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Abstract
We study the fine-grained complexity of conjunctive queries with grouping and aggregation. For some
common aggregate functions (e.g., min, max, count, sum), such a query can be phrased as an ordinary
conjunctive query over a database annotated with a suitable commutative semiring. Specifically, we
investigate the ability to evaluate such queries by constructing in log-linear time a data structure
that provides logarithmic-time direct access to the answers ordered by a given lexicographic order.
This task is nontrivial since the number of answers might be larger than log-linear in the size of the
input, and so, the data structure needs to provide a compact representation of the space of answers.

In the absence of aggregation and annotation, past research provides a sufficient tractability
condition on queries and orders. For queries without self-joins, this condition is not just sufficient,
but also necessary (under conventional lower-bound assumptions in fine-grained complexity). We
show that all past results continue to hold for annotated databases, assuming that the annotation
itself is not part of the lexicographic order. On the other hand, we show infeasibility for the case
of count-distinct that does not have any efficient representation as a commutative semiring. We
then investigate the ability to include the aggregate and annotation outcome in the lexicographic
order. Among the hardness results, standing out as tractable is the case of a semiring with an
idempotent addition, such as those of min and max. Notably, this case captures also count-distinct
over a logarithmic-size domain.
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1 Introduction

Consider a query Q that may have a large number of answers, say cubic in the number of
tuples of the input database D. By answering Q via direct access, we avoid the materialization
of the list of answers, and instead, construct a compact data structure S that supports
random access: given an index i, retrieve the ith answer. Hence, direct access evaluation for
a query Q consists of two algorithms, one for the structure construction (with the input D),
called preprocessing, and one for fast access to the answers (with the input S and i). This
task is nontrivial when S is considerably cheaper to construct than Q(D). Similarly to past
work on direct access [6], we adopt the tractability requirement of linear or quasi-linear time
to construct S, and logarithmic time per access. Hence, up to a poly-logarithmic factor, the
required construction time is what it takes to read the database (i.e., linear time), and the
access time is constant. The structure S can be viewed as a compact representation of Q(D),
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4:2 Direct Access for Answers to Aggregate Queries

in the general sense of Factorized Databases [17], since its size is necessarily quasi-linear and
it provides fast access.

Direct access solutions have been devised for Conjunctive Queries (CQs), first as a way to
establish algorithms for enumerating the answers with linear preprocessing time and constant
delay [4] (and FO queries with restrictions on the database [2]); the preprocessing phase
constructs S, and the enumeration phase retrieves the answers by accessing S with increasing
indices i. Later, direct access had a more crucial role within the task of enumerating the
answers in a uniformly random order [7]. As a notion of query evaluation, direct access is
interesting in its own right, since we can view S itself as the “result” of the query in the case
where array-like access is sufficient for downstream processing (e.g., to produce a sample of
answers, to return answers by pages, to answer q-quantile queries, etc.). But then S has
the benefit that it is considerably smaller and faster to produce than the materialized set
of answers. Indeed, recent work has studied the complexity of direct access independently
(regardless of any enumeration context) [5], and specifically studied which orders over the
answers allow for such evaluation [6]. In this paper, we continue with the line of work by
Carmeli et al. [6] and investigate the ability to support query evaluation via direct access for
aggregate queries, while focusing on lexicographic orderings of answers.

For illustration, consider the following example, inspired by the FIFA World Cup. Suppose
that we have a database of players of teams (countries), sponsors of teams, and goals
scored in different games. Specifically, we have three relations: Teams(player, country),
Sponsors(org, country), and Goals(game, player, time). The following CQ finds times
when sponsors got exposure due to goals of supported teams:

Q1(c, o, p, t) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

Suppose also that we would like the answers to be ordered lexicographically by their order in
the head: first by c (country), then by o (organization), then by p (player), and lastly by t

(time). Note that o, c, p and t are free variables and g is an existential variable. Carmeli et
al. [6] studied the ability to evaluate such ordered queries with direct access. In the case of
Q1, the results of Carmeli et al. show that there is an efficient direct access evaluation (since
the query is free-connex and there is no “disruptive trio”).

Now, suppose that we would like to count the goals per sponsorship and player. In
standard CQ notation (e.g., Cohen et al. [9]), we can phrase this query as follows.

Q2(c, o, p, Count()) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

Here, the variables p, c, and o are treated as the grouping variables (rather than free variables),
where each combination of values defines a group of tuples over (c, o, p, g, t) and Count()
simply counts the tuples in the group. Again, we would like to answer this query via direct
access. This introduces two challenges. The first challenge is aggregate construction: when
we access a tuple using S, the aggregate value should be quickly produced as well. The
second challenge is ordering by aggregation: how can we incorporate the aggregation in the
lexicographic order of the answers if so desired by the query? As an example, we may wish
to order the answers first by c, then by Count(), and then by o and p; in this case, we would
phrase the head accordingly as Q2(c, Count(), o, p).

As previously done in the context of algorithms for aggregate queries [15, 20], we also
study a semiring alternative to the above formalism of aggregate queries. Specifically, we
can adopt the well-known framework of provenance semiring of Green, Karvounarakis and
Tannen [13] and phrase the query as an ordinary CQ with the annotation carrying the
aggregate value (e.g., the number of goals in our example). To reason about random-access
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evaluation, we found it more elegant, general, and insightful to support CQs over annotated
databases rather than SQL-like aggregate functions. For illustration, we can phrase the
above aggregate query Q2 as the following CQ Q3, but for a database that is annotated
using a specific commutative semiring.

Q3(c, o, p) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t)

In a nutshell (the formal definition is in Section 2), the idea is that each tuple is annotated
with an element of the semiring, the annotation of each tuple in the group is the product of the
participating tuple annotations, and the annotation of the whole group is the sum of all tuple
annotations in the group’s tuples. In the case of our example with Q3, we use the numeric
semiring (Z, +, ·, 0, 1), and each tuple is annotated simply with the number 1. We can use dif-
ferent semirings and annotations to compute different aggregate functions like sum, min, and
max. Here again, we have challenges analogous to the aggregate case: annotation construction
and ordering by annotation. The previous example becomes ordering by c, then by the an-
notation, and then by o and p. Notationally, we specify the annotation position by the symbol
⋆ and phrase the query as Q3(c, ⋆, o, p) :− Teams(p, c), Sponsors(o, c), Goals(g, p, t). We
refer to such a query as a CQ⋆.

In this paper, we study queries in both formalisms—CQs enhanced with aggregate
functions and ordinary CQ⋆s over annotated databases. We usually devise algorithms
and upper bounds on general commutative semirings (possibly with additional conditions),
as positive results carry over to the aggregate formalism, and we prove cases of specific
intractable queries with specific aggregate functions over ordinary (non-annotated) databases.

Our analysis is done in two parts. In Section 4, we study the case where the annotation or
aggregation is not a part of the lexicographic order; we show that under reasonable assump-
tions about the complexity of the semiring operations, all results for ordinary databases [6]
continue to hold in the presence of annotation (that is, we can solve annotation construction).
We conclude the analogous tractability for the common aggregate functions (count, sum, min,
max, average), with the exception of count-distinct which cannot be expressed efficiently
as a semiring annotation. In Section 5, we study the ability to include the annotation or
aggregation in nontrivial positions within the lexicographic order; we show that the picture
is more involved there since we hit hardness very quickly, and we need to carefully state the
conditions that allow for efficient direct access for important cases.

The remainder of the paper is organized as follows. After preliminary concepts and
notation in Section 2, Section 3 defines the challenge of direct access with an underlying
order and recalls the state of affairs for ordinary CQs over ordinary databases. We present
our analysis in Sections 4 and 5 (as explained in the previous paragraph), and conclude in
Section 6. Missing proofs can be found in the full version of the paper [10].

2 Preliminaries

We begin with preliminary notation and terminology that we use throughout the paper.

Databases and conjunctive queries. A schema S is a finite set {R1, . . . , Rk} of relation
symbols. Each relation symbol R is associated with an arity ar(R), which is a natural
number. We assume a countably infinite set Const of constants that appear as values of
databases. A database D over a schema S maps every relation symbol R of S to a finite
relation RD ⊆ Constar(R). If (c1, . . . , ck) is a tuple of RD (where k = ar(R)), then we call
the expression R(c1, . . . , ck) a fact of D.

ICDT 2024



4:4 Direct Access for Answers to Aggregate Queries

A Conjunctive Query (CQ) over the schema S has the form Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗)
where x⃗ and y⃗ are disjoint sequences of variables, and each φi(x⃗, y⃗) is an atomic query
R(z1, . . . , zk) such that R ∈ S with ar(R) = k and each zi is a variable in x⃗ or y⃗. Each
φi(x⃗, y⃗) is an atom of Q, and we denote by atoms(Q) the set of atoms of Q. We call Q(x⃗) the
head of the query and φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) the body of the query. The variables of x⃗ are the
free variables of Q, and those of y⃗ are the existential variables of Q, and every variable occurs
at least once in the body. We use vars(Q) and free(Q) to denote the set of all variables and
all free variables of Q, respectively. If φ ∈ atoms(Q), then vars(φ) is the set of variables in
φ. We say that Q is full if it has no existential variables, that is vars(Q) = free(Q).

We refer to a database D over the schema S of the CQ Q as a database over Q. A
homomorphism from a CQ Q to a database D over Q is a mapping h from the variables of Q

into values of D such that for each atom R(z1, . . . , zk) of Q it holds that R(h(z1), . . . , h(zk))
is a fact of D. We denote by Hom(Q, D) the set of all homomorphisms from Q to D. If
h ∈ Hom(Q, D) then we denote by h(x⃗) the tuple obtained by replacing every variable x

with the constant h(x), and we denote by h(φi(x⃗, y⃗)) the fact that is obtained from the atom
φi(x⃗, y⃗) by replacing every variable z with the constant h(z). An answer to Q over D is
a tuple of the form h(x⃗) where h ∈ Hom(Q, D). The result of Q over D, denoted Q(D), is
Q(D) := {h(x⃗) | h ∈ Hom(Q, D)}.

Consider a CQ Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗). We may refer to Q as Q(x⃗) to specify the
sequence of free variables in the head. In this work, the order of the sequence x⃗ has a crucial
role, since it determines the desired order of answers. Specifically, we will assume that the
desired order of answers is lexicographic in the left-to-right order of x⃗. For example, the CQ
Q(x1, x2) :−R(x1, x2), S(x2, y) differs from the CQ Q′(x2, x1) :−R(x1, x2), S(x2, y) not only
in the order of values within each answer tuple but also in the order over the answers. For
Q(x1, x2) we order the answers first by x1 and then by x2, and for Q′(x2, x1) we order first
by x2 and then by x1,

As usual, we associate a CQ Q with the hypergraph H(Q) = (VQ, EQ) where VQ = vars(Q)
and EQ = {vars(φ)|φ ∈ atoms(Q)}. We say that Q is acyclic if H(Q) is an (α-)acyclic
hypergraph. Recall that a hypergraph H = (V, E) is acyclic if there is a tree T = (E, ET ),
called a join tree of H, with the running intersection property: for each vertex v ∈ V , the
set of hyperedges that contain v induces a connected subtree of T . If H is acyclic and
S ⊆ V , then we say that H is S-connex if H remains acyclic even if we add S to the set of
hyperedges [4]. An acyclic CQ Q is free-connex if H(Q) is acyclic and free(Q)-connex.

A hypergraph H ′ = (V, E′) is an inclusive extension of a hypergraph H = (V, E) if
E ⊆ E′ and for every edge e′ ∈ E′ there is an edge e ∈ E such that e′ ⊆ e. It is known that
H is acyclic S-connex if and only if H has an inclusive extension with a join tree T such
that S is precisely the set of all variables contained in the vertices of some subtree of T [1].
We call such a tree ext-S-connex tree. When S is the set of free variables of the CQ, and the
CQ is clear from the context, we call such a tree ext-free-connex.

The notion of a disruptive trio has been introduced previously in the context of direct
access to the answers of CQs [6]. A disruptive trio of a CQ Q(x⃗) is a set of three distinct
free variables x1, x2, and x3 such that x1 and x2 neighbor x3 but not each other, and x3
succeeds both x1 and x2 in x⃗. By saying that x and y are neighbors we mean that they occur
jointly in at least one of the atoms.

Aggregate queries. By an aggregate function we refer to a function that takes as input a
bag of tuples over Const and returns a single value in Const. We adopt the notation of Cohen
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et al. [9] to our setting, as follows. An aggregate query here is an expression of the form

Q(x⃗, α(w⃗), z⃗) :−φ1(x⃗, y⃗, z⃗), . . . , φℓ(x⃗, y⃗, z⃗)

such that Q′(x⃗, z⃗) :−φ1(x⃗, y⃗, z⃗), . . . , φℓ(x⃗, y⃗, z⃗) is a CQ, α an aggregate function, and w⃗ a
sequence of variables from y⃗. An example is Q(x1, x2, Sum(y2), z) :−R(x1, x2, y1), S(y1, y2, z).
We refer to such a query as an Aggregate CQ or ACQ for short. Given a database D over
Q′, the result Q(D) is defined by Q(D) := {(⃗a, α(B(⃗a, b⃗)), b⃗) | (⃗a, b⃗) ∈ Q′(D)} where B(⃗a, b⃗)
is the bag that is obtained by collecting the tuples h(w⃗) from every h ∈ Hom(Q′, D) with
h(x⃗) = a⃗ and h(z⃗) = b⃗. Note that our database and query model use set semantics, and
we use bag semantics only to define the aggregate functions (in order to capture important
functions such as count and sum).

We say that Q is acyclic if Q′ is acyclic. Similarly, Q is free-connex if Q′ is free-connex.
A disruptive trio of Q is a disruptive trio of Q′; in other words, the definition of a disruptive
trio remains unchanged when introducing aggregates, while we consider only the grouping
variables and not the aggregate function.

▶ Remark 1. We remark on two aspects in our definition of ACQs. First, the reason for using
both x⃗ and z⃗ as sequences of free variables is to determine a position for aggregate value α(w⃗)
and, consequently, define its position in the lexicographic order over the answers. Second,
the reader should note that, in our notation, an ACQ has a single aggregate function. While
this is important for some of our results, other results can be easily extended to multiple
aggregate functions α(w⃗1), . . . , α(w⃗k). We will mention this extension when relevant. ◀

In this work, we restrict the discussion to the common aggregate functions Count, CountD
(count distinct), Sum, Avg (average), Min and Max. All aggregate functions take a single
column as input (i.e., y⃗i is of length one) except for Count that counts the tuples in the
group and takes no argument. For instance, the query Q2 in the Introduction uses Count()
and it could also use CountD(g) for counting the distinct games with scored goals.

Commutative semirings. A commutative monoid is an algebraic structure (K, ·) over a
domain K, with a binary operation · that satisfies associativity: (a · b) · c = a · (b · c) for
any a, b, c ∈ K, commutativity: a · b = b · a for any a, b ∈ K, and identity element: there
exists an element ∅ ∈ K such that a ·∅ = a for any a ∈ K. A commutative semiring is an
algebraic structure (K,⊕,⊗, 0̄, 1̄) over a domain K, with two binary operations ⊕ and ⊗ and
two distinguished elements 0̄ and 1̄ in K that satisfy the following conditions: (a) (K,⊕) is a
commutative monoid with the identity element 0̄; (b) (K,⊗) is a commutative monoid with
the identity element 1̄; (c) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) for all a, b, c ∈ K; and (d) a⊗ 0̄ = 0̄
for all a ∈ K.

We refer to ⊕ as the addition operation, ⊗ as the multiplication operation, 0̄ as the
additive identity and 1̄ as the multiplicative identity. We give examples of commutative
semirings at the end of this section.

Annotated databases and query answers. Let S be a schema and (K,⊕,⊗, 0̄, 1̄) a com-
mutative semiring. A K-database (over S) is a pair (D, τ) where D is a database over S
and τ : D → K is function that maps every fact f of D to an element τ(f) of K, called the
annotation of f .

The annotation of a database propagates to the query answers by associating a semiring
operation with each algebraic operation [13]. In the case of CQs, the relevant operations are
joins and projection. For join, the annotation of the result is the product of the annotation

ICDT 2024



4:6 Direct Access for Answers to Aggregate Queries

of the operands. For projection, the annotation is the sum of the annotations of the tuples
that give rise to the result. In our terminology, we have the following.

Let Q(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) be a CQ and (D, τ) an annotated database. For a
homomorphism h from Q to D, we denote by ⊗h the product of the annotations of the facts
in the range of h, that is ⊗h := τ(h(φ1(x⃗, y⃗)))⊗ · · · ⊗ τ(h(φℓ(x⃗, y⃗))). An answer to Q over
(D, τ) is a pair (c⃗, a) such that c⃗ ∈ Q(D) and

a = ⊕{⊗h | h ∈ Hom(Q, D) ∧ h(x⃗) = c⃗}

where, for A = {a1, . . . , an} ⊆ K, we define ⊕A = a1 ⊕ · · · ⊕ an. As before, the result of Q

over (D, τ), denoted Q(D, τ), is the set of answers (c⃗, a) to Q over (D, τ). We will make use
of the fact that, over commutative semirings, projections and joins are commutative [13].

In this work, we study the ability to incorporate the annotation in the order over the
answers. More precisely, we will investigate the complexity of involving the annotation in
the lexicographic order over the answers, as if it were another value in the tuple. So, when
we consider a CQ Q(x⃗), we need to specify where the annotation goes inside x⃗. Similarly
to the ACQ notation, we do so by replacing x⃗ with a sequence (x⃗, ⋆, z⃗) where ⋆ represents
the annotation value. We refer to a CQ of this form as a CQ⋆. An example of a CQ⋆ is
Q(x1, x2, ⋆, z) :−R(x1, x2, y1), S(y1, y2, z) where the lexicographic order is by x1, then by x2,
then by the annotation, and then by z.

Let Q be a CQ⋆, and let Q′ be the CQ obtained from Q by removing ⋆ from the head.
As in the case of ACQs, Q is acyclic if Q′ is acyclic, Q is free-connex if Q′ is free-connex,
and a disruptive trio of Q is a disruptive trio of Q′.

Aggregate functions can often be captured by annotations of answers in annotated
databases, where each aggregate function might require a different commutative semiring:

Sum: the numeric semiring (Q, +, ·, 0, 1).
Count: the counting semiring (N, +, ·, 0, 1).
Max: the max tropical semiring (Q ∪ {−∞}, max, +,−∞, 0).
Min: the min tropical semiring (Q ∪ {∞}, min, +,∞, 0).

The translation is straightforward (and known, e.g., [15, 20]), as we illustrate in Figure 1:
the aggregated value becomes the annotation on one of the relations, the annotation outside
of this relation is the multiplicative identity (as we later term “locally annotated”), and the
addition operation captures the aggregate function. Note that in the case of the numeric
and min/max tropical semirings, we are using the domain Q of rational numbers rather than
all real numbers to avoid issues of numerical presentation in the computational model.

Avg can be computed using Sum and Count. CountD (count distinct) cannot be captured
by a semiring, as the result of ⊕ cannot be computed from two intermediary annotations in
the domain. We can, however, capture a semantically similar concept with the set semiring
(P(Ω),∪,∩,∅, Ω) by annotating each fact with the actual set of distinct elements. However,
in such cases, we will need our complexity analysis to be aware of the cost of the operations.

3 The Direct-Access Problem

In this paper, we study CQs with lexicographic orders over the answers. As said earlier, the
lexicographic order for the CQ Q(x⃗) is left to right according to x⃗. We will also investigate
lexicographic orders that involve the annotation or aggregation when the query is a CQ⋆

Q(x⃗, ⋆, z⃗) or an ACQ Q(x⃗, α(u⃗), z⃗), respectively. We refer uniformly to the annotation of an
answer (over an annotated database) and to the aggregate value of the answer’s group (over
an ordinary database) as the computed value.
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Teams
p c

1 5
2 5
3 6
4 7
5 8

Goals
g p t

1 1 31
1 3 50
1 3 75
2 4 90
2 4 9

Replays
g t

1 1
1 31
1 50
2 5
1 90

⇒

Team
p c τ+

1 5 1
2 5 1
3 6 1
4 7 1
5 8 1

Goals
g p t τ+

1 1 31 1
1 3 50 1
1 3 75 1
2 4 90 1
2 4 9 1

Replays
g t τ+

1 1 1
1 31 31
1 50 50
2 5 5
1 90 90

Figure 1 An example of a Q-database over the numerical semiring constructed to evaluate the
ACQ Q(c, Sum(t)) :− Teams(p, c), Goals(g, p, t), Replays(g, t).

Let Q be a CQ, CQ⋆, or an ACQ. A direct access solution for Q consists of two algorithms:
one for preprocessing and one for access.

The preprocessing algorithm takes as input a database D over Q and constructs a data
structure SD.

The access algorithm takes as input SD and an index i, and returns the ith answer of
Q(D) in the lexicographic order. Note that this answer includes the computed value,
when it exists. If i > |Q(D)| then the algorithm should return null.

To define the complexity requirements of efficient direct access, we first describe the
complexity model that we adopt. We use data complexity as a yardstick of tractability.
Hence, complexity is measured in terms of the size of the database, while the size of the
query is fixed (and every query is a separate computational problem). Assuming the input is
of size n, we use the RAM model of computation with O(log n)-bit words and uniform-cost
operations. Notably, this model allows us to assume perfect hash tables can be constructed
in linear time, and they provide access in constant time [12].

Let Tp and Ta be numeric functions. A direct-access algorithm is said to be in ⟨Tp, Ta⟩ if
the preprocessing phase takes O(Tp(|D|)) time and each access takes O(Ta(|D|)) time. For
example, ⟨loglinear, log⟩ states that preprocessing constructs in O(|D| log |D|) time a data
structure that provides O(log |D|)-time access. In this work, a query Q has efficient direct
access (and Q is deemed tractable) if it has a direct access algorithm in ⟨loglinear, log⟩.

Carmeli et al. [6] established a dichotomy in the tractability of the CQs and lexicographic
orders. This dichotomy relies on the following hypotheses.

SparseBMM: two binary matrices An×n and Bn×n represented by lists of their non-zero
entries cannot be multiplied in O(m polylog(m)) time where m is the total number of
non-zero entries in A, B and A×B.

HYPERCLIQUE: for all k ≥ 2, there is no O(m polylog(m))-time algorithm that, given a
hypergraph with m hyperedges, determines whether there exists a set of k + 1 vertices
such that every subset of k vertices among them forms a hyperedge.

▶ Theorem 2 ( [6]). Let Q be a CQ.

1. If Q is free-connex with no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩.

2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-
suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).
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4 Incorporating Annotation and Aggregation in the Answers

In this section, we discuss the existence of efficient direct access in the case where the order
does not involve the computed value, that is, the annotation (for CQ⋆s) or the aggregate
values (for ACQs). Equivalently, these are queries where the computed value is last in order,
that is, the vector z⃗ in the head is empty. Hence, we focus on CQ⋆s of the form Q(x⃗, ⋆) and
ACQs of the form Q(x⃗, α(w⃗)). In other words, the problem is similar to the CQ case, except
that the access algorithm should also retrieve the aggregated value from the data structure.
In Section 4.1, we will use annotated databases to identify the cases where this can be done
efficiently for min, max, count, sum, and average. By contrast, in Section 4.2 we will show
that we cannot do the same for count-distinct, even in the case of an extremely simple query,
unless the domain of the elements we count is small (logarithmic-size).

But first, we need to be clear about the complexity of the semiring operations. The
RAM model allows us to assume that the numeric, counting, min tropical, and max tropical
semirings use constant space for representing values and constant time for the operations ⊕
and ⊗. In fact, it suffices for our results to assume that the operations take logarithmic time,
and later we will make use of this relaxed assumption (within a special case of CountD). We
refer to a semiring with this property as a logarithmic-time (commutative) semiring.

In our proofs, we will use the following definition of when two facts f and f ′ agree in
the context of two queries. Intuitively, facts agree if they assign the same variables with the
same values.

▶ Definition 3. Let Q and Q′ be CQs over the schemas S and S′, respectively. Let φ and φ′

be atoms of Q and Q′ over the relation symbols R and R′, respectively. Let f and f ′ be facts
over R and R′, respectively. We say that f and f ′ agree (w.r.t. φ and φ′) if there exists a
homomorphism h : vars(ϕ) ∪ vars(ϕ′)→ Const such that f and f ′ are obtained from φ and
φ′, respectively, by replacing each variable x with the constant h(x).

4.1 Generalized Dichotomies
We now show that Theorem 2 extends to databases with annotations, and so, also to queries
with aggregate functions that can be efficiently simulated by annotations. The first step is to
eliminate the existential variables from the CQ⋆. It is folklore that free-connex CQs (over
non-annotated databases) can be transformed into full acyclic CQs in linear time [14,18]. The
following lemma states that the same holds for free-connex CQ⋆s over annotated databases.

▶ Lemma 4. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and let Q(x⃗, ⋆, z⃗)
be a free-connex CQ⋆. There exists a full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗), without self-joins, and an
O(|D| log |D|)-time algorithm that maps K-databases (D, τ) of Q to K-databases (D′, τ ′) of
Q′ such that (a) Q′(D′, τ ′) = Q(D, τ); (b) the variables in every atom of Q′ are contained
in an atom of Q; and (c) Q has a disruptive trio if and only if Q′ has a disruptive trio.

We note that in the case where the semiring operations require only constant time, the
algorithm of Lemma 4 runs in linear time instead of loglinear time. With this lemma, we
can now prove the following generalization of Theorem 2 to annotated databases.

▶ Theorem 5. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and let Q(x⃗, ⋆)
be a CQ⋆.
1. If Q is free-connex and with no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩

on K-databases.
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2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-
suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).

Proof. For the negative side of the dichotomy, we simply use the negative side of Theorem 2.
This can be done since each answer to a CQ⋆ contains the ordinary (non-annotated) answer
to the CQ obtained by removing ⋆, and the answers have the same order. It is left to prove
the positive side of the dichotomy.

We can use Lemma 4 to focus on full CQ⋆s without self-joins. We build on the algorithm
that Carmeli et al. [6] presented for proving what we gave here as Theorem 2. This algorithm
uses the concept of a layered join tree, defined for a CQ Q. It can be seen as a particular
kind of join tree of a query Qlay equivalent to Q. That is, the variables of every atom of Q

are contained in an atom of Qlay and vice versa. They showed how to find such a tree when
there is no disruptive trio. They also showed how, given a database D over Q, to construct a
database Dlay over Qlay such that Q(D) = Qlay(Dlay) in O(|D| log |D|) time. Then, they
showed how to use the special structure of the layered join tree to perform access calls in
logarithmic time. In an access call, a fact is selected from each relation of Dlay, and these
facts are joined to form the answer.

We use the same construction and incorporate the annotations as follows. We construct
Qlay and (Dlay, τlay) from Q and (D, τ), respectively. For Qlay and Dlay, we use the same
construction as that of Carmeli et al. [6], and we apply it by ignoring the annotation. Next,
we annotate each fact f of Dlay with the initial value τ ′(f) = 1̄, and then apply the following
operation.

1: for all atoms φ of Q do
2: Select an atom φlay of Qlay such that vars(φ) ⊆ vars(φlay)
3: Let R and Rlay be the relation symbols of φ and φlay, respectively
4: for all facts flay of Rlay do
5: Find a fact f of R such that f and flay agree w.r.t. φ and φlay (see Definition 3)
6: τlay(flay)← τlay(flay) · τ(f)

Note that in line 5, at most one corresponding f exists for every flay since vars(φ) ⊆
vars(φlay). Moreover, from the construction of Carmeli et al. [6] it follows that such an
f necessarily exists (since they apply the full reduction of the Yannakakis [23] algorithm).
Finding each f can be done in constant time by constructing a hash table where each key is
a tuple of values assigned to vars(φ) by f ; then, for each flay, we project out other variables
and search the hash table. In total, this procedure can be done in loglinear time.

The access algorithm extends naturally from before: a fact is selected from each relation
of Dlay, and those are combined to form an answer. The annotation of the answer is the
product of the annotations of the selected facts. Retrieving the answer takes logarithmic
time, and then we compute the annotation in logarithmic time using a constant number
of semiring multiplications. The returned answer is annotated correctly: the annotation is
indeed the product of the annotations of the facts of D that form the answer, and those were
multiplied to form the annotation in Dlay. ◀

From the positive side of Theorem 5, we conclude efficient direct access for ACQs Q,
as long as we can efficiently formulate the aggregate function as an annotation over some
logarithmic-time commutative semiring. This is stated in the following corollary of Theorem 5.

▶ Corollary 6. Consider an ACQ Q(x⃗, α(w⃗)) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) where α is one of Min,
Max, Count, Sum, and Avg.
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1. If the CQ Q′(x⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) is free-connex with no disruptive trio, then direct
access for Q is in ⟨loglinear, log⟩.

2. Otherwise, if Q is also self-join-free, then direct access for Q is not in ⟨loglinear, log⟩, as-
suming the HYPERCLIQUE hypothesis (in case Q is cyclic) and the SparseBMM hypothesis
(in case Q is acyclic).

Proof. For the positive side, we simply apply Theorem 5 with the corresponding semiring. In
the case where α is Avg, we compute Sum and Count separately and divide the results. The
negative side carries over from Theorem 2 since a direct access solution for Q in ⟨loglinear, log⟩
is also a direct access solution for Q′ in ⟨loglinear, log⟩ if we ignore the aggregated values. ◀

▶ Remark 7. Corollary 6 can be easily extended to support multiple aggregate functions
α1(w⃗1), . . . , αk(w⃗k). For that, we can simply solve the problem for each αi(w⃗i) separately,
and extract the aggregate values of an answer from the k data structures that we construct
in the preprocessing phase. (Moreover, a practical implementation can handle all aggregate
values in the same structure.) ◀

4.2 Hardness of Count Distinct
Can we generalize Corollary 6 beyond the stated aggregate functions? The most notable
missing aggregate function is CountD (count distinct). Next, we show that we cannot have
similar tractability for count distinct, even in the case of a very simple query, under the
small-universe Hitting Set Conjecture (HSC) [22]. In HSC, we are given two sets U and V
of size N , each containing sets over the universe {1, 2, . . . , d}, and the goal is to determine
whether U contains a set that shares an element with (hits) every set in V. HSC states that
the problem takes N2−o(1) time for every function d = ω(log(N)). (In fact, it is conjectured
that even a randomized algorithm for this problem needs N2−o(1) time in expectation [22].)

▶ Theorem 8. Direct access for Q(x, CountD(y)) :−R(x, w), S(y, w) is not in ⟨loglinear, log⟩,
assuming HSC.

Proof. Let U = {U1, U2, . . . , UN} and V = {V1, V2, . . . , VN} be sets of sets of elements of the
universe {1, 2, . . . , d} where d = N c for some 0 < c < 1. Indeed, d = ω(logN), as required
by the conjecture. We construct the database D over R and S with the fact R(i, j) for all
j ∈ Ui and S(i, j) for all j ∈ Vi.

Next, we assume efficient direct access for Q(x, CountD(y)) :−R(x, z), S(y, z), and use
that to solve the hitting-set problem. Each query answer is a pair (i, c) where i is the index
of a set Ui from U and c is the number of sets Vj that Ui hits. By accessing all query answers,
we can check all sets in U , one by one, and see whether any is hitting all N sets. The number
of facts in D is O(dN), and the number of query answers (and so the number of access calls)
is N . Hence, direct access for Q in ⟨loglinear, log⟩ would imply a solution to the hitting-set
problem in better than N2−o(1) time. Indeed, for any d = O(N c), we get a solution in
O(N1+c · log N) time, which contradicts HSC for c < 1. ◀

Importantly, the reduction used in the proof of Theorem 8 does not involve the order, and
hence, the theorem holds true even for direct access without any order requirement.

Despite the above example of intractability, it is important to observe that there are cases
where Theorem 5 can be used to compute count distinct: when the size of the domain Ω
of the distinct elements we count is bounded by a logarithm in the input size |D|. Such an
assumption can be realistic when we count, say, distinct categories from a small ontology
(e.g., item categories in a sales context), distinct countries from a small collection of countries,
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and so on. In such cases, we can compute the exact set of distinct elements, and not just
their count, by using the set semiring (P(Ω),∪,∩,∅, Ω) since the operations ∪ and ∩ can be
performed in logarithmic time for logarithmic domains.

5 Incorporating the Annotation and Aggregation in the Order

The results of the previous section apply when the lexicographic order does not include the
computed value, or equivalently when the computed value is last in the head of the query. In
this section, we explore the ability to include the computed value earlier in the lexicographic
order. To this end, we assume that the underlying commutative semiring has an ordered
domain. When the domain is numerical, we will implicitly assume the natural order without
mentioning it. In terms of the computational model, we assume that we can compare two
given elements of the domain in time logarithmic in the input.

We first discuss the hardness encountered when we desire to incorporate the computed
value in the order. It turns out that this hardness is hit already in extremely simple queries.
This is a contrast to the case of Section 4 when this value is excluded from the order.

Hardness of a CQ⋆. Consider the simplest possible Cartesian-product query: R × S for
unary R and S. We wish to have the annotation first in the order, hence we have the CQ⋆

Q⋆×(⋆, x, y) :−R(x), S(y) . (1)

The next theorem states that under the 3SUM conjecture, direct access for Q⋆× is
impossible over K-database with semirings that gave positive results in the previous section.
The 3SUM conjecture [11,19] states it takes N2−o(1) time to determine whether a given set
of N elements from {−N3, . . . , N3} contains distinct elements a, b, c such that a + b = c.

▶ Theorem 9. Let (K,⊕,⊗, 0̄, 1̄) be one of the counting, numerical, max tropical, or min
tropical semirings. Direct access for the CQ⋆ Q⋆× (of Equation (1)) is not in ⟨loglinear, log⟩
over K-databases, assuming the 3SUM conjecture.

The proof of Theorem 9 shows how to solve 3SUM using an algorithm for Q⋆×. The proof
is nontrivial and is more involved in the case of the counting and numerical semirings, where
we use results from number theory [8] to define a homomorphism, such that the operation ⊗
of the semiring represents the numerical addition of 3SUM.

Hardness of an ACQ. Theorem 9 states the hardness of direct access for R × S by the
order of the annotation. For that, we needed to use the power of the annotation, namely, the
annotation of an answer (a, b) is the product of the annotations of R(a) and S(b). This does
not necessarily imply that we have a similar hardness when the computed value is within an
ACQ, say using Count. For example, direct access for Q(Count(), x, y) :−R(x), S(y) is clearly
in ⟨loglinear, log⟩ since the computed value has no impact (as it is always 1).

Nevertheless, we can show that incorporating the computed value in the order introduces
hardness for another fixed ACQ Qc(Count(), x, y). Moreover, this ACQ is tractable if the
order was x, y, Count(), due to Theorem 5. We prove it using a reduction from Q⋆× with the
counting semiring (N, +, ·, 0, 1).

▶ Theorem 10. There exists a free-connex ACQ Qc(Count(), x, y) such that direct access for
Q is not in ⟨loglinear, log⟩, assuming the 3SUM conjecture.
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R

x w

a 1
b 1
b 2
c 1
c 2
c 3

R′

x′ w′

a’ 1
b’ 1
c’ 1
c’ 2
d’ 1
d’ 2

−→

L

c c′ Xc X ′
c′

1 1 [a] [a’,b’]
1 2 [a] [c’,d’]
2 1 [b] [a’,b’]
3 1 [c] [a’,b’]
2 2 [b] [c’,d’]
3 2 [c] [c’,d’]

Q(Count(), x, x′) :−R(x, w), R′(x′, w′)

Figure 2 Example of the construction in the proof of Proposition 11: direct access for the ACQ
Q(Count(), x, x′) :− R(x, w), R′(x′, w′).

In Theorem 9, we stated hardness for the specific CQ⋆ Q⋆×(⋆, x, y) :−R(x), S(y), while
in Theorem 10 we only claimed the existence of the hard ACQ Qc(Count(), x, y) since the
latter is more involved (and we construct it in the proof). The reader might wonder whether
we could also phrase Theorem 10 over the Cartesian product Q(Count(), x, y) :−R(x), S(y)
or alike. Clearly, incorporating Count in R(x) × S(y) would be meaningless since every
answer appears exactly once (and has a count of 1). The next theorem shows that the reason
goes deeper: even if we add to Q(Count(), x, y) :−R(x), S(y) existential variables, the query
remains in ⟨loglinear, log⟩. This statement, in contrast to Q(Count(), x, y) :−R(x), S(y), is
nontrivial and requires a proof.

▶ Proposition 11. For Q(Count(), x, y) :−R(x, w), S(y, z), direct access is in ⟨loglinear, log⟩.

Proof. For ease of notation, we rename Q as follows:

Q(Count(), x, x′) :−R(x, w), R′(x′, w′)

In the remainder of this proof, we fix an input database D for Q. Note that the answers
are of the form (c · c′, a, a′) where c is the count of the facts R(a, ·) that have a as the first
element, and c′ is the count of the facts R′(a′, ·) that have a′ as the first element.

Let us describe the preprocessing step. First, we compute the number of facts R(a, ·) for
every possible value of a. We use the result to create the set of all counts per possible value
of x, and denote this set by C. For all c ∈ C, we also keep a list Xc with the set of all values
a that appear c times in the left column of R. The list Xc is sorted so that we can easily
locate a given a. We do the same for R′ to obtain C ′ and a sorted list X ′

c′ for every c′ ∈ C ′.
Next, we create a list L, where for every pair of counts (c, c′) ∈ C × C ′ it holds the tuple

(c, c′, Xc, X ′
c′) where Xc and X ′

c′ are represented as pointers to the corresponding lists. See
Figure 2 for an example of the construction of L from an input database. We perform direct
access on L sorted by c · c′ and weighted by |Xc| · |X ′

c′ | using prefix sum, similarly to the
way established by Carmeli et al. [6] for a single relation, as we briefly describe next.
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We first sort L by the product of the first two elements of each tuple, c · c′. Notice that
L indeed represents the answers in the order we desire. For example, if the first fact in L is
(c, c, Xc, X ′

c′), then the first |Xc| · |X ′
c′ | answers have the count c · c′ and assign to x and x′

the values that occur in Xc and X ′
c′ , respectively. We then iterate over L, and for a tuple

index i we compute the sum of |Xc| · |X ′
c′ | over all tuples in indices 1, . . . , i − 1 in L. We

denote this sum by li. Note that li+1 > li for all i = 1, . . . , |L|.
We now describe the access procedure. Suppose that we are requested to fetch result

number d. We perform a binary search on L to find the tuple in index i such that li < d ≤ li+1.
Assume that this tuple is (c, c′, Xc, X ′

c′). The count we return is c · c′. Next, we need to
access the (d− li)th element (x, x′) in Xc×X ′

c′ , sorted lexicographically by x and then by x′.
As in multidimensional arrays, we assign to x′ the element with the index (d− li) mod |X ′

c′ |
of X ′

c′ , and we assign to x the element with the index ⌊ d−li

|X′
c′ |⌋ of Xc.

We now analyze the execution time. Processing each of the a counts and the a′ counts
separately requires only O(|D|) time. The concern is the time it takes to build and sort the
list L, which might be of size |C| · |C ′|. Assume, without loss of generality, that |C| ≥ |C ′|.
We claim that |RD| = Ω(|C|2). If RD has the smallest possible number of facts to result
in |C| distinct counts, then the counts are 1, . . . , |C|. The number of facts in this case is∑|C|

i=1 i = |C|(|C|+1)
2 . So, |L| = |C| · |C ′| ≤ |C|2 = O(|RD|). We conclude that the algorithm

runs in O(|D| log |D|) preprocessing time and O(log |D|) access time. In conclusion, direct
access for Q is in ⟨loglinear, log⟩, as claimed. ◀

5.1 Tractability Condition for General Semirings
So far, we have seen examples where it is intractable to incorporate the computed value in
the order. Not incorporating it is the same as positioning it last in the lexicographic order.
In this section, we show that we can be flexible about the position, to some extent, and pull
the computed value back to an earlier position. For example, we show that direct access for
the following CQ⋆ is in ⟨loglinear, log⟩ over databases annotated with the numerical semiring.

Q(w, x, ⋆, y, z) :−R(w, x), S(x, y, z), T (y, z) (2)

Let (K,⊕,⊗, 0̄, 1̄) be a commutative semiring in a domain K with an underlying order ⪰.
The semiring is said to be ⊗-monotone if the function fc is monotone for every c ∈ K, where
fc : K→ K is defined by fc(y) = c⊗ y. This means that either c⊗ a ⪰ c⊗ b whenever a ⪰ b,
or c ⊗ a ⪰ c ⊗ b whenever b ⪰ a. All specific semirings that we mention in the paper are
⊗-monotone. Computationally, we assume that we can determine efficiently (in logarithmic
time in the input) whether a given c is such that the function fc(x) = c⊗ x is non-decreasing
or non-increasing.

▶ Theorem 12. Let (K,⊕,⊗, 0̄, 1̄) be a ⊗-monotone logarithmic-time commutative semiring,
and Q(x⃗, ⋆, z⃗) a free-connex CQ⋆ with no disruptive trio. If every atom of Q contains either
all variables of z⃗ or none of them, then direct access for Q is in ⟨loglinear, log⟩.

As an example, consider again the CQ⋆ of Equation (2). The variables that follow the
computed value ⋆ are y and z, and indeed, every atom either contains both y and z (as
the second and third atoms) or contains none of them (as the first atom). Hence, direct
access is tractable according to Theorem 12. As another example, recall the intractable CQ⋆

Q⋆×(⋆, x, y) :−R(x), S(y) from Theorem 9. Note that this is not one of the tractable cases
of Theorem 12 since there is an atom that contains x but not y. In contrast, Theorem 12
does indicate that whenever ⋆ is not first, as is the case with (x, ⋆, y), the query is tractable.
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Similarly to Corollary 6, we conclude the following corollary for ACQs.

▶ Corollary 13. Let Q(x⃗, α(w⃗), z⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗) be a free-connex ACQ with no
disruptive trio. Suppose that α is one of Min, Max, Count, Sum, and Avg. If every atom in Q

contains either all or none of the variables of z⃗, then direct access for Q is in ⟨loglinear, log⟩.

In the next section, we study how additional assumptions on the annotated database can
lead to additional opportunities to efficiently incorporate the computed value in the ordering.

5.2 Locally Annotated Databases
We have seen in Theorem 9 that even the simple CQ⋆ Q⋆×(⋆, x, y) :−R(x), S(y) is intractable.
This hardness does not necessarily apply to ACQs. For illustration, consider the ACQ

Q(Sum(w), x, y) :−R(x, w), S(y) . (3)

When translating into an annotated database, we obtain the CQ⋆ Q⋆× over Q-databases
annotated by the numerical semiring (Q, +, ·, 0, 1). Hence, we translate the problem into an
intractable one. Nevertheless, direct access for Q by (⋆, x, y) is, in fact, in ⟨loglinear, log⟩,
as we will show in Theorem 17. This discrepancy stems from the fact that the hardness of
Q⋆× (established in the proof of Theorem 9) relies on the annotation of tuples from both
R and S. Yet, in our translation, all S-facts are annotated by 1, and only R-facts have a
nontrivial annotation. The resulting K-database is such that every fact is annotated by 1̄ (the
multiplicative identity), with the exception of one relation. We call such a K-database locally
annotated or R-annotated (when we need to specify R). We now focus on such databases
and show how the assumption of local annotations can be used for efficient access.

In the remainder of this section, we restrict the discussion to queries without self-joins1

and fix a logarithmic-time commutative semiring (K,⊕,⊗, 0̄, 1̄).

Full CQ⋆s. We first discuss full CQ⋆s (i.e., without existential variables). In the next
sections, we also discuss the implications on (non-full) ACQs. We begin with some examples
that demonstrate the results that follow later in this section.

▶ Example 14. In some cases, incorporating the annotation in an otherwise tractable order
may introduce hardness. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring, and
consider the full CQ⋆

Q(x⃗, ⋆, z⃗) :−R(x1, x3), S(x2, x3)

over S-annotated K-databases. Note that Q has a disruptive trio if x3 appears after both x1
and x2 in the order. Let us consider orders where this is not the case. The lexicographic order
(⋆, x2, x3, x1) is not covered by Theorem 12, as x1 appears in R, but x2 does not. However,
we will show in Theorem 17 that, when considering S-annotated K-databases, direct access
for Q by this order is in ⟨loglinear, log⟩, while direct access for Q by (⋆, x1, x3, x2) is not in
⟨loglinear, log⟩. ◀

▶ Example 15. It may also happen that we incorporate the annotation non-trivially and
the query remains tractable. Consider the full CQ⋆

Q′(x⃗, ⋆, z⃗) :−R(x1, x3), S(x2, x3), T (x3)

1 In fact, for the algorithm, it suffices that the relation with unrestricted annotations will not appear in
more than one atom.
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over T -annotated K-databases. Note that this case is a slight variation on Example 14. For
any lexicographic order (x⃗, ⋆, z⃗), if x3 appears after x1 and x2, then Q′ has a disruptive trio
and, therefore, direct access for Q′ is not in ⟨loglinear, log⟩. As we show in Theorem 17, for
Q′ over T -annotated K-databases, that lack of a disruptive trio is a sufficient condition for
tractability. That is, if x3 does not appear after x1 and x2, then for any aggregate function
α it holds that direct access for Q′ (and for Q) is in ⟨loglinear, log⟩. ◀

When dealing with R-annotated databases, we can replace the annotation of the facts
of R with a new extra attribute, added to R, and then reason about orders that involve
the annotation by considering orders that involve the new attribute instead. To do so, we
introduce the following variations of a query and order. Let Q be a full acyclic CQ⋆ without
self-joins. For a relation symbol R of Q, we define the R-deannotation of Q(x⃗, ⋆, z⃗) to be the
CQ QR obtained as follows, where we denote by ϕS the atom of a relation symbol S.

In the head, replace ⋆ with a new variable y.
If, in addition, vars(ϕR) contains only variables from x⃗, then in the head of QR, advance
y to be immediately after the last variable of ϕR.
For each relation S of Q, if vars(ϕR) ⊆ vars(ϕS) then concatenate y to the variable
sequence of ϕR.

▶ Example 16. Consider the CQ⋆ Q′ of Example 15. The R-deannotation of Q′ is

QR(x⃗R, y, z⃗R) :−U(x1, x3, y), V (x2, x3, y), R(x3, y)

where x⃗R and z⃗R are adjustments of x⃗ and z⃗: if x3 is in x⃗, the suffix of x⃗ that follows x3 is
moved to the beginning of z⃗. ◀

When Q is full, we can reduce direct access for Q to direct access for QR. This is stated
in the next theorem. The theorem also says that, whenever the annotation domain contains
the natural numbers, this reduction is optimal in the sense that, if we got an intractable QR,
then direct access for Q was hard to begin with.

▶ Theorem 17. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time commutative semiring. Let Q be a
full CQ⋆ without self-joins and QR the R-deannotation of Q for a relation symbol R of Q.
1. If QR is acyclic and has no disruptive trio, then direct access for Q is in ⟨loglinear, log⟩

on R-annotated K-databases.
2. Otherwise, if N ⊆ K, then direct access for Q is not in ⟨loglinear, log⟩ on R-annotated

K-databases, assuming the HYPERCLIQUE hypothesis (in case QR is cyclic) and the
SparseBMM hypothesis (in case QR is acyclic).

We obtain the positive side of the result by treating the annotation as an extra variable
that depends functionally on the original variables of R. Our definition of the R-deannotation
is exactly the FD-reordered extension [6] of the query with this extra variable, and the
tractability of such an extension is known to imply the tractability of the original query. We
note that the negative side of Theorem 17 applies to any domain other than N, as long as we
can generate infinitely many elements according to the underlying order of the semiring.

▶ Example 18. Theorem 17 gives us a useful tool to analyze the previous examples. Recall
that in Example 16 we showed the R-deannotation of Q′ from Example 15. Since y appears
in every atom, it cannot be part of any disruptive trio. In particular, the disruptive trios of
QR are exactly the disruptive trios of Q. Therefore, given an order (x⃗, α(w), z⃗), checking
whether direct access for Q is in ⟨loglinear, log⟩ boils down to verifying that x1, x2 and x3
do not form a disruptive trio. ◀
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General Queries in the Case of Idempotence. Next, we extend Theorem 17 beyond full
CQ⋆s. In some cases, it is sufficient to assemble the tools we already established. Consider
the following ACQ:

Q(Max(w2), x1, x2, x3) :−R(x1, x3, w3), S(x2, x3), T (x3, w1), U(w1, w2) (4)

We can solve direct access for Q using direct access for the CQ⋆

Q′(⋆, x1, x2, x3) :−R(x1, x3, w3), S(x2, x3), T (x3, w1), U ′(w1)

over U ′-annotated Q-databases and the max tropical semiring. We can then use Lemma 4
to eliminate existential variables and reduce direct access for Q′ to direct access for a full
CQ⋆ Qfull. As we later prove in Lemma 19, when the input database for Q′ is U ′-annotated
over the max tropical semiring, the suitable database for Qfull is T ′-annotated for a relation
symbol T ′ of Qfull. In our case, we obtain

Qfull(⋆, x1, x2, x3) :−R(x1, x3), S(x2, x3), T ′(x3)

and a T ′-annotated database. From Qfull we define Q0 as the T ′-deannotation of Qfull.

Q0(y, x1, x2, x3) :−R(x1, x3, y), S(x2, x3, y), T ′(x3, y)

Theorem 2 determines that direct access for Q0 is in ⟨loglinear, log⟩, and so we can use
Theorem 17 to deduce that Qfull is in ⟨loglinear, log⟩ on T ′-annotated Q-databases. Therefore,
we know from Theorem 5 that direct access for Q′ on U -annotated Q-databases is in
⟨loglinear, log⟩ and as a consequence so is direct access for Q.

As we explain next, the argument above is specific to Max and not all aggregate functions
since we rely on Max being idempotent. An operation ⊕ is said to be idempotent if for every
a in the domain K we have that a ⊕ a = a. We say that a commutative semiring is an
⊕-idempotent semiring if its addition operation, ⊕, is idempotent.

Let (K,⊕,⊗, 0̄, 1̄) be some logarithmic-time commutative semiring. The process of
existential variable elimination using Lemma 4 takes a free-connex CQ⋆ Q and a K-database
(D, τ) and translates it to a full acyclic CQ⋆ Q′ and a K-database (D′, τ ′). When working
over an ⊕-idempotent semiring, if the input database is locally annotated, then the output
database is also guaranteed to be locally annotated. The semirings used for CountD, Min,
and Max are ⊕-idempotent and therefore provide such a guarantee, while the semirings used
for Sum and Count do not. In the case of the query of Equation (4), if the aggregate function
was Sum instead of Max, once we eliminate existential variables, the database for Qfull is no
longer guaranteed to be locally-annotated since projecting out the existential variable w3
may cause R, in addition to T ′, to be annotated with values other than 1̄.

Using Lemma 4 to eliminate existential variables does not guarantee optimal results, even
over ⊕-idempotent semirings. Consider the following simplified version of Equation (4):

Q(Max(w2), x1, x2, x3) :−U(x1, x3), V (x2, x3), R(x3, w1, w2) (5)

Lemma 4 eliminates existential variables using any ext-free-connex tree and outputs a new
full CQ⋆ Qfull. In this process, the vertex of R is eliminated, and the annotations its relation
contained are reflected in a different relation. Then, if Theorem 17 indicates that direct
access for Qfull is in ⟨loglinear, log⟩, we can use Qfull to provide direct access to Q. Figure 3
describes three ext-free-connex trees for Q. The choice between them for usage in Lemma 4
is important:
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(x3) R(x3, w1, w2)

T1

V (x2, x3)

U(x1, x3)

R(x3, w1, w2)

U(x1, x3)

V (x2, x3)

T2

R(x3, w1, w2)

T3

U(x1, x3)

V (x2, x3)

Figure 3 Possible ext-free-connex trees of Q(x1, x2, x3) :− U(x1, x3), V (x2, x3), R(x3, w1, w2). The
subtree that contains exactly the free variables appears in gray.

If we use the tree T1, the annotations would be reflected in the relation of U . Using
Theorem 17 we get that direct access for Qfull on U -annotated K-databases is not in
⟨loglinear, log⟩. So, this tree cannot be used to obtain direct access for Q in ⟨loglinear, log⟩.
If we use the tree T2, the annotations would be reflected in the relation of V and we get
that direct access for Qfull on V -annotated K-databases is not in ⟨loglinear, log⟩. So, this
tree cannot be used to obtain direct access for Q in ⟨loglinear, log⟩ either.
Only by choosing tree T3 would Lemma 4 admit that direct access to Qfull is in
⟨loglinear, log⟩. In this case, the new relation that corresponds to (x3) would reflect
the annotations, and Theorem 17 would indicate that direct access is in ⟨loglinear, log⟩.

With these examples in mind, we establish an effective classification in the case of locally
annotated databases over an idempotent semiring. This will be given in Theorem 20. To
prove it, we use the next lemma that enables transforming a CQ⋆ with existential variables
into a full CQ⋆. Note that this lemma is different from Lemma 4 in the sense that the
translation preserves intractability in addition to tractability (assuming that the semiring is
⊕-idempotent).

▶ Lemma 19. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time ⊕-idempotent commutative semiring.
There exists a polynomial time algorithm that takes as input a free-connex CQ⋆ Q(x⃗, ⋆, z⃗)
without self-joins and a relation symbol R of Q, and produces a full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗)
without self-joins and a relation symbol R′ of Q′, so that the following are equivalent:
1. Direct access for Q over R-annotated K-databases is in ⟨loglinear, log⟩.
2. Direct access for Q′ over R′-annotated K-databases is in ⟨loglinear, log⟩.

From Lemma 19 we conclude that, to determine the tractability of the CQ⋆ Q, it suffices
to determine the tractability of the CQ⋆ Q′, which has the property of being full. Using
Lemma 19 and Theorem 17, we can now prove our classification of the CQ⋆s without self-joins
over databases locally annotated in the case of an idempotent addition.

▶ Theorem 20. Let (K,⊕,⊗, 0̄, 1̄) be a logarithmic-time ⊕-idempotent commutative semiring.
Let R be a relation symbol of a free-connex CQ⋆ Q without self-joins. Let Q′ and R′ be
the CQ⋆ and relation symbol obtained from Q and R using Lemma 19, and let Q0 be the
R′-deanotation of Q′.
1. If Q0 has no disruptive trio, then direct access for Q over R-annotated K-databases is in
⟨loglinear, log⟩.

2. Otherwise, in the case where N ⊆ K, direct access for Q over R-annotated K-databases is
not in ⟨loglinear, log⟩, assuming the SparseBMM hypothesis.

Proof. The proof argues about three queries:
1. The input CQ⋆ Q(x⃗, ⋆, z⃗);
2. A full acyclic CQ⋆ Q′(x⃗, ⋆, z⃗);
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3. A full acyclic CQ Q0.

Given Q and R as described in Theorem 20, we eliminate existential variables using
Lemma 19 and obtain Q′ and a relation symbol R′. The CQ Q0 is the R′-deannotation of
Q′. We can show that Q0 is acyclic since Q′ is acyclic (and for the exact proof, see the full
version of the paper [10]).

From Lemma 19 we conclude that direct access for Q over R-annotated K-databases
is in ⟨loglinear, log⟩ if and only if direct access for Q′ over R′-annotated K-databases is
in ⟨loglinear, log⟩. So, it remains to prove that direct access for Q′ over R′-annotated
K-databases is in ⟨loglinear, log⟩ if and only if Q0 has no disruptive trio.

Suppose first that Q0 has no disruptive trio. Part 1 of Theorem 17 implies that direct
access for Q′ over R′-annotated K-databases is in ⟨loglinear, log⟩, and therefore, so is direct
access for Q over R-annotated K-databases. Conversely, suppose that Q0 has a disruptive
trio. Suppose also that N ⊆ K, as we assume in Item 2 of Theorem 20. Then Part 2
of Theorem 17 states that direct access for Q′ over R′-annotated K-databases is not in
⟨loglinear, log⟩, assuming SparseBMM. This completes the proof. ◀

Note that it follows from Theorem 20 that, when N ⊆ K, one can determine in polynomial
time whether a given CQ⋆ is in ⟨loglinear, log⟩ or not, assuming the SparseBMM hypothesis.
Also, as in Corollary 6, we can directly reason about ACQs using Theorem 20. Consider
a free-connex ACQ Q(x⃗, α(y⃗), z⃗) :−φ1(x⃗, y⃗), . . . , φℓ(x⃗, y⃗), where α is one of CountD over a
logarithmic domain, Min, or Max. We can transform the ACQ Q into a CQ⋆ Q′, and then
apply Theorem 20 in order to transform Q′ into a CQ Q0. If Q0 has no disruptive trio, then
we get direct access for Q in ⟨loglinear, log⟩. So, at the end of the day, we reduce an ACQ
into a CQ⋆, which is transformed into a full CQ⋆ that, in turn, is transformed into a CQ
that we solve in ⟨loglinear, log⟩.

Section summary. Theorem 12 gives a sufficient condition for tractability of CQ⋆s over
any logarithmic-time commutative semiring. When inspecting the cases not covered by this
sufficient condition, Theorem 9 shows that even simple queries may introduce hardness.
Therefore, we narrow our focus to the form of annotation obtained from ACQs (as defined
here): locally annotated databases. Theorem 17 shows a dichotomy for full CQ⋆s without
self-joins. Beyond full CQ⋆s, we notice that there are cases, like that of Theorem 10, where
the hardness can be attributed to the semiring. We identify the class of ⊕-idempotent
semirings as one that facilitates direct access. In the context of such semirings, Theorem 20
extends the dichotomy of Theorem 17 to support existential variables.

6 Concluding Remarks

Direct access provides an opportunity to efficiently evaluate queries even when the number of
answers is enormous. Past research studied the feasibility of direct access for CQs, and here
we embarked on the exploration of this problem for queries that involve aggregation, either
as standard (SQL) aggregate functions or annotation with commutative semirings, that is,
CQ⋆s and ACQs. We studied the challenges of construction and ordering by the computed
value (aggregation or annotation). We showed that past results carry over to include the
computed value, and particularly, that the past classification holds as long as the computed
value is not involved in the order. For the second challenge, involving the computed value in
the order introduces hardness pretty quickly. We showed a sufficient condition that allows
incorporating the computed value in a nontrivial manner. Moreover, we established a full
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classification of the complexity of CQ⋆s without self-joins in the case of databases locally
annotated by a semiring with an idempotent addition.

An important direction for future work is the exploration of queries beyond free-connex
ones; for that, we need to allow for broader yardsticks of efficiency, as done for direct access
for CQs without aggregation [5] and as done for Functional Aggregate Queries (FAQ) for
CQs with aggregation and traditional query evaluation [16]. Moreover, we plan to explore
the extension of our results to queries with self-joins, and we believe that recent results [5]
can be used towards such an extension. It is also left for future work to better understand
the limits of computation and establish lower bounds (and dichotomies) for general classes of
queries, commutative semirings, and aggregate functions. Another important direction is to
explore the ability to efficiently maintain the direct-access structure through updates of the
database, as previously studied in the context of non-aggregate queries [3, 21]. Finally, we
plan to investigate the practical behavior of our algorithms and understand how well the
theoretical acceleration is realized in comparison to existing query engines.
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