
HAL Id: lirmm-04531880
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04531880v2

Preprint submitted on 27 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Incremental computation of the set of period sets
Eric Rivals

To cite this version:

Eric Rivals. Incremental computation of the set of period sets. 2024. �lirmm-04531880v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04531880v2
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Incremental computation of the set of period sets

Eric Rivals1[0000−0003−3791−3973]

LIRMM, Université Montpellier, CNRS, Montpellier, France rivals@lirmm.fr

Abstract. Overlaps between words are crucial in many areas of computer sci-
ence, such as code design, stringology, and bioinformatics. A self overlapping
word is characterized by its periods and borders. A period of a word u is the
starting position of a suffix of u that is also a prefix u, and such a suffix is called
a border. Each word of length, say n > 0, has a set of periods, but not all com-
binations of integers are sets of periods. Computing the period set of a word u
takes linear time in the length of u. We address the question of computing, the
set, denoted Γn, of all period sets of words of length n. Although period sets have
been characterized, there is no formula to compute the cardinality of Γn (which
is exponential in n), and the known dynamic programming algorithm to enumer-
ate Γn suffers from its space complexity. We present an incremental approach
to compute Γn from Γn−1, which reduces the space complexity, and then a con-
structive certification algorithm useful for verification purposes. The incremental
approach defines a parental relation between sets in Γn−1 and Γn, enabling one to
investigate the dynamics of period sets, and their intriguing statistical properties.
Moreover, the period set of a word u is key for computing the absence probability
of u in random texts. Thus, knowing Γn is useful to assess the significance of
word statistics, such as the number of missing words in a random text.

Keywords: string · overlap · period · autocorrelation · combinatorics

1 Introduction

Considering finite words, we say that a word u overlaps a word v if a suffix of u equals a
prefix of v of the same length. A pair of words u,v can have several overlaps of different
lengths. For instance, over the alphabet {a,b}, let u := ababba and v := abbabb, then
u overlaps v with the suffix-prefix abba, and with a. It appears that the longest overlap
contains all other overlaps: to find all overlaps from u to v, it suffices to study the
overlaps of abba with itself.

For a word u, a suffix that equals a prefix of u is called a border, and the length of u
minus the length of a border, is called a period. Computing all self-overlaps of a word u
is computing all its borders or all its periods, which can be done in linear time (see the
algorithm for computing the border array in [24, Chap. 1]). This well-studied problem
was also solved for preprocessing the pattern in the seminal Knuth-Morris-Pratt pattern
matching algorithm [10]): the borders serve to optimally shift the window along the text
when seeking the pattern. For instance the word ababaaba has length n = 8 and set of
periods: {0,5,7} (zero being the trivial period - the whole word matches itself).

One can easily see that distinct words of the same length can share the same set of
periods, even if one forbids a permutation of the alphabet. For a word u, let us denote

2 Eric Rivals

by P(u) its period set (which we abbreviate by PS). In this work, we investigate algo-
rithms to enumerate all possible period sets for any words of a given length n. This set
is denoted Γn for n > 0 and is non trivial if the alphabet contains at least two symbols.
Brute force enumeration can consider all possible words of length n and compute their
period set, but this approach becomes computationally unaffordable for n > 30. Cur-
rently, only a dynamic programming algorithm exists to enumerate Γn, but it suffers
from high space complexity [22].

The notion of overlap in strings is crucial in many areas and applications, among
others: combinatorics, bioinformatics, code design, or string algorithms. Interest in Γn
sparkled mostly in the 80’s, when researchers started to evaluate the average behavior
of pattern matching algorithms, or that of filtering strategies for sequence alignment,
text comparisons or clustering. A powerful filtering when comparing two texts, is to list
their k-long substrings (a.k.a. k-mers), for appropriate values of k, and then compute
e.g. a Jaccard distance between their set of k-mers, to see whether the two texts are
similar enough to warrant a costly alignment procedure [27].

In a different area, testing Pseudo-Random Number Generators can also be trans-
lated into a question on vocabulary statistics. Indeed, in random real numbers written
as sequence of digits, all substrings of a given length, say k, should ideally have an
almost equal number of occurrences (i.e., should not significantly deviate from the the-
oretical expectation). Empirical tests, named Monkey Tests, were developed for such
generators [14,17,11]. It turns out that the absence probability of a word/string in a ran-
dom text is essentially controlled by the period set of the word [7]. Hence, the need for
enumerating Γn appears in diverse domains of the literature [18,19].

In network communication, the so-called prefix-free, bifix-free, and cross-bifix-free
codes are used for synchronization purposes. Their design require to select a set of
words that are mutually non overlapping – a long studied topic. Nielsen published
in 1973 a construction algorithm [15] together with a note on the expected duration
of a search for a fixed pattern in random data [16], thereby linking explicitly pattern
matching and code design. Improved algorithms for such code design were recently
published [2,1].

Many aspects of periodicity of words were and are still extensively studied in com-
binatorics, e.g. [4,6]. For instance, the periods of random words were investigated in
[9] and the Fine and Wilf (FW) Theorem was generalized to three or more words [3].
Algorithms for constructing extremal FW-words relative to a subset of periods were
gradually improved in [25,26], a question that is related to the ones we investigate in
Section 5. Last, the sequence formed by the cardinality of Γn, which is denoted κn, has
an entry in the OEIS, and some known lower and upper bounds [7,22], which helped
closing a conjecture related to κn in 2023 [23].

Plan. In Section 2, we introduce a notation, definitions, and review some known
results. In Section 3, we propose an incremental approach to compute Γn from Γn−1,
which uses O(n) memory. In Section 4, we give an algorithm to build a word that is
a witness for a period set. In Section 5, we propose to explore the dynamics of period
sets when n increases, before exploring the distribution of period sets according to their
basic period and concluding in Section 6.

Incremental computation of the set of period sets 3

2 Related works, notation and preliminary results.

2.1 Notation

Here we introduce a notation and basic definitions.
For two integers p,q ∈ N>0, we denote the fact that p divides q by p | q and the

opposite by p ∤ q. We consider that strings and arrays are indexed from 0. We use =
to denote equality, and := to denote a definition. The cardinality of a discrete set X is
denoted by ♯(X).

An alphabet Σ is a finite set of letters. A finite sequence of elements of Σ is called
a word or a string. The set of all words over Σ is denoted by Σ⋆, and ε denotes the
empty word. For a word x, |x| denotes the length of x. Let n be an integer. The set of
all words of length n is denoted by Σn. Given two words x and y, we denote by x.y the
concatenation of x and y. For a word w, we define the powers of w inductively: w0 := ε

and for any n > 0, wn := w.wn−1. A word u is primitive if there exists no word v such
that u = vk with k ≥ 2.

Let u := u[0 . .n− 1] ∈ Σn. For any 0 ≤ i ≤ j ≤ n− 1, we denote by u[i− 1] the ith

symbol in u, and by u[i . . j], the substring starting at position i and ending at position j.
In particular, u[0 . . j] denotes a prefix and u[i . .n−1] a suffix of u.

Let x,y ∈ Σ∗ and let j be an integer such that 0 ≤ j ≤ |x| and j ≤ |y|. If x[n− j . . |x|−
1] = y[0 . . j−1], then the merge of x and y with offset j, which is denoted by x⊕ j y, is
defined as the concatenation of x[0 . .n− j−1] with y. I.e., x⊕ j y := x[0 . .n− j−1].y.

2.2 Periods, period set, and the set of period sets

Let us first define the concepts of period, period set, basic period, and set of period sets,
and then recall some useful results.

Definition 1 (Period/border). The string u = u[0 . .n−1] has period p ∈ {0,1, . . . ,n−
1} if and only if u[0 . .n− p− 1] = u[p . .n− 1], i.e. for all 0 ≤ i ≤ n− p− 1, we have
u[i] = u[i+ p]. Moreover, we consider that p = 0 is a period of any string of length n.
The substring u[p . .n−1] is called a border.

Zero is also called the trivial period. The period set of a string u is the set of all
its periods and is denoted by P(u). Formally, for any length n > 0, any word u in Σn,
P(u) := {p ∈ N : p is a period in u}. The weight of a period set is its cardinality. The
smallest non-zero period of u is called its basic period. When P(u) = {0}, we consider
that its basic period is the string length n.

Note that two definitions of period set exist in the litterature: the one above, also
used in [7] (even if the set was encoded in a binary string called autocorrelation), where
P(u) is a subset of {0,1, . . . ,n−1}, and the one from [13] in which it equals P(u)∪{n}
(where the length n is included in P(u)). We will use the first one.

Let Γn := {Q ⊂ {0,1, . . . ,n− 1}|∃u ∈ Σn : Q = P(u)} be the set of all period sets
of strings of length n. We denote its cardinality by κn. The period sets in Γn can be
partitioned according to their basic period; thus, for 0 ≤ p < n, we denote by Γn,p the
subset of period sets whose basic period is p, and by κn,p the cardinality of this subset.
A surprising result from Guibas and Odlyzko’s characterization of period sets [7] is the

4 Eric Rivals

alphabet independence of Γn: Any alphabet of size at least two gives rise to the same
set of period sets, i.e., to Γn. In the sequel, we assume ♯(Σ) > 1. Circa 20 years later,
Halava et al. gave a simpler proof of the alphabet independence result by solving the
following question [8]. For any period set Q of Γn, let v be a word over an alphabet Σ

with ♯(Σ) > 1 such that P(v) = Q; then compute a binary word u such that P(u) = Q.
Indeed, they gave a linear time algorithm to compute such a word u from v.

For the most important properties on periods, we refer the reader to [7,12,13] and
Appendix F.1. Below we recall the two characterizations of period sets from [7] and
from [13], and state the version for strings of the famous Fine and Wilf (FW) Theo-
rem [5]. We refer the reader to [22,23] for more properties on period sets and on Γn.

2.3 Characterizations of period sets

For a given word length n > 0, the question of characterization is: among all possibles
subsets of {0,1, . . . ,n−1}, recognize those that are period sets for at least one word of
length n.

In 1981, Guibas and Odlyzko (GO for short) proved a double characterization of
period sets: one is based on two rules, the Forward Propagation Rule (FPR) and the
Backward Propagation Rule (BPR), the second is the recursive predicate Ξ (which is
given in extenso in Appendix F.2).

First, let us formulate the FPR and BPR in terms of sets (rather than in term of
binary vector as in [7]). Let P a subset of {0,1, . . . ,n−1}.

Definition 2 (FPR). P satisfies the FPR iff for all pairs p,q in P satisfying 0 ≤ p < q <
n, it follows that p+ i(q− p) ∈ P for all i = 2, . . . ,⌊(n− p)/(q− p)⌋.

Definition 3 (BPR). P satisfies the BPR iff for all pairs p,q in P satisfying 0 ≤ p <
q < 2p, and (2p−q) ̸∈ P, it follows that p− i(q− p) ̸∈ P for all i = 2, . . . ,min(⌊p/(q−
p)⌋,⌊(n− p)/(q− p)⌋).

We can now state GO’s characterization theorem

Theorem 1. Let P a subset of {0,1, . . . ,n−1}. The four following statements are equiv-
alent: (1) P is the period set of a binary word of length n.
(2) P is the period set of a word of length n.
(3) Zero belongs to P and P satisfies the forward and backward propagation rules.
(4) P satisfies predicate Ξ.

The equivalence of (1) and (2) yields the abovementioned alphabet independence of Γn.
The authors also noticed that the FPR and BPR are local properties [7, Lemma 3.1],
which we use later on. Finally, predicate Ξ is a recursive procedure to check whether
P belongs to Γn in O(n) time: it considers two cases depending on whether the basic
period is ≤ ⌊n/2⌋ (case a) or not (case b) (cf. Appendix F.2).

Besides this characterization, [7] studied the set of distinct strings over a given al-
phabet that share the same period set (a.k.a. its population). They also reported val-
ues of κn, the cardinality of Γn, for n < 55, exhibited lower and upper bounds for
log(κn)/ log(n)2, and conjectured its convergence when n → ∞. Much later, improved
lower and upper bounds were provided and served to close the conjecture [22,23].

Incremental computation of the set of period sets 5

An alternative characterization of PS appears in 2002 as Theorem 8.1.11 in [13,
Chap. 8]; it comprises four equivalent statements, of which the first three "are proved
in [7]" (see notes in [13, p. 310]; the first two are identical to (1) and (2) in Theorem 1).
We thus recall only statement (iv) of this characterization in the next theorem.

Theorem 2 ([13]). Let P := {0 = p0 < p1 < .. . < ps = n} be a set of integers and let
dh := ph− ph−1 for 1 ≤ h ≤ s. Then P is a period set (i.e., P ∈ Γn) if and only if for each
h such that dh + ph ≤ n, one has: (a) ph +dh ∈ P and (b) if dh = kdh+1 for some integer
k, then k = 1.

Note that in this formulation n belongs to P (see our remark about two definitions of
period sets), but as when h = s one has ds + ps > n, one sees that conditions (a) and (b)
are in fact only required for 1 ≤ h < s.

Given a period set P(w) of some word w, the proof shows that there exists a binary
word having the period set P(w). It is a proof of existence, it is not constructive, but the
authors also give an example on how to build a binary string for Q := {0,11,14,17,18}
knowing that Q is the period set of the word w = abcabcade f gabcabca. Knowing that
Q ∈ Γn, an algorithm for solving this problem was given by [8].

In this work, we address a different question, termed constructive certification:
Given Q a subset of {0,1, . . . ,n− 1}, build a (binary) string u such that P(u) = Q iff
Q ∈ Γn, or return the empty string otherwise.

2.4 Additional properties of periods

In [7], the authors give a version for strings of the famous Fine and Wilf Theorem [5],
a.k.a. the periodicity lemma. A nice proof was provided by Halava and colleagues [8].

Theorem 3 (Fine and Wilf). Let p,q be periods of u ∈ Σn. If n ≥ p+ q− gcd(p,q),
then gcd(p,q) is a period of u.

We can reformulate Theorem 3 as a condition that must be satisfied by a period set P.

Theorem 4. Let P ∈ Γn. Let p,q be periods of P such that gcd(p,q) ̸∈ P, and define
FW (p,q) := p+q−gcd(p,q). Then FW (p,q) must be strictly larger than n.

We call FW (p,q) the Fine and Wilf (FW) limit of (p,q), and the fact that FW (p,q)
must be larger than n, the FW condition.

2.5 Dynamic programming algorithm to enumerate Γn

In 2001, further investigation of Γn led to a dynamic programming programming algo-
rithm to enumerate all period sets in Γn: it converts the recursive approach of predicate
Ξ into a dynamic program that stores all Γi for 0 < i ≤ ⌊2n/3⌋ [21,22]. With some
practical improvements, the range was reduced to 0 < i ≤ ⌊n/2⌋. However, as κn is ex-
ponential in n, this induces a large memory usage, which remains a serious drawback.
Hence, the quest for memory efficient algorithms. The authors also demonstrated that
Γn equipped with set inclusion is a lattice, but this did not help to improve Γn enumer-
ation.

6 Eric Rivals

3 Incremental enumeration of Γn

Rationale of the incremental approach
In their seminal work [7], GO manipulate period sets, not as sets, but as a binary

strings of length n, where position i is set to 1 if i is a period. For example, the binary
encoding of period set {0,3,5} for length n= 6 is 100101. They call these binary strings
correlations, and even autocorrelations to emphasize that it encodes all self-overlaps a
string [7, p. 21]. The rule based characterization (statement (3) of Theorem 1) implies a
special substring property [7]. Indeed, noting the locality of the forward and backward
propagation rules, the authors state in Lemma 3.1 in [7]: If a binary string v satisfies the
forward and backward propagation rules, then so does any prefix or suffix of v.

As the rule based characterization of period sets – statement (3) of Theorem 1 – also
requires that an autocorrelation has its first bit equal to one, or equivalently that zero
belongs to a period set, one gets the following theorem ([22, Thm 1.3]):

Theorem 5. Let v be an autocorrelation of length n. Any substring vi . . .v j of v with
0 ≤ i ≤ j < n such that vi = 1 is an autocorrelation of length j− i+1.

Applying Theorem 5 to a prefix of v, one gets for any n > 0: The prefix of length (n−1)
from an autocorrelation of length n is an autocorrelation of length (n−1). In terms of
period sets, this statement can be reformulated as:

Corollary 1. If P is a period set of Γn, then P\{n−1} belongs to Γn−1.

First, this means that, knowing Γn, it is easy to compute Γn−1. It suffices to consider
each element of Γn in turn (or in parallel) and to possibly remove the period (n− 1)
from it (i.e., if (n−1) belongs to it) to obtain an element of Γn−1. With this procedure
one can obtain the same element of Γn−1 twice, and one must keep track of this to avoid
redundancy.
Conversely, we get the Lemma that underlies the incremental approach for computing
Γn:

Lemma 1. Let Q be a period set of Γn. Then Q can only be of two alternative forms:
either P or P∪{n−1}, for some P in Γn−1.

Incremental algorithm framework
Lemma 1 suggests an approach for computing Γn using Γn−1. Consider each P from

Γn−1, and check whether the candidate sets P and P∪{n− 1} are period sets of Γn.
Algorithm 1 presents a generic incremental algorithm for Γn, where certify denotes
the certification function used. In general, a certification function takes as input n and
any subset Q of {0,1, . . . ,n−1}, returns True if and only if Q belongs to Γn.

The recursive predicate Ξ from [7] (cf. Appendix F.2) is indeed a certification func-
tion: it does exactly what is required for any subset of {0,1, . . . ,n− 1}, in O(n) time
[7]. Thus, using predicate Ξ, Algorithm 1 correctly computes Γn from Γn−1. We will
discuss alternative certification functions below.

Besides its simplicity, the main advantage of Algorithm 1, compared to the dy-
namic programming enumeration algorithm of [21], is its space complexity. Here, the
computation considers each period set P from Γn−1 in turn (and independently from the

Incremental computation of the set of period sets 7

Algorithm 1: IncrementalGamma(length n > 1; set Γn−1)
Output: Γn: the set of period sets for length n;

1 G := /0; // G: variable to store Γn
2 for all P ∈ Γ(n−1) do
3 if certify(P, n) then insert P in G ;
4 Q := P∪{n−1} // build extension P with period n−1;
5 if certify(Q, n) then insert Q in G ;

6 return G;

others), executes twice the certification function for P and Q; this implies that the mem-
ory required, besides storage of P,Q, is the one used by the certification function. With
the predicate Ξ, it is linear in n, so O(n) space. The time complexity is proportional to
κn (i.e., the cardinality of Γn) times the running time of the certification function, which
yields the following theorem. Of course, the set Γn−1 must be available on disk space
before hand.

Theorem 6. Provided that Γn−1 is available on external memory, then

1. Algorithm 1 using any certification function correctly computes Γn from Γn−1.
2. Using the predicate Ξ as certification function, it runs in O(nκn) time and O(n)

space.

Moreover, it is worth noticing that Algorithm 1 is embarrassingly parallelizable. Note
that the output contains κn period sets, whose cardinality is bounded by n and sometimes
equal n. So, the output size is bounded by nκn.

Alternative certification functions
In our incremental setup, that is when computing Γn using Γn−1, we know that P

belongs to Γn−1 (line 2 in Algorithm 1). Hence, the candidate sets, denoted P and Q,
are not any subset of {0,1, . . . ,n− 1}, but already satisfy some constraints for length
(n−1). Therefore, finding alternative certification functions is interesting. Here, we dis-
cuss two alternative functions, and in Section 4, we exhibit a constructive certification
algorithm, which not only certifies a candidate set, but also computes a witness, i.e., a
word whose period set is the candidate set, only if the answer is positive.

To simplify Algorithm 1 by improving how certifications are done for the candidate
sets P and Q := P∪{n−1}, we can take advantage of two facts. First, the only period
that can be added is n − 1. This limits the cases for which we need to check some
conditions. Second, P and Q are not independent, and if n−1 is compulsory at length
n, because it is generated by the FPR from smaller periods, then only candidate set
Q := P∪{n−1} may belong to Γn, but not P.

Beides Predicate Ξ, a second certification function, we call it rule based, exploits
statement (3) of Theorem 1 and uses procedures to verify if the forward and backward
propagation rules are satisfied. Algorithm 3 gives the code for computing Γn using the
rule based certification (see explainations in Appendix B.1).

A third certification approach, which exploits the characterization of Theorem 2,
can perform the certification of both P and Q in O(♯(P)) time. Some details are also
given in Appendix B.2).

8 Eric Rivals

4 Constructive certification of a period set

Let Q be subset of {0,1, . . . ,n−1}. We say that a word u realizes Q if P(u) = Q.
The certification functions used in Section 3 yield a True/False answer, but no wit-

ness for a period set. As there is no ressources providing Γn for many word lengths,
checking the output of an enumeration algorithm, remains difficult. Hence, we need a
constructive certification function, which given length n > 0 and set Q, provides a word
realizing Q if only if Q ∈ Γn, and the empty string otherwise. Given the alphabet inde-
pendence of Γn, we restrict the search to binary words. We present an algorithm called
binary realization (see Algorithm 2) solving this question, and demonstrate its linear
complexity.

Using Algorithm 2 as a certification function in Algorithm 1, for each R ∈ Γn, we
get a word u realizing R. Then, computing the period set of u allows us to check that
P(u) = R. Let us define the notion of nested set.

Definition 4. Let n > 0, P be a subset of {0,1, . . . ,n−1}, and q be an element of P. We
denote by Pq, the nested set of P starting at period q:

Pq := {(r−q) for each r ∈ P such that r ≥ q}.

By construction Pq starts with 0; moreover, if we choose q = 0 then Pq = P.

4.1 Binary realization of a subset of {0,1, . . . ,n−1}

Algorithm 2 computes a word u that realizes a set P for length n > 0, or returns the
empty word ε if P is not a valid period set of Γn. For legibility, the preliminary checks on
P are not written in Algorithm 2: they include checking that P is a subset of [0, . . . ,n−1],
is ordered, and has zero as first period. The word u is written over the alphabet {a,b}.

The algorithm considers elements of P backwards, starting with largest integer first,
since P is ordered. At each execution of the for loop, it considers the current integer P[i]
as a period and builds a suffix of u of length n−P[i] (variable lg). In fact, it considers a
potential larger and larger nested sets, and computes a suffix of u for this length. At the
end of the for loop, the variable suffix contains a string of length lg realizing the nested
set. Note that algorithm uses three variables (whose names start with prev) to store the
length, the inner period, and the suffix obtained with the previous period.

The base case is processed before the loop and consider the nested set for P[k−1] =
max(P) for the length n−max(P) without any period. Hence, the suffix a.b(prevLg -1) is
a realization for nested set {0} for length n−max(P).

In the for loop the key variable is the innerPeriod, which equals the offset P[i+
1]−P[i], which is the basic period of the current nested set. If innerPeriod < prevIP
then the FPR is violated and the algorithm returns ε (line 7). Two cases are considered
depending on whether the current length is smaller twice the previous length (case 1)
or not (case 2). Because of the notion of period, the suffix must start and end with a
copy of prevSuffix. The construction of the suffix depends on the case. In case 1, the
two copies of prevSuffix are concatenated or overlap themselves, and some additional
conditions are required (line 9). These conditions are dictated by the characterization
of period set from [7] (see the predicate Ξ in Appendix F.2). Whenever one is not

Incremental computation of the set of period sets 9

Algorithm 2: Binary Realization
Input: n > 0: integer; P: a subset of [0,1, . . . ,n−1] including 0, in a sorted array
Output: a binary string realizing P at length n xor the empty string otherwise;

1 k := ♯(P) ; // k: cardinality of P
2 if k = 1 then return a.b(n−1) // trivial case where P = {0};
// processing the largest period and init. variables

3 prevLg := n−P[k−1]; prevIP := prevLg; prevSuffix := a.b(prevLg−1);
4 for i going from k−2 to 0 do
5 lg := n−P[i];
6 innerPeriod := P[i+1]−P[i];
7 if innerPeriod < prevIP then return ε ;
8 if lg ≤ 2× prevLg then // condition for case 1
9 if (innerPeriod = prevIP) OR ((prevIP ∤ innerPeriod) AND ((innerPeriod =

prevLg) OR (prevSuffix has period innerPeriod))) then
// suffix := a prefix of prevSuffix concat. with prevSuffix

10 suffix := prevSuffix[0..innerPeriod−1] . prevSuffix;

11 else return ε // invalid case for length lg;

12 else // condition for case 2
// suffix := prevSuffix newsymbols prevSuffix

13 m := lg −2× prevLg;
14 newPrefix := prevSuffix .am;
15 if newPrefix is not primitive then
16 newPrefix := prevSuffix .a(m−1)b;

// Invariant: newPrefix is primitive
17 suffix := newPrefix . prevSuffix;

// update variables
18 prevLg := lg; prevIP := innerPeriod; prevSuffix := suffix;

19 return suffix;

satisfied, Algorithm 2 returns the empty word as expected. In case 2, the two copies of
prevSuffix must be separated by m additional symbols (to be determined). One builds a
newPrefix that starts with prevSuffix followed by am, and one checks whether newPrefix
is primitive. This newPrefix is the part that ensures the suffix will have innerPeriod as a
period. The primitivity is required, since newPrefix may have a proper period, but this
period shall not divide innerPeriod. If primitivity is not satisfied, then changing the last
symbol a of newPrefix by b will make it primitive. This is enforced by Lemma 3 from
[8], which states that for any binary word w, wa or wb is primitive. So, we know that at
least one of the two forms of newPrefix is primitive as necessary. It can be that both are
primitive and suitable. Finally, we build the current suffix by concatenating newPrefix
with prevSuffix.

Complexity First, in case 1, checking the condition "prevSuffix has period inner-
Period" can be done in linear time in |prevSuffix| (which is ≤ n). Overall, this can
be executed ♯(P) times. Second, the primitivity test performed in case 2 takes a time

10 Eric Rivals

proportional to the length of the string newPrefix. However, the sum of these lengths,
for all iterations of the loop, is bounded by n. Other instructions of the for loop take
constant time. Overall, the time complexity of Algorithm 2 by O(♯(P)× n). However,
when Algorithm 2 is plugged in Algorithm 1 it processes special instances: either P or
Q := P∪{n−1}, with P ∈ Γn−1. Then, the time taken by all verifications of condition
"prevSuffix has period innerPeriod" for all cases 1 is bounded by n, due to the prop-
erties of periods that generate more than two repetitions in a string (see Lemma 4 and
Lemma 2 from [8]). For the instances processed in Algorithm 1, the time complexity of
Algorithm 2 is O(♯(P)+n) or O(n).

Remark we can modify Algorithm 2 to build, instead of a binary word, a realizing
word that maximizes the number of distinct symbols used in it.

4.2 Examples of binary realization

We consider the case of the period set P := {0,3,6,8} from Γ9, which does not belong
to Γ10, and show the traces of execution for both lengths n := 9 and n := 10. The table
below shows the trace for n := 9. The operator ⊕ j merges the two strings with an offset
of length j if the corresponding prefix and suffix are equal, for any appropriate integer
j. So when n = 9 and i = 0, the merge v := w⊕3w with w = abaaba is feasible since w
has period 3. When n = 10, the merge w := y⊕3y with y = abab is not possible since
a ̸= b. The trace for n = 10 is in Appendix C.

period length inner period case suffix valid
8 9-8 = 1 9-8 = 1 2 z := a true
6 9-6 = 3 8-6 = 2 2 y := z.b.z = aba true
3 9-3 = 6 6-3 = 3 2 w := y.y = abaaba true
0 9-0 = 9 3-0 = 3 1 v := w⊕3w = (aba)3 true

5 Fate and dynamics of period sets

The incremental algorithm and Lemma 1 induces a parental relationship between sets
in Γn−1 and Γn. Any period set P occurs first in Γmax(P)+1. When the length increases
from n−1 to n, a period set P in Γn−1 faces three cases: (1) P may remain as is in Γn,
(2) P has an extension with period n− 1 (i.e. P∪{n− 1} ∈ Γn), or (3) P dies, i.e., is
neither in case (1) nor case (2). Note that cases (1) and (2) are not exclusive from each
other. Thus, P at length n− 1 can be the parent of at most two period sets in in Γn.
One can thus investigate the dynamics of period sets when the word length n increases
starting with n = 1.

Example 1. For instance, {0,3,6} is born in Γ7 and still belongs to Γ8 and Γ9; its exten-
sion {0,3,6,7} also belongs to Γ8. From a dynamic view point, {0,3,6} is the parent
of both {0,3,6} and {0,3,6,7} in Γ8. On the contrary, {0,4,6} belongs Γ7, but dies at
n = 8, since the pair (4,6) satisfies the FW condition at n = 8 (i.e. it would require to
add gcd(4,6) as a new basic period. Last, {0,2,4,6} belongs to Γ7, Γ8, and generates
{0,2,4,6,8} in Γ9 because the extension with period 8 is required by the FPR, but it
never dies.

Incremental computation of the set of period sets 11

With these definitions at hand, consider the parental relation when the word length
n increases starting from Γ1 := {{0}}: it forms an infinite directed tree whose nodes are
period sets and arcs represent the parental relation. The tree is rooted with period set
{0}, is structured in successive layers corresponding to PS for successive word lengths,
and the outdegree of each node can be 0, 1, or 2. When a period set dies, a branch of
the tree becomes a dead end.

For each period set P, one may ask at how many consecutive word lengths it exists.
We show that its fate depends only on the periods in P, and define below two variables
that give the limit of its existence, and give algorithms to compute these.

Definition 5 (Recursive FW limit and next extension). Let n ∈ N>0 and P ∈ Γn. The
recursive FW limit of P, denoted r f w(P), is the smallest length k at which any two
periods of P satisfies the FW condition, and infinity otherwise. The next extension of
P, denoted e(P), is min j>max(P){ j = 2p j − pi with : p j < pi ∈ P} if ♯(P) > 1, and
e({0}) = +∞ otherwise.

If ♯(P) > 1, as the word length increases, the current periods of P will induce, by the
FPR, new compulsory periods larger than max(P); the minimum among those is e(P),
meaning that when the word length reaches e(P)+1 then P will necessarily be extended
(i.e., possiblity (2) but not (1)), unless P dies. When the word length reaches r f w(P),
then at least one pair of periods will satisfy the FW condition, and thus P must die at
that length. Of course, if ♯(P) = 1 or all non zero periods in P are multiple of its basic
period, then r f w(P) = +∞. Thus, any given period set P ceases to belong to Gammal
if l := min(e(P)+ 1,r f w(P)) (i.e. case (1) is forbidden), it dies at length r f w(P), and
it is extended at length e(P)+1 if e(P)+1 < r f w(P).

A challenging open question is to compute how many sets dies at length n, with-
out enumerating Γn. The sequence of the numbers of dying period sets at length n is
0,0,0,0,0,1,1,2,1,3,2,8 for n := [1,12].

6 Conclusion and exploration of Γn: distributions of period sets
with respect to basic period and to weight

The key element of a period set is its basic period, which defines the first level of
periodicity in a word. How period sets in Γn are distributed according to their basic
period is non trivial. Enumerating Γn allows inspecting this distribution. The left plot
in Figure 1 displays κn,p, the counts of period sets for all possible basic periods p, in
Γ60. In predicate Ξ [7], one separates period sets depending on the basic period being
≤ ⌊n/2⌋ (case a) or larger than ⌊n/2⌋ (case b). The smooth decrease of counts beyond
⌊n/2⌋ is explained by the combinatorial property that links number of period sets in case
b and the number of binary partitions of an integer (see Lemma 5.8 in [22]). However,
the distribution of counts for period sets in case a, still requires some investigation and
statistical modeling. Here, we observe that between basic period 1 and 30, κn,p reaches
local maxima when p divides the string length n (e.g. see the peaks at p = 10,12,15,20,
or 30, which all correspond to period sets of case a).

Other works have investigated combinatorial parameters that control the number of
periods of a word [6]. Thanks to enumeration of Γn, one can study the distribution of

12 Eric Rivals

Fig. 1: Distribution in Γ60 of the number of period sets by basic period (left) and by
weight (right), for string length of n := 60. Beyond basic period 30, the counts decrease
smoothly with the basic period. Between basic period 1 and 30 the counts increase to
a local maximum when the basic period reaches ⌊n/x⌋ for 1 < x ≤ 12 = (e.g. basic
periods 10, 12, 15, 20, 30). The distribution by weight (right) is limited to weight below
22; it is unimodal and right skewed towards low weights.

period sets with respect to weight and how it evolves with n. The right plot of Figure 1
displays the number of period sets with equal weight (i.e. same number of periods) for
n = 60. This distribution is right skewed and illustrates the constraints imposed by mul-
tiple periods. Similar figures to Fig. 1 for other string lengths are shown in Appendix A.

Conclusion. We provide algorithms to enumerate Γn incrementally with low space
requirement, with several certification functions, and an algorithm for binary realiza-
tion of a period set. We define a parental relation between period sets for distinct word
lengths (which makes up a tree), and propose a way to study their dynamics as n in-
creases. Many questions remain open – besides that on the number of dying PS men-
tioned in Section 5. Can one speed up enumeration by exploiting the tree and a dynamic
update of the recursive FW limit and next extension of a PS? Can we exploit the tree to
unravel how population sizes of PS evolve with n? Extending the notions presented here
to generalizations of words, like partial words, degenerate strings, or multidimensional
words opens avenues of future work. As seen in Section 5, the number of dying PS is
not monotonically increasing in function of n; thus understanding the sequences of κn
and κn,p is both stimulating and challenging (see also Figures 1, 2-4).
Ressource: we provide files containing the period sets of Γn for n = 1, . . . ,60 at [20].

Incremental computation of the set of period sets 13

References

1. Bajic, D., Loncar-Turukalo, T.: A simple suboptimal construction of cross-bifix-free codes.
Cryptography and Communications 6(6), 27–37 (2014). https://doi.org/10.1007/
s12095-013-0088-8

2. Bilotta, S., Pergola, E., Pinzani, R.: A new approach to cross-bifix-free sets. IEEE Transac-
tions on Information Theory 58(6), 4058–4063 (2012). https://doi.org/10.1109/TIT.
2012.2189479

3. Castelli, M., Mignosi, F., Restivo, A.: Fine and wilf’s theorem for three periods and a gen-
eralization of sturmian words. Theoretical Computer Science 218(1), 83–94 (Apr 1999).
https://doi.org/10.1016/s0304-3975(98)00251-5, http://dx.doi.org/10.1016/
S0304-3975(98)00251-5

4. Ehrenfeucht, A., Silberger, D.: Periodicity and unbordered segments of words. Dis-
crete Mathematics 26(2), 101–109 (1979). https://doi.org/10.1016/0012-365x(79)
90116-x, http://dx.doi.org/10.1016/0012-365X(79)90116-X

5. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc.
16, 109–114 (1965)

6. Gabric, D., Rampersad, N., Shallit, J.: An inequality for the number of periods in a word.
International Journal of Foundations of Computer Science 32(05), 597–614 (Jun 2021).
https://doi.org/10.1142/s0129054121410094

7. Guibas, L.J., Odlyzko, A.M.: Periods in strings. J. of Combinatorial Theory series A 30,
19–42 (1981). https://doi.org/10.1016/0097-3165(81)90038-8

8. Halava, V., Harju, T., Ilie, L.: Periods and binary words. J. Comb. Theory, Ser. A 89(2),
298–303 (2000). https://doi.org/10.1006/JCTA.1999.3014, https://doi.org/10.
1006/jcta.1999.3014

9. Holub, S., Shallit, J.O.: Periods and borders of random words. In: Ollinger, N., Vollmer, H.
(eds.) 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February
17-20, 2016, Orléans, France. LIPIcs, vol. 47, pp. 44:1–44:10. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.44

10. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM Journal of Computing
6, 323–350 (1977)

11. Leopardi, P.: Testing the Tests: Using Random Number Generators to Improve Empiri-
cal Tests. In: Ecuyer, P.L., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Meth-
ods 2008, pp. 501–512. Springer Berlin Heidelberg (2009), https://doi.org/10.1007/
978-3-642-04107-5_32

12. Lothaire, M. (ed.): Combinatorics on Words. Cambridge University Press, second edn.
(1997)

13. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2005), http://www.cambridge.org/gb/knowledge/isbn/item1172552/
?site_locale=en_GB, uRL: http://www-igm.univ-mlv.fr/~berstel/Lothaire/index.html

14. Marsaglia, G., Zaman, A.: Monkey tests for random number generators. Computers and
Mathematics with Applications 26(9), 1–10 (1993)

15. Nielsen, P.: A note on bifix-free sequences (corresp.). IEEE Transactions on Informa-
tion Theory 19(5), 704–706 (Sep 1973). https://doi.org/10.1109/tit.1973.1055065,
http://dx.doi.org/10.1109/TIT.1973.1055065

16. Nielsen, P.: On the expected duration of a search for a fixed pattern in random data (corresp.).
IEEE Transactions on Information Theory 19(5), 702–704 (Sep 1973). https://doi.org/
10.1109/tit.1973.1055064, http://dx.doi.org/10.1109/TIT.1973.1055064

17. Percus, O.E., Whitlock, P.A.: Theory and Application of Marsaglia’s Monkey Test for Pseu-
dorandom Number Generators. ACM Transactions on Modeling and Computer Simulation
5(2), 87–100 (April 1995)

https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1016/s0304-3975(98)00251-5
https://doi.org/10.1016/s0304-3975(98)00251-5
http://dx.doi.org/10.1016/S0304-3975(98)00251-5
http://dx.doi.org/10.1016/S0304-3975(98)00251-5
https://doi.org/10.1016/0012-365x(79)90116-x
https://doi.org/10.1016/0012-365x(79)90116-x
https://doi.org/10.1016/0012-365x(79)90116-x
https://doi.org/10.1016/0012-365x(79)90116-x
http://dx.doi.org/10.1016/0012-365X(79)90116-X
https://doi.org/10.1142/s0129054121410094
https://doi.org/10.1142/s0129054121410094
https://doi.org/10.1016/0097-3165(81)90038-8
https://doi.org/10.1016/0097-3165(81)90038-8
https://doi.org/10.1006/JCTA.1999.3014
https://doi.org/10.1006/JCTA.1999.3014
https://doi.org/10.1006/jcta.1999.3014
https://doi.org/10.1006/jcta.1999.3014
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.1007/978-3-642-04107-5_32
https://doi.org/10.1007/978-3-642-04107-5_32
https://doi.org/10.1007/978-3-642-04107-5_32
https://doi.org/10.1007/978-3-642-04107-5_32
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site_locale=en_GB
https://doi.org/10.1109/tit.1973.1055065
https://doi.org/10.1109/tit.1973.1055065
http://dx.doi.org/10.1109/TIT.1973.1055065
https://doi.org/10.1109/tit.1973.1055064
https://doi.org/10.1109/tit.1973.1055064
https://doi.org/10.1109/tit.1973.1055064
https://doi.org/10.1109/tit.1973.1055064
http://dx.doi.org/10.1109/TIT.1973.1055064

14 Eric Rivals

18. Rahmann, S., Rivals, E.: Exact and efficient computation of the expected number of missing
and common words in random texts. In: Proc. of CPM 2000. p. 375–387. Springer Berlin
Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_31,

19. Rahmann, S., Rivals, E.: On the distribution of the number of missing words in random
texts. Combinatorics, Probability and Computing 12(01) (Jan 2003). https://doi.org/
10.1017/s0963548302005473, http://dx.doi.org/10.1017/S0963548302005473

20. Rivals, E.: Sets of period sets for words of length n. Zenodo (Sept 2024). https://doi.
org/10.5281/zenodo.13826260, data set

21. Rivals, E., Rahmann, S.: Combinatorics of periods in strings. In: Proc. of ICALP
2001. p. 615–626. Springer Berlin Heidelberg (2001). https://doi.org/10.1007/
3-540-48224-5_51,

22. Rivals, E., Rahmann, S.: Combinatorics of periods in strings. Journal of Combinatorial The-
ory, Series A 104(1), 95–113 (Oct 2003). https://doi.org/10.1016/s0097-3165(03)
00123-7, http://dx.doi.org/10.1016/S0097-3165(03)00123-7

23. Rivals, E., Sweering, M., Wang, P.: Convergence of the Number of Period Sets in Strings. In:
Etessami, K., Feige, U., Puppis, G. (eds.) 50th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 261, pp. 100:1–100:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2023). https://doi.org/https://doi.org/10.4230/LIPIcs.
ICALP.2023.100, https://drops.dagstuhl.de/opus/volltexte/2023/18152

24. Smyth, W.F.: Computating Pattern in Strings. Pearson - Addison Wesley (2003)
25. Tijdeman, R., Zamboni, L.: Fine and wilf words for any periods. Indagationes Mathemati-

cae 14(1), 135–147 (Mar 2003). https://doi.org/10.1016/s0019-3577(03)90076-0,
http://dx.doi.org/10.1016/S0019-3577(03)90076-0

26. Tijdeman, R., Zamboni, L.: Fine and wilf words for any periods ii. Theoretical Computer
Science 410(30–32), 3027–3034 (Aug 2009). https://doi.org/10.1016/j.tcs.2009.
02.004, http://dx.doi.org/10.1016/j.tcs.2009.02.004

27. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor.
Comp. Sci. 92(1), 191–211 (Jan 1992)

Acknowledgements: This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 956229.

https://doi.org/10.1007/3-540-45123-4_31
https://doi.org/10.1007/3-540-45123-4_31
https://doi.org/10.1017/s0963548302005473
https://doi.org/10.1017/s0963548302005473
https://doi.org/10.1017/s0963548302005473
https://doi.org/10.1017/s0963548302005473
http://dx.doi.org/10.1017/S0963548302005473
https://doi.org/10.5281/zenodo.13826260
https://doi.org/10.5281/zenodo.13826260
https://doi.org/10.5281/zenodo.13826260
https://doi.org/10.5281/zenodo.13826260
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1016/s0097-3165(03)00123-7
https://doi.org/10.1016/s0097-3165(03)00123-7
https://doi.org/10.1016/s0097-3165(03)00123-7
https://doi.org/10.1016/s0097-3165(03)00123-7
http://dx.doi.org/10.1016/S0097-3165(03)00123-7
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://drops.dagstuhl.de/opus/volltexte/2023/18152
https://doi.org/10.1016/s0019-3577(03)90076-0
https://doi.org/10.1016/s0019-3577(03)90076-0
http://dx.doi.org/10.1016/S0019-3577(03)90076-0
https://doi.org/10.1016/j.tcs.2009.02.004
https://doi.org/10.1016/j.tcs.2009.02.004
https://doi.org/10.1016/j.tcs.2009.02.004
https://doi.org/10.1016/j.tcs.2009.02.004
http://dx.doi.org/10.1016/j.tcs.2009.02.004

Incremental computation of the set of period sets 15

A Distributions of the number of period sets by basic period and
by weight

Like in Figure 1, we explore how period sets are distributed according to their basic
period, and according to their weight for other string lengths. We plot these distributions
for n = 48, n = 55, and n = 59 in Figures 2, 3, and 4, respectively. We choose these
values because they differ in their number of divisors 48 = 24 ×3, 55 = 5×11 and 59
is prime. In essence, both plots for Γ48, Γ55, and Γ59 look very similar to those for Γ60.
Even for a prime string length, n = 59, the distribution of number of period sets in case
a, shows a maximum at ⌊n/2⌋ and local maxima at ⌊n/3⌋, ⌊n/4⌋ etc.

Fig. 2: Distribution in Γ48 of the number of period sets by basic period (left) and by
weight (right), i.e., for string length of n := 48.

B Alternative certification functions and variants of incremental
algorithm

B.1 Incremental algorithm with rule based certification

Here, we detail an alternative version of the incremental algorithm, which uses the rule
based certification function derived from Theorem 5.1 from [7] (see also below). This
is related to subsection 6. Algorithm 3 presents the pseudo-code; it uses two functions

16 Eric Rivals

Fig. 3: Distribution in Γ55 of the number of period sets by basic period (left) and by
weight (right), i.e., for string length of n := 55.

Fig. 4: Distribution in Γ59 of the number of period sets by basic period (left) and by
weight (right), i.e., for string length of n := 59.

Incremental computation of the set of period sets 17

named checkFPR and checkBPR, which check if a set of integers satisfies respectively,
the Forward and Backward Propagation Rules.

In our case, as the candidate sets include a period set of Γn−1, they necessarily
satisfy the first condition (i). Regarding the FPR, since P belongs to Γn−1, P satisfies
the FPR up to position n− 2 included; and thus, only period n− 1 can be required by
the FPR. For each possible pair (p,q) considered in the FPR, we only need to check
if the FPR formula yields (n− 1). Second, for the same reason, when considering the
candidate set P∪{n−1}, we are sure that the FPR is satisfied.

Let R be any subset of {0,1, . . . ,n−1} containing zero and assuming that R is sorted
in increasing order, then we have that checking the FPR and BPR takes O(n log(n))
time.

Algorithm 3 differs from Algorithm 1 in two aspects. First, it can indicate for which
reason the candidate set is not a period set if the check fails. Second, it also computes
the set of "dying" period sets of Γn−1, that is the period set of Γn−1 that are not in Γn,
nor cannot be extended at length n. We will define these notions in Section 5. Of course,
dying period sets could also be computed within Algorithm 1, which uses the predicate
Ξ (but for simplicity and to avoid redundancy, was not mentioned earlier).

Altogether the time complexity of Algorithm 3 is bounded by O(n log(n)× κn),
which may not be optimal.

Definition 6. A dying period set P is a period set of Γn−1 such that neither P nor
P∪{n−1} belong to Γn.

Algorithm 3: IncrementalGamma with rule based certification
Input: n > 1: integer; Γn−1: the set of period sets for length n−1
Output: Γn: the set of period sets for length n; D: the set of dying PS at length
n;

1 G := /0; // G: variable to store Γn
2 D := /0; // D: variable to store dying PS
3 for P ∈ Γn−1 do
4 Q := P∪{n−1} // build extension of P with period n−1;
5 if checkFPR(P, n) then // n−1 is required by FPR at length n
6 if checkBPR(Q, n) then insert Q in G;
7 else insert P in D // otherwise P is dying at length n;

8 else
9 if checkBPR(P, n) then insert P in G ;

10 else
11 if checkBPR(Q, n) then insert Q in G ;
12 else insert P in D // otherwise P is dying at length n;

13 return G and D;

B.2 An alternative combinatorial certification

A third certification function exploits the characterization of Theorem 2, where the
necessary conditions are expressed in function of the periods ph, their differences dh,

18 Eric Rivals

for 0 < h ≤ s, and of n. In the incremental approach, the word size increases from n−1
to n. Here we sketch why the certifications of candidate sets P and Q := P∪{n−1} can
be combined in O(n) time.

First, from candidate set P containing s+1, we can check whether period n−1 can
be deduced from smaller periods: if there is an h such that ph + dh = n− 1. This can
be done in s constant time computations. If yes, then n− 1 is a compulsory period at
length n and thus only Q must be further examined. If not, both P and Q may belong
to Γn. Doing the above computations, we determine for which indices h the condition
dh + ph = n−1 is satisfied, and only for those we have to check conditions (a) and (b).
Indeed, for all h such that dh + ph < n− 1, we know (a) and (b) are already satisfied
since P ∈ Γn−1. However, at length n, the period ps of P becomes n which changes the
value ds from n−1 to n. Hence, we must check condition (b), only for h = s−1, which
is done in constant time.

In the case of Q, the number of periods is now s+2, the new period is ps = n−1, ds
has a new value, and ds+1 = 1, since the trivial period n is included in Q. The condition
(a) is then always satisfied. The condition (b) needs to be verified only for h equal to
s−1 and s, since only ds and ds+1 have changed. This can be done in two constant time
computations. Altogether, with this combined certifications of P and Q, the inner for
loop of Algorithm 1 takes O(s) time, which we can bound by O(n).

C Algorithm Binary realization

C.1 Correctness and complexity of the algorithm

Proof. Let us prove that the Algorithm Binary Realization is correct.
Correction of the base case As we process the last period of P, the nested set is {0}

for length n−max(P). We must build a suffix without period (i.e., whose basic period
is its length). Hence, the word a.b(prevLg−1) is a binary realization for this set.

Correction of the general case. After setting variables lg and innerPeriod, we
check the condition (innerPeriod < prevIP). In a period set, the offset P[i+ 1]−P[i]
decreases when i increases. The condition implies the current nested set is invalid, and
we return ε as needed. Another way to formulate this: If the condition is satisfied, then
suffix, which ends with prevSuffix, does not satisfy the FPR, meaning that this set is
invalid.

The invariant at the start of the for loop is that prevSuffix realizes the nested set
PP[i+1] and has prevIP as basic period. By construction, we know that lg = prevLg +
innerPeriod. By construction, suffix ends with prevSuffix and has basic period innerPe-
riod. Thus, by the invariant, suffix will realize PP[i].

Case 1 We build suffix by concatenating a prefix of prevSuffix of length innerPeriod
with prevSuffix (line 10), and we must ensure that suffix has basic period innerPeriod.
Let us consider the conditions from line 9.

1. If (innerPeriod = prevIP) then, as prevSuffix already has period prevIP, suffix will
inherit from it. Otherwise we know that (innerPeriod > prevIP).

2. Then, prevSuffix has a basic period (prevIP) that should not divide innerPeriod,
which is the length of the prefix of prevSuffix that occurs as prefix of suffix. Hence,

Incremental computation of the set of period sets 19

we require the condition (prevIP ∤ innerPeriod) to be satisfied. Otherwise, suffix
would also have prevIP as period; then suffix would be a binary world, but would
not realize P.

3. Then, if (innerPeriod = prevLg) then lg = 2× prevLg and suffix equals /prevSuffix/2

and has the desired length and basic period.
4. Otherwise, we check that prevSuffix has period innerPeriod. If yes, then suffix also

has period innerPeriod by construction (line 10), and thus realizes PP[i]. If not, then
there is no possible realization of P and we return ε (line 11).

Case 2 Here, we know that lg is larger than twice prevLg. Therefore, we will build
a prefix that starts with prevSuffix followed by m new symbols, such that suffix has
no period shorter than innerPeriod. Hence, we must ensure that newPrefix is primitive,
otherwise it would have a period that divides innerPeriod. By Lemma 3 from [8], for any
binary word w, wa or wb is primitive. So, we concatenate am to prevSuffix, and check
if it is primitive (in O(|newPrefix|) time). If not, we change its last symbol a by b. In
both cases, newPrefix is primitive. By construction, suffix has basic period innerPeriod
as desired, and thus realizes PP[i].

C.2 Examples of traces of binary realizations

Here is the trace of Algorithm 2 for length n := 10, and P := {0,3,6,8}, which is not a
period set for n = 10, i.e., P does not belong to Γ10.

period length inner period case suffix valid
8 10-8 = 2 10-8= 2 2 z := ab true
6 10-6 = 4 8-6 = 2 2 y := z.z = abab true
3 10-3 = 7 6-3 = 3 1 w := y⊕3y false

The table below illustrates that the merge attempted at the last loop iteration for
P[i] = 3 is impossible, since a mismatch occurs in the overlap.

pos. 0 1 2 3 4 5 6
y a b a b - - -
y - - - a b a b

D Checking FPR and BPR

Let us state some properties:

1. From the definition of FPR, we can see that checking the FPR for a pair (p,q) of P
is equivalent to checking the FPR for pair (0,q) in the nested PS Pp.

2. Assume the FPR is satisfied for pair (0, p). Then, it is also satisfied for any pair
(hp, jp) with 1 ≤ h < j < ⌊n/p⌋ and hp, jp ∈ P, since both periods are multiples
of p.

20 Eric Rivals

From both properties, we get that once the FPR has been checked for the first pair
(p,q) taken that has offset (q− p), it is also satisfied for any other pair whose offset
equals r or a multiple of r. It follows that, for a set P, one can limit the checking of
FPR only to left most pairs whose offsets differ from eachother and are not multiple
of another offset. Thus, at least one element, say p, must be an irreducible period (as
defined in [22]), and q is the closest period to p (i.e., one which gives rise to the smallest
offset with respect to p). Since, the number of irreducible periods of a period set of Γn
is bounded by log2(n) [23], the number of such pairs also is. We obtain the bound on
the complexity for the general case stated in Lemma 3.

D.1 Checking the FPR and the BPR

Let n > 0 and P be a subset of {0,1, . . . ,n−1}. We assume that P is given as an ordered
array. The complexity for checking the FPR or the BPR for P, has, to our knowledge
not been previously addressed. For any pair p < q, we call their difference (q− p), an
offset.

Checking the BPR. Here, we demonstrate a property that relates the BPR to the
FW Theorem. Precisely, if BPR is violated for some pair (p,q) at length n, with period
r := p− i(q− p) for some i, then the pair (p− r,q− r) violates the FW condition of
Theorem 4 in the nested set of length (n− r).

Lemma 2. Let (p,q) be a pair of integers that violate the BPR, and let i ≥ 2 such that
r := p− i(q− p) ∈ P. Then the pair (p− r,q− r) violates the FW condition for length
(n− r).

Proof. Let P ∈ Γn. Let p,q in P satisfying 0 ≤ p < q < 2p be such that (2p− q) ̸∈ P.
Assume (p,q) violates the BPR. Then, there exists i in [2, . . . ,min(⌊p/(q− p),⌋,⌊(n−
p)/(q− p)⌋)], such that p− i(q− p) ̸∈ P. If several such integers exist, choose i as their
minimum, and define r := p− i(q− p). We will show that the nested period set of P
for length (n− r) is not a period set, since two of its periods violates the FW condition,
which would require their gcd as an additional period, thereby implying that P ̸∈ Γn,
a contradiction. Since i is chosen minimal, we have that gcd(p,q) is not in P by the
definition of the BPR. Note that p− r = i(q− p) and q− r = (i+ 1)(q− p). Thus,
one gets gcd(p− r,q− r) = q− p, and the FW limit of (p− r,q− r) equals 2i(q− p).
Indeed, FW (p− r,q− r) := p− r+q− r−gcd(p− r,q− r) = 2p−2r = 2i(q− p). By
hypothesis, we have:

i ≤ (n− p)/(q− p)
⇔ p+ i(q− p) ≤ n
⇔ r+2i(q− p) ≤ n
⇔ FW (p− r,q− r) ≤ n− r

meaning that (p− r,q− r) violates the FW condition of Theorem 4 for length (n− r).

In algorithmic terms, checking the BPR of a set P can be done by checking the FW
condition of Theorem 4 in each nested set of P. Altogether this takes O(♯(P)) time and
space.

Checking the FPR. Some properties are explained in Appendix D and lead to this
Lemma.

Incremental computation of the set of period sets 21

Lemma 3. Let P is a subset of [0, . . . ,n−1], that is ordered, and has zero as first period.
Checking the FPR for P in general takes O(n log(n))time.

E Fate: computation of the limits of a period set

E.1 Next extension

Algorithm 4 computes the next extension of P. The next extension is a length at which
some deducible period needs to be added to P to satisfy the FPR. It equals the added
period plus one, and must be larger than the birth length of P (Indeed, P ∈ Γmax(P)+1,
and thus satisfies the FPR for that length). By definition of the FPR, a period induced
by the FPR equals P[i] +P[i]−P[j] for some indexes 0 < j < i < ♯(P). Because, we
need the minimum of added periods, we can restrict the computation to pairs of adjacent
periods (i.e. that is to case where j = i−1), since the offset between periods decreases
with their index. Hence, the formula P[i] + (P[i]− P[i − 1]) for computing the limit
induced from current period P[i]. Because of this, we can also rule out cases where P[i]
is smaller the half the birth length of P (line 6).

Algorithm 4: next extension(period set P (in a sorted array))

Output: e(P);

1 birthLg := max(P)+1; // min x s.t. P belongs to Γ(x)
2 limit :=+∞ ; // limit to be computed, init. with +∞

3 for i := ♯(P)−1 to 1 do
4 if P[i]≤ ⌊ birthLg

2 ⌋ then //
5 break; // avoid such P[i] values whose limit cannot be

> birthLg

6 if P[i]+ (P[i]−P[i−1])≥ birthLg) then // current limit is beyond
birthLg

// update limit with the min of limit and current limit
7 limit := min(limit,P[i]+ (P[i]−P[i−1]));

8 return limit;

E.2 Recursive FW limit

We exhibit an algorithm to compute what we termed, the recursive FW limit of a PS P
(see Algorithm 5). The FW Theorem provides a way to compute a maximal length for
any pair of distinct, non trivial periods such that one period is not a multiple of the other.
For any p,q in P such that 0 < p < q < n and p ∤ q, we denote by FW (p,q) the FW
limit, that is FW (p,q) := p+q−gcd(p,q). If p÷q we assume that FW (p,q) :=+∞.
First, the algorithm proceeds with two special cases: if all periods are multiple of the
basic period, then it returns +∞. Note this includes the case with basic period equals to
one. If P contains only three periods, then it returns FW (P[1],P[2]).

Otherwise, it will compute the limit l and initializes with +∞. It loops over P back-
wards, to consider longer and longer suffixes starting at a position with period of a word

22 Eric Rivals

satisfying P, and builds a list Q of periods restricted to the current suffix. The periods in
Q are those of P minus the starting position. It computes FW (Q[1],Q[2]) and takes the
minimum between l and P[i] +FW (Q[1],Q[2]). After terminating the loop, it returns
the limit l.

Algorithm 5: RecursiveFWLimit(period set P in a sorted array)
Output: the minimum length at which a pair of periods of P requires a change
of basic period (application of FW Theorem);

1 if (P[1] | P[i]) for all 1 < i < ♯(P) then // If basic period divides all
other periods

2 return +∞;

3 if ♯(P) = 3 then // If P contains only two non trivial periods
4 return FW (P[1],P[2]);

5 limit :=+∞ ; // limit to be computed, init. with +∞

6 insert (P[n−1]−P[n−2]) in Q ; // Init Q with the last offset
between periods

7 for i := ♯(P)−3 to 0 do
8 offset := P[i+1]−P[i];
9 Q[0] := Q[0]+offset;

10 insert offset at first position in Q;
11 limit := min(limit,P[i]+FW (Q[0],Q[1])) ;

12 return limit;

Complexity. In Algorithm 5, the first special case is processed in ♯(P) time (lines
1–2), while the second one requires constant time (lines 3–4). The main loop is executed
at most ♯(P) times and all instructions in it take constant time (lines 7–11). Altogether,
Algorithm 5 takes O(♯(P)) time and constant space.

Correctness. The correctness of Algorithm 5 follows from Lemma 2.

F Properties of periods and characterization of period sets

F.1 Properties of periods

Let us state some known, useful properties of periods, which are detailed in [23].

Lemma 4. Let p be a period of u ∈ Σn and k ∈ N≥0 such that kp < n. Then kp is also
a period of u.

Lemma 5. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . .n− 1].
Then (p+q) is a period of u. Moreover, (p+ kq) is also a period of u for all k ∈ N≥0
with p+ kq < n.

Lemma 6. Let p,q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix
of length (n−q) have the period (p−q).

Lemma 7. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length
at least p and with period r, where r|p. Then r is also a period of u.

Incremental computation of the set of period sets 23

F.2 Characterization of autocorrelations/period sets [7]

Guibas and Odlyzko have provided two equivalent characterizations of period sets: one
is given by predicate Ξ, the other is the rule based characterization given in Section 2.
However, they manipulate period sets as binary vectors called autocorrelation (or some-
times correlation for short). Remind that an autocorrelation is a binary encoding in a bi-
nary string of length n of a period set of Γn. We recall in extenso the original predicate
Ξ and then their Theorem 5.1, which states the equivalence of characterizations and the
alphabet independence.

�

Theorem 7. Let v a binary string of length n. The following statements are equivalent:

1. v is the autocorrelation of a binary word
2. v is the autocorrelation of a word over an alphabet of size ≥ 2
3. v0 = 1 and v satisfies the Forward and Backward Propagation Rules
4. v satisfies the predicate Ξ.

Let v ∈ {0,1}n. We state the original definitions of FPR and BPR.

Definition 7. v satisfies the FPR iff for all pairs (p,q) satisfying 0 ≤ p < q < n and
vp = vq = 1, it follows that vp+i(q−p) = 1 for all i = 2, . . . ,⌊(n− p)/(q− p)⌋.

Definition 8. v satisfies the BPR iff for all pairs (p,q) satisfying 0 ≤ p < q < 2p,
vp = vq = 1, and v2p−q = 0, it follows that vp−i(q−p) = 0 for all i = 2, . . . ,min(⌊p/(q−
p)⌋,⌊(n− p)/(q− p)⌋).

	Incremental computation of the set of period sets

