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A Novel Nonlinear Super-twisting L1 Adaptive Control for PKMs:
From Design to Real-time Experiments

Youcef Fitas1,2, Ahmed Chemori1, Johann Lamaury2 and Thierry Roux2

Abstract— This paper deals with robust-adaptive control of
Parallel Kinematic Manipulators (PKMs), where a novel super-
twisting L1 adaptive controller is proposed. The objective is
to increase the robustness towards uncertainties as well as
external disturbances of the standard L1 adaptive controller,
by incorporating a robust super-twisting term. The proposed
controller as well as the original L1 adaptive controller, are
detailed for robot manipulators. Next, the experimental testbed
is described, along with some implementation issues on FOEHN
parallel robot. The proposed control scheme is compared with
some existing literature controllers in two experimental scenar-
ios, highlighting notable improvements in tracking performance
reaching up to 75% with respect to the standard L1 adaptive
controller.

I. INTRODUCTION

Parallel Kinematic Manipulators (PKMs) offer several
advantages thanks to their architecture, compared to their
serial counterparts [1], [2]. As a result, numerous research
studies on PKMs have emerged during the last decades,
covering various topics such as mechanism optimization
[3], kinematic and dynamic modeling [4], trajectory plan-
ning [5], and control [6]. However, controlling PKMs has
consistently been regarded as a challenging task within the
control community due to their highly nonlinear dynamics,
their large uncertainties, and their time-varying parameters.
Consequently, to guarantee good tracking performance, these
complex nonlinearities should be meticulously considered in
the control scheme design [7]. Indeed, the literature features
several control schemes designed and effectively applied
to PKMs. Some of these control schemes, such as PID-
based controllers [8], [9], are non-adaptive. These decentral-
ized controllers are designed without considering knowledge
about the robot’s dynamic model, making them the most
widely adopted schemes in the industrial world thanks to
their simplicity. However, they may exhibit some perfor-
mance issues in the presence of uncertainties or external
disturbances. To improve the robustness of these controllers,
incorporating robustness terms (like in the Robust Integral
of the Sign of the Error-RISE) can be a potential candidate
solution. The resulting controllers are known as RISE-based
controllers [10].

For applications involving high velocities and acceler-
ations, most non-adaptive decentralized controllers often
exhibit significant degradation in the tracking performance.
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To address this issue, such controllers can be enhanced
by compensating for the robot’s dynamics, leveraging the
benefits of modeling and identification processes. Examples
of such enhanced schemes include computed torque control
[11], and augmented feedforward RISE feedback control
[12]. Alternatively, the robot’s dynamic model can be used
to develop optimization-based control schemes, such as LQR
(Linear Quadratic Regulator) [13], LQG (Linear Quadratic
Gaussian) [14], and MPC (Model Predictive Control) [15].
In the case of NMPC (nonlinear MPC), the prediction model
is nonlinear, which can result in a substantial computational
burden. Sliding mode controllers are model-based control
schemes known for their robustness against uncertainties and
external disturbances, achieved through the application of a
discontinuous control term [16], [17]. However, this term can
lead to a chattering phenomenon, especially in the case of
first-order sliding mode control. Non-adaptive model-based
control schemes are highly dependent on the dynamic model
and thereby require an accurate dynamic model with a good
knowledge of the dynamic parameters. Consequently, they
have limitations in certain industrial applications where the
dynamic model is frequently time-varying or unknown [7].

To overcome those limitations, adaptive control schemes
have been developed. The concept revolves around enhancing
the controller’s ability to adapt to changes in the system and
its environment. One design way is to incorporate real-time
estimation of dynamic parameters into the control scheme,
thereby enabling adaptive compensation within a model-
based framework [18], [19]. This approach results in the abil-
ity to compensate for uncertainties and time-varying dynamic
parameters in real time. However, it is worth noting that
implementing this control solution may require a substantial
tuning time of the control parameters and may need also a
significant computational burden. Adaptive control can also
be achieved by making the feedback gains adaptive. In [20],
the proposed controller combines a nominal feedforward
term for model-based compensation with a RISE feedback
control term featuring adaptive feedback gains. In [21], the
controller gains are designed to be adaptive in order to
enforce the behavior of the controlled robot to be as close as
possible to a reference model. This approach is commonly
referred to as Model Reference Adaptive Control (MRAC).

L1 Adaptive Control is recognized as an extension of
MRAC, featuring the inclusion of a state predictor and the
application of a low-pass filter to the control input [22]. The
purpose of this filter is to guarantee a decoupling between
robustness and adaptation. In contrast to MRAC scheme,
the L1 adaptive control strategy places its emphasis on



ensuring the controller’s feasibility by partially compensating
for the uncertainties within the control channel bandwidth
[23]. Furthermore, the incorporation of a projection operator
ensures the boundedness of the estimated parameters. Be-
sides, L1 adaptive control does not need a dynamic model
of the system, making it particularly advantageous. Due to
these benefits, it has acquired an increasing interest and has
been successfully applied to a variety of uncertain nonlinear
systems [24], [25]. However, the inclusion of the filter can
introduce a delay in the controller’s reactivity, potentially
leading to a degradation in the tracking performance. Fur-
thermore, L1 adaptive control may exhibit sensitivity to
high-frequency disturbances. This sensitivity may need the
incorporation of additional control terms to ensure robustness
in such scenarios.

Super-twisting sliding mode control is known for its
robustness towards uncertainties and external disturbances,
as well as its ability to achieve finite-time convergence of
tracking errors [17]. In this paper, the design of a novel
non-model-based adaptive robust controller is proposed, by
the augmentation of the L1 adaptive controller with a
robust super-twisting term. The resulting controller should
enhance the tracking performance compared to the standard
L1 adaptive control, leading to an appropriate solution for
uncertain nonlinear systems. As a validation, the proposed
controller has been implemented and tested through real-time
experiments on a 6-DOF parallel manipulator. A comparative
study with respect to both the standard L1 adaptive and PID
controllers has been conducted.

The rest of the paper is structured as follows. In Section II,
a short background on L1 adaptive control along with the
proposed control scheme are detailed. Section III provides
the description and modeling of FOEHN parallel robot as
a potential application testbed, with some implementation
issues. Section IV presents and discusses the obtained real-
time experimental results. Finally, in Section V, some con-
cluding remarks are provided, along with a discussion of
potential future research directions.

II. PROPOSED CONTROL SCHEME

In this section, a short background on L1 adaptive con-
trol, followed by the design of the proposed controller, are
detailed.

A. Background on L1 Adaptive Control

In the robotic community, for an n-DOF robotic manip-
ulator, qd ∈ Rn represents the vector of the desired joint
positions, while q∈Rn represents the vector of the measured
joint positions. Typically, the desired joint trajectories can be
obtained from the Cartesian desired trajectories by solving
the inverse kinematics problem. The measured trajectories
of the controlled robot should closely follow the desired
trajectories, and thus, the control scheme is designed to
minimize the tracking error. To achieve this objective, let
us first define the combined tracking error as follows:

r = (q̇− q̇d)+λ (q−qd) (1)

where λ ∈ R+ is a control design parameter. The control
input vector, denoted by Γ, can be designed as a combination
of a fixed state-feedback term, and an adaptive control term
as follows:

Γ = Amr+ΓAd (2)

where Am ∈ Rn×n is a Hurwitz matrix characterizing the
transient response of the system, and ΓAd ∈Rn is the adaptive
control term. The combined tracking error dynamics of a
robotic manipulator, under the control law presented in (2)
can be expressed as follows:

ṙ = Amr+ΓAd −η (t,r,q) , r(0) = r0 (3)

where η (t,r,q)∈Rn is a nonlinear function, representing the
nonlinear dynamics of the system, including uncertainties,
external disturbances, and non-modeled phenomena. In order
to develop an appropriate L1 adaptive controller, it is essen-
tial to parameterize this function within specific assumptions
that take into account the various types of uncertainties
[26]. These uncertainties may include unknown constant
parameters, uncertain input gain, and unmodeled actuator
dynamics within the controlled system [24]. As in [23],
where the truncated infinity norm of r is considered. The
nonlinear function η (t,r,q) can be parameterized as follows:

η (t,r,q) = θ(t)∥rτ∥L∞
+σ(t), ∀t ∈ [0,τ] (4)

where θ(t), σ(t) ∈ Rn are differentiable functions, and
∥(.)τ∥L∞

is the truncated L∞-norm of (.). To guarantee the
asymptotic convergence of r to zero at a rate depending on
the choice of Am, it is essential that the adaptive control term
ΓAd effectively cancel all the uncertainties and nonlinearities
within the system defined by the function η (t,r,q) [26].
Given the unknown nature of these uncertainties, the main
objective of ΓAd is then to estimate and compensate for these
nonlinearities. To achieve this goal, a state predictor of r is
designed as follows:

˙̂r = Amr̂+ΓAd −
(
θ̂(t)∥rτ∥L∞

+ σ̂(t)
)

−Kr̃(t), r̂(0) = r0 (5)

where K ∈ Rn×n is a high-frequency noise rejector matrix
gain [24], and r̃(t) = r̂(t)− r(t) is the prediction error. The
estimation of θ(t) and σ(t), respectively denoted by θ̂(t) and
σ̂(t), are obtained through the following adaptation laws:

˙̂
θ(t) = ξ Pro j

(
θ̂(t),Pr̃(t)∥rτ∥L∞

)
, θ̂(0) = θ0 (6)

˙̂σ(t) = ξ Pro j (σ̂(t),Pr̃(t)) , σ̂(0) = σ0 (7)

where ξ ∈ R+ is the adaptation gain, and P ∈ Rn×n is the
solution of the following static Lyapunov equation:

PAm +Am
T P+Q = 0 (8)



with Q ∈ Rn×n is a diagonal positive-definite matrix. The
projection operator Pro j (θ ,y) is defined as follows:

Pro j (θ ,y)≜



y if f (θ)< 0
y if f (θ)≥ 0

and ∇ f T y ≤ 0
y− ∇ f

∥∇ f∥
〈

∇ f
∥∇∥ f , y

〉
f (θ) if f (θ)≥ 0

and ∇ f T y > 0
(9)

where f : Rn → R is a smooth convex function, defined in
our case as:

f (θ) =
(1+ ε)θ T θ −θmax

2

εθmax
2 (10)

with θmax being the imposed norm bound, and ε is the
projection tolerance bound to be tuned. As the projection
operator is used, the estimated parameters should remain
within their admissible limits. To achieve this objective, two
respective norm upper bounds are defined, θb for θ̂(t), and
σb for σ̂(t), thereby the conditions ∥θ̂(t)∥< θb, ∥σ̂(t)∥< σb
are always satisfied [24]. Finally, the adaptive control term
ΓAd is the output in the time domain of ΓAd(s), defined as
follows:

ΓAd(s) =C(s)η̂(s) (11)

where C(s) is a diagonal matrix of BIBO1-stable strictly
proper transfer functions of the low-pass filter, and η̂(s) is
the Laplace transformation of η̂(t), defined as follows:

η̂(t) = θ̂(t)∥rτ∥L∞
+ σ̂(t) (12)

B. Proposed Controller: Super-twisting L1 Adaptive Control
(ST-L1 Adaptive)

The L1 adaptive control scheme is designed to effectively
compensate for uncertainties and nonlinearities, without the
need for a dynamic model during the control design process
[24]. It achieves this while maintaining a decoupling between
robustness and adaptation. Also, its adaptive mechanism,
coupled with the projection operator, ensures boundedness
of the estimated parameters [23]. As a result, it can be a
suitable control solution for PKMs, particularly where dy-
namic modeling is challenging, along with their applications
characterized by frequently changing dynamics.

However, the introduction of a low-pass filter in the
adaptive control law can introduce a time delay to the adap-
tation mechanism, potentially affecting the compensation
of nonlinearities and uncertainties. Furthermore, the satura-
tion of estimated parameters, with their unknown structure,
may result in a reduced controller efficiency towards high-
dynamic variations and high-frequency disturbances [24].

An extended L1 adaptive controller, designed for PKMs,
may significantly enhance the tracking performance while
reducing the impact of its drawbacks. To this end, our study
proposes the incorporation of a robust super-twisting term
into the L1 adaptive control scheme. The primary objective
of this design is to take benefit from the super-twisting

1BIBO: Bounded input bounded output.

Fig. 1. Block diagram of the proposed control solution, ST-L1 Adaptive
Controller.

algorithm advantages, which typically are not addressed by
the conventional L1 adaptive controller [27]. The super-
twisting algorithm is known for its robustness towards dis-
turbances, particularly in the context of nonlinear systems
[27]. Additionally, it has the capability to ensure finite-time
convergence of both position and velocity tracking errors
[27]. Furthermore, its adaptability to various types of system
dynamics is a key feature, as it can be fine-tuned by adjusting
its control parameters, according to specific characteristics
of the PKM and its operating environment. To this end,
the proposed controller in this paper combines L1 adaptive
controller with a robust super-twisting term as follows:

Γ = Amr+ΓAd −
(

K1|r|
1
2 sign(r)+ω

)
(13)

ω̇ = K2sign(r) (14)

where K1, K2 ∈ Rn×n are two positive definite diagonal ma-
trices. The resulting control design can be effectively applied
to PKMs, ensuring robustness against both uncertainties
and external disturbances. The L1 adaptive control term
serves to compensate for uncertainties and nonlinear dy-
namics, while the robust super-twisting term is incorporated
to provide enhanced robustness. As a result, the proposed
controller, which combines adaptive and robust feedback
terms, should benefit from both L1 adaptive control and
robust super-twisting algorithm advantages. This strategy
should offer an improved performance in terms of adapt-
ability and robustness against uncertainties as well as high-
frequency disturbances, with enhanced tracking performance.
Consequently, the proposed controller can be considered as
a highly efficient combined adaptive-robust control solution
for PKMs. To sum up, the block diagram of the proposed
control scheme is depicted in Fig. 1.

III. ROBOT DESCRIPTION AND IMPLEMENTATION ISSUES

In this section, the experimental testbed is described,
along with the parallel robot dynamic model, and some
implementation issues.

A. Experimental Platform

FOEHN is a non-redundant Gough-Stewart platform man-
ufactured by the company SYMETRIE. It’s a 6-DOF paral-
lel kinematic manipulator equipped with six independently



actuated legs powered by DC motors [2]. Its movement
is controlled by adjusting the lengths of its legs, allowing
precise manipulation of the moving platform. FOEHN has
several advantages, including high accuracy, repeatability,
and stiffness, making it a potential tool for a wide range of
applications. These applications include motion simulations
of vehicles, and naval and aeronautic systems. Also, this
robot is particularly ideal for micro-positioning tasks [2].
FOEHN can carry payloads of up to 500kg. The robot oper-
ational workspace includes translations of up to ±280mm
and rotations of up to ±34.2◦. It can achieve maximum
speeds of 500mm/s and 50◦/s, and maximum accelerations
of 8600mm/s2 and 550◦/s2, respectively.

FOEHN parallel robot is equipped with high-dynamic
brushless DC motors and absolute EnDat 2.2 encoders. These
motors can deliver a maximum torque of 18N.m and a
maximum rotation speed of 3500rpm. The encoders play
a crucial role in the system, precisely measuring the angular
positions of the motors (220 counts per revolution) and facil-
itating the calculation of prismatic joint lengths. For control
purposes, the motors are controlled by two multi-axis servo
drives, each one is responsible for controlling three motors.
The control torque inputs are transmitted to the drives from
an OMRON CK3E controller, which operates at a servo
cycle of 2kHz via an EtherCAT fieldbus. The servo control
strategy is formulated in joint space, incorporating real-time
calculated feedback on prismatic joint length. The applied
controller is implemented using MATLAB/Simulink from
MathWorks, and subsequently converted to the C language.
Finally, the code is compiled and uploaded onto the CK3E
controller. The desired trajectories are communicated to the
CK3E controller via the SYM_Motion software, developed
by SYMETRIE. This software serves as a Human-Machine
Interface (HMI), enabling the creation, validation, and execu-
tion of multiple types of movements. It establishes seamless
communication with the controller through a TCP/IP Ether-
net connection.

B. Dynamic Model

The dynamic modeling of FOEHN parallel robot is con-
ducted in both joint and moving platform spaces, using
the Euler-Lagrange formulation. To simplify this dynamic
model, the following assumptions have been considered:

• Assumption 1: Elastic phenomena are neglected, given
the materials employed in the robot’s design and fabri-
cation, which exhibit minimal elastic effects.

• Assumption 2: The dry and viscous friction effects can
be neglected in the passive universal joints, thanks to
their optimal design.

Thanks to the differential kinematic model, and through
its Jacobian matrix J ∈R6×6 [6], FOEHN’s inverse dynamic
model can be expressed in the joint space as follows:

M(q)q̈+C (q, q̇) q̇+G(q)+Γ f (q̇) = Γ (15)

where q, q̇, q̈ ∈ R6 are vectors of the joint positions, veloci-
ties, and accelerations, respectively, M(q)∈R6×6 is the robot
total mass and inertia matrix, C (q, q̇) ∈ R6×6 is the Coriolis

Fig. 2. Side view of experimental testbed (FOEHN parallel robot).

TABLE I
SUMMARY OF FOEHN ROBOT DYNAMIC PARAMETERS.

Parameter Description Value
mp Moving platform mass 66Kg
Ix x axis moving platform inertia 6.44kg.m2

Iy y axis moving platform inertia 6.44kg.m2

Iz z axis moving platform inertia 12.86kg.m2

Im Actuator inertia 0.001018kg.m2

fv Viscous friction coefficient 1.3283N.s/m
fs Dry friction coefficient 51.8714N

and centrifugal forces matrix, G(q) ∈R6 is the gravitational
forces vector, Γ f (q̇)∈R6 is the friction vector, and Γ∈R6 is
the vector of the control input torques. The dynamic param-
eters of FOEHN parallel robot are summarized in TABLE I.
These parameters are determined through a series of distinct
procedures. The mass of the moving platform was measured
experimentally, while its inertia matrix was calculated using
SolidWorks CAD software. Besides, the actuator inertia and
friction coefficients were obtained through an experimental
identification procedure [28].

C. Implementation Issues and Experimental Scenarios

To illustrate the effectiveness of the proposed ST-L1
Adaptive controller, a comparative study has been conducted,
involving the standard L1 Adaptive controller [23], and a
PID controller [8]. To facilitate this comparison, all three
controllers are implemented on FOEHN parallel robot and
tested under identical conditions. To this end, the following
two experimental scenarios are considered:

• Scenario 1 – nominal case: Under nominal conditions,
the three controllers are applied to the robot without the
presence of uncertainties and external disturbances.
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Fig. 3. 3D-view of the reference trajectory A-B-C-D-E-A.

• Scenario 2 – robustness towards payload changes:
The controllers’ robustness is tested by introducing an
additional payload to the robot’s moving platform. To
this end, three distinct payloads, weighing respectively
100kg, 150kg, and 200kg, were individually attached.

The reference desired trajectory for the moving platform
translations is illustrated in Fig. 3. The platform starts motion
with a point-to-point movement, traversing from A to B
and subsequently to C (cf. illustration of Fig. 3). Next, it
executes an elliptical trajectory from C to D. Finally, the
moving platform mules from D to E, before returning to the
starting point, A. For the rotational components, a sinusoidal
trajectory is proposed, featuring an amplitude of 3◦ and a
frequency of 0.3Hz. A phase shift of 120◦ is maintained
between the rotational angles (φ , θ , ψ). The whole duration
of the reference trajectory is 50 seconds.

To quantify the tracking performance of the three con-
trollers, the following RMS-based (Root Mean Square) cri-
teria are proposed:

RMSt =

√
1
N

N

∑
i=1

(ex2(i)+ ey2(i)+ ez2(i)) (16)

RMSr =

√
1
N

N

∑
i=1

(
eφ

2(i)+ eθ
2(i)+ eψ

2(i)
)

(17)

RMSq =

√√√√ 1
N

N

∑
i=1

(
6

∑
j=1

e2
q j
(i)

)
(18)

where ex, ey, ez, eφ , eθ , and eψ are the Cartesian tracking
errors, eq j , j = 1,6 are the joint tracking errors, and N is the
total number of samples.

The feedback gains of the three controllers have been
experimentally tuned using a trial-and-error technique. For
the proposed controller, the super-twisting gain was initially
set to zero, and the tuning process began with the L1
adaptive control part. Subsequently, the gains of the super-
twisting algorithm were tuned. The trial-and-error method

TABLE II
SUMMARY OF THE CONTROL DESIGN PARAMETERS.

L1 Adaptive PID ST-L1 Adaptive
Am =−56I6, Q = I6 Kp = 8500I6 Am =−56I6, Q = I6

λ = 150 Ki = 2000I6 λ = 120
ξ = 103, K = 500I6 Kd = 56I6 ξ = 104, K = 500I6
θb = 0.5, σb = 0.5 θb = 0.5, σb = 0.5, ε = 0.1

ε = 0.1 K1 = 2I6, K2 = 33I6

involves systematically trying different sets of control gains
in a real-time framework, and continuously adjusting them
until the best control performance is achieved. The results
of this tuning process for all controllers are summarized in
TABLE II. It is worth noting that the estimated parameters
for the adaptive controllers were initialized to zero.

IV. REAL-TIME EXPERIMENTAL RESULTS

In this section, the obtained real-time experiment results
are presented and discussed for the two proposed experimen-
tal scenarios.

A. Scenario 1 – Nominal Case

The evolution of the joint tracking errors is depicted in
Fig. 4. To accentuate the distinction between the controllers,
the plot is zoomed in on the time interval between 10s and
12s. Notably, the proposed control solution outperforms both
the standard L1 adaptive and PID controllers, thanks to the
incorporation of the super-twisting term alongside the non-
model-based L1 adaptive control term. These improvements
are further confirmed by the numerical calculation of the
proposed evaluation metrics, as summarized in TABLE III.
The evolution of the estimated parameters is depicted in
Figs. 5 and 6. The incorporation of the projection operator
ensures that these parameters remain within their admissible
ranges. As a result of the proposed additional term, the
estimated parameters for the proposed controller exhibit
smaller amplitudes and mitigated oscillations. This outcome
can be attributed to the compensation of certain dynamic
effects and nonlinearities by the proposed super-twisting
term. Consequently, a substantial difference between the
adaptive terms of the original and the proposed controllers
is evident.

The evolution of the generated control input torques is
depicted in Fig. 7. To enhance the visual clarity, the plot
has been zoomed in on the interval between 40s and 41s.
The generated torques remain within their admissible range,
and the energy consumption is nearly identical for all the
three controllers. However, it’s worth mentioning that some
overshoots are observed in the case of the L1 adaptive
controller, primarily linked to the pronounced oscillations of
the estimated parameters.

B. Scenario 2 – Robustness Towards Payload Changes

The joint tracking errors obtained with 200kg payload are
displayed in Fig. 8. To better highlight the difference between
the controllers, the plot is zoomed in within the range
[15s,18s]. Similar to the previous scenario, the proposed
solution outperforms the other controllers, with a minor



Fig. 4. Scenario 1: Evolution of joint tracking errors versus time.

Fig. 5. Scenario 1: Evolution of the estimated function θ̂(t) versus time.

TABLE III
SCENARIO 1: TRACKING PERFORMANCE EVALUATION WITH THE

ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 111.8656 92.2464 3.1772

PID 55.8083 46.8785 1.7687
ST-L1 Adaptive 35.0423 26.4935 1.4096

Imp./L1 Adaptive 68.67% 71.28% 55.63%
Imp./PID 37.21% 43.48% 20.30%

Fig. 6. Scenario 1: Evolution of the estimated function σ̂(t) versus time.
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Fig. 7. Scenario 1: Evolution of input torques versus time.

degradation compared to the nominal case. This demonstrates
the capability of the proposed design to provide an enhanced
control solution for PKMs, increasing the robustness against
uncertainties and external disturbances. These improvements
are further corroborated by the RMS values, summarized
in TABLEs IV, V, and VI. The evolution of the estimated
parameters is depicted in Figs. 9 and 10. As in the previous
scenario, the inclusion of the projection operator ensures
the boundedness of estimated parameters. In contrast to the
original controller, the proposed solution does not exhibit
high amplitudes with overshoots, where the adaptive control



Fig. 8. Scenario 2 (200 kg payload): Evolution of joint tracking errors
versus time.

Fig. 9. Scenario 2 (200 kg payload): Evolution of the estimated function
θ̂(t) versus time.

term of the original controller compensates for all structured
and unstructured uncertainties. The evolution of the control
input torques is depicted in Fig. 11, and for better visibility,
the plot has been zoomed in within the range [20s,21s].
Notably, the generated torques remain within the admissible
limits, and all controllers require almost the same quantity
of energy.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel super-twisting L1 adaptive controller
is proposed to improve the tracking performance of PKMs,

Fig. 10. Scenario 2 (200 kg payload): Evolution of the estimated function
σ̂(t) versus time.
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Fig. 11. Scenario 2 (200 kg payload): Evolution of input torques versus
time.

TABLE IV
SCENARIO 2 (100 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 152.9350 124.4302 4.2197

PID 71.3322 60.1363 2.2515
ST-L1 Adaptive 42.7647 33.0331 1.6708

Imp./L1 Adaptive 72.03% 73.45% 60.40%
Imp./PID 40.05% 45.06% 25.79%



TABLE V
SCENARIO 2 (150 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 182.1214 146.9965 4.7940

PID 84.6723 72.3997 2.5423
ST-L1 Adaptive 47.2451 36.4234 1.8486

Imp./L1 Adaptive 74.05% 75.22% 61.43%
Imp./PID 44.20% 49.69% 27.28%

TABLE VI
SCENARIO 2 (200 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 197.6922 160.5205 4.9999

PID 91.4751 78.9590 2.6493
ST-L1 Adaptive 50.6191 39.7406 1.8921

Imp./L1 Adaptive 74.39% 75.24% 62.15%
Imp./PID 44.66% 49.67% 28.58%

especially in terms of robustness towards uncertainties and
external disturbances. A short background on L1 adaptive
control is introduced, along with the proposed contribution.
Then, the experimental platform (FOEHN parallel robot) is
presented with its dynamics and some implementation issues.
The proposed controller has been experimentally validated
and compared with the standard L1 adaptive controller as
well as a PID controller in different operating conditions,
demonstrating clear improvements in the tracking perfor-
mance. In future work, the proposed control solution might
be enhanced by designing a time-delay super-twisting algo-
rithm. Additionally, its applicability extension to different
platforms of PKMs can also be investigated, along with
a thorough stability analysis of the resulting closed-loop
system.
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