
HAL Id: lirmm-04531880
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04531880

Preprint submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Incremental algorithms for computing the set of period
sets

Eric Rivals

To cite this version:

Eric Rivals. Incremental algorithms for computing the set of period sets. 2024. �lirmm-04531880�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04531880
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Incremental algorithms for computing the set of1

period sets2

Eric Rivals # Ñ3

LIRMM, Université Montpellier, CNRS, Montpellier, France4

Abstract5

Overlaps between strings are crucial in many areas of computer science, such as bioinformatics, code6

design, and stringology. A self overlapping string is characterized by its periods and borders. A7

period of a string u is the starting position of a suffix of u that is also a prefix u, and such a suffix is8

called a border. Each word of length, say n > 0, has a set of periods, but not all combinations of9

integers are sets of periods. The question we address is how to compute the set, denoted Γn, of all10

period sets of strings of length n. Computing the period set for all possible words of length n is11

clearly prohibitive. The cardinality of Γn is exponential in n. One dynamic programming algorithm12

exists for enumerating Γn, but it suffers from an expensive space complexity. After stating some13

combinatorial properties of period sets, we present a novel algorithm that computes Γn from Γn−1,14

for any length n > 1. The period set of a string u is a key information for computing the absence15

probability of u in random texts. Hence, computing Γn is useful for assessing the significance of16

word statistics, such as the number of missing k-mers in a random text, or the number of shared17

k-mers between two random texts. Besides applications, investigating Γn is interesting per se as it18

unveils combinatorial properties of string overlaps.19

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics20

Keywords and phrases autocorrelation, string, period, combinatorics, periodicity21

Digital Object Identifier 10.4230/LIPIcs.???.2024.22

Funding E. Rivals is supported by the European Union’s Horizon 2020 research and innovation23

programme under the Marie Skłodowska-Curie grant agreement No 956229.24

© Eric Rivals;
licensed under Creative Commons License CC-BY 4.0

???.
Editors: ???; Article No. ; pp. :1–:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rivals@lirmm.fr
https://www.lirmm.fr
https://orcid.org/0000-0003-3791-3973
https://doi.org/10.4230/LIPIcs.???.2024.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Incremental algorithms for the set of period sets

1 Introduction25

Considering finite words or strings over a finite alphabet, we say that a word u overlaps a26

word v if a suffix of u of length, say i, equals a prefix of v of the same length. A pair of words27

u, v can have several overlaps of different lengths. For instance, over the binary alphabet28

{a, b}, consider the words u := ababba and v := abbabb: u overlaps v with the suffix-prefix29

abba, and with a. It appears that the longest overlap contains all other overlaps: to find30

all overlaps from u to v, it suffices to study the overlaps of abba with itself. This is true in31

general for any pair of words.32

For a word u, a suffix that equals a prefix of u is called a border, and the length of u33

minus the length of a border, is called a period. Computing all self-overlaps of a word u is34

computing all its borders or all its periods, which can be done in linear time (see [28]). For35

instance the word abracadabra of length n = 11 has the following set of periods {0, 7, 10}36

(zero being the trivial period - the whole word matches itself). This problem and variants of37

it have been widely studied, since it is useful in the design of pattern matching algorithms38

(like [12]).39

The reader can easily convince her/himself that distinct words of the same length can40

share the same set of periods, even if one forbids a permutation of the alphabet. For a word u,41

let us denote by P (u) its period set (which we abbreviate by PS). In this work, we investigate42

algorithms to enumerate all possible period sets for any words of a given length n. This set is43

denoted Γn for n > 0 and is non trivial if the alphabet contains at least two symbols. Brute44

force enumeration can consider all possible words of length n and compute their period set,45

but this approach obviously becomes computationally unaffordable for n > 30.46

Interest in Γn sparkled mostly in the 80’s, when researchers started to evaluate the47

average behavior of pattern matching algorithms, or that of filtering strategies for sequence48

alignment, text comparisons or clustering. A powerful filtering when comparing two texts, is49

to list their k-mers, for appropriate values of k, and then compute e.g. a Jaccard distance50

between their k-mer spectrum, to see whether the two texts are similar enough to warrant a51

costly alignment procedure [31].52

In a different area, testing Pseudo-Random Number Generators can also be translated53

into a question on vocabulary statistics. Indeed in truly random real numbers written as54

sequence of digits, all substrings of a given length, say k, should ideally have an almost equal55

number of occurrences. In other words, for any substring the number of its occurrences in56

the sequence should not significantly deviate from a theoretical expectation. Empirical tests,57

named Monkey Tests, were developed for such generators [17, 20, 14]. It turns out that the58

absence probability of a word/string in a random text is essentially controlled by the period59

set of the word [8]. Hence, the need for enumerating Γn appears in diverse domains of the60

literature [21, 22].61

The question of enumerating Γn is non trivial since Γn grows exponentially, as shown62

in [8], which provided the first upper and lower bound on the logarithm of its cardinality,63

which is denoted κn. The sequence of integers formed by κn in function of string length64

n has an entry in the OEIS. Even the most recent asymptotic upper and lower bounds of65

log(κn)/ log2(n) are not close to known values of this ratio. At least, the convergence of66

this ratio, which was conjectured in 1981, was recently proven in 2023 [25]. Currently, only67

a dynamic programming algorithm exists to enumerate Γn, but it suffers from high space68

complexity [24].69

In this work, we propose an incremental approach that computes Γn from Γn−1 and uses70

linear space in n. Our approach needs a certification function, which can tell if a subset of71

E. Rivals XX:3

{0, 1, . . . , n − 1} is a valid period set or not. Three incremental algorithms that differ by72

their certification function are presented. They allows one to compute Γn for some values73

considered in real world applications, and thus to investigate combinatorial and statistical74

properties of Γn and of its cardinality.75

Plan. In Section 2, we introduce a notation, preliminary results, and review some known76

results. In section 3, we present the general framework of the incremental algorithm for77

computing Γn, and two variants of it. In section 4 an algorithm for binary realization of78

period set is explained; it can also be used in the incremental algorithm. In section 5, notions79

of fate of a period set are defined. Finally, in section 6, we show visualization of Γn as80

a lattice to illustrate these notions and plots interesting parameters related to Γn, before81

concluding with open questions.82

2 Related works, notation and preliminary results.83

2.1 Notation84

Here we introduce a notation and basic definitions.85

For two integers p, q ∈ N>0, we denote the fact that p divides q by p | q and the opposite86

by p ∤ q. We consider that strings and arrays are indexed from 0. We use = to denote87

equality, and := to denote a definition.88

An alphabet Σ is a finite set of letters. A finite sequence of elements of Σ is called a word89

or a string. The set of all words over Σ is denoted by Σ⋆, and ε denotes the empty word (the90

only word on length 0). For a word x, |x| denotes the length of x. Let n be an integer. The91

set of all words of length n is denoted by Σn. Given two words x and y, we denote by x.y92

the concatenation of x and y. For a word w, we define the powers of w inductively: w0 := ϵ93

and for any n > 0, wn := w.wn−1. A word u is primitive if there exists no word v such that94

u = vk with k ≥ 2.95

Let u := u[0 . . n − 1] ∈ Σn. For any 0 ≤ i ≤ j ≤ n − 1, we denote by u[i − 1] the ith
96

symbol in u, and by u[i . . j], the substring starting at position i and ending at position j. In97

particular, u[0 . . j] denotes a prefix and u[i . . n − 1] a suffix of u.98

Let x, y ∈ Σ∗ and let j be an integer such that 0 ≤ j ≤ |x| and j ≤ |y|. If x[n−j . . |x|−1] =99

y[0 . . j − 1], then the merge of x and y with offset j, which is denoted by x ⊕j y, is defined100

as the concatenation of x[0 . . n − j − 1] with y. I.e., x ⊕j y := x[0 . . n − j − 1]y.101

2.1.1 Periodicity102

In this subsection, we define the concepts of period, period set, basic period, and autocorre-103

lation, and then review some useful results.104

▶ Definition 1 (Period/border). The string u = u[0 . . n − 1] has period p ∈ {0, 1, . . . , n − 1}105

if and only if u[0 . . n − p − 1] = u[p . . n − 1], i.e. for all 0 ≤ i ≤ n − p − 1, we have106

u[i] = u[i + p]. Moreover, we consider that p = 0 is a period of any string of length n. The107

substring u[p . . n − 1] is called a border.108

Zero is also called the trivial period. The period set of a string u is the set of all its109

periods and is denoted by P (u). The weight of a period set is its cardinality. The smallest110

non-zero period of u is called its basic period. When P (u) = {0}, we consider that its basic111

period is the string length n.112

Let Γn := {Q ⊂ {0, 1, . . . , n − 1} | ∃u ∈ Σn : Q = P (u)} be the set of all period sets of113

strings of length n. We denote its cardinality by κn. The period sets in Γn can be partitioned114

2024

XX:4 Incremental algorithms for the set of period sets

according to their basic period; thus, for 0 ≤ p < n, we denote by Γn,p the subset of period115

sets whose basic period is p, and by κn,p the cardinality of this subset.116

For the most important properties on periods, we refer the reader to [8, 15] and Ap-117

pendix F.1. Below we recall the characterization of period sets from [8], and state the version118

for strings of the famous Fine and Wilf (FW) theorem [6]. We refer the reader to [24, 25] for119

more properties on period sets.120

2.2 Related works121

The notion of overlap in strings is crucial in many areas and applications, among others:122

combinatorics, bioinformatics, code design, or string algorithms.123

In cryptography and network communication, the so-called prefix-free, bifix-free, and124

cross-bifix-free codes are used for synchronization purposes. Their design require to select125

a set of words that are mutually non overlapping (aka unbordered). This topic has been126

studied for long: the seminal construction algorithm from Nielsen was published in 1973 [18]127

together with a note on the expected duration of a search for a fixed pattern in random data128

[19], thereby linking explicitly pattern matching and code design. Improved algorithms for129

such code design were published until recently e.g. [2, 1].130

Many aspects of periodicity of words were and are still extensively studied in combinatorics131

giving rise to a huge literature [5, 7]. For instance, the periods of random words were132

investigated in [11] and the Fine and Wilf (FW) theorem was generalized to more than two133

words [4]. Some literature has been devoted to constructing extremal FW-words relative to134

a subset of periods: Given a set of integers R, the question is find the longest word w such135

that the period set of w includes R, but does not include the gcd of periods in R. Algorithms136

were proposed and gradually improved in [29, 30] among others. This question is related to137

our question regarding the fate of period set when the string length n increases.138

In bioinformatics, string overlaps are central in the question of DNA or genome assembly.139

When a genome is broken into pieces and then sequenced, one gets hundreds of millions140

of reads, which are strings over a 4-letter alphabet. One then needs to compute overlaps141

between reads, represent these overlaps in graph and search for a Hamiltonian or Eulerian142

path (depending on the graph) satisfying some length or overlap conditions to infer the full143

sequence of the genome; see [9, 16] for more pointers. The comparison of sequences and the144

statistical issues regarding inference of motifs, which both look at the set of k-mers occurring145

in sequences, are also related to periodicity [27, 26, 31].146

Now let us review the most closely related literature to our question. In a seminal work147

[8], Guibas and Odlyzko defined the notion of autocorrelation of u, which encodes the period148

set in a binary vector of length n, where 1 at position i indicates that i is a period of u.149

The binary encoding gives the length n, but is otherwise equivalent to the notion of set150

period 1. They have exhibited a recursive characterization of an autocorrelation, which151

runs in linear time in n. They have provided lower and upper bounds for log(κn)/ log2(n),152

and conjectured that their lower bound was also an upper bound. They also proposed an153

algorithm to compute the number of strings in Σn that share the same period set, which they154

termed the population of a period set. A key result of their work is the alphabet independence155

of Γn: Any alphabet of size at least two gives rise to the same set of period sets, i.e., to Γn.156

Of course, if the alphabet is a singleton all questions mentioned here become trivial. In the157

1 We will see in 5 that a period set can belong to several Γn for several values of n.

E. Rivals XX:5

sequel, let us consider that card(Σ) > 1. Note that their characterization of period sets was158

re-discovered a few years later [13].159

Circa 20 years later, Halava et al. gave a simpler proof of the alphabet independence160

result [10] by solving the following question. For any period set Q of Γn, let v be a word over161

an alphabet of cardinality larger or equal to 2 such that P (v) = Q; then compute a binary162

word u such that P (u) = Q. Indeed, they exhibited a linear time algorithm that computes163

such a word u from v.164

At the same period, other authors investigated the structure of Γn to show that it is a165

lattice that does not satisfy the Jordan-Dedekind condition [24]. Moreover, they designed166

an enumeration algorithm for Γn that uses a dynamic programming approach. Given that167

κn is exponential in n, their enumeration algorithm also is, but its main drawback lies in168

memory usage, which requires to store all Γ(i) for 0 < i ≤ ⌊2n/3⌋. With combinatorial169

arguments about the number of binary partitions of an integer, they provided improved170

the lower bounds for for log(κn)/ log2(n). Many concepts and results have been extended171

to words with don’t care symbols, e.g. [3]. In 2023, the conjecture stated by Guibas and172

Odlyzko regarding this ratio was finally proven to be correct, thereby implying that for173

log(κn)/ log2(n) converges towards 1/(2 log(2)) when n tends to infinity [25].174

2.3 Rule based characterization175

In their seminal paper, Guibas and Odlyzko characterized autocorrelations by three conditions:176

they must177

1. start with a 1 (i.e., zero is a period)178

2. satisfy the Forward Propagation Rules (FPR)179

3. satisfy the Backward Propagation Rule (BPR)180

Let us formulate the FPR and BPR in terms of sets (rather than in term of binary vector181

as in [8]). Let P a subset of {0, 1, . . . , n − 1}.182

▶ Definition 2. P satisfies the FPR iff for all pairs p, q in P satisfying 0 ≤ p < q < n, it183

follows that p + i(q − p) ∈ P for all i = 2, . . . , ⌊(n − p)/(q − p)⌋.184

▶ Definition 3. P satisfies the BPR iff for all pairs p, q in P satisfying 0 ≤ p < q < 2p, and185

(2p−q) ̸∈ P , it follows that p−i(q−p) ̸∈ P for all i = 2, . . . , min(⌊p/(q−p)⌋, ⌊(n−p)/(q−p)⌋).186

In [8], the authors give a version for strings of the famous Fine and Wilf theorem [6],187

a.k.a. the periodicity lemma. A nice proof was provided by Halava and colleagues [10].188

▶ Theorem 4 (Fine and Wilf). Let p, q be periods of u ∈ Σn. If n ≥ p + q − gcd(p, q), then189

gcd(p, q) is a period of u.190

We can reformulate this theorem as a condition that must be satisfied by a period set P of191

Γn.192

▶ Theorem 5. Let any pair p, q of periods of P such that gcd(p, q) ̸∈ P , and define193

FW (p, q) := p + q − gcd(p, q). Then FW (p, q) must be strictly larger than n.194

We call FW (p, q) the Fine and Wilf (FW) limit of (p, q), and the fact that FW (p, q) must195

be larger than n, the FW condition.196

We define the notion of nested set. It helps formulating definitions and properties that197

were originally expressed as suffixes of autocorrelations in [8].198

2024

XX:6 Incremental algorithms for the set of period sets

▶ Definition 6. Let n > 0 and P be a subset of {0, 1, . . . , n − 1}. Let q be an element of P .199

Let us denote the nested set of P starting at period q as Pq:200

Pq := {(r − q) for each r ∈ P such that r ≥ q}.201

By construction Pq starts with 0; moreover, if we choose q = 0 then Pq = P . Now assume202

that P is valid PS of length n, and q a period of P . Then, by Theorem 9 (which we recall in203

Section 3), we have that Pq is a valid PS of length (n − q).204

2.4 Checking the FPR and the BPR205

Let n > 0 and P be a subset of {0, 1, . . . , n − 1}. We assume that P is given as an ordered206

array. The complexity for checking the FPR or the BPR for P , has, to our knowledge not207

been previously addressed. For any pair p < q, we call their difference (q − p), an offset.208

Checking the BPR. Here, we demonstrate a property that relates the BPR to the209

FW theorem. Precisely, if BPR is violated for some pair (p, q) at length n, with period210

r := p− i(q −p) for some i, then the pair (p−r, q −r) violates the FW condition of Theorem 5211

in the nested set of length (n − r).212

▶ Lemma 7. Let (p, q) be a pair of integers that violate the BPR, and let i ≥ 2 such that213

r := p− i(q −p) ∈ P . Then the pair (p− r, q − r) violates the FW condition for length (n− r).214

Proof. Let P ∈ Γn. Let p, q in P satisfying 0 ≤ p < q < 2p be such that (2p−q) ̸∈ P . Assume215

(p, q) violates the BPR. Then, there exists i in [2, . . . , min(⌊p/(q − p), ⌋, ⌊(n − p)/(q − p)⌋)],216

such that p − i(q − p) ̸∈ P . If several such integers exist, choose i as their minimum, and217

define r := p − i(q − p). We will show that the nested period set of P for length (n − r)218

is not valid since two of its periods violates the FW condition, which would require their219

gcd as an additional period, thereby implying that P is not a valid period set for length220

n, a contradiction. Since i is chosen minimal, we have that gcd(p, q) is not in P by the221

definition of the BPR. Note that p − r = i(q − p) and q − r = (i + 1)(q − p). Thus, one222

gets gcd(p − r, q − r) = q − p, and the FW limit of (p − r, q − r) equals 2i(q − p). Indeed,223

FW (p − r, q − r) := p − r + q − r − gcd(p − r, q − r) = 2p − 2r = 2i(q − p). By hypothesis,224

we have:225

i ≤ (n − p)/(q − p)
⇔ p + i(q − p) ≤ n

⇔ r + 2i(q − p) ≤ n

⇔ FW (p − r, q − r) ≤ n − r

226

meaning that (p − r, q − r) violates the FW condition of Theorem 5 for length (n − r). ◀227

In algorithmic terms, checking the BPR can be done by checking the FW condition of228

Theorem 5 in each nested set.229

Checking the FPR. Some properties are explained in Appendix D and lead to this230

Lemma.231

▶ Lemma 8. Let P is a subset of [0, . . . , n − 1], that is ordered, and has zero as first period.232

Checking the FPR for P in general takes at most O(n log2(n))time.233

E. Rivals XX:7

3 Incremental enumeration framework234

3.1 Rationale for an incremental algorithm to enumerate Γn235

The rule based characterization of autocorrelations from [8] implies a special substring236

property. Indeed, Lemma 3.1 in [8] states: If a binary vector v satisfies the forward and237

backward propagation rules, then so does any prefix or suffix of v. As the characterization238

also requires that an autocorrelation has its first bit equal to one, or equivalently that zero239

belongs to any period set, one gets the following theorem.240

▶ Theorem 9. Let v be an autocorrelation of length n. Any substring vi . . . vj of v with241

0 ≤ i ≤ j < n such that vi = 1 is an autocorrelation of length j − i + 1.242

Applying Theorem 9 to a prefix of v, one gets for any n > 0: The prefix of length (n − 1)243

from an autocorrelation of length n is an autocorrelation of length (n − 1). In terms of period244

sets, this statement can be reformulated as:245

▶ Corollary 10. If P is a period set of Γn, then P \ {n − 1} belongs to Γn−1.246

First, this means that, knowing Γn, it is easy to compute Γn−1. It suffices to consider each247

element of Γn in turn (or in parallel) and to eventually remove the period (n − 1) from it248

(i.e., if (n − 1) belongs to it) to obtain an element of Γn−1. With this procedure one can249

obtain the same element of Γn−1 twice, and one must keep track of this to avoid redundancy.250

Conversely, we get the Lemma that underlies the incremental approach for computing Γn:251

▶ Lemma 11. Let P be a period set of Γn−1. Then, a period set Q of Γn can only be of two252

alternative forms: either P or P ∪ {n − 1}.253

3.2 Incremental algorithm framework254

Lemma 11 suggests an approach for computing Γn using Γn−1. Consider each P from255

Γn−1, and certify that the candidate sets, P and P ∪ {n − 1}, are valid period sets of Γn.256

Clearly, Algorithm 1 presents the general incremental algorithm for Γn, where certify257

denotes the certification function used. This function must take as input n and a subset of258

{0, 1, . . . , n − 1}, and check the validity of this subset as a period set for length n.259

Algorithm 1 IncrementalGamma

Input : n > 1: integer; Γn−1: the set of period sets for length n − 1
Output: Γn: the set of period sets for length n;

1 G := ∅; // G: variable to store Γn

2 for all P ∈ Γ(n − 1) do
3 if certify(P , n) then // check that P is valid at length n

4 insert P in G;
5 Q := P ∪ {n − 1} // build extension P with period n − 1;
6 if certify(Q, n) then // check that Q is valid at length n

7 insert Q in G;

8 return G;

260

The recursive predicate Ξ from [8] (cf. Appendix F.2) is one possible certification function,261

which does exactly what is required for any subset of {0, 1, . . . , n − 1}, in linear time [8]. This262

means that Algorithm 1 correctly computes Γn from Γn−1. However, since we know that263

P belongs to Γn−1, the candidate sets are not any subset of {0, 1, . . . , n − 1}, but specific264

2024

XX:8 Incremental algorithms for the set of period sets

ones that already satisfy some constraints for length (n − 1). Therefore, finding alternative265

certification functions is interesting.266

Besides its simplicity, the main advantage of Algorithm 1, compared to the dynamic267

programming enumeration algorithm of [23], is its space complexity. Here, the computation268

considers each period set P from Γn−1 in turn (and independently from the others), executes269

twice the certification function for P and Q; this implies that the memory required, besides270

storage of P, Q, is the one used by the certification function. With the predicate Ξ, it is271

linear in n, so O(n) space. The time complexity is proportional to κn (i.e., the cardinality of272

Γn) times the running time of the certification function, which yields the following theorem.273

▶ Theorem 12. One has274

1. Algorithm 1 using any correct certification correctly computes Γn from Γn−1.275

2. Using the predicate Ξ as certification function, it runs in O(nκn) time and O(n) space.276

Moreover, it is worth noticing that Algorithm 1 is embarrassingly parallelizable.277

3.3 Alternative certification function.278

Let us propose a second certification function that derives from the rule based charac-279

terization of autocorrelations also presented in [8]. It states that a period set of Γn must280

i/ contains the trivial period zero, ii/ satisfy the Forward Propagation Rule (FPR), and281

iii/ the Backward Propagation Rule (BPR). The rule based characterization is shown to be282

equivalent to the predicate Ξ in Theorem 5.1 from [8] (see Appendix F.2).283

The pseudo-code of the incremental algorithm for computing Γn using the rule based284

certification function is shown and explained in Algorithm 3 in Appendix B.285

4 Constructive certification of a period set286

Let R be subset of {0, 1, . . . , n − 1}. We say that a word u realizes R if P (u) = R. Another287

interesting certification function is: to attempt to build a word u that realizes R; if the288

attempt succeeds, R is a valid period set. Given the alphabet independence of Γn, we restrict289

the search to binary strings.290

Below we present an algorithm for the binary realization of a set (see Algorithm 2). Using291

it as a certification function in Algorithm 1, the latter will compute Γn from Γn−1 and also292

yield one realizing string for each period set.293

4.1 Binary realization of a subset of {0, 1, . . . , n − 1}294

Algorithm 2 computes a word u that realizes a set P for length n > 0, or returns the empty295

word ϵ if P is not a valid period set of Γn. For legibility, the preliminary checks on P are not296

written in Algorithm 2: they include checking that P is a subset of [0, . . . , n − 1], is ordered,297

and has zero as first period. The word u is written over the alphabet {a, b}.298

The algorithm considers elements of P backwards, starting with largest integer first, since299

P is ordered. At each execution of the for loop, it considers the current integer P [i] as a300

period and builds a suffix of u of length n − P [i] (variable lg). In fact, it considers a potential301

larger and larger nested sets, and computes a suffix of u for this length. At the end of the302

for loop, the variable suffix contains a string of length lg realizing the nested set. Note that303

algorithm uses three variables (whose names start with prev) to store the length, the inner304

period, and the suffix obtained with the previous period.305

E. Rivals XX:9

Algorithm 2 Binary Realization

Input : n > 0: integer; P : a subset of [0, 1, . . . , n − 1] including 0, in a sorted array
Output: a binary string realizing P at length n xor the empty string otherwise;

1 k := card(P) ; // k: cardinality of P

2 if k = 1 then return a.b(n−1) // trivial case where P = {0};
// processing the largest period and init. variables

3 prevLg := n − P [k − 1]; prevIP := prevLg; prevSuffix := a.b(prevLg−1);
4 for i going from k − 2 to 0 do
5 lg := n − P [i];
6 innerPeriod := P [i + 1] − P [i];
7 if innerPeriod < prevIP then return ϵ ;
8 if lg ≤ 2× prevLg then // condition for case 1
9 if (innerPeriod = prevIP) OR ((prevIP ∤ innerPeriod) AND (

(innerPeriod = prevLg) OR (prevSuffix has period innerPeriod))) then
// suffix := a prefix of prevSuffix concat. with prevSuffix

10 suffix := prevSuffix[0..innerPeriod−1] . prevSuffix;
11 else return ϵ // invalid case for length lg;
12 else // condition for case 2

// suffix := prevSuffix newsymbols prevSuffix
13 nb := lg −2× prevLg;
14 newPrefix := prevSuffix .anb;
15 if newPrefix is not primitive then
16 newPrefix := prevSuffix .a(nb−1)b;

// Invariant: newPrefix is primitive
17 suffix := newPrefix . prevSuffix;

// update variables
18 prevLg := lg; prevIP := innerPeriod; prevSuffix := suffix;
19 return suffix;

The base case is processed before the loop and consider the nested set for P [k − 1] =306

max(P) for the length n − max(P) without any period. Hence, the suffix a.b(prevLg -1) is a307

realization for nested set {0} for length n − max(P).308

In the for loop the key variable is the innerPeriod, which equals the offset P [i + 1] − P [i],309

which is the basic period of the current nested set. If innerPeriod < prevIP then the FPR310

is violated and the algorithm returns ϵ (line 7). Two cases are considered depending on311

whether the current length is smaller twice the previous length (case 1) or not (case 2).312

Because of the notion of period, the suffix must start and end with a copy of prevSuffix. The313

construction of the suffix depends on the case. In case 1, the two copies of prevSuffix are314

concatenated or overlap themselves, and some additional conditions are required (line 9).315

These conditions are dictated by the characterization of period set from [8] (see the predicate316

Ξ in Appendix F.2). Whenever one is not satisfied, Algorithm 2 returns the empty word as317

expected. In case 2, the two copies of prevSuffix must be separated by nb additional symbols318

(to be determined). One builds a newPrefix that starts with prevSuffix followed by anb, and319

one checks whether newPrefix is primitive. This newPrefix is the part that ensures the suffix320

will have innerPeriod as a period. The primitivity is required, since newPrefix may have a321

2024

XX:10 Incremental algorithms for the set of period sets

proper period, but this period shall not divide innerPeriod. If primitivity is not satisfied,322

then changing the last symbol of newPrefix by a b will make it primitive. This is enforced by323

Lemma 3 from [10], which states that for any binary word w, wa or wb is primitive. So we324

know that at least one of the two forms of newPrefix is primitive as necessary. It can be325

that both are primitive and suitable. Finally, we build the current suffix by concatenating326

newPrefix with prevSuffix.327

Complexity First, in case 1, checking the condition "prevSuffix has period innerPeriod"328

can be done in linear time in |prevSuffix| (which is ≤ n). Overall, this can be executed329

card(P) times. Second, the primitivity test performed in case 2 takes a time proportional to330

the length of the string newPrefix. However, the sum of these lengths, for all iterations of the331

loop, is bounded by n. Other instructions of the for loop take constant time. Overall, the332

time complexity of Algorithm 2 by O(card(P) × n). However, when Algorithm 2 is plugged333

in Algorithm 1 it processes special instances: either P or Q := P ∪ {n − 1}, with P ∈ Γn−1.334

Then, the time taken by all verifications of condition "prevSuffix has period innerPeriod" for335

all cases 1 is bounded by n, due to the properties of periods that generate more than two336

repetitions in a string (see Lemma 15 and Lemma 2 from [10]). For the instances processed337

in Algorithm 1, the time complexity of Algorithm 2 is O(card(P) + n) or O(n).338

Remark It is possible to modify Algorithm 2 to build, instead of a binary word, a339

realizing string that maximizes the number of distinct symbols used in it. Indeed, new340

symbols are used only in the base case and in case 2. Each time, it is possible to choose341

symbols that have not been used earlier in the algorithm, and thus to maximize the overall342

number. Note that this would remove the need of the primitivity test in case 2.343

4.2 Examples of binary realization344

We take the case of a valid period set at length n = 9 that becomes invalid at n = 10, and345

show the traces of execution for both lengths. Let P = {0, 3, 6, 8} and first n = 9. The346

operator ⊕j merges the two strings with an offset of length j if the corresponding prefix347

and suffix are equal, for any appropriate integer j. So when n = 9, the merge v = w⊕3w348

with w = abaaba is feasible since w has period 3. When n = 10, the merge w = y⊕3y with349

y = abab is not possible since a ̸= b. The trace for n = 10 is in Appendix C.350

period length inner period case suffix valid
8 9-8 = 1 9-8 = 1 2 z = a true
6 9-6 = 3 8-6 = 2 2 y = zbz = aba true
3 9-3 = 6 6-3 = 3 2 w = yy = abaaba true
0 9-0 = 9 3-0 = 3 1 v = w⊕3w = (aba)3 true

351

5 Fate and dynamics of period sets352

One interest of incremental algorithms is to shed light on the dynamics of the Γn when n353

increases, both in terms of new and dying period sets, as well as on the structure of Γn. As354

mentioned in introduction, Γn is a lattice under inclusion; the union and the intersection355

of two period sets are period sets [24]. Even if the cardinality of Γn increases with n, the356

growth is not regular. It is worth investigating the local dynamics of Γn when n changes,357

and for this we define the fate of period sets.358

E. Rivals XX:11

5.1 Fate of a period set when n increases359

The incremental algorithms presented above show that Γn−1 and Γn share some period sets,360

and that other period sets are derived by an extension, that is are of the form P ∪ {n − 1}.361

Let P be a period set of Γn−1. The maximal period in P , denoted max(P), determines362

the first length at which P exists: indeed, the birth of P occurs in Γmax(P)+1. When the363

length increases, say from n − 1 to n, what can be the fate of P? Only three possibilities364

exist:365

1. either P remains valid at length n,366

2. or P has an extension with period n − 1 at length n,367

3. or P dies (i.e., is neither case 1 nor case 2), see Definition 14 in Appendix B.368

Note that cases 1 and 2 are not exclusive from each other. Let us illustrate these with the369

following example.370

▶ Example 13. For instance, {0, 3, 6} is born in Γ7 and also belongs to Γ8 and Γ9; its371

extension {0, 3, 6, 7} also belongs to Γ8. This extension is not compulsory since {0, 3, 6} also372

belongs to Γ8. From a dynamic view point, one can say that {0, 3, 6} from Γ7 generates373

both {0, 3, 6} and {0, 3, 6, 7} in Γ8. On the contrary, {0, 4, 6} belongs Γ7, but dies at n = 8,374

since the pair of periods (4, 6) satisfies the FW condition at that length and would require375

to add gcd(4, 6) as a new basic period. Last, {0, 2, 4, 6} belongs to Γ7, Γ8, and generates376

{0, 2, 4, 6, 8} in Γ9 because the extension with period 8 is required by the FPR.377

The fate of depends on378

1. the smallest length at which an extension will be required (i.e., as a consequence of the379

FPR a new period is added to P at some length); we call it the extension limit of P ,380

2. the smallest length at which some pairs of periods violates the BPR (we call it the381

Recursive FW limit).382

These two lengths depend only on the period set, and can thus be computed as soon as P is383

born. We provide in Appendix E two algorithms to compute these limits.384

Figure 1 shows for n = 7, . . . , 11, the set Γn represented as a lattice of period sets with385

the inclusion relationship. The out-going arrows of a period set point to its successors in the386

lattice. The dying period sets of Γn, that is those that do not exist at length n + 1, are shown387

in orange background. The number of dying period sets is not monotonically increasing: it388

equals 2 in Γ7, 1 in Γ8, 3 in Γ9, 2 in Γ10, and 8 in Γ11, for instance. Clearly, it does not389

prevent the cardinality of Γn to increase monotonically. An interesting question for future390

work is to find the function that for n gives the number of dying period sets of Γn, and how391

these are distributed with respect to their basic period.392

6 Conclusion and exploration of Γn: distribution of period sets with393

respect to basic period and weight394

The key element of a period set is its basic period, which defines the first level of periodicity395

in a word. How period sets in Γn are distributed according to their basic period is non trivial.396

Enumerating Γn allows inspecting this distribution. The left plot in Figure 2 displays κn,p,397

the counts of period sets for all possible basic periods p, in Γ60. In predicate Ξ [8], as well398

as in the dynamic programming algorithm that enumerates Γn [24], one separates period399

sets depending on the basic period being larger than ⌊n/2⌋ (case b) or smaller than or equal400

to it (case a). The smooth decrease of counts beyond the basic period equals to half of the401

string length is explained by the combinatorial property that links number of period sets in402

case b and the number of binary partitions of an integer (see Lemma 5.8 in [24]). However,403

2024

XX:12 Incremental algorithms for the set of period sets

(a) Γ7 and Γ8

(b) Γ9 and Γ10

(c) Γ11

Figure 1 Lattices representations of Γ7 and Γ8 (a), Γ9 and Γ10 (b), and of Γ11 (c). Each node
contains a period set (a list of periods separated by spaces). Those whose last period equals (n − 1)
are obtained by extension of period set from Γn−1, and those nodes in orange background are dying
period sets at length n + 1.

E. Rivals XX:13

the distribution of counts for all period sets in case a, still requires some investigation and404

statistical modeling. Here, we observe that between basic period 1 and 30, κn,p increases405

globally with the basic period p, but locally κn,p increases and then decreases to reach local406

maxima when p divides the string length n (e.g. see the peaks at p = 10, 12, 15, 20, 30, which407

correspond to period sets of case a).408

Figure 2 Distribution in Γ60 of the number of period sets by basic period (left) and by weight
(right), for string length of n := 60. Beyond basic period 30, the counts decrease smoothly with the
basic period. Between basic period 1 and 30 the counts increase to a local maximum when the basic
period reaches ⌊n/x⌋ for 1 < x ≤ 12 = (e.g. basic periods 10, 12, 15, 20, 30). The distribution by
weight (right) is limited to weight below 22; it is unimodal and right skewed towards low weights.

Other works have investigated combinatorial parameters that control the number of409

periods of a word [7]. Thanks to enumeration of Γn one can study the real distribution of410

weight of period sets and how it evolves with n. The right plot of Figure 2 displays the411

number of period sets having the same weight (i.e. same number of periods) for n = 60.412

This distribution is right skewed and illustrates the constraints imposed by multiple periods.413

Similar figures for other string lengths are shown in Appendix A.414

Conclusion. We provide algorithms to enumerate Γn incrementally with low space415

requirement, and an algorithm for binary realization of a period set. They allow to inspect416

Γn and to visualize how parameters like the weight or the basic period impact the number of417

PS. We define the fate of a PS and propose to study the dynamics of Γn when n increases.418

Many questions remain: how can the recursive FW and extension limits of PS of Γn−1 be419

used to speed up the incremental enumeration of Γn? Can we exploit binary realizing strings420

to ease enumeration or to unravel how population sizes evolve with n? Among directions for421

future work, finding algorithms to enumerate PS for generalizations of words, like partial422

words or multidimensional words (aka matrices) is interesting. As seen in Figure 1, the423

number of PS that die in function of n is not monotonically increasing; thus understanding424

the sequences of κn and κn,p is both stimulating and challenging (see also Figures 2, 3-5).425

2024

XX:14 Incremental algorithms for the set of period sets

References426

1 Dragana Bajic and Tatjana Loncar-Turukalo. A simple suboptimal construction of cross-427

bifix-free codes. Cryptography and Communications, 6(6):27–37, 2014. doi:10.1007/428

s12095-013-0088-8.429

2 Stefano Bilotta, Elisa Pergola, and Renzo Pinzani. A new approach to cross-bifix-free sets. IEEE430

Transactions on Information Theory, 58(6):4058–4063, 2012. doi:10.1109/TIT.2012.2189479.431

3 Francine Blanchet-Sadri, Justin Fowler, Joshua D. Gafni, and Kevin H. Wilson. Combinatorics432

on partial word correlations. J. Comb. Theory, Ser. A, 117(6):607–624, 2010. doi:10.1016/j.433

jcta.2010.03.001.434

4 M.Gabriella Castelli, Filippo Mignosi, and Antonio Restivo. Fine and wilf’s theorem435

for three periods and a generalization of sturmian words. Theoretical Computer Sci-436

ence, 218(1):83–94, April 1999. URL: http://dx.doi.org/10.1016/S0304-3975(98)00251-5,437

doi:10.1016/s0304-3975(98)00251-5.438

5 Andrzej Ehrenfeucht and D.M. Silberger. Periodicity and unbordered segments of words. Dis-439

crete Mathematics, 26(2):101–109, 1979. URL: http://dx.doi.org/10.1016/0012-365X(79)440

90116-X, doi:10.1016/0012-365x(79)90116-x.441

6 N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math.442

Soc., 16:109–114, 1965.443

7 Daniel Gabric, Narad Rampersad, and Jeffrey Shallit. An inequality for the number of periods444

in a word. International Journal of Foundations of Computer Science, 32(05):597–614, Jun445

2021. doi:10.1142/s0129054121410094.446

8 Leo J. Guibas and Andrew M. Odlyzko. Periods in strings. J. of Combinatorial Theory series447

A, 30:19–42, 1981. doi:10.1016/0097-3165(81)90038-8.448

9 Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, 1997.449

10 Vesa Halava, Tero Harju, and Lucian Ilie. Periods and binary words. J. Comb. Theory, Ser. A,450

89(2):298–303, 2000. URL: https://doi.org/10.1006/jcta.1999.3014, doi:10.1006/JCTA.451

1999.3014.452

11 Stepan Holub and Jeffrey O. Shallit. Periods and borders of random words. In Nicolas Ollinger453

and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science,454

STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 44:1–44:10.455

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.456

44.457

12 D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM Journal of458

Computing, 6:323–350, 1977.459

13 Douglas A. Leonard. A prefix problem. Ars Combinatoria, 24:51–55, 1987.460

14 Paul Leopardi. Testing the Tests: Using Random Number Generators to Improve Empirical461

Tests. In Pierre L’ Ecuyer and Art B. Owen, editors, Monte Carlo and Quasi-Monte Carlo462

Methods 2008, pages 501–512. Springer Berlin Heidelberg, 2009. DOI: 10.1007/978-3-642-463

04107-5_32. URL: http://link.springer.com/chapter/10.1007/978-3-642-04107-5_32.464

15 M. Lothaire, editor. Combinatorics on Words. Cambridge University Press, second edition,465

1997.466

16 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale467

Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.468

Cambridge University Press, 2015. doi:10.1017/CBO9781139940023.469

17 G. Marsaglia and A. Zaman. Monkey tests for random number generators. Computers and470

Mathematics with Applications, 26(9):1–10, 1993.471

18 P. Nielsen. A note on bifix-free sequences (corresp.). IEEE Transactions on Information Theory,472

19(5):704–706, September 1973. URL: http://dx.doi.org/10.1109/TIT.1973.1055065, doi:473

10.1109/tit.1973.1055065.474

19 P. Nielsen. On the expected duration of a search for a fixed pattern in random data (corresp.).475

IEEE Transactions on Information Theory, 19(5):702–704, September 1973. URL: http:476

//dx.doi.org/10.1109/TIT.1973.1055064, doi:10.1109/tit.1973.1055064.477

https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1016/j.jcta.2010.03.001
https://doi.org/10.1016/j.jcta.2010.03.001
https://doi.org/10.1016/j.jcta.2010.03.001
http://dx.doi.org/10.1016/S0304-3975(98)00251-5
https://doi.org/10.1016/s0304-3975(98)00251-5
http://dx.doi.org/10.1016/0012-365X(79)90116-X
http://dx.doi.org/10.1016/0012-365X(79)90116-X
http://dx.doi.org/10.1016/0012-365X(79)90116-X
https://doi.org/10.1016/0012-365x(79)90116-x
https://doi.org/10.1142/s0129054121410094
https://doi.org/10.1016/0097-3165(81)90038-8
https://doi.org/10.1006/jcta.1999.3014
https://doi.org/10.1006/JCTA.1999.3014
https://doi.org/10.1006/JCTA.1999.3014
https://doi.org/10.1006/JCTA.1999.3014
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.4230/LIPIcs.STACS.2016.44
http://link.springer.com/chapter/10.1007/978-3-642-04107-5_32
https://doi.org/10.1017/CBO9781139940023
http://dx.doi.org/10.1109/TIT.1973.1055065
https://doi.org/10.1109/tit.1973.1055065
https://doi.org/10.1109/tit.1973.1055065
https://doi.org/10.1109/tit.1973.1055065
http://dx.doi.org/10.1109/TIT.1973.1055064
http://dx.doi.org/10.1109/TIT.1973.1055064
http://dx.doi.org/10.1109/TIT.1973.1055064
https://doi.org/10.1109/tit.1973.1055064

E. Rivals XX:15

20 Ora E. Percus and Paula A. Whitlock. Theory and Application of Marsaglia’s Monkey Test for478

Pseudorandom Number Generators. ACM Transactions on Modeling and Computer Simulation,479

5(2):87–100, April 1995.480

21 Sven Rahmann and Eric Rivals. Exact and efficient computation of the expected number481

of missing and common words in random texts. In Proc. of CPM 2000, page 375–387.482

Springer Berlin Heidelberg, 2000. URL: http://dx.doi.org/10.1007/3-540-45123-4_31,483

doi:10.1007/3-540-45123-4_31.484

22 Sven Rahmann and Eric Rivals. On the distribution of the number of missing words in485

random texts. Combinatorics, Probability and Computing, 12(01), Jan 2003. URL: http:486

//dx.doi.org/10.1017/S0963548302005473, doi:10.1017/s0963548302005473.487

23 Eric Rivals and Sven Rahmann. Combinatorics of periods in strings. In Proc. of ICALP488

2001, page 615–626. Springer Berlin Heidelberg, 2001. URL: http://dx.doi.org/10.1007/489

3-540-48224-5_51, doi:10.1007/3-540-48224-5_51.490

24 Eric Rivals and Sven Rahmann. Combinatorics of periods in strings. Journal of Combi-491

natorial Theory, Series A, 104(1):95–113, Oct 2003. URL: http://dx.doi.org/10.1016/492

S0097-3165(03)00123-7, doi:10.1016/s0097-3165(03)00123-7.493

25 Eric Rivals, Michelle Sweering, and Pengfei Wang. Convergence of the Number of Period Sets494

in Strings. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International495

Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz496

International Proceedings in Informatics (LIPIcs), pages 100:1–100:14, Dagstuhl, Germany,497

2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.498

de/opus/volltexte/2023/18152, doi:https://doi.org/10.4230/LIPIcs.ICALP.2023.100.499

26 S. Robin and J.-J. Daudin. Exact distribution of word occurrences in a random sequence of500

letters. J. of Applied Probability, 36:179–193, 1999.501

27 Stéphane Robin, François Rodolphe, and Sophie Schbath. DNA, Words and Models. Cambridge502

Univ. Press, 2005.503

28 William F. Smyth. Computating Pattern in Strings. Pearson - Addison Wesley, 2003.504

29 R. Tijdeman and L. Zamboni. Fine and wilf words for any periods. Indagationes Mathematicae,505

14(1):135–147, March 2003. URL: http://dx.doi.org/10.1016/S0019-3577(03)90076-0,506

doi:10.1016/s0019-3577(03)90076-0.507

30 R. Tijdeman and L.Q. Zamboni. Fine and wilf words for any periods ii. Theoretical Computer508

Science, 410(30–32):3027–3034, August 2009. URL: http://dx.doi.org/10.1016/j.tcs.2009.509

02.004, doi:10.1016/j.tcs.2009.02.004.510

31 E. Ukkonen. Approximate string-matching with q-grams and maximal matches. Theor. Comp.511

Sci., 92(1):191–211, January 1992.512

A Exploration of Γn: Distribution of the number of period sets by513

basic period and by weight514

Like in Figure 2, we explore how period sets are distributed according to their basic period,515

and according to their weight for other string lengths. We plot these distributions for n = 48,516

n = 55, and n = 59 in Figures 3, 4, and 5, respectively. We choose these values because they517

differ in their number of divisors 48 = 24 × 3, 55 = 5 × 11 and 59 is prime. In essence, both518

plots for Γ48, Γ55, and Γ59 look very similar to those for Γ60. Even for a prime string length,519

n = 59, the distribution of number of period sets in case a, shows a maximum at ⌊n/2⌋ and520

local maxima at ⌊n/3⌋, ⌊n/4⌋ etc.521

2024

http://dx.doi.org/10.1007/3-540-45123-4_31
https://doi.org/10.1007/3-540-45123-4_31
http://dx.doi.org/10.1017/S0963548302005473
http://dx.doi.org/10.1017/S0963548302005473
http://dx.doi.org/10.1017/S0963548302005473
https://doi.org/10.1017/s0963548302005473
http://dx.doi.org/10.1007/3-540-48224-5_51
http://dx.doi.org/10.1007/3-540-48224-5_51
http://dx.doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1007/3-540-48224-5_51
http://dx.doi.org/10.1016/S0097-3165(03)00123-7
http://dx.doi.org/10.1016/S0097-3165(03)00123-7
http://dx.doi.org/10.1016/S0097-3165(03)00123-7
https://doi.org/10.1016/s0097-3165(03)00123-7
https://drops.dagstuhl.de/opus/volltexte/2023/18152
https://drops.dagstuhl.de/opus/volltexte/2023/18152
https://drops.dagstuhl.de/opus/volltexte/2023/18152
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2023.100
http://dx.doi.org/10.1016/S0019-3577(03)90076-0
https://doi.org/10.1016/s0019-3577(03)90076-0
http://dx.doi.org/10.1016/j.tcs.2009.02.004
http://dx.doi.org/10.1016/j.tcs.2009.02.004
http://dx.doi.org/10.1016/j.tcs.2009.02.004
https://doi.org/10.1016/j.tcs.2009.02.004

XX:16 Incremental algorithms for the set of period sets

Figure 3 Distribution in Γ48 of the number of period sets by basic period (left) and by weight
(right), i.e., for string length of n := 48.

Figure 4 Distribution in Γ55 of the number of period sets by basic period (left) and by weight
(right), i.e., for string length of n := 55.

E. Rivals XX:17

Figure 5 Distribution in Γ59 of the number of period sets by basic period (left) and by weight
(right), i.e., for string length of n := 59.

B Incremental algorithm with rule based certification.522

Here, we detail an alternative version of the incremental algorithm, which uses the rule523

based certification function derived from Theorem 5.1 from [8] (see also below). This is524

related to subsection 3.3. Algorithm 3 presents the pseudo-code; it uses two functions named525

checkFPR and checkBPR, which check if a set of integers satisfies respectively, the Forward526

and Backward Propagation Rules.527

In our case, as the candidate sets include a period set of Γn−1, they necessarily satisfy528

the first condition (i). Regarding the FPR, since P belongs to Γn−1, P satisfies the FPR529

up to position n − 2 included; and thus, only period n − 1 can be required by the FPR. For530

each possible pair (p, q) considered in the FPR, we only need to check if the FPR formula531

yields (n − 1). Second, for the same reason, when considering the candidate set P ∪ {n − 1},532

we are sure that the FPR is satisfied.533

Let R be any subset of {0, 1, . . . , n − 1} containing zero and assuming that R is sorted in534

increasing order, then we have that checking the FPR and BPR takes at most O(n log2(n))535

time (see Section 2).536

Algorithm 3 differs from Algorithm 1 in two aspects. First, it can indicate for which537

reason the candidate set is not a valid period set if the check fails. Second, it also computes538

the set of "dying" period sets of Γn−1, that is the period set that do not remain valid at539

length n, nor cannot be extended at length n. We will define these notions in Section 5.540

Of course, dying period sets could also be computed within Algorithm 1, which uses the541

predicate Ξ (but for simplicity and to avoid redundancy, was not mentioned earlier).542

Altogether the time complexity of Algorithm 3 is bounded by O(n log2(n) × κn), which543

may not be optimal.544

2024

XX:18 Incremental algorithms for the set of period sets

▶ Definition 14. A dying period set P is a period set of Γn−1 such that neither P nor545

P ∪ {n − 1} belong to Γn. In other words, P has no extension in Γn.546

Algorithm 3 IncrementalGamma with rule based certification

Input : n > 1: integer; Γn−1: the set of period sets for length n − 1
Output: Γn: the set of period sets for length n; D: the set of dying PS at length n;

1 G := ∅; // G: variable to store Γn

2 D := ∅; // D: variable to store dying PS
3 for P ∈ Γn−1 do
4 Q := P ∪ {n − 1} // build extension of P with period n − 1;
5 if checkFPR(P , n) then // n − 1 is required by FPR at length n

6 if checkBPR(Q, n) then insert Q in G;
7 else insert P in D // otherwise P is dying at length n;
8 else
9 if checkBPR(P , n) then insert P in G ;

10 else
11 if checkBPR(Q, n) then insert Q in G ;
12 else insert P in D // otherwise P is dying at length n;

13 return G and D;

547

C Algorithm Binary realization548

C.1 Correctness and complexity of the algorithm549

Proof. Let us prove that the Algorithm Binary Realization is correct.550

Correction of the base case As we process the last period of P , the nested set is {0}551

for length n − max(P). We must build a suffix without period (i.e., whose basic period is its552

length). Hence, the word a.b(prevLg−1) is a binary realization for this set.553

Correction of the general case. After setting variables lg and innerPeriod, we check554

the condition (innerPeriod < prevIP). In a period set, the offset P [i + 1] − P [i] decreases555

when i increases. The condition implies the current nested set is invalid, and we return ϵ as556

needed. Another way to formulate this: If the condition is satisfied, then suffix, which ends557

with prevSuffix, does not satisfy the FPR, meaning that this set is invalid.558

The invariant at the start of the for loop is that prevSuffix realizes the nested set PP [i+1]559

and has prevIP as basic period. By construction, we know that lg = prevLg + innerPeriod.560

By construction, suffix ends with prevSuffix and has basic period innerPeriod. Thus, by the561

invariant, suffix will realize PP [i].562

Case 1 We build suffix by concatenating a prefix of prevSuffix of length innerPeriod563

with prevSuffix (line 10), and we must ensure that suffix has basic period innerPeriod. Let564

us consider the conditions from line 9.565

1. If (innerPeriod = prevIP) then, as prevSuffix already has period prevIP, suffix will566

inherit from it. Otherwise we know that (innerPeriod > prevIP).567

2. Then, prevSuffix has a basic period (prevIP) that should not divide innerPeriod, which is568

the length of the prefix of prevSuffix that occurs as prefix of suffix. Hence, we require569

the condition (prevIP ∤ innerPeriod) to be satisfied. Otherwise, suffix would also have570

prevIP as period; then suffix would be a binary world, but would not realize P .571

E. Rivals XX:19

3. Then, if (innerPeriod = prevLg) then lg = 2× prevLg and suffix equals /prevSuffix/2 and572

has the desired length and basic period.573

4. Otherwise, we check that prevSuffix has period innerPeriod. If yes, then suffix also has574

period innerPeriod by construction (line 10), and thus realizes PP [i]. If not, then there is575

no possible realization of P and we return ϵ (line 11).576

Case 2 Here, we know that lg is larger than twice prevLg. Therefore, we will build a577

prefix that starts with prevSuffix followed by nb new symbols, such that suffix has no period578

shorter than innerPeriod. Hence, we must ensure that newPrefix is primitive, otherwise it579

would have a period that divides innerPeriod. By Lemma 3 from [10], for any binary word w,580

wa or wb is primitive. So, we concatenate anb to prevSuffix, and check if it is primitive (in581

O(|newPrefix|) time). If not, we change its last symbol by a b. In both cases, newPrefix is582

primitive. By construction, suffix has basic period innerPeriod as desired, and thus realizes583

PP [i]. ◀584

C.2 Examples of traces of binary realizations585

Here is the trace of Algorithm 2 for length n = 10, and P = {0, 3, 6, 8}, which is not a valid586

period set for that length.587

period length inner period case suffix valid
8 10-8 = 2 10-8= 2 2 z = ab true
6 10-6 = 4 8-6 = 2 2 y = zz = abab true
3 10-3 = 7 6-3 = 3 1 w = y⊕3y false

588

The table below illustrates that the merge attempted at the last loop iteration for P [i] = 3589

is impossible, since a mismatch occurs in the overlap.590

pos. 0 1 2 3 4 5 6
y a b a b - - -
y - - - a b a b

591

D Checking FPR592

Let us state some properties:593

1. From the definition of FPR, we can see that checking the FPR for a pair (p, q) of P is594

equivalent to checking the FPR for pair (0, q) in the nested PS Pp.595

2. Assume the FPR is satisfied for pair (0, p). Then, it is also satisfied for any pair (hp, jp)596

with 1 ≤ h < j < ⌊n/p⌋ and hp,jp ∈ P , since both periods are multiples of p.597

From both properties, we get that once the FPR has been checked for the first pair (p, q)598

taken that has offset (q − p), it is also satisfied for any other pair whose offset equals r or a599

multiple of r. It follows that, for a set P , one can limit the checking of FPR only to left most600

pairs whose offsets differ from eachother and are not multiple of another offset. Thus, at least601

one element, say p, must be an irreducible period (as defined in [24]), and q is the closest602

period to p (i.e., one which gives rise to the smallest offset with respect to p). Since, the603

number of irreducible periods of a period set of Γn is bounded by log2(n) [25], the number604

of such pairs also is. We obtain the bound on the complexity for the general case stated in605

Lemma 8.606

2024

XX:20 Incremental algorithms for the set of period sets

E Fate: computation of the limits of a period set607

E.1 Extension limit608

Algorithm 4 computes the extension limit of P . The extension limit is a length at which some609

deducible period needs to be added to P to satisfy the FPR. It equals the added period plus610

one, and must be larger than the birth length of P (Indeed, P is a valid period for length at611

which is first occurs, and thus satisfies the FPR for that length). By definition of the FPR, a612

period induced by the FPR equals P [i] + P [i] − P [j] for some indexes 0 < j < i < card(P).613

Because, we need the minimum of added periods, we can restrict the computation to pairs614

of adjacent periods (i.e. that is to case where j = i − 1), since the offset between periods615

decreases with their index. Hence, the formula P [i] + (P [i] − P [i − 1]) for computing the616

limit induced from current period P [i]. Because of this, we can also rule out cases where617

P [i] is smaller the half the birth length of P (line 6).618

Algorithm 4 ExtensionLimit

Input : P : a valid period set (as an ordered list of integers)
Output: the extension limit of P (a minimum length at which P requires an
extension);

1 birthLg := max(P) + 1; // min length x at which P first occurs in Γ(x)
2 limit := max(int) ; // limit to be computed, init. with largest integer
3 for i := card(P) − 1 to 1 do
4 if P [i] ≤ ⌊ birthLg

2 ⌋ then //
5 break; // avoid such P [i] values whose limit cannot be > birthLg

6 if P [i] + (P [i] − P [i − 1]) ≥ birthLg) then // current limit is beyond
birthLg

// update limit with the min of limit and current limit
7 limit := min(limit, P [i] + (P [i] − P [i − 1]));

8 return limit + 1;

619

E.2 Recursive FW limit620

We exhibit an algorithm to compute what we termed, the recursive FW limit of a PS P (see621

Algorithm 5). The FW theorem provides a way to compute a maximal length for any pair622

of distinct, non trivial periods such that one period is not a multiple of the other. For any623

p, q in P such that 0 < p < q < n and p ∤ q, we denote by FW (p, q) the FW limit, that is624

FW (p, q) := p + q − gcd(p, q). If p ÷ q we assume that FW (p, q) := max(int). First, the625

algorithm proceeds with two special cases: if all periods are multiple of the basic period,626

then it returns max(int). Note this includes the case with basic period equals to one. If P627

contains only three periods, then it returns FW (P [1], P [2]).628

Otherwise, it will compute the limit l and initializes with max(int). It loops over P629

backwards, to consider longer and longer suffixes starting at a position with period of a word630

satisfying P , and builds a list Q of periods restricted to the current suffix. The periods in631

Q are those of P minus the starting position. It computes FW (Q[1], Q[2]) and takes the632

minimum between l and P [i] + FW (Q[1], Q[2]). After terminating the loop, it returns the633

limit l.634

E. Rivals XX:21

Algorithm 5 RecursiveFWLimit

Input : P : a valid period set (as an ordered list of integers)
Output: the minimum length at which a pair of periods of P requires a change of
basic period (application of FW theorem);

1 if (P [1] | P [i]) for all 1 < i < card(P) then // If basic period divides all
other periods

2 return max(int);
3 if card(P) = 3 then // If P contains only two non trivial periods
4 return FW (P [1], P [2]);
5 limit := max(int) ; // limit to be computed, init. with largest integer
6 insert (P [n − 1] − P [n − 2]) in Q ; // Init Q with the last offset between

periods
7 for i := card(P) − 3 to 0 do
8 offset := P [i + 1] − P [i];
9 Q[0] := Q[0] + offset;

10 insert offset at first position in Q;
11 limit := min(limit, P [i] + FW (Q[0], Q[1])) ;
12 return limit;

635

Complexity. In Algorithm 5, the first special case is processed in card(P) time (lines636

1–2), while the second one requires constant time (lines 3–4). The main loop is executed at637

most card(P) times and all instructions in it take constant time (lines 7–11). Altogether,638

Algorithm 5 takes O(card(P)) time and constant space.639

Correctness. The correctness of Algorithm 5 follows from Lemma 7.640

F Properties of periods and characterization of period sets641

F.1 Properties of periods642

Let us state some known, useful properties of periods, which are detailed in [25].643

▶ Lemma 15. Let p be a period of u ∈ Σn and k ∈ N≥0 such that kp < n. Then kp is also a644

period of u.645

▶ Lemma 16. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . . n − 1].646

Then (p + q) is a period of u. Moreover, (p + kq) is also a period of u for all k ∈ N≥0 with647

p + kq < n.648

▶ Lemma 17. Let p, q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix649

of length (n − q) have the period (p − q).650

▶ Lemma 18. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length651

at least p and with period r, where r|p. Then r is also a period of u.652

F.2 Characterization of autocorrelations/period sets [8]653

Guibas and Odlyzko have provided two equivalent characterizations of period sets: one654

is given by predicate Ξ, the other is the rule based characterization given in Section 2.3.655

However, they manipulate period sets as binary vectors called autocorrelation (or sometimes656

correlation for short). Remind that an autocorrelation is a binary encoding in a binary657

2024

XX:22 Incremental algorithms for the set of period sets

string of length n of a period set of Γn. We recall in extenso the original predicate Ξ and658

then their Theorem 5.1, which states the equivalence of characterizations and the alphabet659

independence.660

�661

▶ Theorem 19. Let v a binary string of length n. The following statements are equivalent:662

1. v is the autocorrelation of a binary word663

2. v is the autocorrelation of a word over an alphabet of size ≥ 2664

3. v0 = 1 and v satisfies the Forward and Backward Propagation Rules665

4. v satisfies the predicate Ξ.666

Let v ∈ {0, 1}n. We state the original definitions of FPR and BPR.667

▶ Definition 20. v satisfies the FPR iff for all pairs (p, q) satisfying 0 ≤ p < q < n and668

vp = vq = 1, it follows that vp+i(q−p) = 1 for all i = 2, . . . , ⌊(n − p)/(q − p)⌋.669

▶ Definition 21. v satisfies the BPR iff for all pairs (p, q) satisfying 0 ≤ p < q < 2p,670

vp = vq = 1, and v2p−q = 0, it follows that vp−i(q−p) = 0 for all i = 2, . . . , min(⌊p/(q −671

p)⌋, ⌊(n − p)/(q − p)⌋).672

	1 Introduction
	2 Related works, notation and preliminary results.
	2.1 Notation
	2.1.1 Periodicity

	2.2 Related works
	2.3 Rule based characterization
	2.4 Checking the FPR and the BPR

	3 Incremental enumeration framework
	3.1 Rationale for an incremental algorithm to enumerate n
	3.2 Incremental algorithm framework
	3.3 Alternative certification function.

	4 Constructive certification of a period set
	4.1 Binary realization of a subset of {0, 1, …, n-1}
	4.2 Examples of binary realization

	5 Fate and dynamics of period sets
	5.1 Fate of a period set when n increases

	6 Conclusion and exploration of n: distribution of period sets with respect to basic period and weight
	A Exploration of n: Distribution of the number of period sets by basic period and by weight
	B Incremental algorithm with rule based certification.
	C Algorithm Binary realization
	C.1 Correctness and complexity of the algorithm
	C.2 Examples of traces of binary realizations

	D Checking FPR
	E Fate: computation of the limits of a period set
	E.1 Extension limit
	E.2 Recursive FW limit

	F Properties of periods and characterization of period sets
	F.1 Properties of periods
	F.2 Characterization of autocorrelations/period sets GuOd81

