
HAL Id: lirmm-04509148
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04509148v1

Preprint submitted on 18 Mar 2024 (v1), last revised 23 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infinite Time Turing Machines for elementary proofs on
recursive reals

Kenza Benjelloun, Bruno Durand

To cite this version:
Kenza Benjelloun, Bruno Durand. Infinite Time Turing Machines for elementary proofs on recursive
reals. 2023. �lirmm-04509148v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04509148v1
https://hal.archives-ouvertes.fr

Infinite Time Turing Machines for elementary
proofs on recursive reals

Kenza Benjelloun1 and Bruno Durand2

1 Department of Mathematics and Geoscience University of Trieste, Italy,
Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S)de

l’Université Côte d’Azur,Sophia-Antipolis, France
2 LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract. A famous theorem of recursion theory by Joseph Harrison
published in 1967 [9] states the existence of sneaky recursive non-well-
orders of which the well-ordered initial segment is longer than any recur-
sive ordinal. This result is quite intriguing because it proves that some
recursive orders are quite good at hiding their infinite descending chains.
The proofs given by J. Harrison and others from the 60s reside typically
in ATR0 (second order logic on integers). With the development of trans-
finite computational models, namely Infinite Time Turing Machines in
the 2000s, and the evolution of ordinal computability theory over the
past 23 years, we seized the opportunity of giving this result a more ele-
mentary proof using ITTMs. From a reverse mathematics perspective, it
is interesting to present a proof assuming as little logical requirements of
the arithmetical hierarchy as possible and our proof is in ACA0. More-
over, our work paves the way for an explicit construction of such orders.

1 Introduction

Our first objective, presented in section 2, is to give a precise explanation of how
the stability of recursive ordinals under arithmetical oracles operates. In other
terms, given an arithmetically defined ordinal, we illustrate a way to transform
it into a recursive ordinal. We provide elementary proofs of old results about
Kleene’s O, see for instance [10,7,11]; these will be useful to us later on. The
theorem 1 is not new as a result. Our contribution resides in building a priority-
argument-based construction proving it.

Our second objective, developped in section 3, focuses on sneaky recursive
orders of which the well-ordered initial segment is longer than any recursive
ordinal. The existence of such orders has been proved by Joe Harrison in [9].

Andreas Blass gave a clear explanation of this unexpected phenomenon in [2]:

It is a known result of Spector and Gandy (Theorem III.3.5 in [12]) that
a universal quantifier over hyperarithmetic reals amounts to an existen-
tial quantifier over arbitrary reals (without counting number quantifiers).
So the set of codes of recursive linear orders with no hyperarithmetic de-
scending sequence is included in Σ1

1 . But the set of codes of recursive
well-orders is exactly the set Π1

1 . Therefore the two sets differ.

2 Kenza Benjelloun and Bruno Durand

This proof, along with others present in the literature, uses second-order logic
arguments. This makes for an elegant and short proof, but our ambition is to
find a more elementary one. In fact, second-order logic assumes ATR0, and what
we call elementary is content with ACA0 which is strictly weaker of an assump-
tion. These classes are defined by central notions in reverse mathematics, and it
is important to know where our proofs reside. ACA0 is the proof system com-
posed of Peano Arithmetics and the Arithmetical Comprehension Axiom. ATR0
builds upon ACA0 by adding Arithmetical Transfinite Recursion. In this system,
the consistency of ACA0 is proved, rendering it strictly stronger by Gödel’s in-
completeness theorem. For more details about these reverse mathematics proof
systems, we refer the reader to the excellent chapter III of [6].

Our proof uses Infinite Time Turing Machines (ITTMs) as a computational
model and our ordinal computation times are all recursive (∈ ωCK

1). Our original
goal was to understand the limits of ITTM-computations but we realized that
Harrison’s result is clearly visible with ITTMs along the way.

The scheme of our proof is very simple : we design an ITTM that walks
through recursive ordinals and we study its halting time. If Harrison theorem
were false then this ITTM would halt in time exactly ωCK

1 , supremum of recursive
ordinals, which is not possible. An additional effort has been made to remain as
low as possible in the proof system we use, namely strictly within ACA0, and
here we use our results of the first part of the paper, in order to keep our proof
“elementary” or in other terms “from below”.

Definitions

We consider binary relations over the set of integer numbers; aRb means that a
is in relation with b according to R. The support of a relation is the set of integer
elements that are in relation with at least one other element. If the support is ω
we say that the relation is total and else it is partial. If the support is finite we say
that the relation is finite, and in the sequel we consider only infinite relations. A
binary relation can be encoded in a canonical way as a real number (we call real
number a sequence of 0’s and 1’s indexed by ω) : we first fix a pairing function
which is a bijection from ω2 to ω denoted by ⟨·, ·⟩. For any integer n, we get that
n = ⟨a, b⟩ for some a and b. We define the real r which encodes the relation; its
nth bit is denoted by rn such that rn = r⟨a,b⟩ = 1 ⇐⇒ aRb.

A real is said to be recursive if and only if there exists a Turing machine M
such that M halts in finitely many steps and has the real r on its output tape.

A relation is recursive (resp. enumerable, Σ0
n, . . .) if the real that represents

it is recursive (resp. enumerable, Σ0
n, . . .).

We say that two relations are isomorphic if we can renumber the elements of
one order with the elements of the other one while preserving the relation. The
renumbering is a bijection between both supports that preserves elements in
the relation. Note that two isomorphic relations may be represented by different
reals.

Infinite Time Turing Machines for elementary proofs on recursive reals 3

An order is a binary relation which is irreflexive, antisymetric and transitive.
It can be total or partial as any relation. We denote our orders by the symbol
≺ and we recall that ∀a a ⊀ a (irreflexivity).

A linear3 order is an order such that all elements of its support are compa-
rable. For a and b two distinct elements of the support we either have a ≺ b or
b ≺ a.

An order is a well-order if any subset of its support has a minimal element.
Equivalently, we can define a well-order by one which contains no infinite de-
scending chain. Some well known results include the well-ordering theorem and
Zorn’s lemma.

If an order is linear we can uniquely define its maximal well-ordered initial
segment(w.o.i.s).

We can interpret countable ordinals as isomorphism classes of well-ordered
linear orders defined on ω. We say that an ordinal α is recursive (resp. enumer-
able, Σ0

n,. . .) if at least one element of its isomorphism class is recursive (resp.
enumerable, Σ0

n,. . .).
Very often, we are interested in considering orders independently of the num-

bering of their elements (in our countable case the elements are integers). As for
ordinals, we consider an order as an isomorphism class of orders (up to a per-
mutation of the elements). The properties of orders which are usually studied
(such as linearity and well-ordering defined above) are stable in the class. Thus
when we say that an order is recursive it means – depending on the context –
either that the precise order with this fixed numbering of elements is represented
by a recursive real, or that there exists at least one other precise order in its
isomorphism class which is recursive in the former sense. In the latter case, we
say that there exists a re-numbering of elements such that the resulting order is
encoded in a recursive real.

Prerequisites

The reader is assumed to be familiar with classical recursion theory as well
as with the principles of infinitary computations, in this case Turing Machines
which are allowed to compute for transfinitely many steps. We do not detail
their behavior in this paper as they were introduced and thoroughly explained
in detail in the pionneering paper[8]. We do also strongly recommend reading
the reference book [3] which presents different infinitary analogues of famous
models like infinite time register machines, α-ITTMs and others. We also point
towards the papers [4,5] for learning more results and more algorithmic ways to
use this ordinal computability model and understand its power.

3 the term total order is also commonly used instead of linear order but we use the
term total order when the support is total so we use a different term in order to avoid
any confusion between the totality of the structure of the order and the totality of
its support.

4 Kenza Benjelloun and Bruno Durand

2 On recursive ordinals and stability

Proposition 1. An enumerable infinite (countable) binary relation is total.

According to the previous section, this means precisely that if there exists an
enumerable real r representing a binary relation, then there exists an enumerable
real r′ with total support which represents the same binary relation – up to a
recursive isomorphism. It appears that we can loose all isolated points by a
recursive process. More precisely, we’ll see in the proof that the enumeration
program is recursively transformed
Proof: Let r be an enumerable real which represents a binary relation R. Let’s

transform r into a real r′ which encodes the restriction of R to its support. As
we deal with infinite supports, in r′ ∀a∃b aRb.

Since r is enumerable, we can use its enumeration machine to obtain an enu-
meration of pairs ⟨a, b⟩ such that aRb. These pairs make up exactly the support
of R as the union of all elements appearing in these pairs. At the beginning of
the enumeration process, we obtain the first pair of comparable elements ⟨a, b⟩.
Let’s renumber a as 0 and b as 1. Once that’s done, we put a 1 in our new real r′

at the position ⟨0, 1⟩ that represents the element aRb renumbered in r′ as 0R1.
The correspondance between the old and the new numberings are stored in

an array. When the enumerating machine outputs the second bit 1 of r, it has
also computed its number n = ⟨a′, b′⟩. The next step is to check if either a′ or b′

already have a numbering in the array. If they do, we keep it as is and skip to
the next one. If not, we attribute to it the next available integer in the canonic
order of ω (0, 1, . . .). Once that’s done, we put a 1 in r′ at the proper position:
the renumbering of ⟨a′, b′⟩. We keep repeating this process for all bits 1 of r.

In this way, the new real r′ encodes the same binary relation R but is total
and recursively obtained from the enumeration process of r. ⊓⊔

Beware that enumerable total relations are not always recursive. Indead there
may be “unrelated” pairs of elements in it thus we cannot decide the relation.
But if we switch to linear orders then this problem disappears and we get the
following result.

Proposition 2. Enumerable linear orders are recursive orders. Moreover, we
can recursively transform the enumerating procedure of the considered order into
the decision procedure of the recursive (linear) order.

Proof: Let us consider an enumerable real r which encodes an order denoted
by ≺. By our property on binary relations, we can transform r into a real r′

which is recursive and encodes the same total order, meaning that it has the
same comparable elements as r.

The order ≻ can be enumerated as follows : we enumerate ≺ up until we
obtain r′

<a,b> = 1 with a ̸= b, then output r”<b,a> = 1. Thus r” encodes the
order ≻. Note that the enumeration machine of r” is recursively obtained from
the enumeration machine of r′.

We now prove that if the order is linear, the reals r′ and r” themselves are
recursive. The following procedure decides them. If n = ⟨a, a⟩ for a given a, we

Infinite Time Turing Machines for elementary proofs on recursive reals 5

output 0 to ensure antireflexivity. For other pairs ⟨a, b⟩ where a ̸= b, in order to
decide whether r′

n = 0 or r′
n = 1, it suffices to run in parallel the enumeration

machines of r′ and r”, and we know that one of them halts because the orders
are linear; we output a 0 or a 1 depending on which enumeration halts. This last
transformation is also recursive, hence the result. ⊓⊔

In other terms, we have just proved that if a linear order is defined by a Σ0
1

formula, then one can recursively obtain from it a Σ0
0 (recursive) formula that

defines a recursive total order isomorphic to the first one. We also proved that
the property works for orders defined by Π0

1 formulas.

If we focus on ordinals we get that if they are Σ0
1 or Π0

1 , then they are
recursive. To get higher stability results, we’ll need to use all other properties of
ordinals.

Theorem 1 (Spector). If an ordinal is in the arithmetical hierarchy, then it
is isomorphic to a recursive ordinal. Furthermore, the transformation of the for-
mula that caracterizes the ordinal into this decision program (or machine) is
recursive.

Proof: First remark that it is sufficient to prove – with a relativizable proof
– that if an ordinal is 0′-computable then it is enumerable. Indeed, thanks to
Prop.2, we would obtain that 0′-computable ordinals are computable, and such
would be all 0(n)-computable ordinals.

Now consider a 0′-computable ordinal α i.e., a 0′-computable real r that
represents an ordinal α. Thanks to Shoenfield lemma, r is computable at the
limit. The rest of the proof is devoted to transforming the limit computation into
an enumeration process for a real r′ that represents an ordinal α′ and proving
that α ⩽ α′. We obtain an enumerable real r′ because those bits declared 1 in
r′ never change back to 0.

The following proof, as was brought to our attention by a careful reader, is a
result mentionned in (Bruno please help with)[1] as theorem 9.11, but its proof
is not in this book, as it was left as an exercice. Its proof was futher not found
in any of the classical recursion theory books the authors are aware of, but it
was admitted as folklore that this proof exists using some priority argument
within first-order logic. As we use 1 later on in section 3, we deliver hereafter
our proposition of a formal proof.

We run the process of limit computation for more and more time on more and
more inputs. In other terms, we imagine that we receive some information of the
type a ≺ b time after time for different a’s and b’s. When we receive a ≺ b (bit 1
at position ⟨a, b⟩) we assume automatically that b ⊀ a (bit 0 at position ⟨b, a⟩).
After a finite number of steps, the value of the bit at position ⟨a, b⟩ and the bit at
position ⟨b, a⟩ converge (and these convergences are of course compatible). We
assume that all values are repeated infinitely often and oscillate at least once at
the beginning.

Our process works step after step. A step begins each time a value a ≺ b is
obtained, we process it and potentially we add a finite number of 1 in r′ in order
to obtain a finite order (order of finite support). At the end of each step, we

6 Kenza Benjelloun and Bruno Durand

take the transitive closure of what is written in the finite code in order to keep
a finite (coherent as an order but maybe not linear) order coded in r′.

We construct a table t that considers those points enumerated in the support
(e.g. points a and b when a ≺ b is delivered) and indicates the corresponding
current points in r′ namely t(a) and t(b). These t(a) and t(b) will be modified
as time goes.

We use a counter f (integer) of free points (for r′) which means that x < f
if and only if x is in the support of the finite order we construct, and if x ⩾ f
then x is in relation with no point (in r′).

At any step, we say that an integer p < f – that we interpret as a point in r′

– is active or inactive. Active points are those points that have a correspondence
in the table t (i.e. there exists an a such that p = t(a)).

For each integer p, that we interpret as a point in r′, we construct a list of
inactive points following p called its tail.

We consider priorities for integers a and b –which represent here points in r –
in a very simple way : a is prioritary if a < b. Please note that the order relation
we use is just the usual order < on ω.

Properties of the algorithm. We manage so that points that enter the support
are active and may be inactivated later (or not). Inactive points never become
active again. Any inactive point belongs to a (single) tail. Only active points
may have a tail. The tail of an (active) point p is totally ordered linearly and
greater than p. Points in a tail are consecutive (tails do not interleave): an active
point and its tail can be considered as a kind of block. For simplicity, we call
“tail of a” the tail of t(a).

We initialize our algorithm by the empty order which corresponds of course
to r′ = 0 . . . 0 . . ., the table t and the tails are empty and our counter f at 1.
Indeed for simplicity, we consider a special point 0 that will be the minimum of
our order in r′. When a point p enters our order we automatically add in r′ that
0 ≺ p and this information never changes.

Now let us explain how our process runs when a ≺ b is issued, i.e., let us
explain our iteration step.

If a or b (or both) are new, then we create a corresponding entry in the table
with corresponding value f and then we increment f . In this case, we have no
compatibility problem thus we add a 1 in r′ at position ⟨t(a), t(b)⟩. But we also
have to deal with the tail, so in case b is new, then we also add 1 in r′ at position
⟨m, t(b)⟩ where m is the last element of the tail of a. We also add 0 ≺ f in r′ to
keep 0 as a minimum. Remember that the iteration step will be completed by a
transitive closure.

If a and b are both not new, we check wether we have (in r′) t(b) ≺ t(a) and
now we want that t(a) ≺ t(b), or that t(b) and t(a) were not compared before
and are so now.

In the latter case, we just add t(a) ≺ t(b) (m ≺ t(b) where m is the last
element of the tail of a) and nothing else: the iteration step is as usual completed
by the transitive closure operation.

Infinite Time Turing Machines for elementary proofs on recursive reals 7

In the first case, we wish somehow to permute the relative position of t(a)
and t(b) in the order r′. For this we “move” the less prioritary of a and b and
keep the other one unchanged. We cannot really “move” points, since we want
our order to be enumerable, so things are much more complex. We are going to
use a new value for one of the points a and b and deactivate the old value.

Now we have to specify 2 cases : the first one is when a is prioritary on b
and the second one is when b is prioritary on a. Let us start with the case of a
prioritary. We use f as a new (free) representative for b and increment f . Let us
first place f where it should be placed: just after the tail of a. We add t(a) ≺ f
(m ≺ f where m is the last element of the tail of a) and for all active points q
that were greater than t(a) we add f ≺ q. At the end of the loop we’ll place f
in the table t : t(b) ← f , but let us postpone this action after the deactivation
of t(b).

Deactivation of t(b). First we select all immediate active predecessors of t(b)
namely a0, a1 . . . an. Note that these points are not comparable and that there
exists at least one of them thanks to our new minimum 0. We choose among
them the predecessor with the least priority i.e. ai = max{a0, a1 . . . an}. We then
append t(b) and its tail at the end of the tail of ai (and delete the information
about the tail of t(b)). For keeping the block structure, we decide that for j ̸= i,
j ⩽ n t(aj) ≺ t(ai) and add the ad hoc relations in r′.

Now assume that b is prioritary on a. Then we create a new representative
for a that we place just before b (as previously explained). We deactivate t(a) as
described above for t(b), and then update the new value for t(a) to the table t.

We then compute the transitive closure of our new order and proceed to the
next input c ≺ d.

Our process produces an enumerable real r′. Let us check its properties. First
of all r′ encodes an order because it is constructed as an extending finite order.
If there was a problem with the order definition, then it would have appeared at
some stage.

The order is linear. By construction, the order is linear by blocks. Now we
can make our key remark : for each entry a in the table there exists a number
of iteration of the process after which t(a) never changes. This is due to the
priority structure : t(a) can be moved away only by a finite number of b’s. This
stabilization of the values of t is of great importance in our proof and let us
denote by t(a)∞ the stabilized value.

Now it is clear that if in r we have a ≺ b, which means that a ≺ b stabilizes
as an output of the limit algorithm, then t(a)∞ ≺ t(b)∞ and reciprocally. Since
r is linear, so is r′.

The order is well-founded. If we look precisely how tails are formed, new
elements are appended. Hence at the limit, tails form segments of ordinal type
ω and the well-foundation of r′ comes directly from the well-foundation of r.

Thanks to the oscillation property assumed on the limit computation, we
obtain a regular structure for r′ : it consists of a minimum (our 0) followed by all
t(a)∞ ordered as in r and separated by the tails. Those tails are of length exactly
ω so the order type of the ordinal coded in r′ is exactly ω.α. This construction

8 Kenza Benjelloun and Bruno Durand

relativizes thus the requirements stated at the beginning are proved and our
theorem is proved. ⊓⊔

Infinite Time Turing Machines for elementary proofs on recursive reals 9

3 Ordinal type of a recursive real’s w.o.i.s

Theorem 2. [Harrison] There exists a recursive linear order of which the ordi-
nal type of the well-ordered initial segment is exactly ωCK

1 .

This theorem states that the w.o.i.s of a recursive real is not always recursive
– somehow a surprising result. The theorem is usually proven by proving the
existence of a special recursive real, a real encoding a linear order, which is
shown to be prefixed by ωCK

1 . There have been several proofs of the existence of
this linear order, formulated in second order logic over integers. Namely, the use
of the powerful argument which is that Σ1

1 ̸= Π1
1 which is typically in ATR0.

Our aim is to present a more elementary proof of this theorem in order ton
understand better this (strange) recursive real thus we aim our proof to rely in
ACA0. We make use of the previously presented stability argument in addition
to the use of Infinite Time Turing Machines as computation tools. Let us start
with preliminary remarks, firts on ITTMs and then on recursive orders.

In their proof of the Count-Through theorem, J.D. Hamkins and A. Lewis
describe what they call a supertask, which has to run several checks on a real
given as input and decide whether it is a wellorder. Here we are not concerned
with the ITTM-decidability of the class of wellorders, which is what is proven
in the count-through theorem, but we are instead interested in the details of
these tasks and more precisely in the clockable ordinals which are their exact
halting times. For the need of our proof, we slightly rephrase and present here
these tasks in the form of individual ITTM algorithms with an analysis of their
respective halting times. For details on the Count-Through theorem, please refer
to section 2.2 of the article [8].

Let us denote by µ0 an ITTM which takes as input an integer n and tries to
produce a real. This is done by running ω computations in parallell, where each
one represents the work of n on one integer input. µ0 halts in exactly ω steps.
The first outcome would be the completion of the computations in finite time,
where on each input k the Turing machine halted and answered some bit (the
k-th bit of our real). And the second outcome would be that we detected that
the TM did not halt on some input k.

Let us denote by µ1 an ITTM which takes as input a real r and decides
whether r is the encoding of a total linear order, namely whether r satisfies
irreexivity, antisymetry and transitivity. In terms of halting time, µ1 runs in no
more than ω steps. This can be achieved, for example, by considering the indexes
of the real by triplets and doing all three checks at the same time.

Let us also denote by µ2 an ITTM which takes as input a real r encoding
a total linear order ≺ and checks whether r is a well-ordering. This machine
in turn halts in no more than α + ω steps where α is the ordinal type of the
w.o.i.s of r. To achieve this halting time, we use a technique for emptying the
order from the bottom starting with 0. To select the elements to remove from
the order, we compute by ω-runs all the first ω elements of the well-founded
part of the order, if they exist. This is done by considering each element of the
support in the integer order (0, 1, 2, · · ·) and inserting each of them at its correct

10 Kenza Benjelloun and Bruno Durand

index (position) in the finite sequence of the previously considered integers (e.g.
d ≺ a ≺ c ≺ · · · ≺ b). We keep augmenting this sequence during ω steps, and
we notice the stabilization of the index of the ω first well-ordered elements. In
fact, they do stabilize because ω steps are enough to detect an index changing
infinitely often, by flashing a flag for example. We iterate this process until we
empty the order r from its w.o.i.s. If the remaining order is empty, then µ2 halts
in α steps and we read 1 on its output tape. If after this procedure the remaining
order is not empty, the machine halts in α + ω steps and we read 0 on its output
tape.

Let us now remark that if an order is recursive, and a is an element of its
support, the initial segment relative to a, Ia = {x, x ≺ a}, is also recursive.
Hence the w.o.i.s of r (some recursive linear order) may only contain recursive
ordinals. Harrison theorem states that there exists a recursive linear order the
w.o.i.s of which contains all recursive ordinals. Harrison states the existence of
a recursive real having a w.o.i.s of ordinal type ωCK

1 In order to get it proved in
ACA0, we formulate it as : there exists a recursive real of which the w.o.i.s is of
OT an ordinal greater than any recursive ordinal.
Proof: Let us combine our ITTMs µ0, µ1, µ2 to obtain a supertask ITTMs which

iterates through all Turing Machines n doing verifications as follows. First, we
give n as input to µ0, we halt upon it answering 0 and continue upon it answering
1. If we continue, it means that n has produced a (recursive) real r. We then
give r as input to µ1 to verify that it’s a total linear order. (Note that we can
parallelize these two procedures to get a ω step computation but this is not
important). We thus continue, knowing that r is a total linear order. r is given
as input to the machine µ2, which computes during α+ω steps, α being the OT
of the w.o.i.s of r. Our ITTM supertask halts after the examination of Turing
machines 0, 1, . . ., and its halting time, τ , is the sum of all computation times,
τn, of each of the Turing Machines n sequentially considered by our procedure
(the µ-computations).

These computation times form a set of ordinals {τn, n ∈ ω} which is un-
bounded in ωCK

1 , since the latter is the supremum of all rectursive ordinals; if an
ordinal β is recursive then there exists a Turing Machine number b that decides
β and we have β < τb < ωCK

1 . Subsequently, τ ⩾ ωCK
1 .

Let us suppose now that all w.o.i.s-s α are recursive, contrary to our the-
orem’s statement. The running time τ of our supertask ITTM is exactly ωCK

1
which is impossible, this ordinal being non clockable as an admissible – the
theorem is proved.

This proof is based on the fact that no ITTM can halt in ωCK
1 by admissibility

of the latter ordinal. Obviously, this argument is in second order logic, which
does not serve our purpose of writing an ACA0 proof. A transformation is thus
necessary, let us explain now how it works.

First, let us recall that any ITTM computation is in Σ1(Lα) where α is its
halting time. Here it means that the considered Σn∈ωτn is Σ1-defined. Thus
because of the recursive collapse over recursive ordinals of arithmetically defined
ordinals (our Theorem 1) the sum is also recursive. This can also be expressed in

Infinite Time Turing Machines for elementary proofs on recursive reals 11

more precise terms using Kleene’s O notation [10]. Each of the τn can be defined
in this notation since the machine n can be transformed into a notation for τn

(we use here the recursive equivalence between recursive ordinals (as we defined
them) and ordinals having a O notation – which is proved in one direction by
standard computability arguments and in the other direction using Kleene’s fixed
point theorem). We thus get a notation for τ using partial sums Σn<N τn that
contradicts it being greater than all recursive ordinals.

This argument does not use the admissibility of ωCK
1 and keeps our entire

proof within ACA0.
⊓⊔

References

1. C. J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hi-
erarchy. Elsevier Science B.V., Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE
Amsterdam, The Netherlands, 2000.

2. Andreas Blass. Recursive non-well-orders. https://mathoverflow.net/questions/
30633/sneaky-recursive-non-well-orders.

3. Merlin Carl. Ordinal Computability, an Introduction to Infinitary Machines. De
Gruyter, Berlin, Boston, 2019.

4. Merlin Carl, Bruno Durand, Grégory Lafitte, and Sabrina Ouazzani. Admissibles
in gaps. In Jarkko Kari, Florin Manea, and Ion Petre, editors, Unveiling Dynamics
and Complexity - 13th Conference on Computability in Europe, CiE 2017, Turku,
Finland, June 12-16, 2017, Proceedings, volume 10307 of Lecture Notes in Computer
Science, pages 175–186. Springer, 2017.

5. Bruno Durand and Grégory Lafitte. An algorithmic approach to characterizations
of admissibles. In Florin Manea, Barnaby Martin, Daniël Paulusma, and Giuseppe
Primiero, editors, Computing with Foresight and Industry - 15th Conference on
Computability in Europe, CiE 2019, Durham, UK, July 15-19, 2019, Proceedings,
volume 11558 of Lecture Notes in Computer Science, pages 181–192. Springer, 2019.

6. Benoit Monin et Ludovic Patey. Calculabilite : Aleatoire, Mathematiques a rebours
et Hypercalculabilite. 2021.

7. S. Feferman and C. Spector. Incompleteness along paths in progressions of theories.
The Journal of Symbolic Logic, 27(4):383–390, 1963.

8. Joel D. Hamkins and Andy Lewis. Infinite time Turing machines. Journal of
Symbolic Logic, 65(2):567–604, 2000.

9. Joseph Harrison. Recursive pseudo-well-orderings. ransactions of the American
Mathematical Society, 131:526–543, 1968.

10. Stephen Cole Kleene. On notation for ordinal numbers. Journal of Symbolic Logic,
3:150 – 155, 1938.

11. Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge, MA, USA, 1987.

12. Gerald E. Sacks. Higher RecursionTheory. Springer-Verlag, Berlin Heidelberg,
Germany, 1980.

https://mathoverflow.net/questions/30633/sneaky-recursive-non-well-orders
https://mathoverflow.net/questions/30633/sneaky-recursive-non-well-orders

	Infinite Time Turing Machines for elementary proofs on recursive reals

