
HAL Id: lirmm-04605844
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04605844v1

Submitted on 8 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D5.2 - Metrics for automated FAIR software assessment
in a disciplinary context

Neil Chue Hong, Elena Breitmoser, Mario Antonioletti, Joy Davidson, Daniel
Garijo, Alejandra Gonzalez-Beltran, Morane Gruenpeter, Robert Huber,

Clement Jonquet, Mike Priddy, et al.

To cite this version:
Neil Chue Hong, Elena Breitmoser, Mario Antonioletti, Joy Davidson, Daniel Garijo, et al.. D5.2
- Metrics for automated FAIR software assessment in a disciplinary context. D5.2, FAIR-IMPACT.
2023. �lirmm-04605844�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04605844v1
https://hal.archives-ouvertes.fr


=

Project Title Expanding FAIR solutions across EOSC

Project Acronym FAIR-IMPACT

Grant Agreement No. 101057344

Start Date of Project 2022-06-01

Duration of Project 36 months

Project Website https://fair-impact.eu/

D5.2 - Metrics for automated FAIR software assessment in
a disciplinary context

Work Package WP5 - Metrics, certification, and guidelines

Lead Author (Org) Neil Chue Hong (UEDIN-SSI), Elena Breitmoser (UEDIN-SSI)

Contributing
Author(s) (Org)

Mario Antonioletti (UEDIN-SSI), Joy Davidson (UEDIN-DCC), Daniel
Garijo (UPM), Alejandra Gonzalez-Beltran (UKRI-STFC), Morane
Gruenpeter (INRIA), Robert Huber (UBremen), Clement Jonquet
(INRAE), Mike Priddy (KNAW-DANS), John Shepherdson (CESSDA),
Maaike Verburg (KNAW-DANS), Chris Wood (UEDIN-SSI)

Due Date 2023-10-31

Date 2023-10-27

Version V1.0

Dissemination Level

X PU: Public

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)



Versioning and contribution history

Version Date Author Notes

0.1 2023.05.05 Neil Chue Hong, Elena Breitmoser TOC and V0.1, main
structure

0.2 2023.05.12 Elena Breitmoser, Mike Priddy, Neil Chue
Hong, Joy Davidson

Writing sprint 1

0.3 2023.05.26 Alejandra Gonzalez-Beltran, Mike Priddy,
Morane Gruenpeter, Elena Breitmoser,
Neil Chue Hong, Mario Antonioletti

Writing sprint 2

0.4 2023.07.05 Mario Antonioletti, Neil Chue Hong, Joy
Davidson, Daniel Garijo, Robert Huber,
Mike Priddy, Morane Gruenpeter, Elena
Breitmoser, Chris Wood

Writing sprint 3

0.5 2023.08.01 Mario Antonioletti, Elena Breitmoser,
Neil Chue Hong

Draft for internal
task reviewers

0.6 2023.09.18 Neil Chue Hong, Elena Breitmoser,
Daniel Garijo, Robert Huber, Mike Priddy

Restructured draft
for domain
reviewers

0.8 2023.09.30 Neil Chue Hong, Elena Breitmoser, Mike
Priddy, Maaike Verburg, John
Shepherdson

Submission to PCO
and internal
FAIR-IMPACT review

0.9 2023.10.25 Neil Chue Hong, Elena Breitmoser,
Clement Jonquet. Reviewers: Michelle
Barker, Yann Le Franc

Final internal review

1.0 2023.10.31 Neil Chue Hong, Elena Breitmoser,
Maiike Verburg

Submission to EC

Disclaimer

FAIR-IMPACT has received funding from the European Commission’s Horizon Europe funding
programme for research and innovation programme under the Grant Agreement no. 101057344. The
content of this document does not represent the opinion of the European Commission, and the
European Commission is not responsible for any use that might be made of such content.

1



Table of Contents
Versioning and contribution history 1
Table of Contents 2

LIST OF TABLES 2

Glossary 3
Executive Summary 5

1 Introduction 6
1.1 Purpose and scope 7
1.2 Metric Outline 9

2. Metric Specification 12
3. Disciplinary Exemplar 23

3.1 Use case: CESSDA software guidelines 23
References 32
Appendices 35

Appendix A - Evolution of FAIR principles from data to software 35

List of Tables

TABLE 1 – THE FAIR PRINCIPLES FOR RESEARCH SOFTWARE 9
TABLE 2 - MODIFIED FAIR METRIC TEMPLATE FOR FAIR RESEARCH SOFTWARE 12
TABLE 3 - LIST OF FAIR RESEARCH SOFTWARE METRICS 12

2



Glossary

Term Description

API Application Programming Interface
ARK Archival Resource Key
CESSDA Consortium of European Social Science Data Archives
CFF Citation File Format
CMA CESSDA software Maturity Assessment

Digital Object A machine-independent data structure consisting of one or more
elements in digital form that can be parsed by different information
systems; the structure helps to enable interoperability among
diverse information systems in the Internet.

DOI Digital Object Identifier
EC European Commission
EOSC European Open Science Cloud
ESIP Earth Science Information Partners
FAIR Findable, Accessible, Interoperable, Reusable
FAIR4RS FAIR for Research Software
FLOSS Free/Libre and Open Source Software

Forge (software) Platform used for the collaborative development and sharing of software

(often used as a synonym for code repository)

FRSM FAIR Research Software Metric
GL Granularity Level (as defined in Gruenpeter et al. (2021))
GUID Globally Unique IDentifier (synonymous with UUID)
IETF Internet Engineering Task Force
IRI Internationalized Resource Identifier
ISO International Organization for Standardization
JSON-LD JavaScript Object Notation for Linked Data
Licence, Software
licence

An agreement between the copyright owner and the end-user on
the use and distribution of software

Metadata Data that define and describe the characteristics of other data,
used to improve both business and technical understanding of data
and data-related processes. Metadata is also used to describe other
digital objects, such as software.

Metric A set of criteria or conditions that should be met in order to
determine the extent to which a principle has been satisfied.

OpenAIRE Open Access Infrastructure for Research in Europe
ORCID Open Researcher and Contributor ID
PID Persistent IDentifier
POM Project Object Model
PROV Provenance
RDA Research Data Alliance

3



Term Description

Repository,
code/source
code/software

The collection of software source code files and associated
metadata (such as the history of changes) that constitutes the
development history for a piece of software.
The term is also sometimes also used to describe a software forge,
which is the platform that hosts code repositories to aid
collaborative development and sharing.

Repository, scholarly Digital repository used for depositing, publishing and long term
preservation of digital objects, including software.

Research Software Includes source code files, algorithms, scripts, computational
workflows and executables that were created during the research
process or for a research purpose. (Gruenpeter et al., 2021) -
different from ‘software in research’, may vary between disciplines.

ReSA Research Software Alliance
REST Representational state transfer
RRID Research Resource Identifier
RS Research Software
RSMD Research Software Metadata
Scholarly ecosystem An ecosystem with scholarly repositories where research software may be

deposited explicitly, publishers that may link publications with the source code of
the associated software, and aggregators that offer researchers a broader view of
the available information. (European Commission, 2020)

SKOS Simple Knowledge Organisation System
SML Software Maturity Level
Software in research Software components (e.g. operating systems, libraries,

dependencies, packages, scripts, etc.) that are used for research
but were not created during or with a clear research intent.
(Gruenpeter et al., 2021) - different from ‘Research Software’, may
vary between disciplines.

Software A set of instructions for a computer to execute (often in the form of

source code) and associated documentation and data. A type of

digital object.

Source code The version of a piece of software as originally written in a

human-readable form (e.g. using a programming language).

SPDX Software Package Data Exchange

SWHID Software Heritage Identifiers

TuRTLe Terse RDF Triple Language

URI Uniform Resource Identifier

URN Uniform Resource Name

Use case A specific situation in which a product or service could potentially

be used.

UUID Universally Unique IDentifier (synonymous with GUID)

4



Executive Summary

This deliverable from Task 5.2 (FAIR metrics for research software) on “Metrics for

automated FAIR software assessment in a disciplinary context” is part of Work Package 5 on

“Metrics, Certification and Guidelines“ within the FAIR-IMPACT project. It builds on the

outputs of the RDA/ReSA/FORCE11 FAIR for Research Software WG and existing guidelines

and metrics for research software to define metrics for the assessment of the “FAIR

Principles for Research Software (FAIR4RS Principles)”. FAIR software can be defined as

research software which adheres to these principles, and the extent to which a principle has

been satisfied can be measured against the criteria in a metric. This work on software

metrics was coordinated with Task 4.3 (Standard metadata for research software) from Work

Package 4 on “Metadata and Ontologies”, which focuses on “Guidelines for recommended

metadata standard for research software within EOSC“, to ensure that metrics are related to

their recommended metadata properties.

The deliverable defines 17 metrics that can be used to automate the assessment of research

software against the FAIR4RS Principles, and provides examples of how these might be

implemented in one exemplar disciplinary context of the social sciences. The FAIR-IMPACT

project will then work to implement the metrics as practical tests by extending existing

assessment tools such as F-UJI; this work will be reported in Q2 2024. Feedback will be

sought from the community, through webinars and an open request for comments. The

information from all these sources will be used to publish a revised version of the metrics.

5



1 Introduction

The overall goal of FAIR-IMPACT is to identify practices, policies, tools and technical

specifications to guide researchers, repository managers, research performing organisations,

policy makers and citizen scientists towards a FAIR data management cycle. The focus of the

project is on persistent identifiers (PIDs), metadata, ontologies, metrics, certification and

interoperability, applying these to real-life use cases starting with examples from social

sciences and humanities, the photon and neutron sciences, life sciences and agri-food and

environmental sciences.

While the FAIR principles, originally defined by Wilkinson et al. (2016) as the FAIR Data

Principles, may be applied to any digital objects, this deliverable is concerned with the

subset of digital objects represented by research software. The RDA/ReSA/FORCE11 FAIR for

Research Software WG1 provides a definition of research software that is used in this

deliverable:

“Research Software includes source code files, algorithms, scripts, computational workflows

and executables that were created during the research process or for a research purpose.

Software components (e.g., operating systems, libraries, dependencies, packages, scripts,

etc.) that are used for research but were not created during or with a clear research intent

should be considered software in research and not Research Software. This differentiation

may vary between disciplines.” (Gruenpeter et al., 2021)

Software quality has long been discussed in scientific literature (e.g. Kan, 2002, Zuser et al.,

2005). Standards for software code quality such as the ISO/IEC Systems and software Quality

Requirements and Evaluation (SQuaRE) (ISO, 2011) and the IEEE Computer Society’s

Software Engineering Body of Knowledge (SWEBoK) (Bourque and Fairley, 2014) discuss

metrics for software that are related with the FAIR principles (e.g. usability). While some of

these metrics overlap with the FAIR principles, they are mostly targeted towards the

industrial development and applications of software code.

The open source software community has also developed guidance and metrics for

assessing software. The Community Health Analytics in Open Source Software (CHAOSS)

initiative2 is a Linux Foundation project focused on creating metrics and metrics models,3 as

well as software tools,4 to better understand the open source community health on a global

scale. Some metrics can be measured directly by the tools, but others may require manual

assessment. The Open Source Security Foundation5 has developed a set of best practices

5 Open Source Security Foundation: https://openssf.org/
4 CHAOSS Software: https://chaoss.community/software/
3 CHAOSS Metrics: https://chaoss.community/kb-metrics-and-metrics-models/
2 Community Health Analytics in Open Source Software: https://chaoss.community/
1 https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

6

https://openssf.org/
https://chaoss.community/software/
https://chaoss.community/kb-metrics-and-metrics-models/
https://chaoss.community/
https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg


applicable to all Free/Libre and Open Source Software (FLOSS) projects and released these in

the form of a checklist of criteria6 and badging that encompass different levels of practice. In

this case, each metric corresponds to a different check, which is assessed manually by the

developers aiming to obtain the badge.

With the extended application of the FAIR principles to research software in “FAIR Principles

for Research Software version 1.0 (FAIR4RS Principles v1.0)” (Chue Hong et al., 2022, Barker

et al., 2022), a number of guidelines and best practices have been developed by the

community to promote their adoption (Gruenpeter et al., 2023; Martinez et al., 2019). In

parallel, the Horizon 2020 EOSC Synergy project has developed software quality guidelines

for projects in the European research ecosystem (Ortiz et al, 2022) which include relevant

metrics: for example, software documentation should be version controlled, have a PID and

provide a licence. Together, these provide the foundation for metrics that can be used to

automate the assessment of research software against the FAIR4RS Principles.

Metadata-based assessment approaches have also been proposed for other FAIR digital

objects, such as ontologies and semantic resources (Amdouni, et al., 2022).

1.1 Purpose and scope

To increase the adoption and uptake of the FAIR principles, this deliverable presents 17

metrics that can be used to translate the FAIR guiding principles into practical tests to

measure the FAIRness of research software, that can be implemented in an automated

fashion via assessment tools for the different infrastructures in the scholarly ecosystem

(software aggregators, software publishers, scholarly repositories and software archives).

The metrics are developed to be domain-agnostic, and take into account characteristics

which are specific to research software such as its executability, its composite nature and its

continuous evolution and versioning. Though most of the FAIR4RS Principles (summarised in

Table 1) can be turned into a measurable metric, some (e.g. “F2. Software is described with

rich metadata”) are much harder to quantify, and hence be assessed by any automated tool

in the future. In these cases, it may only be possible to test for existence rather than quality

or correctness. Others, such as “R3. Software meets domain-relevant community standards”

can be seen to apply to many metrics, and the implementation of a metric will reference

these community standards.

These metrics have been developed through reference to existing work on FAIR metrics,

software metrics and software metadata. This included the EOSC minimum metadata

properties for datasets7 (Asmi et al., 2017) and the FAIR-IMPACT Deliverable 4.4 “Guidelines

7 https://eosc-edmi.github.io/
6 https://bestpractices.coreinfrastructure.org/en/criteria

7

https://eosc-edmi.github.io/
https://bestpractices.coreinfrastructure.org/en/criteria


for recommended metadata standard for research software within EOSC” (Gruenpeter et al.,

2023) developed by Task 4.3. Wherever feasible, existing metrics and indicators that are

currently being used to evaluate the FAIRness of digital objects are reused, such as those

defined in “FAIRsFAIR Data Object Assessment Metrics” (Devaraju et al, 2022) and

“FAIRsFAIR M2.15 Assessment Report On ‘FAIRness of software’” (Gruenpeter et al., 2020).

Community input included a workshop8 at RDA Plenary 20 in Gothenburg in March 2023

which collected use cases and metrics from participants (Chue Hong et al., 2023).

The FAIR Principles for Research Software (FAIR4RS Principles) are:

Table 1 - The FAIR Principles for Research Software (from Table 1 in Chue Hong et al., 2022)

F: Software, and its associated metadata, is easy for both humans and machines to find.

F1. Software is assigned a globally unique and persistent identifier.
● F1.1. Components of the software representing levels of granularity are assigned distinct identifiers.
● F1.2. Different versions of the software are assigned distinct identifiers.

F2. Software is described with rich metadata.
F3. Metadata clearly and explicitly include the identifier of the software they describe.
F4. Metadata are FAIR, searchable and indexable.

A: Software, and its metadata, is retrievable via standardized protocols.

A1. Software is retrievable by its identifier using a standardized communications protocol.
● A1.1. The protocol is open, free, and universally implementable.
● A1.2. The protocol allows for an authentication and authorization procedure, where necessary.

A2. Metadata are accessible, even when the software is no longer available.

I: Software interoperates with other software by exchanging data and/or metadata, and/or
through interaction via application programming interfaces (APIs), described through
standards.

I1. Software reads, writes and exchanges data in a way that meets domain-relevant community standards.
I2. Software includes qualified references to other objects.

R: Software is both usable (can be executed) and reusable (can be understood, modified,
built upon, or incorporated into other software).

R1. Software is described with a plurality of accurate and relevant attributes.
● R1.1. Software is given a clear and accessible license.
● R1.2. Software is associated with detailed provenance.

R2. Software includes qualified references to other software.
R3. Software meets domain-relevant community standards.

The evolution of the principles from data (Wilkinson et al., 2016) to software can be found in

Appendix B of the “FAIR Principles for Research Software (FAIR4RS Principles) v1.0” (Chue

Hong et al., 2022) and are also presented in Appendix A of this document.

8 https://fair-impact.eu/events/fairimpact-events/research-software-workshop-guidelines-and-metrics-metadata-curation

8

https://fair-impact.eu/events/fairimpact-events/research-software-workshop-guidelines-and-metrics-metadata-curation


FAIRassist9 is a resource which catalogues resources to measure and improve FAIRness,

including automated assessment tools. Some existing FAIR assessment tools can be run

against code repositories, e.g. FAIR-Enough,10 F-UJI (Devaraju and Huber, 2021) and

FAIR-Checker (Gaignard et al., 2023), though most were developed to assess FAIRness of

data; when used for software they only assess the associated metadata and identifier. One

exception is howfairis,11 which assesses software but against the fair-software.eu

recommendations12 rather than the FAIR principles directly. Typically these tools assess F and

A, along with R1.1 (licence) as these are the easiest to automate. Additionally, software

quality assessment tools such as SQAaaS13 provide pipelines that can be integrated with

projects to cross-check relevant quality criteria. A more comprehensive evaluation of these

tools is in progress and will be reported in MS5.6 “Practical tests for automated FAIR

software assessment in a disciplinary context”.

1.2 Metric Outline

In general, a distinction can be made between metrics that apply at the “code level” (which

measure aspects of the source code), “software project level” (which measure aspects of

how the software is developed) and at the “repository” level (which measure aspects of how

the software is stored). Some metrics at the repository level cannot be tested at the

software level and vice versa. Some metrics related to reuse or reproducibility may require

to be applied at multiple levels. Likewise, there are differences between code repositories

(also known as forges) and preservation repositories.

In Willkinson et al., (2018), a focus group formed of some of the authors of the original FAIR

principles suggest that a good FAIR metric should be:

● Clear: anyone can understand the purpose of the metric;

● Realistic: it should not be unduly complicated for a resource to comply with the metric

● Discriminating: the metric should measure something important for FAIRness;

distinguish the degree to which that resource meets that objective; and be able to

provide instruction as to what would maximise that value;

● Measurable: the assessment can be made in an objective, quantitative,

machine-interpretable, scalable and reproducible manner, ensuring transparency of

what is being measured, and how;

● Universal: The metric should be applicable to all digital resources.

13 https://sqaaas.eosc-synergy.eu/
12 https://fair-software.eu/
11 https://github.com/fair-software/howfairis
10 https://metrics.api.fair-enough.semanticscience.org/docs
9 https://fairassist.org/

9

https://sqaaas.eosc-synergy.eu/
https://fair-software.eu/
https://github.com/fair-software/howfairis
https://metrics.api.fair-enough.semanticscience.org/docs
https://fairassist.org/


The last of these criteria suggest that FAIR metrics primarily refer to repository level metrics,

for instance to check the presence of metadata, as many code level metrics are necessarily

applicable only to source code resources and software project level metrics are defined

around the production of a particular type of resource.

There is not a single implementation of a metric that will work for all research software, but

there are metrics that can be applied to all types of software. For example, including

metadata to describe the hardware requirements may be important for some applications

but not other, and may be expressed differently for a software library designed to be

recompiled for different architectures. However, if Universal is redefined to mean “the

metric should be applicable to all software resources” a framework of metrics can be

created for research software that tests the FAIRness of software by using more specific,

detailed metrics for some of the FAIR4RS principles which require additional guidance to

implement.

The metrics presented in the next sections are specified following the template (Table 2),

modified from Wilkinson et al. (2018) and Devaraju et al. (2022). In each metric table, the

descriptions and assessment details of the metric are provided, and its alignment with the

relevant FAIR4RS principle and Research Software Metadata recommendation (Gruenpeter

et al., 2023). There is an expectation that while the metric and assessment methods will

remain the same, the criteria for each compliance level will change as adoption of the FAIR

principles increases and infrastructure, tools and guidance improve: what is considered

essential should reflect an achievable level of compliance at the current time. The list of

proposed FAIR metrics for research software is summarised in Table 3.

Table 2 - Modified FAIR Metric template for FAIR Research Software.

Field Description
Metric Identifier The local identifier of the metric (FRSM-XX)

FRSM: FAIR Research Software Metric.
Metric Name Metric name in a human readable form.
Description The definition of the metric, including examples.
FAIR4RS Principle The FAIR4RS principle(s) most related to the metric.
RSMD Recommendation The FAIR-IMPACT RSMD recommendation(s) most related to the

metric
Assessment Requirements and methods to perform the assessment against the

metric. This includes a suggested compliance level (essential /
important / useful), based on the concepts introduced by the FAIR
Data Maturity Model Working Group (2020). Criteria at each level will
change as adoption of FAIR increases.

Comments Further notes associated with the implementation of the metric,
which may include related resources, constraints and limitations.

10



Table 3 - List of FAIR Research Software Metrics

Identifier Name
FRSM-01 Does the software have a globally unique and persistent identifier?
FRSM-02 Do the different components of the software have their own identifiers?
FRSM-03 Does each version of the software have a unique identifier?
FRSM-04 Does the software include descriptive metadata which helps define its purpose?
FRSM-05 Does the software include development metadata which helps define its status?
FRSM-06 Does the software include metadata about the contributors and their roles?
FRSM-07 Does the software metadata include the identifier for the software?
FRSM-08 Does the software have a publicly available, openly accessible and persistent

metadata record?
FRSM-09 Is the software developed in a code repository / forge that uses standard

communications protocols?
FRSM-10 Are the formats used by the data consumed or produced by the software open and a

reference provided to the format?
FRSM-11 Does the software use open APIs that support machine-readable interface definition?
FRSM-12 Does the software provide references to other objects that support its use?
FRSM-13 Does the software describe what is required to use it?
FRSM-14 Does the software come with test cases to demonstrate it is working?
FRSM-15 Does the software source code include licensing information for the software and any

bundled external software?
FRSM-16 Does the software metadata record include licensing information?
FRSM-17 Does the software include provenance information that describe the development of

the software?

The FAIR Impact project will work to implement the metrics as practical tests by extending

existing assessment tools such as F-UJI; this work will be reported in Q2 2024. Feedback will

be sought from the community, through webinars and an open request for comments. The

information from all these sources will be used to publish a revised version of the metrics.

11



2. Metric Specification

Field Description
Metric Identifier FRSM-01
Metric Name Does the software have a globally unique and persistent identifier?
Description A software object may be assigned with a globally unique identifier

such that it can be referenced unambiguously by humans or
machines. Globally unique means an identifier should be associated
with only one resource at any time. Examples of unique identifiers of
data used for software include: Digital Object Identifier (DOI), the
Handle System, Uniform Resource Identifier (URI) such as URL and
URN, and Software Heritage Identifiers (SWHID). A data repository
may assign a globally unique identifier to your data or metadata when
you publish and make it available through its curation service.

FAIR4RS Principle F1: Software is assigned a globally unique and persistent identifier.
R3: Software meets domain-relevant community standards.

RSMD Recommendation RSMD-3.3
Assessment Requirements Software identifier

List of globally unique identifier schemes
Method Check if the software identifier is based on a

suitable identifier scheme, and test it can be
resolved.

Essential Software has a human and machine-readable
unique identifier that is resolvable to a
machine-readable landing page and follows a
defined unique identifier syntax.

Important Identifier uses an identifier scheme that guarantees
globally uniqueness and persistence.

Useful Identifier scheme is commonly used in the domain.
Comments The type of identifier assigned will often depend on the type of

repository that the software is deposited in, for example a URL for
GitHub, DOI for Zenodo, or SWHID for Software Heritage. Note that
URLs are not guaranteed to be persistent and by default GitHub only
provides permalinks by request.14 It is not practical to directly test the
global uniqueness or persistence of any individual identifier, therefore
this metric proposes testing for an identifier scheme that provides
guarantees of persistence.

The suitability of an identifier scheme may depend on the domain. If
software metadata is available as a separate record, this should be
FAIR (see FRSM-08).

14 https://docs.github.com/en/repositories/working-with-files/using-files/getting-permanent-links-to-files

12

https://docs.github.com/en/repositories/working-with-files/using-files/getting-permanent-links-to-files


Field Description
Metric Identifier FRSM-02
Metric Name Do the different components of the software have their own

identifiers?
Description Conceptually, it is useful for identifiers to be assigned at a more

granular level than just the software project (often synonymous with
the “software concept” or “software project”). For instance a
software product may consist of different modules, which in turn may
be implemented by different files. This metric tests that these
different components are not all assigned the same identifier, and
that the relationship between components is embodied in the
identifier metadata.

FAIR4RS Principle F1: Software is assigned a globally unique and persistent identifier.
F1.1: Components of the software representing levels of granularity
are assigned distinct identifiers.

RSMD Recommendation RSMD-3.2, RSMD-3.3, RSMD-3.5
Assessment Requirements Software identifiers

Method Check if each software identifier resolves to the
appropriate software component and examine
identifier metadata.

Essential Where the “software” consists of multiple distinct
components, each component has a distinct
identifier.

Important The relationship between components is embodied
in the identifier metadata

Useful Every component to granularity level GL3 (module)
has its own unique identifier

Comments The granularity levels for software have been defined by the RDA
Software Source Code Identifiers WG in Gruenpeter et al. (2021).
Identifiers for each software component should be globally unique
and persistent (as tested by FRSM-01).

This metric should not be confused with FRSM-10 and FRSM-12
(related to I2) which checks that other related non-software objects
are properly described and FRSM-13 (related to R2) which checks that
software dependencies which are not considered a part of the
software concept of product are described.

Field Description
Metric Identifier FRSM-03
Metric Name Does each version of the software have a unique identifier?
Description To make different versions of the same software (or component)

findable, each version needs to be assigned a different identifier. The
relationship between versions is embodied in the associated
metadata.

FAIR4RS Principle F1: Software is assigned a globally unique and persistent identifier.
F1.2: Different versions of the software are assigned distinct
identifiers.

13



R3: Software meets domain-relevant community standards.
RSMD Recommendation RSMD-3.2, RSMD-3.3, RSMD-3.4
Assessment Requirements Software Identifiers

Method Check if each software identifier resolves to a
different version and examine identifier metadata.

Essential Each version of the software has a different
identifier.

Important Relations between the versions are included in the
identifier metadata.

Useful The version number is included in the identifier
metadata.

Comments What is considered a “version” is defined by the owner of the
software: in many cases this will be something that the owner wants
to specifically identify and use and/or “release” or “publish” so that
others can use and reference/cite. This is something for which there
may be disciplinary norms, which may be documented in
domain-specific software guidelines e.g. ESIP Software Guidelines15 in
the earth sciences and CESSDA Software Development Guidelines in
the social sciences.16

Identifiers for each software version should be globally unique and
persistent (as tested by FRSM-01) and use the same identifier
scheme. It may be useful to reference these identifiers in any release
documentation or CHANGELOG.

Field Description
Metric Identifier FRSM-04
Metric Name Does the software include descriptive metadata which helps define

its purpose?
Description Software requires descriptive metadata to support indexing, search

and discoverability.
FAIR4RS Principle F2: Software is described with rich metadata.

R1: Software is described with a plurality of accurate and relevant
attributes.
R3: Software meets domain-relevant community standards.

RSMD Recommendation RSMD-1.1, RSMD-4.1, RSMD-4.2, RSMD-4.3, RSMD-4.4
Assessment Requirements Software source code

Software identifier
Method Check if the software and/or software identifier has

machine-readable descriptive metadata associated
with it that describe its purpose.

Essential The software includes a README or other file which
includes the software title and description.

Important The software includes other descriptive metadata
such as domain, funder, programming language,
date created, and keywords.

16 https://docs.tech.cessda.eu/software/index.html
15 https://esipfed.github.io/Software-Assessment-Guidelines/

14

https://docs.tech.cessda.eu/software/index.html
https://esipfed.github.io/Software-Assessment-Guidelines/


Useful The metadata is contained in a format such as
CodeMeta or ProjectObjectModel that enables full
machine actionability.

Comments There are several common places for descriptive metadata to be
found, including intrinsic metadata that is part of the software source
code such as README files, requirements files that describe
dependencies, POM, CodeMeta or CFF files, or in the extrinsic
metadata available through resolving the software identifier. It may
also be directly embedded in software source code files. The
implementation of this metric will depend on the coding standards
for the programming language as well as community norms for which
descriptive metadata is used.
It is hard to check the relevance / correctness of unstructured
metadata such as a text description, but it is possible to automatically
check for existence.

Field Description
Metric Identifier FRSM-05
Metric Name Does the software include development metadata which helps define

its status?
Description Software requires descriptive metadata to support indexing, search

and discoverability
FAIR4RS Principle F2: Software is described with rich metadata.

R1: Software is described with a plurality of accurate and relevant
attributes.
R3: Software meets domain-relevant community standards.

RSMD Recommendation RSMD-4.2, RSMD-4.4, RSMD-4.5
Assessment Requirements Software source code

Method Check if the software has machine-readable
descriptive metadata associated with it that
describes its development and status.

Essential The software includes metadata for contact or
support in the README or other intrinsic metadata
file according to community standards.

Important The software includes metadata for development
status, links to documentation

Useful The metadata is contained in a format such as
CodeMeta or ProjectObjectModel that enables full
machine-actionability.

Comments There are many forms of guidance and community standards for
structuring development metadata, such as RepoStatus,17 Software
Release Practice HOWTO,18 Make a README,19 and AboutCode.20

It is still difficult to check all descriptive metadata around
development and status as it is often provided in an unstructured
form; machine-readable semantic metadata schema are available but

20 https://www.aboutcode.org/
19 https://www.makeareadme.com/
18 https://tldp.org/HOWTO/Software-Release-Practice-HOWTO/index.html
17 https://www.repostatus.org/

15

https://www.aboutcode.org/
https://www.makeareadme.com/
https://tldp.org/HOWTO/Software-Release-Practice-HOWTO/index.html
https://www.repostatus.org/


not widely used for this purpose (e.g. RepoStatus, Semantic
Versioning21) or language specific (e.g. Trove Classifiers22).

Field Description
Metric Identifier FRSM-06
Metric Name Does the software include metadata about the contributors and their

roles?
Description Software should make it easy to recognise and credit all contributors.
FAIR4RS Principle F2: Software is described with rich metadata.

R3: Software meets domain-relevant community standards.
RSMD Recommendation RSMD-5.1, RSMD-5.2, RSMD-5.3, RSMD-5.4, RSMD-5.5, RSMD-5.6.

RSMD-5.7. RSMD-5.8
Assessment Requirements Software source code

Software identifier
Method Check if the software and/or software identifier has

machine readable descriptive metadata associated
with it that include contributors and roles.

Essential The software includes metadata about the
contributors

Important The software includes citation metadata that
includes all contributors and their roles. This
includes ORCIDs when contributors have them.

Useful Does the citation metadata include the proportional
credit attributed to each contributor?

Comments There are several common places for contributor metadata to be
found, including README files, CodeMeta or CFF files, in the code
repository metadata, or in the software identifier metadata. It may
also be directly embedded in software source code files.
Criteria for which roles are included is normally defined by the
community.

Field Description
Metric Identifier FRSM-07
Metric Name Does the software metadata include the identifier for the software?
Description Software should include its identifier to make it easier to be cited and

indexed
FAIR4RS Principle F3: Metadata clearly and explicitly include the identifier of the

software they describe.
R3: Software meets domain-relevant community standards.

RSMD Recommendation No related RSMD recommendation
Assessment Requirements Software source code

Software identifier
Method Check if the software includes its own software

identifier, and that the identifier resolves to that
software.

22 https://pypi.org/classifiers/
21 https://semver.org/

16

https://pypi.org/classifiers/
https://semver.org/


Essential Does the software include an identifier in the
README or citation file?

Important Does the identifier resolve to the same instance of
the software?

Useful N/A
Comments There are several common places for identifier metadata to be found,

including README files, CodeMeta or CFF files. The choice of location
may depend on community standards.

Field Description
Metric Identifier FRSM-08
Metric Name Does the software have a publicly available, openly accessible and

persistent metadata record?
Description Even if the software itself is no longer usable or accessible, its

metadata should still be available and accessible.
FAIR4RS Principle F4: Metadata are FAIR, searchable and indexable.

A2: Metadata are accessible, even when the software is no longer
available.
R3: Software meets domain-relevant community standards.

May enable compliance to F1, F1.1, F1.2, F2, F3
RSMD Recommendation RSMD-1.2
Assessment Requirements Software identifier

Method Check if the software identifier includes a reference
to a persistent landing page or other metadata
record, and if that metadata is still accessible.

Essential A metadata record for the software is present on an
infrastructure that guarantees persistence.

Important The persistent metadata record is available through
public search engines. The metadata has a globally
unique and persistent identifier.

Useful The persistent metadata record is available through
multiple, cross-referenced infrastructures.

Comments Potential locations for persistent metadata records include scholarly
repositories (e.g. Zenodo, HAL, OSF), registries or catalogues (e.g.
ASCL, bio.tools, swMath), open scholarly infrastructure (e.g. Wikidata,
DataCite, IPOL, eLife). The choice of location is dependent on
community standards.

Field Description
Metric Identifier FRSM-09
Metric Name Is the software developed in a code repository / forge that uses

standard communications protocols?
Description Software source code repositories / forges (a.k.a. version control

platforms) should use standard communications protocols (such as
https / sftp) to enable the widest possible set of contributors.

FAIR4RS Principle A1: Software is retrievable by its identifier using a standardised
communications protocol.

17



A1.1: The protocol is open, free, and universally implementable.
A1.2: The protocol allows for an authentication and authorization
procedure, where necessary.
R3: Software meets domain-relevant community standards.

RSMD Recommendation RSMD-1.3
Assessment Requirements Software source code identifier

Method Check if the identifier for the code repository / forge
can be accessed using standardised communications
protocols such as https or sftp.

Essential The code repository / forge can be accessed using
the identifier via a standardised protocol.

Important If authentication or authorisation are required,
these are supported by the communication
protocols and the repository / forge.

Useful N/A
Comments Frameworks such as the Internet Protocol suite and Open Systems

Interconnection model define different abstraction layers for
networked communication. Several bodies, such as the IETF and ISO
define standardised communications protocols utilised at each layer.
In general, most widely used code repositories / forges use common
standardised communications protocols such as https or sftp. In
normal use, this test will be implemented by checking that the
repository / forge can be accessed using one of these protocols.

Using a software forge that is properly indexed by search engines will
help with other aspects of findability.

Field Description
Metric Identifier FRSM-10
Metric Name Are the formats used by the data consumed or produced by the

software open and a reference provided to the format?
Description The use of open file formats for data improves the reusability and

understandability of the software.
FAIR4RS Principle I1: Software reads, writes and exchanges data in a way that meets

domain-relevant community standards.
I2: Software includes qualified references to other objects.

RSMD Recommendation RSMD-7.6
Assessment Requirements Software source code

Software documentation
Method Check the software source code and documentation

for references to the data formats used.
Essential The documentation describes the data formats used
Important The data formats used are open.
Useful A reference to the schema is provided.

Comments This metric is inherently difficult to implement as at present there is
no standardised or common method for describing the data / file
formats used by a piece of software in a machine-readable way.
Community standards commonly define the data formats in use in a

18



discipline, and resources such as FAIRsharing.org provide a curated
catalogues of standards.

Field Description
Metric Identifier FRSM-11
Metric Name Does the software use open APIs that support machine-readable

interface definition?
Description An open Application Programming Interface can be freely accessed by

other software or developers, which makes it easier to integrate
software and encourages modularity and reuse.

FAIR4RS Principle I1: Software reads, writes and exchanges data in a way that meets
domain-relevant community standards.

RSMD Recommendation No related RSMD recommendation.
Assessment Requirements Software source code

Software application
Method Call the software API.
Essential The software provides documented APIs
Important The APIs are open (freely accessible)
Useful The APIs include a machine-readable interface

definition
Comments Only applicable if APIs are implemented.

The OpenAPI specification23 is a machine-readable interface definition
language for describing, producing, consuming and visualising web
services. Additionally, the SmartAPI24 project has developed a
openAPI-based specification for defining the key API metadata
elements and value sets, to maximise the FAIRness of web-based
APIs.

This could be extended to test that the API is callable and does not
return an error code.

Field Description
Metric Identifier FRSM-12
Metric Name Does the software provide references to other objects that support

its use?
Description Determining the usefulness of a piece of software is often aided by

understanding what it is used with.
FAIR4RS Principle I2: Software includes qualified references to other objects.
RSMD Recommendation RSMD-4.3, RSMD-7.6
Assessment Requirements Software source code

Software identifier
Method Check if the software metadata includes references

to other related resources.
Essential N/A

24 https://smart-api.info/

23 https://www.openapis.org/

19

https://smart-api.info/
https://www.openapis.org/


Important The software metadata includes machine-readable
references to articles describing the software,
articles demonstrating use of the software, or to the
data it uses.

Useful N/A
Comments This metric is currently difficult to implement as there is no standard

machine-readable way to define the relationships at a level of detail
that provides suitable meaning, although CodeMeta defines some of
these relationships (e.g. supportingData, referencePublication).25

Field Description
Metric Identifier FRSM-13
Metric Name Does the software describe what is required to use it?
Description Software is made more reusable by providing suitable

machine-actionable information on dependencies, build and
configuration.

FAIR4RS Principle R1: Software is described with a plurality of accurate and relevant
attributes.
R2: Software includes qualified references to other software.

RSMD Recommendation RSMD-7.1, RSMD-7.2, RSMD-7.3, RSMD-7.4, RSMD-7.5
Assessment Requirements Software

Method Check for machine-readable information that helps
support the understanding of how it is to be used

Essential The software has build, installation and/or execution
instructions

Important Dependencies are provided in a machine-readable
format and the building and installation of the
software is automated.

Useful N/A
Comments Most programming languages provide standardised ways of providing

dependency information in a machine-actionable format. Build and
package management systems can be used to automate the
installation process. It is hard to check the relevance / correctness of
this information, but it is possible to automatically check for existence
and error-free build.

Detailed documentation also aids the reusability of software but it is
difficult to automatically test for documentation coverage.

Field Description
Metric Identifier FRSM-14
Metric Name Does the software come with test cases to demonstrate it is working?
Description The provision of test cases improves confidence in the software.
FAIR4RS Principle R1: Software is described with a plurality of accurate and relevant

attributes.
RSMD Recommendation RSMD-7.5

25 https://codemeta.github.io/terms/

20

https://codemeta.github.io/terms/


Assessment Requirements Software source code
Method Check for the presence of automated tests
Essential Tests and data are provided to check that the

software is operating as expected
Important Automated unit and system tests are provided
Useful Code coverage / test coverage is reported

Comments Most programming languages have commonly associated test
frameworks. The specific definition of what constitutes adequate
testing is often defined by community norms. It is hard to check the
relevance / correctness of this information, but it is possible to
automatically check for existence.

Field Description
Metric Identifier FRSM-15
Metric Name Does the software source code include licensing information for the

software and any bundled external software?
Description Clear software licensing enables reuse.
FAIR4RS Principle R1.1: Software is given a clear and accessible licence.
RSMD Recommendation RSMD-6.2, RSMD-6.4, RSMD-6.5, RSMD-6.6
Assessment Requirements Software source code

Software
Method Check the software and its documentation for the

presence of a licence
Essential The software includes its LICENCE file
Important The source code includes licensing information for

all components bundled with that software
Useful The software licensing information is in SPDX format

Comments Each community may have different licences that are popular.

It is important that software licences are included with the source
code as many tools and processes look for licensing information there
to determine licence compatibility.

The SPDX License List26 is a widely used part of the Software Project
Data eXchange (SPDX) open standard. Information about the licence
for a piece of software can be provided either as a file in the source
code repository, or as a short identifier embedded in the source code
files.

Field Description
Metric Identifier FRSM-16
Metric Name Does the software metadata record include licensing information?
Description It is important for licensing information to be on the publicly

searchable and accessible metadata record
FAIR4RS Principle R1.1: Software is given a clear and accessible licence.
RSMD Recommendation RSMD-6.3

26 https://spdx.org/licenses/

21

https://spdx.org/licenses/


Assessment Requirements Software identifier
Method Check if the software identifier or the metadata

record referenced by it includes licensing
information

Essential The identifier or metadata record includes licensing
and copyright information

Important N/A
Useful The software licensing information is in SPDX

format, or other machine-readable form.
Comments This can be defined in different ways, e.g. the “Rights” field in the DOI

metadata.

Field Description
Metric Identifier FRSM-17
Metric Name Does the software include provenance information that describe the

development of the software?
Description Good provenance metadata clarifies the origins and intent behind the

development of the software, and establishes authenticity and trust.
As a type of metadata this overlaps with the metadata called for in
guiding principles F2 and F4.

FAIR4RS Principle R1.2: Software is associated with detailed provenance.
RSMD Recommendation RSMD-4.5
Assessment Requirements Software source code repository / forge

Method Check the development metadata available from the
code repository / forge for the software

Essential The software source code repository / forge includes
a commit history

Important The software source code repository links commits
to issues / tickets

Useful The software project uses other tools to capture
detailed machine readable provenance information.

Comments It is hard to check the relevance / correctness of this information, but
it is possible to automatically check for existence.

It may also be necessary to record information about the way that the
software has been developed, such as the development environment
used. The methodology for building the software is tested in
FRSM-13.

22



3. Disciplinary Exemplar

This section provides an example of how the metrics might be used in a disciplinary context,

taking the social sciences as an exemplar. There are many community standards and norms

that will affect the choice of implementation. For example, checking the type of identifier

(FRSM-01) will depend on the identifier schemes commonly in use. In many research fields,

DOIs are commonly used, but in some disciplines others may be popular e.g. RRIDs in

biomedicine or ARKs in cultural institutions.

By providing an implementation of the metrics defined in Section 2 to a particular

disciplinary community, it is possible to test the applicability of the metrics, as well as

provide further context for how other communities could utilise them.

3.1 Use case: CESSDA software guidelines

The metrics have been mapped to the CESSDA Technical Guidelines for Social Science.27

These guidelines define how CESSDA products are developed, by following CESSDA’s

implementation of the EURISE Network Technical Reference,28 and include specific guidance

on software development and software maturity levels (SMLs). The SMLs provide guidance

on the minimum, expected and excellent standards for each of the 12 CESSDA Maturity

Assessment criteria (documentation, intellectual property, extensibility, modularity,

packaging, portability, standards compliance, maintenance, verification and testing, security,

internalisation and localisation, authentication and authorisation) and can be used to

suggest what is necessary to meet essential, important and useful compliance levels.

Field Description
Metric Identifier FRSM-01-CESSDA
Metric Name Does the software have a globally unique and persistent identifier?
Assessment Requirements Software releases of open source components

to be published in Zenodo

DOI handle
Method Check that an established identifier scheme from

the CESSDA Software Publication polices is used to
identify software.

Essential A version-dependent DOI must be added in the
repository’s README as the recommended citation

Important Releases use the Semantic Versioning 2.0.0 notation
Useful Only Major and Minor releases are assigned DOIs

Comments See the Software Publication29 of open source components as per
CESSDA’s Publication Policy & Procedures (CESSDA, 2020).

29 https://docs.tech.cessda.eu/software/publication.html

28 https://technical-reference.readthedocs.io/en/latest/
27 https://docs.tech.cessda.eu/index.html

23

https://docs.tech.cessda.eu/software/publication.html
https://technical-reference.readthedocs.io/en/latest/
https://docs.tech.cessda.eu/index.html


As described in the CESSDA ERIC Persistent Identifier Policy,30 CESSDA
tools and services accept: DOI, Handle (including ePIC-handles), URN,
ARK (fulfilling principle 10 of the CESSDA Data Access Policy).

Field Description
Metric Identifier FRSM-02-CESSDA
Metric Name Can different components of the software be individually identified?
Assessment Requirements Software source code repository

Method Check that each software product is split into
component microservices, each with its own DOI

Essential A separate Git repository is used for the source code
of each component (aka microservices). The product
deployment scripts assemble the constituent
components.

Important Each component is deposited in Zenodo with its
own DOI.

Useful The Zenodo record for each component is tagged
with the product(s) that it contributes to.

Comments CESSDA requirements for modularity are defined in CMA4:
Modularity.31

CESSDA’s products are designed and built using a microservices
approach. It is expected that a separate Git repository is used for the
source code of each component (aka microservice).

Field Description
Metric Identifier FRSM-03-CESSDA
Metric Name Does each version of the software have a unique identifier?
Assessment Requirements Repository release tag

Software release identifier
Method Check that each release follows CESSDA software

publication policies and is deposited in a repository
that provides a unique DOI for each release.

Essential Each release is published to Zenodo and a DOI
obtained. A publication consists of a release tarball
matching the release tag in the repository. Release
tags exist and adhere to SemVer 2.0.0. The README
and CHANGELOG must be up to date prior to release
and they must be added to the Zenodo record in
addition to the tarball.

Important A release checklist is used to ensure that all
necessary steps are taken for each release. Releases
must be available as Docker images with the release
version as tag.

31 https://docs.tech.cessda.eu/sml/ca4-modularity.html

30 https://zenodo.org/badge/DOI/10.5281/zenodo.6607000.sv

24

https://docs.tech.cessda.eu/sml/ca4-modularity.html
https://zenodo.org/badge/DOI/10.5281/zenodo.6607000.sv


Useful Reserve the DOI in Zenodo, prior to release, to avoid
a circularity problem with the CHANGELOG and the
tarball.

Comments These are derived from the CESSDA Software Publication policy and
procedures for open source components,32 as set out in the CESSDA
Publication Policy & Procedures (CESSDA, 2020).

Field Description
Metric Identifier FRSM-04-CESSDA
Metric Name Does the software include descriptive metadata which helps define

its purpose?
Assessment Requirements Software identifier (DOI) provided by Zenodo

Method Query the metadata provided by the Zenodo record
for the software

Essential Zenodo metadata includes the software name and
description

Important Zenodo metadata includes other descriptive
metadata as recommended in CESSDA Software
Requirements

Useful N/A
Comments CESSDA technical guidelines on CMA1: Documentation33 define what

is required from end-user documentation, operational
documentation, and development documentation but these are not
machine-accessible.

The CESSDA Software Requirements34 also demand that all tools and
products have a comprehensive README.

Field Description
Metric Identifier FRSM-05
Metric Name Does the software include development metadata which helps define

its status?
Assessment Requirements Software source code in repository

Method Check the README and CHANGELOG files for
development status indicators

Essential The README and CHANGELOG must be up to date.
The README contains release details, version
details, links to documentation as described in the
EURISE Network Technical Reference.35

Important Version numbering follows Semantic Versioning
2.0.0 and pre-release versions may be denoted by
appending a hyphen and a series of dot separated
identifiers immediately following the patch version

35 https://technical-reference.readthedocs.io/en/v0.2/developer-guidelines/02-readme.html

34 https://docs.tech.cessda.eu/software/requirements.html

33 https://docs.tech.cessda.eu/sml/ca1-documentation.html

32 https://docs.tech.cessda.eu/software/publication.html o

25

https://technical-reference.readthedocs.io/en/v0.2/developer-guidelines/02-readme.html
https://docs.tech.cessda.eu/software/requirements.html
https://docs.tech.cessda.eu/sml/ca1-documentation.html
https://docs.tech.cessda.eu/software/publication.html


Useful N/A
Comments Some of this metadata is machine readable but requires

interpretation. For CESSDA, active status would be defined as there
being a recent release (release date) and that it is maintained (recent
commits).

Field Description
Metric Identifier FRSM-06-CESSDA
Metric Name Does the software include metadata about the authors and their

roles?
Assessment Requirements Software source code

Software identifier
Method Check that the CITATION and/or CONTRIBUTORS

files exist and Zenodo metadata is present
Essential A CITATION and/or CONTRIBUTORS files is present

in the root of the repository.
Important Author details (including ORCIDs) are present in the

corresponding Zenodo record. ORCIDs are present
for authors in the CITATION.cff file.

Useful N/A
Comments Authorship criteria should follow the CESSDA Publication Policy &

Procedures (CESSDA, 2020). CESSDA uses Citation File Format36 for
recording authorship, e.g. CDC-Searchkit citation.37

Field Description
Metric Identifier FRSM-07-CESSDA
Metric Name Does the software metadata include the identifier of the software?
Assessment Requirements Software source code

Method Check that README and CITATION files exist and
include the DOI for the corresponding software
release.

Essential The README file includes the DOI that represents all
versions in Zenodo

Important The CITATION.cff file included in the root of the
repository includes the appropriate DOI for the
corresponding software release in Zenodo.

Useful N/A
Comments The Zenodo DOI representing all versions will always resolve to the

latest version in Zenodo.

CESSDA uses Citation File Format, which can include a reference to
the software identifier.

Field Description
Metric Identifier FRSM-08-CESSDA

37 https://github.com/cessda/cessda.cdc.searchkit/blob/main/CITATION.cff
36 https://citation-file-format.github.io/

26

https://github.com/cessda/cessda.cdc.searchkit/blob/main/CITATION.cff
https://citation-file-format.github.io/


Metric Name Does the software have a publicly available, openly accessible and
persistent metadata record?

Assessment Requirements Software identifier
Method Check that a DOI exists for the latest release and

resolves to a Zenodo landing page.
Essential The DOI resolves to a Zenodo landing page for the

latest release, and metadata can be accessed via the
Zenodo API.

Important The Zenodo metadata record is available through
public search engines.

Useful The persistent metadata record is available through
multiple, cross-referenced infrastructures, including
OpenAIRE .

Comments Software releases of open source components should be published
on Zenodo, as per CESSDA’s Publication Policy & Procedures (CESSDA,
2020). Recommended metadata from the CESSDA Technical
Guidelines on Software Publication include version, authors, name,
description and identifier.

Field Description
Metric Identifier FRSM-09-CESSDA
Metric Name Is the software developed in a code repository/forge that uses

standard communication protocols?
Assessment Requirements Software source code identifier

Method Check that the git repository of the component is
accessible using standardised communications
protocols such as https or sftp.

Essential Ensure that repositories containing component
software are publicly accessible.

Important No authentication is required to view and/or clone
CESSDA’s public repositories, even so, their contents
cannot be modified directly by 3rd parties.

Useful Pull requests are used to propose modifications to
the contents.

Comments Development of CESSDA tools and services is carried out using
CESSDA-owned git-repositories on Github.38 If the code is developed
publicly elsewhere, mirroring with clear pointers to the upstream are
used.39

Field Description
Metric Identifier FRSM-10-CESSDA
Metric Name Are the data formats used by the software open and a reference

provided to the format?
Assessment Requirements Software source code

39 https://docs.tech.cessda.eu/software/index.html

38 https://github.com/cessda

27

https://docs.tech.cessda.eu/software/index.html
https://github.com/cessda


Software documentation
Method Check that data content used by CESSDA services is

machine-readable
Essential The data formats used by the software are noted in

the documentation.
Important The data complies with a recognised standard used

by the CESSDA community (typically DDI/XML,
RDF/XML, TURTLE, JSON-LD or SKOS).

Useful Where a public API is used to access the data
content, it complies with the OpenAPI standard.

Comments CESSDA documents its approach to open data standards in CMA7 -
Standards Compliance.40

Field Description
Metric Identifier FRSM-11-CESSDA
Metric Name Does the software use open APIs that support machine-readable

interface definition?
Assessment Requirements Software application

Method Call the API
Essential The API meets SML3 of the CESSDA Development

Documentation guidelines: there is external
documentation that describes all API functionality,
which is sufficient to be used by any developer.

Important The software’s REST APIs comply with the OpenAPI
standard.

Useful The software’s REST APIs are described in the
published CESSDA API definitions41.

Comments Expectations around the API definition and documentation are set
out in the section on CMA1.3 Development Documentation of the
CESSDA Technical Guidelines.42 The section on CMA7 Demonstrate
Usability notes that at SML5 (excellent standard) compliance with
open or internationally recognised standards for the software and
software development process, is evident and documented, and
verified through testing of all components. At present, this is not
being included in the assessment criteria as it is hard to automatically
test, but could be independently verified through regular testing and
certification from an independent group.

An extensible service enables additional services to be built on or
around it, including adapting to changing functional requirements
over time. This is done by making the integration point the API. New
and/or existing services can be combined as required via their APIs to
meet changing functional requirements. Versioning the APIs and

42 https://docs.tech.cessda.eu/sml/ca1-documentation.html#cma13-development-documentation

41 https://api.tech.cessda.eu/

40 https://docs.tech.cessda.eu/sml/ca7-standards-compliance.html

28

https://docs.tech.cessda.eu/glossary.html
https://docs.tech.cessda.eu/sml/ca1-documentation.html#cma13-development-documentation
https://api.tech.cessda.eu/
https://docs.tech.cessda.eu/sml/ca7-standards-compliance.html


supporting two versions simultaneously allows services to evolve,
without breaking the contract they provide to their consumers.43

Field Description
Metric Identifier FRSM-12-CESSDA
Metric Name Does the software provide references to other objects that support

its use?
Assessment Requirements

Method Not applicable for CESSDA
Essential N/A
Important N/A
Useful N/A

Comments CESSDA uses the “docs-as-code” approach for end user and content
editor demonstration. Therefore, for this metric, it is hard for CESSDA
tools and services to demonstrate compliance. Therefore, this metric
is not useful to assess at present. At present, CESSDA does not require
publications describing the software - if this changed, a suitable
assessment for this metric would be to test the identifier for the
publication to be included in the software metadata.

Field Description
Metric Identifier FRSM-13-CESSDA
Metric Name Does the software describe what is required to use it?
Assessment Requirements Software

Method Check the README file.
Essential Dependency information and build instructions are

included in the README file. Linting and other
relevant checks are present in the automated build
and test process (e.g. via the Jenkinsfile).

Important The README file includes a badge that links to the
automated build tool (Jenkins). Deployment to
development and staging environments is
automated (conditional on test results).

Useful The build badge indicates the status of the latest
build (passing or failing)

Comments See Software Maturity Levels (SML)44 for: CMA1 - Documentation,
CMA3 - Extensibility, CM4 - Modularity, CMA5 - Packaging, CMA6 -
Portability, and CMA7 - Standards Compliance.

Source code documentation should use the de facto standard for
chosen language, e.g: JavaDoc for Java.45 Although no
language-specific coding conventions are mandated, the ‘Coding
conventions for languages’ section of the Wikipedia Coding

45 https://docs.tech.cessda.eu/software/documentation-guidelines/development-documentation.html#technical-manual

44 https://docs.tech.cessda.eu/sml/index.html
43 https://docs.tech.cessda.eu/software/interoperability.html#extensible

29

https://docs.tech.cessda.eu/software/documentation-guidelines/development-documentation.html#technical-manual
https://docs.tech.cessda.eu/sml/index.html
https://docs.tech.cessda.eu/software/interoperability.html#extensible


conventions page is a useful reference source for language-specific
guidelines, if required.46

Field Description
Metric Identifier FRSM-14-CESSDA
Metric Name Does the software come with test cases to demonstrate it is working?
Assessment Requirements Software source code

Method Check the README file.
Essential The README file includes badges that link to a

comprehensive code quality assessment tool
(SonarQube) and automated build tool (Jenkins).

Important CMA9-SML5 - Demonstrable usability: A production
system has been tested and validated through
successful use of the application.

CMA7-SML5 - Demonstrable usability: Compliance
with open or internationally recognised standards
for the software and software development process,
is evident and documented, and verified through
testing of all components. Ideally independent
verification is documented through regular testing
and certification from an independent group.

Useful The README file badges indicate the status of the
tests and other code quality metrics.
The repository contains a subdirectory containing
code for the test cases that are run automatically.

Comments See Software Maturity Levels (SML) for: CMA9 - Verification and
Testing47 and CMA7 Standards Compliance.

CESSDA periodically runs the SQAaaS tool48 against its publicly
accessible repositories and displays the results via a badge in the
README file.

Field Description
Metric Identifier FRSM-15-CESSDA
Metric Name Does the software source code include licensing information for the

software and any bundled external software?
Assessment Requirements Software source code

Software
Method Check that the LICENSE file exists. Check that the

source code headers include a licensing statement.
Essential Include a LICENSE.txt file in the root of the

repository.

48 https://sqaaas.eosc-synergy.eu/#/auth/full-assessment
47 https://docs.tech.cessda.eu/sml/ca9-verification-and-testing.html

46 https://docs.tech.cessda.eu/software/documentation-guidelines/index.html#software-code-structure

30

https://sqaaas.eosc-synergy.eu/#/auth/full-assessment
https://docs.tech.cessda.eu/sml/ca9-verification-and-testing.html
https://docs.tech.cessda.eu/software/documentation-guidelines/index.html#software-code-structure


Important Include licensing information in the source code
header.

Useful The build script (Maven POM, where used) checks
that the standard header is present in all source
code files.

Comments CESSDA guidance on licence information is part of the guidelines on
Standard Git Repository Contents,49 Further guidance is provided as
part of the guidance on CMA2 - Intellectual Property.50

Field Description
Metric Identifier FRSM-16-CESSDA
Metric Name Does the software metadata record include licensing information?
Assessment Requirements Software identifier

Method Check for the presence of licence information in the
Zenodo repository and source code deposited in the
repository

Essential Licensing information is included in the Zenodo
record and in a LICENSE.txt file included in the root
directory of the source code deposited in Zenodo.

Important N/A
Useful N/A

Comments CESSDA guidance on licence information is part of the guidelines on
Standard Git Repository Contents.

Field Description
Metric Identifier FRSM-17-CESSDA
Metric Name Does the software include provenance information?
Assessment Requirements Software source code repository

Method Check the commit history of the code repository
Essential Code repository contains commit messages
Important Code that addresses an issue is developed in a

branch prefixed with the issue number.
Useful Links to Pull Requests are included in issue tracker

tickets.
Comments Git repositories include a commit history as a matter of course.

CESSDA uses git repos on GitHub, and uses a branching model where
each branch is prefixed with the issue tracker ticket number that it
addresses.

50 https://docs.tech.cessda.eu/sml/ca2-intellectual-property.html

49 https://docs.tech.cessda.eu/technical-infrastructure/gcp-repository-standard-contents.html#overview

31

https://docs.tech.cessda.eu/sml/ca2-intellectual-property.html
https://docs.tech.cessda.eu/technical-infrastructure/gcp-repository-standard-contents.html#overview


References

Amdouni, Emna, Bouazzouni, Syphax, & Jonquet, Clement. (2022). O’FAIRe makes you an
offer: metadata-based automatic FAIRness assessment for ontologies and semantic
resources. In International Journal of Metadata, Semantics and Ontologies (Vol. 16, Issue 1,
pp. 16–46). Inderscience Publishers. https://doi.org/10.1504/ijmso.2022.131133

Asmi, Ari, Cordewener, Bas, Goble, Carole, Castelli, Donatella, Kühn, Eileen, Pasian, Fabio,
Niccolucci, Franco, Glaves, Helen, Jeffery, Keith, Assante, Massimiliano, Dovey, Matthew,
Manola, Natalia, Juty, Nick, Blomberg, Niklas, Jimenez, Rafael, Beckmann, Volker. (2017).
D6.3: 1st Report on Data Interoperability: Findability and Interoperability. (1.1). EOSCpilot.
Available from: https://www.eoscpilot.eu/sites/default/files/eoscpilot-d6.3.pdf

Barker, Michelle, Chue Hong, Neil P., Katz, Daniel S. et al. Introducing the FAIR Principles
for research software. Sci Data 9, 622 (2022). https://doi.org/10.1038/s41597-022-01710-x

Bourque, Pierre and Fairley, Richard E. (eds.) (2014). Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society. Available from:
https://www.swebok.org.

CESSDA ERIC. (2020). CESSDA Publication Policy & Procedures (1.0). Zenodo.
https://doi.org/10.5281/zenodo.3904264

Chue Hong, Neil P., Katz, Daniel. S., Barker, Michelle, Lamprecht, Anna-Lena, Martinez,
Carlos, Psomopoulos, Fotis E., Harrow, Jen, Castro, Leyla Jael, Gruenpeter, Morane,
Martinez, Paula Andrea, Honeyman, Tom, et al. (2021). FAIR Principles for Research
Software (FAIR4RS Principles). Research Data Alliance. https://doi.org/10.15497/RDA00065

Chue Hong, Neil P., Katz, Daniel S., Barker, Michelle, Lamprecht, Anna-Lena, Martinez,
Carlos, Psomopoulos, Fotis E., Harrow, Jen, Castro, Leyla Jael, Gruenpeter, Morane,
Martinez, Paula Andrea, Honeyman, Tom, Struck, Alexander, Lee, Allen, Loewe, Axel, van
Werkhoven, Ben, Jones, Catherine, Garijo, Daniel, Plomp, Esther, Genova, Francoise, …
RDA FAIR4RS WG. (2022). FAIR Principles for Research Software (FAIR4RS Principles)
(1.0). https://doi.org/10.15497/RDA00068

Chue Hong, Neil P (ed), Gruenpeter, Morane, Antonioletti, Mario, and Priddy, Mike. (2023)
Community Workshop on Metrics for FAIR Software. Zenodo.
https://doi.org/10.5281/zenodo.8393889

Devaraju, Anusuriya, & Huber, Robert. (2021). An automated solution for measuring the
progress toward FAIR research data. Patterns, 2(11), 100370.
https://doi.org/10.1016/j.patter.2021.100370

Devaraju, Anusuriya, Huber, Robert, Mokrane, Mustapha, Herterich, Patricia, Cepinskas,
Linas, de Vries, Jerry, L'Hours, Herve, Davidson, Joy, & White, Angus. (2022). FAIRsFAIR
Data Object Assessment Metrics (0.5). Zenodo. https://doi.org/10.5281/zenodo.6461229

European Commission. Directorate General for Research and Innovation. (2020). Scholarly
infrastructures for research software: report from the EOSC Executive Board Working Group
(WG) Architecture Task Force (TF) SIRS. Publications Office. https://doi.org/10.2777/28598

FAIR Data Maturity Model Working Group. (2020). FAIR Data Maturity Model. Specification
and Guidelines (1.0). Zenodo. https://doi.org/10.15497/rda00050

32

https://doi.org/10.1504/ijmso.2022.131133
https://www.eoscpilot.eu/sites/default/files/eoscpilot-d6.3.pdf
https://doi.org/10.1038/s41597-022-01710-x
http://www.swebok.org
https://doi.org/10.5281/zenodo.3904264
https://doi.org/10.15497/RDA00065
https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.8393889
https://doi.org/10.1016/j.patter.2021.100370
https://doi.org/10.5281/zenodo.6461229
https://doi.org/10.2777/28598
https://doi.org/10.15497/rda00050


Gaignard, Alban, Rosnet, Thomas, De Lamotte, Frédéric, Lefort, Vincent, & Devignes,
Marie-Dominique. (2023). FAIR-Checker: Supporting digital resource findability and reuse
with Knowledge Graphs and Semantic Web standards. Journal of Biomedical Semantics,
14(1). https://doi.org/10.1186/s13326-023-00289-5

GO FAIR. (2018). FAIR Principles. GO FAIR Initiative. https://www.go-fair.org/fair-principles/
Retrieved from:
https://web.archive.org/web/20180212143802/https://www.go-fair.org/fair-principles/

Gruenpeter, Morane, Di Cosmo, Roberto, Koers, Hylke, Herterich, Patricia, Hooft, Rob,
Parland-von Essen, Jessica, Tana, Jonas, Aalto, Tero, & Jones, Sarah. (2020). M2.15
Assessment report on 'FAIRness of software' (1.1). Zenodo.
https://doi.org/10.5281/zenodo.4095092

Gruenpeter, Morane, Katz, Daniel S., Lamprecht, Anna-Lena, Honeyman, Tom, Garijo,
Daniel, Struck, Alexander, Niehues, Anna, Martinez, Paula Andrea, Castro, Leyla Jael,
Rabemanantsoa, Tovo, Chue Hong, Neil P., Martinez-Ortiz, Carlos, Sesink, Laurents, Liffers,
Matthias, Fouilloux, Anne Claire, Erdmann, Chris, Peroni, Silvio, Martinez Lavanchy, Paula,
Todorov, Ilian, & Sinha, Manodeep. (2021). Defining Research Software: a controversial
discussion (Version 1). Zenodo. https://doi.org/10.5281/zenodo.5504016

Gruenpeter, Morane, Granger, Sabrina, Monteil, Alain, Chue Hong, Neil, Breitmoser, Elena,
Antonioletti, Mario, Garijo, Daniel, González Guardia, Esteban, Gonzalez Beltran, Alejandra,
Goble, Carole, Soiland-Reyes, Stian, Juty, Nick, & Mejias, Gabriela. (2023). D4.4 -
Guidelines for recommended metadata standard for research software within EOSC (V1.0
DRAFT NOT YET APPROVED BY EUROPEAN COMMISSION). Zenodo.
https://doi.org/10.5281/zenodo.8199104

ISO. (2011). ISO/IEC 25010:2011: Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software quality
models. ISO. Available from: https://www.iso.org/standard/35733.html

Lamprecht, Anna-Lena, Garcia, Leyla, Kuzak, Mateusz, Martinez, Carlos, Arcila, Ricardo,
Martin Del Pico, Eva, Dominguez Del Angel, Victoria, van de Sandt, Stephanie, Ison, Jon,
Martinez, Paula Andrea, McQuilton, Peter, Valencia, Alfonso, Harrow, Jennifer,
Psomopoulos, Fotis, Gelpi, Josep LL., Chue Hong, Neil, Goble, Carole, & Capella-Gutierrez,
Salvador. (2020). Towards FAIR principles for research software [JB]. Data Science, 3(1),
37–59. https://doi.org/10.3233/DS-190026

Kan, Stephen H. (2002). Metrics and Models in Software Quality Engineering, Second
Edition. Addison Wesley. ISBN: 9780201729153.

Katz, Daniel S., Gruenpeter, Morane, & Honeyman, Tom (2021). Taking a fresh look at FAIR
for research software. Patterns, 2(3), 100222. https://doi.org/10.1016/j.patter.2021.100222

Martinez, Paula Andrea, Erdmann, Christopher, Simons, Natasha, Otsuji, Reid, Labou,
Stephaine, Johnson, Ryan, Castelao, Guilherme, Boas, Bia Villas, Lamprecht, Anna-Lena,
Ortiz, Carlos Martinez, Garcia, Leyla, Kuzak, Mateusz, Stokes, Liz, Honeyman, Tom, Wise,
Sharyn, Quan, Josh, Peterson, Scott, Neeser, Amy, Karvovskaya, Lena, … Fankhauser,
Eliane. (2019, February 1). Top 10 FAIR data & software things. Zenodo.
https://zenodo.org/record/3409968

33

https://doi.org/10.1186/s13326-023-00289-5
https://web.archive.org/web/20180212143802/https://www.go-fair.org/fair-principles/
https://doi.org/10.5281/zenodo.4095092
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.8199104
https://www.iso.org/standard/35733.html
https://doi.org/10.3233/DS-190026
https://doi.org/10.1016/j.patter.2021.100222
https://zenodo.org/record/3409968


Orviz, Pablo, López García, Álvaro, Duma, Doina C., Donvito, Giacinto, David, Mario,
Gomes, Jorge, Campos, Isabel, Moltó, Germán, & Tykhonov, Vyacheslav. (2022). A set of
common software quality assurance baseline criteria for research projects. DIGITAL.CSIC.
http://hdl.handle.net/10261/160086

Wilkinson, Mark D., Dumontier, Michel, Aalbersberg, IJsbrand. J., Appleton, Gabrielle, Axton,
Myles, Baak, Arie, Blomberg, Niklas, Boiten, Jan-Willem, da Silva Santos, Luiz Bonino,
Bourne, Philip E., Bouwman, Jildau, Brookes, Anthony J., Clark, Tim, Crosas, Merce, Dillo,
Ingrid, Dumon, Olivier, Edmunds, Scott, Evelo, Chris T., Finkers, Richard, … Mons, Barend.
(2016). The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.18

Wilkinson, Mark D., Sansone, Susanna-Assunta, Schultes, Erik, Doorn, Peter, Bonino da
Silva Santos, Luiz O., & Dumontier, Michel. (2018). A design framework and exemplar
metrics for FAIRness. In Scientific Data (Vol. 5, Issue 1). Springer.
https://doi.org/10.1038/sdata.2018.118

Zuser, Wolfgang, Heil, Stefan, & Grechenig, Thomas. (2005). Software quality development
and assurance in RUP, MSF and XP. Proceedings of the Third Workshop on Software
Quality - 3-WoSQ. http://dx.doi.org/10.1145/1083292.1083300

34

http://hdl.handle.net/10261/160086
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2018.118
http://dx.doi.org/10.1145/1083292.1083300


Appendices

Appendix A - Evolution of FAIR principles from data to software

As background information, this section details how the development of the FAIR4RS Principles has evolved, by comparison of The FAIR Guiding

Principles for scientific data management and stewardship (Wilkinson et al., 2016, with foundational principle text taken from GO FAIR, 2018)

with the Towards FAIR Principles for research software (Lamprecht et al., 2020) and Taking a fresh look at FAIR for research software report

(Katz, Gruenpeter & Honeyman, 2021), the previous draft for community review (Chue Hong et al., 2021) and the FAIR4RS Principles described

in this document.

FAIR Guiding Principles
(2016)

Towards FAIR Principles
for research software
(2020)

Taking a fresh look at FAIR
for research software
(2021)

FAIR4RS Principles Draft
for RDA Community
Review (2021)

FAIR4RS Principles (2022)

F. Findable

The first step in (re)using
data is to find them.
Metadata and data should
be easy to find for both
humans and computers.
Machine-readable metadata
are essential for automatic
discovery of datasets and
services, so this is an
essential component of the
FAIRification process.

The main concern of
findability for research
software is to ensure
software can be identified
unambiguously when
looking for it using common
search strategies.

The first step in (re)using
software is to find it.
Metadata and software
should be easy to find for
both humans and
computers.
Machine-readable metadata
are essential for automatic
discovery of software, so
this is an essential
component of the
FAIRification process.

The software, and its
associated metadata, should
be easy to find for both
humans and machines.

Software, and its associated
metadata, is easy for both
humans and machines to
find.

F1. (Meta)data are assigned
a globally unique and

F1. Software and its
associated metadata have a

F1. Software is assigned a
globally unique and

F1. Software is assigned a
globally unique and

F1. Software is assigned a
globally unique and

35



persistent identifier global, unique and persistent
identifier for each released
version.

persistent identifier persistent identifier. persistent identifier.

F1.1. Different components
of the software must be
assigned distinct identifiers
representing different levels
of granularity.

F1.1. Components of the
software representing levels
of granularity are assigned
distinct identifiers.

F1.2. Different versions of
the same software must be
assigned distinct identifiers.

F1.2. Different versions of
the software are assigned
distinct identifiers.

F2. Data are described with
rich metadata (defined by
R1 below)

F2. Software is described
with rich metadata.

F2. Software is described
with rich metadata (defined
first by R1 below, and then
by the original FAIR
principles for metadata)

F2. Software is described
with rich metadata.

F2. Software is described
with rich metadata.

F3. Metadata clearly and
explicitly include the
identifier of the data they
describe

F3. Metadata clearly and
explicitly include identifiers
for all the versions of the
software it describes.

F3. Metadata clearly and
explicitly include the
identifier of the software they
describe

F3. Metadata clearly and
explicitly include the
identifier of the software they
describe.

F3. Metadata clearly and
explicitly include the
identifier of the software they
describe.

F4. (Meta)data are
registered or indexed in a
searchable resource

F4. Software and its
associated metadata are
included in a searchable
software registry.

F4. Software is registered or
indexed in a searchable
resource

F4. Metadata are FAIR and
is searchable and indexable.

F4. Metadata are FAIR,
searchable and indexable.

A. Accessible

Once the user finds the
required data, she/he needs
to know how can they be
accessed, possibly including
authentication and

Accessibility translates into
retrievability [...] however,
we found mere retrievability
not enough. In order for
anyone to use any research

Once the user finds the
required software, they need
to know how it can be
accessed, possibly including
authentication and

The software, and its
metadata, must be
retrievable via standardized
protocols.

Software, and its metadata,
is retrievable via
standardized protocols.

36



authorisation. software, a working version
of the software needs to be
available.

authorization.

A1. (Meta)data are
retrievable by their identifier
using a standardized
communications protocol

A1. Software and its
associated metadata are
accessible by their identifier
using a standardized
communications protocol.

A1. Software is retrievable
by its identifier using a
standardized
communications protocol

A1. Software is retrievable
by its identifier using a
standardized
communications protocol.

A1. Software is retrievable
by its identifier using a
standardized
communications protocol.

A1.1. The protocol is open,
free, and universally
implementable

A1.1. The protocol is open,
free, and universally
implementable.

A1.1. The protocol is open,
free, and universally
implementable

A1.1. The protocol is open,
free, and universally
implementable.

A1.1. The protocol is open,
free, and universally
implementable.

A1.2. The protocol allows for
an authentication and
authorization procedure,
where necessary

A1.2. The protocol allows for
an authentication and
authorization procedure,
where necessary.

A1.2. The protocol allows for
an authentication and
authorization procedure,
where necessary

A1.2. The protocol allows for
an authentication and
authorization procedure,
where necessary.

A1.2. The protocol allows for
an authentication and
authorization procedure,
where necessary.

A2. Metadata are
accessible, even when the
data are no longer available

A2. Software metadata are
accessible, even when the
software is no longer
available.

A2. Metadata are
accessible, even when the
software is no longer
available

A2. Metadata are
accessible, even when the
software is no longer
available.

A2. Metadata are
accessible, even when the
software is no longer
available.

I. Interoperable

The data usually needs to
be integrated with other
data. In addition, the data
need to interoperate with
applications or workflows for
analysis, storage, and
processing.

Interoperability for research
software can be understood
in two dimensions: as part of
workflows (horizontal
dimension) and as stack of
digital objects that need to
work together at compilation
and execution times (vertical
dimension)

The software usually needs
to communicate with other
software via exchanged data
(or possibly its metadata).
Software tools can
interoperate via common
support for the data they
exchange.

The software interoperates
with other software through
exchanging data and/or
metadata, and/or through
interaction via application
programming interfaces
(APIs).

Software interoperates with
other software by
exchanging data and/or
metadata, and/or through
interaction via application
programming interfaces
(APIs), described through
standards.

37



I1. (Meta)data use a formal,
accessible, shared, and
broadly applicable language
for knowledge
representation.

I1. Software and its
associated metadata use a
formal, accessible, shared
and broadly applicable
language to facilitate
machine readability and data
exchange.

I1. Software should read,
write or exchange data in a
way that meets
domain-relevant community
standards

I1. Software reads, writes
and exchanges data in a
way that meets
domain-relevant community
standards.

I1. Software reads, writes
and exchanges data in a
way that meets
domain-relevant community
standards.

I2. (Meta)data use
vocabularies that follow
FAIR principles

I2.1. Software and its
associated metadata are
formally described using
controlled vocabularies that
follow the FAIR principles.

Now split between F4 and
I1.

Now split between F4 and
I1.

I2.2. Software use and
produce data in types and
formats that are formally
described using controlled
vocabularies that follow the
FAIR principles.

I3. (Meta)data include
qualified references to other
(meta)data

I2. Software includes
qualified references to other
objects.

I2. Software includes
qualified references to other
objects.

I2. Software includes
qualified references to other
objects.

I4S. Software dependencies
are documented and
mechanisms to access them
exist.

R. Reusable

The ultimate goal of FAIR is
to optimize the reuse of
data. To achieve this,
metadata and data should

Reusability in the context of
software has many
dimensions. At its core,
reusability aims for someone

The ultimate goal of FAIR is
to enable and encourage the
use and reuse of software.
To achieve this, software

The software is both usable
(it can be executed) and
reusable (it can be
understood, modified, built

Software is both usable (can
be executed) and reusable
(can be understood,
modified, built upon, or

38



be well-described so that
they can be replicated
and/or combined in different
settings.

to be able to reuse software
reproducibly.

should be well-described (by
metadata) and appropriately
structured so that it can be
replicated, combined,
reinterpreted,
reimplemented, and/or used
in different settings.

upon, or incorporated into
other software).

incorporated into other
software).

R1. (Meta)data are richly
described with a plurality of
accurate and relevant
attributes

R1. Software and its
associated metadata are
richly described with a
plurality of accurate and
relevant attributes.

R1. Software is richly
described with a plurality of
accurate and relevant
attributes

R1. Software is described
with a plurality of accurate
and relevant attributes.

R1. Software is described
with a plurality of accurate
and relevant attributes.

R1.1. (Meta)data are
released with a clear and
accessible data usage
license

R1.1. Software and its
associated metadata have
independent, clear and
accessible usage licenses
compatible with the software
dependencies.

R1.1. Software is made
available with a clear and
accessible software usage
license

R1.1. Software must have a
clear and accessible license.

R1.1. Software is given a
clear and accessible license.

R1.2. (Meta)data are
associated with detailed
provenance

R1.2. Software metadata
include detailed provenance,
detail level should be
community agreed.

R1.2. Software is associated
with detailed provenance

R1.2. Software is associated
with detailed provenance.

R1.2. Software is associated
with detailed provenance.

R1.3. (Meta)data meet
domain-relevant community
standards

R1.3. Software metadata
and documentation meet
domain-relevant community
standards.

R1.3. Software meets
domain-relevant community
standards

R3. Software meets
domain-relevant community
standards.

R3. Software meets
domain-relevant community
standards.

R2. Software includes
qualified references to other
software

R2. Software includes
qualified references to other
software.

R2. Software includes
qualified references to other
software.

39


