more powerful – when they are
allowed long computation times. But when they are run in times bounded by
ωCK

1 (recursive ordinal times), then their behaviour is arithmetical.
We design a super-task algorithm by constructing an ITTM that performs

a succession of simple algorithmic tasks. Let us first explain the core routine. It
takes as input an integer n and considers it as a program number for a (classic)
Turing machine (TM). It first simulates this Turing machine and checks that it
writes a real (i.e. that it halts in finite time on all integer inputs and outputs
either 0 or 1). This task is completed in time ω. Next, it checks that the real
encodes an order (antireflective, antisymmetric and transitive relation) which
takes an additional time ω. Then the delicate task is to check for well-ordering.
This is done by emptying the order from bottom to top and requires a time α+ω
where α is the ordinal type of the well ordered initial segment. Note that if α is
recursive then so is the total running time of the routine.

Now let us complete our proof by contradiction. Suppose that all well-orders
α associated to different TMs n are recursive. We can ITTM-run all machines
n sequentially for all inputs m and then halt. If such a computation by ITTM
existed, then this ITTM would halt in time the supremum of recursive ordinals
ωCK

1 , which is not clockable3 because of its admissibility4. So such a machine
cannot exist, and ad absurdum the α’s are not all recursive : they are sometimes
ωCK

1 . Harrison’s theorem is proved. The last part of our proof is again above
ACA0. In order to keep our proof in ACA0, we replace the last argument by the
3 An ordinal α is clockable if there exists an ITTM which halts in α steps
4 An ordinal is said to be admissible if it cannot be defined from below by a first-order

formula.



fact that ITTM computation in time β lays in Σ1(Lβ) and that a Σ1 sum of
recursive ordinals is also recursive, contradicting our hypothesis. ⊓⊔

With an extension of our construction5, we can describe an ITTM computing
all Harrison numbers6. It runs all TMs n in parallel, flagging the cell number
n of its output tape when n is a Harrison number. Once we exceed ωCK

1 steps
the indices of cells set at 1 are exactly those numbers. At the smallest clockable
step which follows, ωCK

1 + ω, our ITTM has checked that no new halting of our
process for testing well-ordering has occurred and halts.
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