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A CLASS OF LOCALLY RECOVERABLE CODES OVER FINITE
CHAIN RINGS

GIULIA CAVICCHIONI, ELEONORA GUERRINI, AND ALESSIO MENEGHETTI

Abstract. Locally recoverable codes deal with the task of reconstructing a lost
symbol by relying on a portion of the remaining coordinates smaller than an in-
formation set. We consider the case of codes over finite chain rings, generalizing
known results and bounds for codes over fields. In particular, we propose a new
family of locally recoverable codes by extending a construction proposed in 2014
by Tamo and Barg, and we discuss its optimality. The principal issue in gener-
alizing fields to rings is how to handling the polynomial evaluation interpolation
constructions. This leads to deal with substructif and well conditioned sets in
order to find optimal constructions.

1. Introduction

Introduced in [5], locally recoverable codes have garnered attention due to their
relevance in distributed and cloud storage systems. Data centers and other modern
distributed storage systems use redundant data storage to protect against node fail-
ures. Indeed they enable local repair of a coordinate by accessing a maximum of r
other coordinates. This set of r coordinates is commonly referred to as the recov-
ering set and, if a recovering set exists for every coordinate the code has locality
r. Many research efforts have been focused on establishing bounds for the mini-
mum distance and developing construction techniques for locally recoverable codes
[5, 6, 8, 9, 22, 24].
If C is a linear code of length n, dimension k and locality r over the field Fq, then
its minimum distance satisfies [5]

(1.1) d ≤ n− k −
⌈
k

r

⌉
+ 2 .

In [5], using a probabilistic argument, the authors proved that the bound (1.1) is
tight if the field is large enough. Observe that (1.1) is independent of the alphabet
size q. In [3] a bound for the minimum distance of a locally recoverable code de-
pending on q is presented.

A central problem in Coding Theory is to construct optimal codes. We remark
that usually a code C is said to be optimal if any other code with equal length and
minimum distance has at most the same number of codewords as C. In this work we
follow instead the route established for example in [5], and we say that a length-n
code C with M codewords is optimal if no code over the same alphabet and with the
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same parameters has a strictly larger minimum distance. A code meeting the bound
(1.1) is thus an optimal locally recoverable code.

Constructions of locally recoverable codes meeting the bound are given in [2, 6, 8,
9, 22, 24].
In all these constructions, the i-th coordinate together with its recovering set form a
1-erasure correcting code. A possible extension is presented in[18], where the authors
introduced the (r, ρ)-locality, allowing recovering ρ− 1 erasures by looking at other
r coordinates. An additional and relevant generalization can be found in [20], where
each coordinate has several pairwise disjoint recovering sets.

In this paper, we present a generalization of the theory, allowing the alphabet to
be a ring [15, 16, 21, 23], rather than a field as in classical Coding Theory.

This paper is organized as follows. In Section 2 we recall some basics on linear
codes over rings and we introduce locally recoverable codes. In Section 3, similarly
to [5], we derive a bound for the minimum distance of a locally recoverable code
over a finite chain ring. As in the classical case, the bound is a function of the
length, rank, and locality of the code. Additionally, we prove that this bound is
not tight for certain values of the parameters of the code. In a similar fashion
to [22], in Section 4 we construct a family of optimal locally recoverable codes.
The core of this construction lies in the so-called good polynomials. In Section 5,
we build a class of good polynomials over Galois rings. In Section 6, we insert
the construction presented in Section 4 into a more general framework. Finally,
in Section 7, we explore various generalizations of the main construction aimed at
relaxing some constraints on the code parameters. We finally discuss the maximum
possible length of a locally recoverable code over a finite chain ring.

2. Codes over rings and Locality

2.1. Generalities on codes over rings. Let R be a finite commutative ring. From
the structure theorem for finite commutative rings [13, Theorem VI.2], it is well
known that R decomposes uniquely (up to the order of summands) as a finite direct
product of w local rings, R = R1 × · · · × Rw. In particular, if R is a principal ideal
ring, PIR for short, the Ri are finite chain rings. From the decomposition of R we
get, for some n, that Rn = Rn

1 × · · · ×Rn
w.

From now on, let R be a PIR. A code C of length n over R is a subset C ⊆ Rn

and its elements are called codewords.

Definition 2.1. An R-linear code of length n is an R-submodule C ⊆ Rn. An
R-linear code C is said to be free if C is a free submodule of Rn.

Unless otherwise specified, from now on we consider any code to be an R-linear
code.

Remark 2.2. Given R = R1×· · ·×Rw, we define ei as the element in R represented
by (0, . . . , 0, 1, 0, . . . , 0) in R1 × · · · × Rw, with 1 in the i-th position. Let πi : Rn

1 ×
· · · × Rn

w → Rn
i be the i-th canonical projection. If C is an R-linear code and

c = (c1, . . . , cw) ∈ C, where ci = πi(c) ∈ Rn
i , then the element

eic = (0, . . . , 0, ci, 0, . . . , 0) ∈ C .
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Hence, up to isomorphism, C can be uniquely written as

(2.1) C1 × · · · × Cw ⊆ Rn with Ci = πi(C) for all 1 ≤ i ≤ w .

Therefore, whenever convenient, we may restrict our focus on codes over local
rings. In the classical framework, R is usually considered to be a finite field, and
in this case an important parameter of linear codes is its dimension as a vector
subspace of Rn. In our context, if R is a finite chain ring, we can define instead the
Zps-dimension of the code as

k = logps |C| .

Definition 2.3. Given an R-linear code C, the rank of C is the minimum K such
that there exists a monomorphism ϕ : C → RK as R-modules. In addition, if ϕ is an
isomorphism, then C is free and k = K.

A minimal generating set of a code C ⊆ Rn is a subset of C that generates C
as an R-module and it is minimal with respect to inclusion. If R is a finite chain
ring, as a consequence of Nakayama’s Lemma [13, Theorem V.5], all the minimal
generating sets have the same cardinality. The cardinality of a minimal generating
set of C coincides with the rank of C and therefore we will denote it with K.
A matrix whose rows form a generating set for the code is a generator matrix for the
code.

The Hamming metric is a discrete metric counting the number of entries in which
two tuples differ, namely, for any v = (v1, . . . , vn) and u = (u1, . . . , un) in Rn,

d(v, u) = |{i : vi ̸= ui, 1 ≤ i ≤ n}| .

The so-called minimum distance d, i.e.

d = min
c1,c2∈C, c1 ̸=c2

d(c1, c2) ,

is a relevant parameter for the code.
Indeed, it is related to the error correction capability, namely, how many coordi-

nates of a codeword c can be corrupted without compromising our ability of recon-
structing c without errors. If the code is linear, the minimum distance coincides with
the minimum weight of the codewords.

It is well known (see for example [12]) that the Singleton bound holds for any
alphabet R of size q.

Theorem 2.4. (Singleton bound) Let C be a code of length n over an alphabet
of size q. Then

d ≤ n− logq|C|+ 1 .

If R is a finite chain ring and C is an R-linear code of length n and type k, the
previous bound reads

d ≤ n− k + 1 .

Only free codes can meet this bound and they are said maximum distance separa-
ble (MDS) codes. However, in the framework of codes over finite chain rings, the
Singleton bound can be improved (see for example [15]).
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Theorem 2.5. (Generalized Singleton bound) Let R be a finite chain ring and
let C be an R-linear code of length n and rank K. Then

d ≤ n−K + 1 .

This bound is generally tighter than the Singleton bound, and they coincide if and
only if the code is free. A linear code meeting this bound is said to be maximum
distance with respect to rank (MDR).

For any linear code C ⊆ Rn and for any subset S ⊂ {1, . . . , n} of the coordinates,
we define CS to be the punctured code of C in S, obtained by deleting in each
codeword all but the coordinates indexed in S. If |C| = |CS | then S is an information
set of size |S| for C. In the following, we will denote with κ the minimal size of an
information set. Note that for codes over finite chain rings the minimum size of an
information set coincides with the rank and κ = K.

Corollary 2.6. Let C be a code with minimum distance d and let S be a subset of
coordinates which does not form an information set. Then

|S| ≤ n− d .

Proof. By contradiction, assume |S| ≥ n− d+ 1. Since S is not an information set
|CS | < |C|. Note that CS is obtained form C by removing at most d−1 coordinates:
this contradicts the definition of minimum distance. □

2.2. Locally recoverable codes. The goal of a local recovery technique is to en-
able the retrieval of lost encoded data using only a small portion of the available
information, rather than requiring access to the complete codeword c.
Let R be a finite commutative ring.

Definition 2.7. Let C be a (possibly non-linear) code in Rn and let (c1, . . . , cn) be
a codeword. We say that the coordinate i ∈ {1, . . . , n} has locality r if there exists
a subset Si ⊆ {1, . . . , n} \ {i} such that:

• (locality) |Si| ≤ r,
• (recovery) |CS | = |CS∪{i}|.

C is a locally recoverable code (LRC) with locality r if each coordinate has locality r.

In other words, any symbol ci of any codeword c can be recovered by accessing at
most r other symbols of c. If we are presented with a codeword c that is error-free
except for an erasure at position i, we can retrieve the original codeword by only
examining the coordinates in Si. For this reason, Si is referred to as a recovering set
for i. Moreover we will say that Si ∪ {i} is a dependent set.
If R is a finite chain ring and C is an R-linear code of length n, rank K and locality
r, we will say that C is an (n,K, r)-code.

Of course, one can choose R = Fq. In this case we recover the classical theory of
locally recoverable codes over finite fields.

In this work we say that an (n,K, r)-code over R with minimum distance d is an
optimal locally recoverable code if no (n,K, r)-code over R has a minimum distance
strictly larger than d.

In 2014 Tamo and Barg [22] presented a clever construction for optimal locally
recoverable codes based on polynomial interpolation. In the following sections we
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will extend this construction in the more general framework of codes over finite chain
rings.

3. Lower bound on the minimum distance of a locally recoverable
code

Let R be a commutative ring, let C be a code of length n over R and let κ be the
minimum size of its information sets. From now on, we will denote by Si a recovering
set for the coordinate i.

For any code C, the set of dependencies involving at most r+1 coordinates defines
a directed graph. If Si is a recovering set for i, we define X to be the graph whose
vertex set is the set of coordinates {1, . . . , n} and in which there exists a directed
edge from i to j if and only if j ∈ Si. For a vertex v we will denote by N(v) the
outgoing neighbors of v.

Theorem 3.1. Let C be a code of length n and locality r over R. Then the minimum
distance satisfies

(3.1) d ≤ n− κ−
⌈
κ

r

⌉
+ 2 .

Moreover

(3.2)
κ

n
≤ r

r + 1
.

Proof. Let X be the directed graph associated to the code C. Note that the outgoing
degree of each vertex is at most r. A modification of Turàn Theorem on the size
of the maximal independent set in a graph, [22, Theorem A.1], establishes that X
contains an induced acyclic subgraph XU on the vertex set U with

|U| ≥ n

r + 1
.

Let i be a coordinate without outgoing edges: i is a function of the coordinates
{1, . . . , n} \ U . The induced subgraph of X on U \ {i} is a directed acyclic sub-
graph. Let i′ be a vertex without outgoing edges in XU\{i}: i′ is a function of the
coordinates {1, . . . , n} \ U . Iterating, we conclude that any coordinate i ∈ U is a
function of the coordinates {1, . . . , n} \ U . Therefore, there are at least |U| ≥ n

r+1
redundant coordinates. Thus the number of the information coordinates κ is at most
κ ≤ n− n

r+1 = nr
r+1 .

To establish the bound on the minimum distance, we first build a large set
T ⊆ {1, . . . , n} which does not form an information set. Then, we use Corollary 2.6
to complete the proof. Let M(T ) be the number of independent elements in T .
Algorithm 1 constructs the desired set T .

Since the cardinality of an information set is at least κ, there exists j as desired
in Line 3 of Algorithm 1,. Let h denote the number of steps of the algorithm, let

ti = |Ti| − |Ti−1|, |Th| =
h∑

i=1

ti ,



6 G. CAVICCHIONI, E.GUERRINI, AND A. MENEGHETTI

Algorithm 1: Construction of T
1 Let i = 0, T0 = {}.

2 while M(Ti−1) ≤ κ− 2 do
3 Pick j ∈ {1, . . . , n} \ Ti−1 such that j has at least one outgoing edge in

V{1,...,n}\Ti−1
.

4 if M(Ti−1 ∪N(j)) < κ then
5 Set Ti = Ti−1 ∪N(j) ∪ j;
6 end
7 else
8 pick N ′(j) ⊂ (N(j) ∪ j) so that M(Ti−1 ∪N ′(j)) = κ− 1 and set

Ti = Ti−1 ∪N ′(j).
9 end

10 i = i+ 1.
11 end

and

mi =M(Ti)−M(Ti−1), M(Th) =
h∑

i=1

mi = κ− 1 .

There are two possible cases to consider: one where the else condition in Line 7
is reached, and the other where it is never executed.

Case 1. Assume M(Ti−1 ∪ N(j)) ≤ κ − 1 for all 1 ≤ i ≤ h. In each step we add
ti ≤ r + 1 coordinates. Moreover, mi ≤ ti − 1 ≤ r. Since in the last step we
have κ − 1 independent coordinates, the number of steps is at least ⌈κ−1

r ⌉.
Thus

|T | =
h∑

i=1

ti ≥
h∑

i=1

(mi + 1) ≥ κ− 1 + h ≥ κ− 1 +

⌈
κ− 1

r

⌉
.

Since κ− 1 + ⌈κ−1
r ⌉ ≥ κ+ ⌈κr ⌉ − 2, we get the claim.

Case 2. Since in the last step we have hit the condition M(Th−1 ∪N(j)) = κ and M
increases at most by r per step, then h ≥ ⌈κr ⌉. For any 1 ≤ i ≤ h− 1 we add
at most r + 1 coordinates and mi ≤ ti − 1. Since M(Sh−1) ≤ κ− 2, mh ≥ 1
and th ≥ mh. Therefore

|T | =
h∑

i=1

Ti ≥
h−1∑
i=1

(mi + 1) +mh ≥ κ− 1 + h− 1 ≥ κ+

⌈
κ

r

⌉
− 2 .

□

Let R be a finite chain ring, let γ be the generator of the maximal ideal with nilpo-
tency index s. As shown in [16, Proposition 3.2], any R-linear code C is permutation
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equivalent to a code having the following generator matrix in standard form:

G =


Ik0 A0,1 A0,2 A0,3 . . . A0,s−1 A0,s

0 γIk1 γA1,2 γA1,3 . . . γA1,s−1 γA1,s

0 0 γ2Ik2 γ2A2,3 . . . γ2A2,s−1 γ2A2,s
...

...
...

...
...

...
0 0 0 0 . . . γs−1Iks−1 γs−1As−1,s

 ,

where Ai,s ∈ Mki×n−K(R/γs−iR) and Ai,j ∈ Mki×kj (R/γ
s−iR) for j < s. The pa-

rameters k0, . . . , ks−1 are the same for all generator matrices in standard form, and
C is said to be of subtype (k0, k1, . . . , ks−1).

In the framework of codes over finite chain rings bound (3.1) reads:

Corollary 3.2. (LRC bound for R-linear codes) Let R be a finite chain ring
and let C be an R-linear code of length n, rank K and locality r. Then

(3.3) d ≤ n−K −
⌈
K

r

⌉
+ 2 .

For linear codes over rings, the dependence relations among the columns of G can
serve as recovering sets. However, opposed to the case of vector spaces, the notion
of linear independence for modules over rings is not well defined. Indeed, for a finite
chain ring R, the following two definitions are not equivalent.

Definition 3.3. The vectors v1, . . . , vu ∈ Rn are said to be modularly independent
over R if

∑u
i=0 sivi = 0 with si ∈ R implies si is not a unit for all i.

In particular the vectors v1, . . . , vu ∈ Rn are modularly independent if none of
them can be written as a linear combination of the others.

Definition 3.4. The non-zero vectors v1, . . . , vu ∈ Rn are said to be linear indepen-
dent over R if

∑u
i=0 sivi = 0, si ∈ R implies si = 0 for all i.

Therefore the vectors v1, . . . , vu ∈ Rn are linear independent if the only linear
combination of the vi to 0 is given by setting all the scalars to zero.
For further details on this topic refer to [17].

Hence, the modular dependencies relations allows to gain local recoverability.

Note that each symbol in an R-linear code of rank K has locality at most K. Thus
r satisfies 1 ≤ r ≤ K. In particular:

• If r = K, the LRC bound reduces to the generalized Singleton bound and
optimal LRC codes are MDR codes;

• If r = 1, bound (3.3) reads

d ≤ n− 2K + 2 = 2

(
n

2
−K + 1

)
.

Therefore, by replicating each symbol twice in an MDR code of length n
2 and rank

K, we get an optimal linear code with locality r = 1.
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Remark 3.5. If C is an R-linear code of subtype (k0, k1, . . . , ks−1), following the
same steps of [4, Theorem 3.2], we obtain an upper bound on the minimum distance:

(3.4) d ≤ n− k −
⌈
k

r

⌉
+ 2 , where k =

1

s

s−1∑
i=0

(s− i)ki .

Note that bound (3.3) is in general tighter then (3.4) and the two inequalities coincide
if and only if the code is free.

Codes that attain the LRC bound on finite chain rings can be used as building
blocks to construct codes that achieve the LRC bound on finite PIRs.

Lemma 3.6. Let R = R1 × · · · ×Rw be a PIR and let C = C1 × · · · ×Cw ⊆ Rn be
an R-linear code. If K and Ki are the ranks of C and Ci respectively, then:

(1) d(C) = mini d(Ci);
(2) K = maxi Ki.

Proof. To prove the first statement, let c = (c1, . . . , cw) ∈ C be a codeword. In
accordance with Remark 2.2 eic = (0, . . . , 0, ci, 0, . . . , 0) ∈ C and hence the claim.
For the second claim, let φi : Ci → RKi be the monomorphism defining the rank of
the code. By composing φi with the canonical embedding,

ψi : Ci → RKi ↪→ RK ,

we get another monomorphism. Let

(ψ1, . . . , ψw) : C1 × · · · × Cw → RK
1 × · · · ×RK

w .

Since C = C1×· · ·×Cw and RK = RK
1 ×· · ·×RK

w , (ψ1, . . . , ψw) induces a monomor-
phism ψ : C → RK . According to the definition of ψi, K is the minimum integer
ensuring the injectivity of the map ψ and the claim follows.

□

Theorem 3.7. Let R = R1×· · ·×Rw be a finite PIR and let C = C1×· · ·×Cw ⊆ Rn

be an R-linear code. If Ci is an optimal LRC over Ri for all 1 ≤ i ≤ w, then C is
optimal LRC over R.

Proof.

d(C) = min
1≤i≤w

d(Ci) = min
1≤i≤w

n−Ki −
⌈
Ki

r

⌉
+ 2 =

= n− max
1≤i≤w

{
Ki +

⌈
Ki

r

⌉}
+ 2 = n−K −

⌈
K

r

⌉
+ 2 .

□

Hence, we can focus our studies on LRC codes over finite chain rings.

3.1. Non-existence of R-linear codes achieving the LRC bound for certain
parameters. The aim of this section is to show that codes achieving the LRC bound
do not exist for all possible values of n, K and r. To do this, we will introduce a
weaker notion of locality: the information locality.

Let R be a finite chain ring.



A CLASS OF LOCALLY RECOVERABLE CODES OVER FINITE CHAIN RINGS 9

Definition 3.8. The code C ⊆ Rn has information locality r̄ if there exists an
information set I ⊂ {1, . . . , n} such that any information coordinate i ∈ I has
locality as most r̄.

Following the same steps of Theorem 3.1 one can prove that the minimum distance
of an R-linear code C of length n, rank K and information locality r̄ is bounded by

d ≤ n−K − K

r̄
+ 2 .

In the following, we will denote by XC the directed graph defined by the modular
dependencies involving at most r̄ + 1 coordinates of C.

Theorem 3.9. Let C be an R-linear code of length n, rank K and with information
locality r̄. Suppose K | r̄ and

(3.5) d = n−K − K

r̄
+ 2 .

XC has at least K
r̄ connected components with exactly r̄ + 1 vertices.

Proof. Algorithm 1 yields two sequences {ti}1,...,h and {mi}1,...,h.
Case 1. If r̄ = 1, since mi ≤ 1, the else block (Line 7, Algorithm 1) is never executed.

Therefore,

|T | =
h∑

i=0

ti ≥
h∑

i=0

mi + h ≥ K − 1 +K − 1 = 2(K − 1) = 2(n− d) ,

where the last equality follows form (3.5). From Corollary 2.6 we get |T | = n−
d = 2(K − 1). Since

∑h
i=0mi = K − 1 then h = K − 1, ti = 2, and mi = 1

for all 1 ≤ i ≤ h. Therefore there are at least K − 1 connected components
of size 2.

Case 2. If r̄ ≥ 2 and r̄ | K then K ̸≡ 1 mod r̄ and K − 1 + ⌈K−1
r̄ ⌉ ≥ K + K

r̄ − 2.
Therefore, in order to find a lower bound on |T |, we may assume the else
condition (Line 7, Algorithm 1) is executed.

|T | =
h∑

i=0

ti ≥
h∑

i=0

mi + h ≥ K − 1
K

r̄
− 1 = n− d .

From Corollary 2.6 we get |T | = n − d = K + K
r̄ − 2, and hence we always

enter in the else block. Since
∑h

i=0mi = K − 1, then h = K
r̄ . Moreover

mi ≤ r̄ implies mj = r̄ − 1 for some j ∈ {1, . . . , h} and mi = r̄ for all i ̸= j.
In particular j = h, otherwise the else condition is never executed.
First suppose there exists a connected component with r̄ vertices. By adding
this component to T in the first step, we would get m1 ≤ r̄ − 1. Finally,
assume there are K

r̄ − 1 connected components, namely, the recovering set
of j, l ∈ {1, . . . , n} intersects. Let Sj and Sl be the recovering sets of j
and l respectively and let S = Sj ∪ Sl. Note that the number of modularly
independent coordinates in S is at most 2r̄−1. By including Sj and Sl in the
set T at the beginning of the algorithm, we ensure that m1 +m2 ≤ 2r̄ − 1.
Both cases lead us to a contraction that prevents the else condition from
being executed.
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□

Theorem 3.10. Let C be an R-linear code of length n, rank K. If there exists an
information set whose information locality is r̄ | K and C has minimum distance
d = n −K − K

r̄ + 2 with d ≤ r̄ + 2, then some redundant coordinates have locality
r > r̄.

Proof. Let I be an information set with information locality r̄. We prove that XC ,
the directed graph associated to C, has exactly K

r̄ connected components.
From Theorem 3.9 we know that the number of connected components is at least K

r̄ ,
we now show they are exactly K

r̄ .
Let m be the number of connected components. By contradiction assume m ≥ K

r̄ +1.

n ≥ m(r̄ + 1) = K +
K

r̄
+ r̄ + 1 > K +

K

r̄
+ d− 2 ,

which contradicts the choice of n. Therefore XC must contain n− K
r̄ (r̄+1) = d− 2

isolated vertices which do not participate to any modular relations.
The same argument applies to every choice of an information set and its associated
information locality.

□

Corollary 3.11. Let C be an (n,K, r)-code. If r|K and r + K
r > n−K − 1, then

C does not achieve the LRC bound.

4. Extending the Tamo-Barg construction over finite chain rings

The construction by Tamo and Barg, [22], allows to obtain optimal LRC codes
over finite fields using particular types of polynomial, the so-called good polynomials.
Polynomial interpolation is used in order to recover erased data.

4.1. Polynomials over rings. It is important to have in mind that polynomials
over rings lack some desirable properties of polynomials over fields. For example,
when considering a ring R, the evaluation map

evα : R[x] → R , f 7→ f(α)

is an homomorphism if and only if R is commutative. Moreover, in this framework,
polynomial interpolation problems also require a greater attention.

If R is a local ring with maximal ideal M and residue field F = R/M , we will
denote by ȳ the image of y ∈ R under the canonical projection from R to F . In
addition, for a set T ⊆ R we define T = {t̄ | t ∈ T}.

Let N(R) denote the group of units of R.

Definition 4.1. A subset T ⊆ N(R) is said to be subtractive in N(R) if, for all
distinct a, b ∈ T, a− b ∈ N(R).

Here is a simple property of local rings.

Lemma 4.2. Given r, s ∈ R, then r̄ ̸= s̄ if and only if r − s ∈ N(R).
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Therefore T is a subtractive subset of R if and only if |T | = |T |.

In line with [1], we provide the definition for well-conditioned sets.

Definition 4.3. A set {a1, . . . , an} is well-conditioned in R if one of the following
conditions is satisfied:

(1) {a1, . . . , an} is subtractive in N(R);
(2) For some i, {a1, . . . , ai−1, ai+1, . . . , an} is subtractive in N(R) and ai is a

zero-divisor or ai = 0.

Polynomial reconstruction remains valid if we restrict to well-conditioned sets.

Proposition 4.4. [19, Corollary 9] Let f ∈ R[x] be a polynomial of degree at most
n− 1 with at least n roots in a well-conditioned set of R. Then f = 0.

Corollary 4.5. [19, Corollary 10] Let {a1, . . . , an} be a well-conditioned set in R
and let {y1, . . . , yn} be a subset of R. Then there exists a unique polynomial f ∈ R[x]
of degree at most n− 1 such that f(ai) = yi for all 1 ≤ i ≤ n.

Proposition 4.4 points out that, unlike polynomials over fields, the number of
roots of a polynomial over a ring is not bounded by its degree. Nonetheless, for
polynomials over local rings, there exists a bound on the number of roots, which
depends on the polynomial’s degree. The following Corollary is a consequence of the
Hensel lifting [13, Chapter XIII, Section (C)].

Corollary 4.6. Let R be a finite chain ring whose residue field F has size |F | = pm

and |R| = psm. Let f(x) ∈ R[x] be a polynomial of degree n. The number of roots
of f in R is at most np(s−1)m.

4.2. Code construction. Let R be a finite chain ring with |R| = q. Given f ∈ R[x],
if f is constant on the set A, we will denote by f(A) the value of f on A.

From now on, we will refer to a polynomial whose leading coefficient is a unit as
a monic polynomial.

Definition 4.7. Let l ∈ N+ and A1, . . . , Al pairwise disjoint subsets of R of size
r + 1. A polynomial g ∈ R[x] such that:

• Its degree is r + 1;
• It is monic;
• It is constant on Ai, i.e., for any 1 ≤ i ≤ l, g(Ai) = ci with ci ∈ R;

is said to be (r, l)-good on the blocks A1, . . . , Al.

Theorem 4.8. Let r ≥ 1 and let A1, . . . , Al be subsets of R such that A =
⋃l

i=1Ai

is well-conditioned. Let g(x) ∈ R[x] be an (r, l)-good polynomial on the blocks of
the partition of A. For t ≤ l, set n = (r + 1)l and K = rt. Let

a = (ai,j , 0 ≤ i ≤ r − 1, 0 ≤ j ≤ t− 1) ∈ RK .

We define the encoding polynomial

(4.1) fa(x) =
r−1∑
i=0

t−1∑
j=0

ai,jg(x)
jxi ;
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and the code

C =

{
(fa(α), α ∈ A) | a ∈ RK

}
.

Then C is a free (n,K, r)-code with minimum distance d = n−K − K
r +2. Hence C

is an optimal locally recoverable code.

Remark 4.9. In the following, we provide an overview of the technique we will
use to recover an erased symbol. Let a ∈ RK be the message vector and assume
(fa(γ), γ ∈ A) is sent. Suppose that the symbol corresponding to the location
α ∈ Aj is erased and let cβ for all β ∈ Aj \ {α} represent the remaining r symbols
in the locations of the set Aj . Since g is an (r, l)-good polynomial on the blocks of
the partition of A, fa(x) is a polynomial of degree at most r − 1 when restricted to
Aj . Hence, in order to find cα = fa(α), we find the unique polynomial δ(x) of degree
strictly less than r such that δ(β) = cβ for all β ∈ Aj \ {α} and we set cα = δ(α).
The polynomial δ(x) is called the decoding polynomial for cα.

Proof. • Type of the code: Recall that g is monic and of degree r + 1.
Therefore, for i = 0, . . . , r− 1 and j = 0, . . . t− 1 the K polynomials g(x)jxi
are all of distinct degrees. Suppose fa(x) = fb(x) for some a ̸= b. Then

fa(x)− fb(x) =

r−1∑
i=0

t−1∑
j=0

(ai,j − bi,j)g(x)
jxi = 0

if and only if ai.j = bi,j for all i and j, and in this case the map a 7→ fa is
injective. On the other hand, by (4.1), the degree of fa(x) is bounded by

(t− 1)(r + 1) + r − 1 = K +
K

r
− 2 ≤ n− 2 ,

where the last inequality comes from (3.2). Since the set of evaluation point is
well-conditioned, fa and fb give rise to two distinct codewords and |C| = qK .
Therefore C is of type K.

• Minimum distance and rank: Since the set of evaluation pointsA =
⋃l

i=1Ai

is well-conditioned, the number of zeros of fa(x) is bounded by its degree.
The encoding is linear and hence

d ≥ n−max
a

deg(fa) = n−K − K

r
+ 2.

On the converse, let K be the rank of C. By (2.6),

d ≤ n−K − K

r
+ 2 ≤ n−K − K

r
+ 2 .

Therefore d = n−K − ⌈Kr ⌉+ 2, K = K and the code is free.
• Locality: Assume that the symbol cα = fa(α) corresponding to the location
α ∈ Aj is lost. Let

fi(x) =
t−1∑
j=0

ai,jg(x)
j .
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Since g is constant on the sets Aj , fi is also constant on Aj . If

δ(x) =

r−1∑
i=0

fi(α)x
i ,

then

δ(β) =
r−1∑
i=0

fi(α)x
i =

r−1∑
i=0

fi(β)x
i = fa(β) ,

namely, fa(x) and δ(x) coincides on the locations of the set Aj . Since the
degree of δ(x) is at most r−1 on a subtractive subset Aj , δ can be interpolated
from the r symbols cβ for β ∈ Aj \ {α}. Finally cα is obtained by computing
δ(α).

□

Remark 4.10. We have that:
(1) If r = K the construction does not require good polynomials and reduces to

Reed-Solomon codes.
(2) Analogously to the classical case [22, Section 3A], the construction can be

generalized even for the case r ∤ K.

Notice that the assumption that a good polynomial must be monic is unnecessary.
If we remove it in Definition 4.7, following the same steps of Theorem 4.8, we obtain
a non-free code with the same parameters but having a smaller size.

Example 4.11. In the following, we construct an optimal code over Z112 with length
n = 10, rank K = 8 and locality r = 4. Since r+1 = 5, we need to find a polynomial
g(x) of degree 5 which is constant on 2 disjoint sets of size 5. If

A = A1 ∪A2 with A1 = {1, 3, 9, 27, 81} and A2{40, 94, 112, 118, 120} ,

then the polynomial g(x) = x5 is constant on A1 and A2:

g(1) = g(3) = g(27) = g(81) = 1 and g(40) = g(94) = g(112) = g(118) = g(120) = 120 .

If
a = (a0,0, a0,1, a1,0, a1,1, a2,0, a2,1, a3,0, a3,1)

is the message vector, the encoding polynomial associated to a reads

fa(x) = a3,1x
8 + a2,1x

7 + a1,1x
6 + a0,1x

5 + a3,0x
3 + a2,0x

2 + a1,0x+ a0,0 .

Since A is subtractive and deg fa(x) ≤ 8 we have dC ≥ 2 and, by the LRC bound
(3.3), dC = 2. If

ā = (1, 0, 3, 7, 0, 0, 11, 1) ,

is sent then the encoding polynomial associated to ā is

fā = x8 + 7x6 + 11x3 + 3x+ 1 .

The codeword corresponding to ā is found to be

c = (23, 113, 6, 33, 72, 114, 116, 106, 7, 25) .

Suppose c is sent

y = (23, 113, 6, 33,×, 114, 116, 106, 7, 25)
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is received. The fifth coordinate has been erased and fā(81) is unknown. Theorem 4.8
ensures that it can be recovered just by accessing to the first 4 codeword symbols.
After having computed the decoding polynomial δ(x) = 12x3 +10x+1, we can find
the missing value δ(81) = 72.

5. Construction of good polynomials over Galois ring

Good polynomials play a fundamental role in the previous construction, therefore
it becomes crucial to produce good polynomials together with the partition of the
set A. It is known that classes of good polynomials over finite fields exist [11, 14, 22].
In particular, Micheli in [14] introduced a framework that allows the generation of
good polynomials over finite fields.The natural question that arises now is whether
there exist good polynomials over rings which are not fields.
Indeed, they do exists. Here we construct a class of good polynomials over Galois
rings exploiting the structure of its group of units.

Let R be a finite chain ring, M ⊂ R be the maximal ideal, and let g ∈ R.
In accordance with the notation of Section 4, we denote with ḡ ∈ R/M =: F its
canonical projection onto F , and we extend this projection to R[x], i.e. if f ∈ R[x]
then f̄ ∈ F [x].

Definition 5.1. Let p be a prime, and s,m positive integers. The Galois ring
GR(ps,m) of characteristic ps and with psm elements is the quotient ring

GR(ps,m) ∼= Zps [x]/(f) ,

where f ∈ Zps [x] is a monic irreducible polynomial of degree m such that f̄ is
irreducible in Zp, where f̄ denotes the image of f under the canonical projection.

A Galois ring GR(ps,m) is a local ring with maximal ideal M = (p) and whose
residue field F = GR(ps,m)/M is isomorphic to the finite field Fpm . Its group of
units has order (pm − 1)pm(s−1). Throughout this section let R = GR(ps,m).

Theorem 5.2. ([13, Theorem XVI.9]) Let R = GR(ps,m). Then

N(R) = G1 ×G2 where

• G1 is a cyclic group of order pm − 1;
• G2 is a group of order p(s−1)m such that

– if p is odd or p = 2 and s ≤ 2, G2 is a direct product of r cyclic groups
of order ps−1;

– if p = 2 and s ≥ 3, G2 is a direct product of a cyclic group of order 2, a
cyclic group of order 2s−2 and m− 1 groups of order 2s−1.

Therefore, there is a unique maximal cyclic subgroup of N(R) having order rela-
tively prime to p (namely pm − 1).

Lemma 5.3. ([13, Lemma XV.1]) Let f ∈ R[x] be a polynomial which is not a zero
divisor. Suppose f̄ has a zero s ∈ F . Then f has one and only one zero r such that
r̄ = s.

Proposition 5.4. Let s ∈ F be an element of order j | pm − 1 in F . Then there
exists a unique r ∈ R such that rj = 1 and r̄ = s.
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Proof. Since gcd(j, p) = 1, xj − 1 has only simple roots in F . By Lemma 5.3, there
exists a unique r ∈ R such that rj = 1 and r̄ = s. □

Hence, the polynomial xj − 1 splits in R if and only if it splits in F .

Since xpm−1−1 splits in F , the following Proposition is a consequence of Lemma 4.2.

Proposition 5.5. Let q = pm − 1 and let g ∈ R be a primitive qth root of unity.
Then gi − gj is a unit for all 0 ≤ j < i ≤ q − 1.

Let G be the cyclic subgroup of N(R) whose elements are the roots of the poly-
nomial xpm−1 − 1 ∈ R[x]. Proposition 5.5 implies that G is a subtractive subset in
N(R). Lemma 4.2 implies that the size of any subtractive subset of N(R) cannot
exceed pm − 1. A subtractive subset of N(R) of size pm − 1 is said to be a maximal
subtractive subset. Thus, G is a maximal subtractive subset of R.

Proposition 5.6. Let H be a subgroup of the cyclic group G. The annihilator
polynomial of the subgroup

p(x) =
∏
h∈H

(x− h) = x|H| − 1 ,

is constant on the cosets of H.

Proof. Let ah̄, h̄ ∈ H be two elements in the coset aH.

p(ah̄) =
∏
h∈H

(ah̄− h) = h̄|H|
∏
h∈H

(a− hh̄−1) =
∏
h∈H

(a− h) = p(a) .

□

Remark 5.7. We can choose p(x) = x|H| instead of dealing with p(x) = x|H| − 1.

The annihilators of subgroups form a class of
(
|H| − 1, (pm − 1)/|H|

)
-good poly-

nomials that can be employed in constructing optimal codes. If |H| = r + 1, since
the size of a subgroup divides the size of the group, r + 1 divides |G| and pm ≡ 1
mod r + 1. Thus, the length of the code is always a multiple of r + 1. It is worth
highlighting that the sizes of the possible subgroups and maximum size of a subtrac-
tive subset impose constraints on the parameters of the code.

Remark 5.8. Analogously to [22, Proposition 4.3], by selecting two distinct sub-
groups of G with coprime orders, we can construct locally recoverable codes with
two disjoint recovery sets.

6. A generalized version of the previous construction

6.1. Algebra of good polynomials over finite chain rings. Let R be a finite
chain ring, let γ be the generator of the maximal ideal and let s be its nilpotency
index. Let A be a well-conditioned set of size n and let A =

⋃l
i=1Ai be a partition

of A. Let

(6.1) FA = {f ∈ R[x] | f(Ai) = ci∀ i ∈ {1, . . . , l} , deg f < |A|}
be the set of polynomials over R of degree less than |A| which are constant on blocks
of the partition.
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Definition 6.1. The annihilator polynomial of A is the monic polynomial of smallest
degree h such that h(a) = 0 for all a ∈ A.

We endowed FA with the multiplication modulo h:

FA ×FA → FA , (f, g) 7→ fg mod h .

We can observe that:
• FA is a commutative ring;
• FA is an R-module;
• The ring product is compatible with the module product, namely, the scalar

multiplication is bilinear:

r · (fg) = (r · f)g = f(r · g) .
Therefore FA with the usual addition and the multiplication modulo h is a commu-
tative algebra over R. We now investigate some properties of FA.

Proposition 6.2. The following holds for FA:
(1) If f ∈ FA is a non-constant polynomial then maxi|Ai| ≤ deg f < |A|;
(2) FA is a free algebra of dimension l, namely, FA is a free R-module with basis

{f1, . . . , fl} with fi(Aj) = δi,j and deg fi < |A| (where δi,j is the Kroneker
delta). Explicitly,

fi(x) =
∑
a∈Ai

∏
b∈A\{a}

x− b

a− b
;

(3) Let {c1, . . . , cl} be a well-conditioned set in R and let g be the polynomial of
degree less than |A| satisfying g(Ai) = ci for all 1 ≤ i ≤ l, i.e. ,

g(x) =
l∑

i=1

ci
∑
a∈Ai

∏
b∈A\{a}

x− a

b− a
.

Then the polynomials {1, g, . . . , gl−1} form a basis for FA.

Proof. (1) Let c := f(Ai). The polynomial f(x)− c has at least |Ai| roots in the
well-conditioned set A. Therefore deg f ≥ |Ai| for all 1 ≤ i ≤ l, and hence
the claim.

(2) Since A is a well-conditioned set, the polynomials fi(x) are well-defined for all
i. By definition, the set of polynomials {f1, . . . , fl} generate FA. Moreover
the fis are linearly independent: if

∑l
i=0 λifi(x) = 0 then∑l

i=0 λifi(Aj) =
∑l

i=0 λiδi,j = λj = 0. Therefore, {f1, . . . , fl} form a basis
for FA.

(3) If
∑l

j=1 bjg(x)
j−1 = 0 implies bj = 0 for all 1 ≤ j ≤ l then 1, g, . . . , gl−1

are linearly independent. Notice that the equation
∑l

j=1 bjg(x)
j−1 = 0 , is

equivalent to the system

V (b1, . . . , bl)
⊤ = 0 ,

where V = (gj−1(Ai))1≤i,j≤l is a Vandermonde matrix. Since {c1, . . . , cl} is
a well-conditioned set in R, detV =

∏
i ̸=j(ci − cj) is a unit in R, hence V is

of full rank and V (b1, . . . , bl)
⊤ = 0 if and only if bj = 0 for all j. Since FA

has dimension l, {1, g, . . . , gl−1} generate FA.
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□

In the following, we will focus on the algebra of (r, l)-good polynomials FA where
A is partitioned into blocks of size r + 1.

Remark 6.3. If g ∈ FA is monic polynomial of degree r + 1, then g always takes
different values on the blocks of the partition of A. Otherwise, for some constant
c ∈ R the non-zero polynomial g(x)−c would have 2(r+1) roots in a well-conditioned
set. Moreover if g takes values c1, . . . , cl on A1, . . . , Al respectively, then {c1, . . . , cl} is
a subtractive subset of R. By contradiction, assume g(Ai) = ci and g(Aj) = ci + λγ
for some λ ∈ R. Then the polynomial h(x) = γs−1

(
g(x)−ci

)
is a non-zero polynomial

of degree r + 1 having at least 2(r + 1) roots in a well-conditioned set, which leads
to a contradiction. From Proposition 6.2(3) follows that the algebra FA is generated
by the powers of g. Hence, if g is the good polynomial introduced in Theorem 4.8
then its powers span the algebra of (r, l)-good polynomials.

6.2. A family of Locally Recoverable Codes. Let A be a well-conditioned set
of size n and let A =

⋃l
i=1Ai be a partition of A into l subssets of size r + 1. Let

Fr
A =

r−1⊕
i=0

FAx
i .

Note that Fr
A, being the direct sum of algebras of dimension l, has dimension lr.

The idea behind the next construction is to associate in a injective way the messages
a ∈ RK to polynomials fa(x) ∈ Fr

A, and then evaluate fa in the points of A.

Theorem 6.4. Let A1, . . . , Al be subsets of R such that A =
⋃l

i=1Ai is well-
conditioned. Let r ≥ 1 and assume there exists a polynomial g ∈ FA of degree
r + 1 whose powers span FA. Let K = rt and let

Φ: RK → Fr
A, a 7→ fa(x) ,

be an injective map. If we define the code as

C =

{
(fa(α), α ∈ A) | a ∈ RK

}
,

then C is a free (n,K, r)-code with minimum distance

d ≥ n− max
a,b∈RK

deg(fa − fb) ≥ n− max
a∈RK

deg fa .

Proof. In order to determine the parameters of the code, we essentially repeat the
proof of Theorem 4.8. We explicitly determine the bound on the minimum distance.
For a given message vector a ∈ RK the encoding polynomial reads

fa(x) =

r−1∑
i=0

fi(x)x
i ,

with fi(x) ∈ FA. Since {1, g, . . . gl−1} is a basis for FA,

deg fa ≤ (r + 1)(l − 1) + (r − 1) ≤ rl + l − r − 1 + r − 1 =

=
nr

r + 1
+

n

r + 1
− 2 = n− 2 < n .



18 G. CAVICCHIONI, E.GUERRINI, AND A. MENEGHETTI

Let ca = (fa(α), α ∈ A) and cb = (fb(α), α ∈ A) be two codewords corresponding to
the distinct message vectors a and b. Since Φ is injective and deg(fa − fb) < n, ca
and cb are distinct and the claim follows. □

Notice that the recovering procedure follows the same steps of Construction 4.8.

7. Removing the constraints on code length

7.1. Codes over well-conditioned sets with arbitrary length. If n is the code
length and r is the locality, Theorem 4.8 and Theorem 7.9 require the assumption
that r + 1 divides n.We provide a different construction that relaxes this condition.

Let R be a finite chain ring, A be a well-conditioned set, |A| = n with n mod (r+
1) = m ̸= 0, 1, and let hA(x) =

∏
a∈A(x − a) be the annihilator polynomial of the

set A. Let r,K be positive integers and assume r | K+1 (this constraint can be lift,
see Remark 4.10.2.).

Let g ∈ FA be a polynomial of degree r+ 1 whose powers span FA. Without loss
of generality we may assume that g vanishes on Al, otherwise one can consider the
powers of the polynomial g(x)− g(Al).

Theorem 7.1. Let A =
⋃l

i=1Ai be a well-conditioned set with |Ai| = r + 1 for all
1 ≤ i ≤ l− 1 and |Al| = m < r + 1. Let g(x) be a polynomial of degree r + 1 whose
powers span FA. Let a = (a0, . . . , ar−1) ∈ RK be the message vector with ai ∈ R

K+1
r

for i ̸= m− 1 and am−1 ∈ R
K+1

r
−1. We define the encoding polynomial as

fa(x) =

m−2∑
i=0

K+1
r

−1∑
j=0

ai,jg(x)
jxi+

K+1
r

−1∑
j=1

am−1,jg(x)
jxm−1+

r−1∑
i=m

K+1
r

−1∑
j=0

ai,jg(x)
jhAl

(x) .

Let

C =

{
(fa(α), α ∈ A) | a ∈ RK

}
.

Then C is a free (n,K, r)-LRC code with minimum distance

d ≥ n−K −
⌈
K

r

⌉
+ 1

Proof. The degree of the encoding polynomial fa(x) is at most(
K + 1

r
− 1

)
(r + 1) + r − 1 = K + 1 +

K + 1

r
− 1 + r − 1 ≤ K +

⌈
K

r

⌉
+ 1 .

Since the encoding is linear, the bound on the minimum distance follows.
For any position α ∈

⋃l−1
i=1Ai, the recovery procedure follows the same steps of 6.4.

Indeed fa(x) ∈
⊕r−1

i=0 FAx
i, and hence, any symbol can be recovered by accessing

r symbols. The only specific situation worth examining is when the symbol α to
be recovered belongs to Al. It is essential to note that the polynomial fa(x) re-
stricted to Al has degree at most m − 2. Therefore, in order to recover the value
of fa(α), α ∈ Am, we find the decoding polynomial δ(x) =

∑m−2
i=0 fi(α)x

i. δ(x) is
obtained from the set of m − 1 values fa(β) = δ(β), β ∈ Am \ {α} . Finally we
compute fa(α) = δ(α). □
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Note that the minimum of the code C in Theorem 7.1 distance is at most one less
than the maximum possible value.

7.2. LRC codes from arbitrary MDS codes. We present an alternative con-
struction that relaxes the condition r + 1 | n. In the following, we will construct a
code such that its symbols can be partitioned into t MDS codes Ci of length ni and
rank Ki.

Definition 7.2. Let C be a code whose coordinates are partitioned into l sets Ai

of size ni. Let Ci be the code restricted to the coordinates in Ai. The code C has
(r, ρ)-locality if for all 1 ≤ i ≤ l we have

• ni ≤ r + ρ− 1;
• dCi ≥ ρ.

From the Singleton bound it follows that the rank of Ci is at most r.

On the same line of [10, Theorem 2.1], it is possible to improve bound 3.3.

Theorem 7.3. Let R be a finite chain ring and let C be a linear code of length n,
rank K and with (r, ρ)-locality. Then

(7.1) d ≤ n−K + 1−
(⌈

K

r

⌉
− 1

)
(ρ− 1) .

Theorem 7.4. Let r ≥ 1 and let A =
⋃l

i=1Ai be a partition of the well-conditioned
set A into l subsets with |Ai| = r + ρ − 1 for all 1 ≤ i ≤ l. Let g(x) ∈ R[x] be
an (r + ρ − 1, l)-good polynomial on the blocks of the partition of A. For r | K
(this constraint can be lifted, see Remark 4.10), let a = (a0, . . . , ar−1) ∈ RK be the
message vector with ai ∈ R

K
r for all 1 ≤ i ≤ l. We define

(7.2) fa(x) =
r−1∑
i=0

K
r
−1∑

j=0

ai,jg(x)
jxi ;

and

C =

{
(fa(α), α ∈ A) | a ∈ RK

}
.

Then C is a free code with (r, ρ)-locality and rank K. Moreover C is an optimal
(r, ρ)-LRC code.

Proof. Suppose there is an erased symbol fa(α) for some α ∈ Ai. The restriction of fa
to Ai is a polynomial of degree at most r−1. On the other hand |Ai\{α}| = r+ρ−2
and hence fa(α) can be reconstructed from any r values in the locations of the set Ai.
Since C is linear and deg fa ≤

(
K
r −1

)(
ρ+r−1)+r−1 = K−r+r−1+(Kr −1)(ρ−1),

then C is (r, ρ)-optimal. □

The previous construction is a particular case of a more general one based on the
Chinese Remainder Theorem for rings [13, Section V].

Definition 7.5. Let R be a ring. Two ideals I and J are called coprime if I+J = R.
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Theorem 7.6. (Chinese Remainder Theorem) Let R be a commutative ring
and let I1, . . . , In be pairwise coprime ideals of R. Let I = I1 ∩ · · · ∩ In. The ring
morphism

Φ: R/I → R/I1 × . . . R/In, r + I 7→ (r + I1, . . . , r + In) ,

is an isomorphism.

Corollary 7.7. Let h1(x), . . . , hn(x) ∈ R[x] be pairwise coprime polynomials. Then,
for any a1(x), . . . , an(x) ∈ R[x], there exists a unique polynomial f ∈ R[x] of degree
at most

∑
i deg hi such that

f(x) ≡ ai(x) mod hi(x) for all 1 ≤ i ≤ n .

Let R be a finite chain ring, let A be a subtractive subset of N(R), and let
A =

⋃l
i=1Ai be a partition of A. Using the Hensel Lemma [13], one can prove

that the annihilator polynomials of the Ais, namely, hi(x) =
∏

a∈Ai
(x− a), generate

pairwise coprime ideals.

Theorem 7.8. Let R be a finite chain ring and let A be a subtractive subset of
N(R). Let A =

⋃l
i=1Ai be a partition of A such that |Ai| = ni for all 1 ≤ i ≤ l. Let

ψ : RK → FK1 × · · · × FKl
, a 7→ (a1(x), . . . , al(x)) ,

be an injective mapping, where FKi is the space of polynomials of degree less than
Ki. Let hi(x) be the annihilator polynomial of Ai. For any message vector a ∈ RK

we define the encoding polynomial fa(x) as the unique polynomial of degree less than
n such that

fa(x) = ai(x) mod hi(x) .

Let

C =

{
(fa(α), α ∈ A) | a ∈ RK

}
.

Then, C is a free LRC code of rank K. Moreover C can be partitioned into l disjoint
local codes Ci, where Ci is an (ni,Ki)-MDS code.

Proof. Let fa(x) be the encoding polynomial of the message vector a. By construc-
tion, for all 1 ≤ i ≤ l, there exists a polynomial g(x) such that

fa(x) = g(x)hi(x) + ai(x) .

Thus, for all α ∈ Ai, fa(α) = ai(x). Hence, the restriction of fa(x) to Ai is a
polynomial of degree less than Ki. Since |Ai| = ni, fa(x)

∣∣
Ai

is a polynomial of
degree less than Ki evaluated on ni > Ki points. Therefore the set of codewords

(fa(α), α ∈ Ai)

form an (ni,Ki)-MDS code for all 1 ≤ i ≤ l. □

We observe that the minimum distance of the code constructed in this way is at
least the minimum between the distances of the local codes Ci.
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7.3. LRC codes with non-well-conditioned sets. The most significant limita-
tion in the previous approaches is the restriction on the code length. The maximum
code length coincides with the maximum size of a well-conditioned set. To address
this problem, we now try to extend Theorem 4.8 to non-well-conditioned sets.

For simplicity, let R = GR(ps,m) be a Galois ring and let N(R) denote its group
of units having size pm(s−1)(pm − 1).
Let G be the maximal cyclic subgroup of N(R) of order coprime with p and let
H be a subgroup of G. The cosets A1, . . . , Al of H in N(R) induce a partition
of N(R) =

⋃l
i=1Ai. While H is subtractive in N(R) (see Proposition 5.5), the

same does not hold true for N(R). However N(R) contains a (maximal) subtractive
subset. Up to reordering, we can assume A =

⋃m
i=1Ai, m < l, to be a maximal

subtractive subset in N(R).

The difference between Theorem 4.8 and the next construction lies in the choice
of the set of evaluation points: in the former a maximal subtractive subset is used,
while in the latter the entire N(R) is employed.

Theorem 7.9. Let r ≥ 1 and let N(R) =
⋃l

i=1Ai be a partition of N(R) into l
subtractive subsets Ai of size r + 1 for all 1 ≤ i ≤ l. Let A =

⋃m
i=1Ai, m < l, be a

maximal subtractive subset of N(R). Let g(x) ∈ R[x] be an (r, l)-good polynomial
on the blocks of the partition of N(R). For t ≤ l, set n = (r + 1)l and K = rt. Let

a = (ai,j , 0 ≤ i ≤ r − 1, 0 ≤ j ≤ t− 1) ∈ RK .

We define

(7.3) fa(x) =

r−1∑
i=0

t−1∑
j=0

ai,jg(x)
jxi ;

and

C =

{
(fa(α), α ∈ N(R)) | a ∈ RK

}
.

Then C is a free (n,K, r)-code where n = |N(R)| = pm(s−1)(pm − 1) and minimum
distance

d = n− pm(s−1)

(
K +

K

r
− 2

)
= pm(s−1)dC′ ,

where C′ = C
∣∣
A is the restriction of C to the maximal subtractive subset A =

⋃m
i=0Ai.

Proof. The proof follows the same line of 4.8. We explicitly compute the minimum
distance of the code.
Let fa(x) be the encoding polynomial of the message vector a. The maximum number
of zeros of fa(x) establishes a bound on the minimum distance of C. Notice that
deg fa(x) = K + K

r − 2, and hence, by Corollary 4.6,

d ≥ n−
(
K +

K

r
− 2

)
p(s−1)m .

We show that equality holds. Let C′ be the code obtained from C by puncturing
the last n − pm + 1 positions, i.e., we left with an (pm − 1,K, r)-LRC code over
the subtractive subset A =

⋃m
i=0Ai. Note that fa(x) has at most K + K

r − 2
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roots in A. Moreover, the LRC bound (3.3) ensures that there exists a message
vector b ∈ RK such that its encoding polynomial fb(x) has exactly K + K

r − 2 roots
in A. Let {x̄1, . . . , x̄K+K

r
−2} be the set of zeros of fb in A. Since the encoding

is linear, f ′(x) = ps−1fb(x) is the encoding polynomial associated to the message
vector ps−1b ∈ RK . If {x̄1, . . . , x̄K+K

r
−2} are the zeros of fb in A, then {x̄1 +

M, . . . , x̄K+K
r
−2 + M} are the zeros of f ′ in N(R). Since |M | = pm(s−1), f ′ has

pm(s−1)
(
K + K

r − 2
)

roots in N(R) and the claim follows. □

Remark 7.10. We have that:
• The central problem of all the previous constructions is to identify fami-

lies of good polynomials. Construction 7.9 does not lead to a wider class
of good polynomials. Let N(R) =

⋃l
i=1Ai be a partition of N(R) and

let A =
⋃m

i=1Ai, m < l, be a maximal subtractive subset in N(R). Let
h(x) =

∏
a∈A(x − a) be the annihilator polynomial of A. If g′(x) is an

(r, l)-good polynomial for the partition of N(R), then g′(x) = g(x) mod h
where g(x) is an (r,m)-good polynomial for the partition A. Therefore the
class of (r, l)-good polynomials coincides modulo h to the class of (r,m)-good
polynomials.

• We have removed the constraint on the maximum code length. Nevertheless,
the code does not meet the LRC bound (3.3) and thus it is not known whether
it is optimal of not. Let C be the projection of C over the residue field of R.
C is a repetition code. Indeed, a locally recoverable code of length pm − 1,
dimension K, and minimum distance d = n−K − K

r + 2 is iterated pm(s−1)

times. Therefore, C is an LRC code with multiple disjoint recovering sets,
consisting of pm(s−1) − 1 recovering sets of size 1 and pm(s−1) of size r.

A natural question arises: is there any constraint on the maximum length of a
code meeting the LRC bound, as a function of the alphabet size?

7.4. Bounds on the maximum length of an optimal LRC over finite chain
rings. In the following, we will see that the problem of determining the maximum
possible length of an optimal LRC code over a finite chain ring is closely related to
the same problem over fields.

Let R be a finite chain ring, let γ be the generator of the maximal ideal and let
s be its nilpotency index. Let F be the residue field of R, i.e. F = R/(γ). For any
C ⊆ Rn we define the code (C : t) = {e ∈ Rn | te ∈ C}. In accordance with the
notation of Section 4.1, let (C : t) be the projection of (C : t) over F .

Definition 7.11. To any code C ⊆ Rn we associate the tower of codes over R

C = (C : γ0) ⊆ · · · ⊆ (C : γi) ⊆ · · · ⊆ (C : γs−1) ;

and its projection over F

C = (C : γ0) ⊆ · · · ⊆ (C : γi) ⊆ · · · ⊆ (C : γs−1) .

Proposition 7.12. If C is an R-linear code of length n, rank K, minimum distance
d then (C : γs−1) is a linear code over F of length n, dimension K and minimum
distance d.
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For a proof see [15, Theorem 4.2 and Theorem 4.5].

Proposition 7.13. If v1 . . . , vu ∈ Rn are modularly dependent vectors in Rn then
v1, . . . , vu ∈ Fn are linearly dependent over F .

Proof. If v1, . . . , vu are modularly dependent in Rn, i.e. , there exist b1, . . . , bu ∈ R,
not all zero divisors, such that

∑u
i=1 bivi = 0. Hence γ |

∑u
i=1 bivi and

∑u
i=1 bivi = 0

with bi not all zero. Therefore v1, . . . , vu are linearly dependent over F . □

Proposition 7.14. If C is a locally recoverable code with locality r over R then
(C : γs−1) is a locally recoverable code with locality r̃ ≤ r such that

⌈
K
r̃

⌉
=

⌈
K
r

⌉
.

Proof. Proposition 7.13 implies that the locality of C cannot increase. The claim
follows from the fact that minimum distance of C and (C : γs−1) coincides. □

Consequently, determining the maximum possible length of the optimal LRC code
C over R reduces to the problem of determining the maximum possible length of the
optimal code (C : γs−1) over F . While for small code distances (d = 3, 4) optimal
LRC codes with unbounded length over any fixed alphabet of size q ≥ r + 1 are
known, for d ≥ 5 there is an upper bound on the length of the optimal LRC as a
function of its alphabet size. Guruswami et al. in [7] proved that for d = 5 the length
of an optimal LRC over an alphabet of size q is at most O(q2). Moreover, if d > 5
the length is at most O(q3).

8. Conclusions

In analogy to codes over finite fields, the minimum distance of a locally recoverable
code over a finite chain ring is bounded as a function of the length n, the rank K
and the locality r of the code. This bound is tight, as we have constructed a family
of evaluation codes that achieves this bound for any value of the locality parameter r
and with length bounded by the size of the residue field of the ring. The construction
relies on the use of good polynomials as its fundamental components. Moreover, this
construction can be extended in various directions: for instance codes over non-well-
conditioned sets or codes with multiple recovering sets are presented. An interesting
extension of this work would be to try to build longer locally recoverable codes. A
second promising line of research would be to build a wider class of good polynomials
over finite chain rings.
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