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ABSTRACT
In this paper, we deal with the problem of simultaneous recon-

struction of a vector of rational numbers, given modular reductions

containing errors (SRNRwE). Our methods apply as well to the si-

multaneous reconstruction of rational functions given evaluations

containing errors (SRFRwE), improving known results [7, 9]. In

the latter case, one can take advantage of techniques from cod-

ing theory [4, 10] and provide an algorithm that extends classical

Reed-Solomon decoding. In recent works [7, 9], interleaved Reed-

Solomon codes [3, 19] are used to correct beyond the unique decod-

ing capability in the case of random errors at the price of positive

but small failure probability. Our first contribution is to extend these

works to the simultaneous reconstruction with errors of rational

numbers instead of functions. Thus considering rational number

codes [16], we provide an algorithm decoding beyond the unique

decoding capability and, as a central result of this paper, we analyze

in detail its failure probability. Our analysis generalizes for the first

time the best known analysis for interleaved Reed-Solomon codes

[19] to SRFRwE, improving on the existing bound [8], to interleaved

Chinese remainder codes, also improving the known bound [1],

and finally for the first time to SRNRwE.
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1 INTRODUCTION
The solution of a linear system 𝑨®𝑥 = ®𝑏 with ℓ unknowns and with

coefficients in an integral domain 𝑅, can be written as a vector

®𝑥 =

(
𝑓1
𝑔 , . . . ,

𝑓ℓ
𝑔

)
of elements in the field of fractions of 𝑅 sharing

the same denominator (the largest invariant factor of the matrix

𝑨). In this paper we deal with both the cases 𝑅 = Z and 𝑅 = F𝑞 [𝑥]
for some finite field F𝑞 . Following the evaluation-interpolation

technique of [5], we consider the resolution of the system in the

framework of a distributed network in which, given𝑛 distinct evalu-

ation points 𝛼1, . . . , 𝛼𝑛 ∈ F𝑞 (in the case 𝑅 = F𝑞 ) or 𝑛 distinct prime

numbers 𝑝1 < . . . < 𝑝𝑛 (in the case 𝑅 = Z), a central node delegates
the resolution of the reduced systems modulo (𝑥 − 𝛼 𝑗 ) (or modulo

𝑝 𝑗 if 𝑅 = Z) for 𝑗 = 1, . . . , 𝑛 to 𝑛 computing nodes. These nodes

send the 𝑛 reductions of the solution to the central node, which can

therefore reconstruct the vector ®𝑥 with an interpolation algorithm

in the form of a simultaneous rational reconstruction [4, 7–10]. It

thus needs to solve an instance of a simultaneous rational num-

ber reconstruction with errors (SRNRwE, see Problem 2 below) in

the case 𝑅 = Z or an instance of a simultaneous rational function

reconstruction with errors (SRFRwE, see Problem 3 below) in the

case 𝑅 = F𝑞 [𝑥]. Both can be seen respectively as generalizations

of decoding interleaved Chinese remainder codes [1, 12] or inter-

leaved Reed-Solomon codes [3]. In coding theory, the correction

capacity is expressed in terms of the minimum distance of the code

(minimum of the relative distances between code words). It is clas-

sical to use the Hamming distance for mono-alphabetic codes and

a weighted Hamming distance in the poly-alphabetic scenario. For

the integer case, in order to express that the coordinates depend on

the associated moduli, we define the weighted Hamming distance

(see Definition 1 below). In what follows Z𝑝 will denote the quo-

tient ring modulo the ideal (𝑝), ∏𝑛
𝑗=1
Z𝑝 𝑗

will denote the Cartesian

product Z𝑝1
× . . .×Z𝑝𝑛 while [𝑥]𝑝 will denote the modular element

𝑥 mod 𝑝 ∈ Z𝑝 .

Definition 1 (Weighted Hamming distance). Let 𝑹1, 𝑹2 ∈
(∏𝑛

𝑗=1
Z𝑝 𝑗
)ℓ be two ℓ × 𝑛 matrices, where each row belongs to∏𝑛

𝑗=1
Z𝑝 𝑗

. We define their error support as 𝜉𝑹1,𝑹2 :=
⋃ℓ

𝑖=1
{ 𝑗 :

𝑹1

𝑖, 𝑗
≠ 𝑹2

𝑖, 𝑗
} and their error locator as the product of the primes in

the error support Λ𝑹1,𝑹2 :=
∏

𝑗∈𝜉𝑹1,𝑹2
𝑝 𝑗 . The weighted Hamming

distance between 𝑹1
and 𝑹2

is defined as 𝑑 (𝑹1, 𝑹2) := log(Λ𝑹1,𝑹2 ).

Set 𝑁 :=
∏𝑛

𝑗=1
𝑝 𝑗 . Thanks to the Chinese remainder theorem,

each row of the matrices can be viewed as a modular element in

Z𝑁 , we call this its CRT interpolant.

Problem 2 (SRNRwE). Given ℓ > 0, 𝑛 distinct primes 𝑝1 < . . . <

𝑝𝑛 , a received matrix 𝑹 ∈ (∏𝑛
𝑗=1
Z𝑝 𝑗
)ℓ , an error parameter 𝑑 and two

bounds 𝐹,𝐺 such that 𝐹𝐺 < 𝑁 /2, find a reduced vector of fractions
(𝑓1/𝑔, . . . , 𝑓ℓ/𝑔) ∈ Qℓ such that
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(1) 𝑑

( (
[𝑓𝑖/𝑔]𝑝 𝑗

)
𝑖, 𝑗 , 𝑹

)
≤ 𝑑 ,

(2) for all 1 ≤ 𝑖 ≤ ℓ , |𝑓𝑖 | < 𝐹 , 0 < 𝑔 < 𝐺 and gcd(𝑔, 𝑁 ) = 1.

In the above problem we have that gcd(𝑔, 𝑁 ) = 1, so that the

reduction [𝑓𝑖/𝑔]𝑝 𝑗
is well-defined. For the rational functions case,

we will use the notation 𝜕(𝑝) to denote the degree of a polynomial

𝑝 ∈ F𝑞 [𝑥]. We use the Hamming distance 𝑑 (𝑹1, 𝑹2) := 𝜕(Λ𝑹1,𝑹2 ) =
#𝜉𝑹1,𝑹2 for any pair of received matrices 𝑹1, 𝑹2 ∈ Fℓ×𝑛𝑞 , where

Λ𝑹1,𝑹2 :=
∏

𝑗∈𝜉𝑹1,𝑹2
(𝑥 − 𝛼 𝑗 ). Set also𝑀 (𝑥) :=

∏𝑛
𝑗=1
(𝑥 − 𝛼 𝑗 ).

Problem 3 (SRFRwE). Given ℓ > 0, 𝑛 distinct evaluation points
𝛼1, . . . , 𝛼𝑛 ∈ F𝑞 , a received matrix 𝑹 ∈ Fℓ×𝑛𝑞 , an error parameter 𝑡
and two degree bounds 𝑑𝑓 , 𝑑𝑔 such that 𝑑𝑓 +𝑑𝑔 ≤ 𝑛+1, find a reduced
vector of fractions (𝑓1/𝑔, . . . , 𝑓ℓ/𝑔) ∈ F𝑞 (𝑥)ℓ such that

(1) 𝑑

( (
𝑓𝑖 (𝛼 𝑗 )/𝑔(𝛼 𝑗 )

)
𝑖, 𝑗 , 𝑹

)
≤ 𝑡 ,

(2) for all 1 ≤ 𝑖 ≤ ℓ , 𝜕(𝑓𝑖 ) < 𝑑𝑓 , 𝜕(𝑔) < 𝑑𝑔 and gcd(𝑔,𝑀) = 1.

In analogy with the integer case, we will always assume that

𝑔(𝛼 𝑗 ) ≠ 0 for every 𝑗 = 1, . . . , 𝑛. Both these problems can be reduced

to the simultaneous error correction of ℓ code words (sharing the

same denominator) for the rational number code and the rational

function code respectively. These are rational extensions of Chinese

remainder codes [6] and Reed-Solomon codes [17], and can be

referred to as rational evaluation codes. It seems these rational

codes were part of the folklore; to the best of our knowledge, they

were first introduced by Pernet in [16, § 2.5.2].
The two conditions 𝐹𝐺 < 𝑁 /2 and 𝑑𝑓 + 𝑑𝑔 ≤ 𝑛 + 1 guarantee

an injective encoding. A long series of papers can be found in the

literature where evaluation-interpolation is used for linear systems

solving, as [13–15, 18, 21]. Our contributions in this paper concern

error correction beyond guaranteed uniqueness. This means that,

in order to correct a large number of errors, we compromise the

uniqueness of the solution to the problem. The idea is therefore

to exceed the number of errors that guarantee uniqueness and to

analyze the probability of failure in detail. A failure here will be

expressed by a casewhere the solution of the rational reconstruction

with errors problem is not unique. It turns out that our analysis

follows and generalizes to rational case the best known analysis of

the decoding of interleaved Reed-Solomon codes [19].

This paper is structured as follows: In Section 2 we deal with the

definition of rational number codes and their decoding algorithm.

In Section 3 we present our main results about the failure analysis of

the algorithm and in Section 4 we present the adaptation of previous

results to the rational functions case. This last result improves the

analysis of [9], giving a generalization of the best known analysis

of the decoding failure in the polynomial case [19].

2 SIMULTANEOUS RATIONAL NUMBER
CODES

We can define an error correcting code from the SRNRwE problem.

Codewords are the encoding of reduced vectors of rational numbers

(𝑓1/𝑔, . . . , 𝑓ℓ/𝑔) sharing the same denominator and such that 0 <

𝑔 < 𝐺 , and |𝑓𝑖 | < 𝐹 for all 𝑖 = 1, . . . , ℓ . The adjective "simultaneous"

is kept for referring to the rational reconstruction problem and

has no reference to any action (as is the case in "simultaneous

decoding").

Definition 4. Given 𝑛 distinct primes 𝑝1 < . . . < 𝑝𝑛 , two positive
bounds 𝐹,𝐺 such that 𝐹𝐺 < 𝑁 /2 and an integer ℓ > 0, we define the
simultaneous rational number code as the set of matrices

𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) :=


([

𝑓𝑖
𝑔

]
𝑝 𝑗

)
1≤𝑖≤ℓ
1≤ 𝑗≤𝑛

:

|𝑓𝑖 | < 𝐹, 0 < 𝑔 < 𝐺,

gcd(𝑓1, . . . , 𝑓ℓ , 𝑔) = 1

gcd(𝑁,𝑔) = 1

 .

We will refer to SRN codes for short if parameters are not relevant.

The condition gcd(𝑓1, . . . , 𝑓ℓ , 𝑔) = 1, which is going to be used in

the proof of Lemma 20, reflects that the solution vector we seek to

reconstruct is a reduced vector of rational numbers.

Remark 5. A bounded distance decoding algorithm for the above
code which is able to correct errors up to a distance 𝑑 , can be used to
solve Problem 2 with error parameter 𝑑 .

2.1 Unique decoding and minimal distance
The distance 𝑑 (C) := min𝑐1≠𝑐2∈C 𝑑 (𝑐1, 𝑐2) of a code C plays an

important role in coding theory to assess the amount of data one can

correct. In the special case ℓ = 1, 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) codes correspond
to rational number codes 𝑅𝑁 (𝑁 ; 𝐹,𝐺) [16, §2.5.2] whose weighted
Hamming distance is given in [16, Theorem 2.5.1].

Theorem 6. Let 𝑁, 𝐹,𝐺 as in Definition 4. The distance of an RN

code satisfies 𝑑 (𝑅𝑁 (𝑁 ; 𝐹,𝐺)) > log

(
𝑁

2𝐹𝐺

)
.

This result has the advantage of being independent of the moduli

𝑝 𝑗 . However, the gap between 𝑑 (𝑅𝑁 (𝑁 ; 𝐹,𝐺)) and log (𝑁 /(2𝐹𝐺))
depends on the moduli. Even so, there exists a family of RN codes

such that 𝑑 (𝑅𝑁 (𝑁 ; 𝐹,𝐺)) ≤ log (𝑁 /((𝐹 − 1) (𝐺 − 1))), i.e. the gap
is small [16, §2.5.2]. We can generalize Theorem 6 to SRN codes:

Lemma 7. We have 𝑑 (𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺)) > log

(
𝑁

2𝐹𝐺

)
.

Proof. Let 𝑪1 =

(
[𝑓𝑖/𝑔]𝑝 𝑗

)
𝑖, 𝑗

and 𝑪2 =

(
[𝑓 ′
𝑖
/𝑔′]𝑝 𝑗

)
𝑖, 𝑗

be

two code words. For 𝑗 ∉ 𝜉𝑪1,𝑪2
, 𝑓𝑖/𝑔 = 𝑓 ′

𝑖
/𝑔′ mod 𝑝 𝑗 for all 𝑖 .

We set 𝑌 :=
∏

𝑗∉𝜉𝑪
1
,𝑪

2

𝑝 𝑗 , so that 𝑌 | (𝑓𝑖𝑔′ − 𝑓 ′
𝑖
𝑔) for all 𝑖 . Since

|𝑓𝑖 |, |𝑓 ′𝑖 | < 𝐹 , and 0 < 𝑔,𝑔′ < 𝐺 we have 𝑌 < 2𝐹𝐺 . Using the

relation 𝑌 = 𝑁 /Λ𝑪1,𝑪2
, we bound 𝑑 (𝑪1, 𝑪2) = log(Λ𝑪1,𝑪2

) =

log(𝑁 /𝑌 ) > log(𝑁 /2𝐹𝐺). □

Note that the family of RN codes such that the distance inequality

is tight extends to SRN codes.

Unique decoding. A unique decoding function 𝐷 of capacity 𝑡

is a function from the ambient space to the code such that 𝐷 (𝑟 ) =
𝑐 for all code word 𝑐 and 𝑟 such that 𝑑 (𝑟, 𝑐) ≤ 𝑡 . Pernet gives

a polynomial time unique decoding algorithm for RN codes of

capacity log(
√︁
𝑁 /(2𝐹𝐺)) = (1/2) log(𝑁 /(2𝐹𝐺)) for the weighted

Hamming distance [16, Corollary 2.5.2]. A classical result in coding

theory states that, for codes equipped with the Hamming distance,

there exists such a decoding function of capacity 𝑡 if and only if

2𝑡 < 𝑑 (C). Note that if no such decoding function exists, then

no decoding algorithm can exist. For SRN codes equipped with

the weighted Hamming distance, the result is slightly different. If

2𝑡 < 𝑑 (C), then there exists such a decoding function of capacity 𝑡 .

However, the converse is false in the strict sense of the term. Indeed,



in the proof that there can not exist a decoding function when

2𝑡 = 𝑑 (C), one takes 𝑐1, 𝑐2 ∈ C such that 𝑑 (C) = 𝑑 (𝑐1, 𝑐2), and
constructs 𝑟 as the middle of 𝑐1 and 𝑐2, i.e. with 𝑑 (𝑐1, 𝑟 ) = 𝑑 (𝑐2, 𝑟 ) =
𝑑 (𝑐1, 𝑐2)/2, to obtain the contradiction that a decoding function

would have to map 𝑟 to both 𝑐1 and 𝑐2. However, it is impossible to

construct 𝑟 as the middle of 𝑐1 and 𝑐2 with the weighted Hamming

distance associated to distinct primes. Still, the essence of the result

remains correct, and if 2𝑡 = 𝑑 (C) + 𝜀 for a small 𝜀, then we can

construct 𝑟 such that 𝑑 (𝑐1, 𝑟 ), 𝑑 (𝑐2, 𝑟 ) ≤ (𝑑 (𝑐1, 𝑐2) + 𝜀)/2 = 𝑡 , and

no decoding function of capacity 𝑡 can exist. One workaround in

coding theory consists of having decoding functions which can

output "decoding failure" when the code word within the decoding

capacity is not unique. The aim of the paper is to properly analyze

the decoding failure probability of a decoding algorithm for SRN

codes beyond the uniqueness capacity.

2.2 Decoding SRN codes
This section presents our first contribution: a decoder of SRN codes

of capacity beyond
𝑑 (𝐶 )

2
. This decoder is based on the interleaved

Chinese remainder (ICR) codes decoder of [1, 12], which are a

special case of SRNwhen𝑔 = 1. Let 𝑹 := (𝑟𝑖, 𝑗 ) 1≤𝑖≤ℓ
1≤ 𝑗≤𝑛

be the received

matrix. For any code word 𝑪 ∈ 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺), we can write 𝑹 =

𝑪 + 𝑬 for some error matrix 𝑬 (which depends on 𝑹 and 𝑪). Thanks
to the Chinese remainder theorem, we can view each row of the

matrix as modular elements in Z𝑁 , and the ambient space for the

code can be viewed as Zℓ
𝑁
, thus for every 1 ≤ 𝑖 ≤ ℓ we can write

𝑅𝑖 = 𝐶𝑖 + 𝐸𝑖 with 𝐶𝑖 = [𝑓𝑖/𝑔]𝑁 for some 𝑓𝑖 , 𝑔. Letting Λ := Λ𝑪,𝑹 ,

we know [16] that the system of ℓ equations holds:

Λ𝑓𝑖 = Λ𝑔𝑅𝑖 mod 𝑁 for 𝑖 = 1, . . . , ℓ (1)

with unknowns Λ, 𝑔, 𝑓1, . . . , 𝑓ℓ . We linearize it thanks to the substi-

tution 𝜑 ← Λ𝑔 and𝜓𝑖 ← Λ𝑓𝑖 ; the resulting equations

𝜓𝑖 = 𝜑𝑅𝑖 mod 𝑁 for 𝑖 = 1, . . . , ℓ (2)

are called the key equations. The solutions (𝜑,𝜓1, . . . ,𝜓ℓ ) are vectors
in the lattice L ⊆ Zℓ+1 spanned by the rows of the integer matrix

L = Span

©«
1 𝑅1 · · · 𝑅ℓ
0 𝑁 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑁

ª®®®®¬
. (3)

In particular if Λ ≤ 2
𝑑
for some distance parameter 𝑑 , the solution

vector 𝑣𝐶 := (Λ𝑔,Λ𝑓1, . . . ,Λ𝑓ℓ ) belongs to the set

𝑆𝑹,𝑑 := {(𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ L : 0 < 𝜑 < 2
𝑑𝐺, |𝜓𝑖 | < 2

𝑑𝐹 }.

Note that the condition Λ𝑪,𝑹 ≤ 2
𝑑
means that 𝑪 is close to 𝑹 for

the weighted Hamming distance. The idea of the decoding is now to

compute an element of 𝑆𝑹,𝑑 and "hope" that it will be a multiple of

𝑣𝑪 ; if this is the case, by dividing all the entries by the first one we

can retrieve the correct vector of fractions (𝑓1/𝑔, . . . , 𝑓ℓ/𝑔). There
are two main aspects inherent to this procedure. The first one is

algorithmic, and it is relative to a choice of how to compute an

element in 𝑆𝑹,𝑑 , the second one is probabilistic, and it is relative

to the estimation of the probability that this element is a multiple

of the solution vector 𝑣𝑪 . Concerning the analysis of this second

aspect, more will be said in Section 3.3. For the moment we wish

to describe the algorithmic aspect at a high level of generality. For

this we will assume to have at our disposal an algorithmASVP∞
which solves the following problem:

Problem 8 (𝛽−Approx-SVP∥ · ∥∞ ). Given a basis {𝑣0, . . . , 𝑣ℓ } of a
latticeL and an approximation constant 𝛽 ≥ 1, find a non-zero vector
𝑤 ∈ L such that ∥𝑤 ∥∞ ≤ 𝛽𝜆∞ (L), where 𝜆∞ (L) is the minimum
∥ · ∥∞-norm of the non-zero vectors in L.

We refer the reader to [2] for state-of-the-art algorithms solving

Problem 8. Without loss of generality, we will assume that the

output𝑤 of the algorithm ASVP∞ satisfies𝑤0 ≥ 0 (both ±𝑤 are

short vectors). We will also assume that𝑤 is L-reduced:

Definition 9. Given a lattice L, a vector 𝑣 ∈ L is said to be
L−reduced if, for 𝑐 ∈ Z \ {0}, (1/𝑐) · 𝑣 ∈ L ⇒ 𝑐 = ±1.

Because the size constraints in 𝑆𝑹,𝑑 do not correspond exactly

to conditions on the ∥ · ∥∞ norm, we need to introduce a scaling

operator 𝜎𝐹,𝐺 : Qℓ+1 → Qℓ+1 such that 𝜎𝐹,𝐺 ((𝑣0, 𝑣1, . . . , 𝑣ℓ )) :=

(𝑣0𝐹, 𝑣1𝐺, . . . , 𝑣ℓ𝐺). This scaling will transform L into the scaled

lattice
¯L := 𝜎𝐹,𝐺 (L), and our solution set 𝑆𝑹,𝑑 into

𝑆 ′𝑹,𝑑 :=𝜎𝐹,𝐺 (𝑆𝑹,𝑑 ) = { (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ ¯L : 0 < 𝜑 < 2
𝑑𝐹𝐺, |𝜓𝑖 | < 2

𝑑𝐹𝐺 } .

Therefore, a vector 𝑣 ′ ∈ ¯L which satisfies ∥𝑣 ′∥∞ < 2
𝑑𝐹𝐺 must

belong to 𝑆 ′
𝑹,𝑑

. We can obtain a candidate solution 𝑣𝑠 by computing

a scaled short vector 𝑣𝑠 := ASVP∞ ( ¯L), and unscaling it 𝑣𝑠 :=

𝜎−1

𝐹,𝐺
(𝑣𝑠 ). We can now prove that, provided that 𝑹 is relatively close

to the code (see Constraint 10 below), since 𝑣𝑠 is a 𝛽-approximation

of the shortest vector, it belongs to a slightly larger solution set.

Constraint 10. There exists a code word 𝑪 such that Λ𝑪,𝑹 ≤ 2
𝑑 .

Lemma 11. Assuming Constraint 10, we have that 𝑣𝑠 ∈ 𝑆𝑹 := 𝑆𝑹,𝜏
with 𝜏 := 𝑑 + log(𝛽).

Proof. We know that ∥𝑣𝑠 ∥∞ ≤ 𝛽𝜆∞ ( ¯L) ≤ 𝛽 ∥𝜎𝐹,𝐺 (𝑣𝐶 )∥∞ <

𝛽Λ𝐹𝐺 ≤ 𝛽2
𝑑𝐹𝐺 = 2

𝜏𝐹𝐺 . Since we assumed that (𝑣𝑠 )0 ≥ 0, we

have 𝑣𝑠 ∈ 𝑆 ′𝑹,𝜏 and 𝑣𝑠 ∈ 𝑆𝑹,𝜏 . □

We notice that assuming Constraint 10 we also have 𝑣𝑪 ∈ 𝑆𝑹 .
We can now state our decoding algorithm for SRN codes.

Algorithm 1: SRN codes decoder.

Input: 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺), received word 𝑹, distance bound 𝑑
Output: A code word 𝑪 s.t. 𝑑 (𝑪, 𝑹) ≤ 𝑑 or ”decoding

failure”

1 Let
¯L := 𝜎𝐹,𝐺 (L) be the scaled lattice of L defined in Eq. (3)

2 Compute a short vector 𝑣𝑠 := ASVP∞ ( ¯L)
3 Unscale the vector: 𝑣𝑠 = (𝜑,𝜓1, . . . ,𝜓ℓ ) := 𝜎−1

𝐹,𝐺
(𝑣𝑠 )

4 Let 𝜆 := gcd(𝜑,𝜓1, . . . ,𝜓ℓ ), 𝜑 ′ := 𝜑/𝜆 and ∀𝑗, 𝜓 ′
𝑗

:= 𝜓 𝑗/𝜆
5 if 𝜆 ≤ 2

𝑑 , gcd(𝜑 ′, 𝑁 ) = 1, |𝜑 ′ | < 𝐺 and ∀𝑗, |𝜓 ′
𝑗
| < 𝐹 then

6 return (𝐶1, . . . ,𝐶ℓ ) := (𝜓 ′
1
/𝜑 ′, . . . ,𝜓 ′

ℓ
/𝜑 ′)

7 else return "decoding failure";



2.3 A particular sub-routine: LLL

We remark that the complexity of Algorithm 1 is mainly determined

by the complexity of the sub-routine ASVP∞. In particular the

authors of [2] showed that the space and time complexity for the

resolution of Problem 8 are significantly larger than the relative

costs for the resolution of the ℓ2−norm version of the same problem.

Problem 12 (𝛾 − Approx-SVP∥ · ∥2 ). Given a basis {𝑣0, . . . , 𝑣ℓ }
of a lattice L and an approximation constant 𝛾 ≥ 1, find a non-
zero vector 𝑤 ∈ L such that ∥𝑤 ∥2 ≤ 𝛾𝜆2 (L), where 𝜆2 (L) is the
minimum ∥ · ∥2-norm of the non-zero vectors in L.

Nevertheless, a 𝛾-approximation SVP for the ℓ2−norm yields a

𝛾
√
ℓ + 1-approximation SVP for the ℓ∞−norm : If𝑤 = ASVP2 (L)

and 𝑠2 (resp. 𝑠∞) is one of the shortest vector for the ℓ2−norm
(resp. ℓ∞−norm), then ∥𝑤 ∥∞ ≤ ∥𝑤 ∥2 ≤ 𝛾 ∥𝑠2∥2 ≤ 𝛾 ∥𝑠∞∥2 ≤
𝛾
√
ℓ + 1∥𝑠∞∥∞. A well known example of algorithm solving Prob-

lem 12 is given by LLL [11], which runs in polynomial time for

the approximation factor 𝛾 =
√

2

ℓ
(our lattice has dimension ℓ + 1).

For this reason, we can always assume to employ a sub-routine

ASVP∞ which solves Problem 8 with 𝛽 ≤
√

2

ℓ√
ℓ + 1.

The most efficient𝛾−Approx-SVP∥ · ∥2 solver is given by the BKZ
algorithm [20]. It finds a solution of Problem 12 with 𝛾 = (1 + 𝜖)ℓ+1
in polynomial time of degree increasing as 𝜖 → 0. Furthermore,

since the output of LLL or BKZ is always the first vector of a basis of

the lattice, the following Lemma will ensure that it is L−reduced.

Lemma 13. Let {𝑏1, . . . , 𝑏𝑛} be a basis of a lattice L, then every
vector 𝑏𝑖 is L−reduced.

Proof. If
1

𝑐𝑏𝑖 ∈ L for some 𝑐 ∈ Z \ {0}, then we can write

1

𝑐𝑏𝑖 =
∑𝑛

𝑗=1
𝑐 𝑗𝑏 𝑗 for some 𝑐 𝑗 ∈ Z. Thus, 𝑏𝑖 =

∑𝑛
𝑗=1

𝑐𝑐 𝑗𝑏 𝑗 , which

means that 𝑐𝑐𝑖 = 1, so 𝑐 = ±1. □

3 CORRECTNESS OF THE DECODER
In this section, we study the correctness of Algorithm 1. We start

with Lemma 14 which states that the algorithm is correct when it

does not fail.

Lemma 14. If Algorithm 1 returns 𝑪 on input 𝑹 and parameter 𝑑 ,
then 𝑪 is a code word of 𝑆𝑅𝑁 (𝑁 ; 𝐹,𝐺) such that 𝑑 (𝑪, 𝑹) ≤ 𝑑 .

Proof. The output vector 𝑪 = (𝜓 ′
1
/𝜑 ′, . . . ,𝜓 ′

ℓ
/𝜑 ′) is a code word

of 𝑆𝑅𝑁 (𝑁 ; 𝐹,𝐺) since the algorithm has verified the size conditions

|𝜑 ′ | < 𝐺 , |𝜓 ′
𝑗
| < 𝐹 for all 𝑗 , and that gcd(𝜑 ′, 𝑁 ) = 1. Now, we

use that (𝜑,𝜓1, . . . ,𝜓ℓ ) = (𝜆𝜑 ′, 𝜆𝜓 ′
1
, . . . , 𝜆𝜓 ′

ℓ
) is in the lattice L, so

that 𝜆(𝜑 ′𝑅𝑖 −𝜓 ′𝑖 ) = 0 mod 𝑁 for all 𝑖 . Dividing by the invertible

𝜑 ′ modulo 𝑁 , we obtain 𝜆(𝑅𝑖 − 𝐶𝑖 ) = 0 mod 𝑁 for all 𝑖 . For all

𝑗 ∈ 𝜉𝑪,𝑹 , there exists 𝑖 such that 𝑝 𝑗 ∤ (𝑅𝑖 −𝐶𝑖 ), which implies that

𝑝 𝑗 |𝜆. As a consequence, Λ𝑪,𝑹 |𝜆. Considering that 𝜆 ≤ 2
𝑑
, we can

conclude that 𝑑 (𝑪, 𝑹) = logΛ𝑪,𝑹 ≤ log 𝜆 ≤ 𝑑 . □

Next lemma shows that, when the algorithm fails, the short

vector 𝑣𝑠 computed by sub-routineASVP∞ is not collinear to 𝑣𝑪 .

Lemma 15. Assuming Constraint 10, if Algorithm 1 fails, then
𝑣𝑠 ∉ 𝑣𝑪Z.

Proof. We will prove this by contraposition, thus we show that

if 𝑣𝑠 = 𝑟𝑣𝑪 , for some 𝑟 ∈ Z then the algorithm must succeed.

We know that 𝑣𝑠 = 𝑟𝑣𝑪 is L-reduced therefore 𝑣𝑪 = ±𝑣𝑠 and

𝜆 = Λ ≤ 2
𝑑
using Constraint 10 (see Algorithm 1, Step 4 for 𝜆),

𝜑 ′ = ±𝑔,𝜓 ′
𝑗
= ±𝑓𝑗 for every 𝑗 , thus the algorithm succeeds. □

The rest of this section is dedicated to the analysis of the decoding

failure of Algorithm 1. We will show that if 𝑹 is 𝑪 plus a random

error of weighted Hamming distance up to approximately ℓ/(ℓ +
1) log(𝑁 /(2𝐹𝐺)) (see Section 3.1 for precise error models), then

this decoder is able to decode most of the time (see Section 3.2 for

the statement of the theorem).

3.1 Error models
Algorithm 1 must fail on some instances when the distance param-

eter 𝑑 exceeds the maximum distance for which the uniqueness of

the solution of Problem 2 is guaranteed.

We analyze the failure probability of the algorithm under two dif-

ferent classical error models in Coding Theory, already considered

in previous papers [1, 19], specifying two possible distributions of

the random received word 𝑹.

Error Model 1. In this error model we fix an error support 𝜉 (see

Definition 1), then the columns of the error matrix 𝑬 are distributed

independently as follows

®𝑒 𝑗 = ®0 if 𝑗 ∉ 𝜉, ®𝑒 𝑗 ∼ U
(
Zℓ𝑝 𝑗
\ {®0}

)
if 𝑗 ∈ 𝜉 (4)

where U(S) denotes the uniform distribution on any finite set

S. For any given code word 𝑪 and error support 𝜉 , we obtain

the distribution D𝐸𝑅𝑅1

𝑪,𝜉
:= {𝑹 = 𝑪 + 𝑬 : 𝑬 as in Eq.(4)} of the

random received words 𝑹 around the central code word 𝑪 . We

will need another point of view on the random error matrices 𝑬 .
Let 𝑖 ∈ {1, . . . , ℓ}, and denote 𝐸𝑖 ∈ Z𝑁 the CRT interpolant of

the 𝑖-th row of 𝑬 . Since 𝑝 𝑗 |𝐸𝑖 for all 𝑖 and 𝑗 ∉ 𝜉 , we have that

𝑌 |𝐸𝑖 for all 𝑖 , where 𝑌 := 𝑁 /Λ. We define the modular integers

𝐸′
𝑖

:= 𝐸𝑖/𝑌 ∈ ZΛ. The random variables (𝐸′
𝑖
)1≤𝑖≤ℓ are uniformly

distributed in {(𝐹𝑖 )1≤𝑖≤ℓ ∈ (ZΛ)ℓ : gcd(𝐹1, . . . , 𝐹ℓ ,Λ) = 1}, because
if 𝑝 |Λ, then there is an error modulo 𝑝 , so ∃𝑖 s.t. 𝐸𝑖 ≠ 0 mod 𝑝 and

therefore gcd(𝐸1, . . . , 𝐸ℓ ,Λ) = 1.

Error Model 2. In this error model we fix a maximal error support

𝜉𝑟 and the columns of the error matrix 𝑬 are distributed as follows

®𝑒 𝑗 = ®0 if 𝑗 ∉ 𝜉𝑟 , ®𝑒 𝑗 ∼ U
(
Zℓ𝑝 𝑗

)
if 𝑗 ∈ 𝜉𝑟 (5)

We notice that in the error model ERR2, the actual error support 𝜉

could be contained in 𝜉𝑟 . For a code word 𝑪 and a maximal error

support 𝜉𝑟 , we have the distribution D𝐸𝑅𝑅2

𝑪,𝜉𝑟
:= {𝑹 = 𝑪 + 𝑬 :

𝑬 as in Eq. (5)} of the random received words 𝑹 around the central

code word 𝑪 .

3.2 Our Results
In this section we present our contributions to the analysis of the

decoding failure depending on the given parameters. The error

models previously defined will play a role in the latter but not in

the choice of parameters. We define a common framework for the

algorithm parameters, and we will adapt the analysis of the failure

probability to the two error models in 3.3. In what follows we set

𝑑max :=
ℓ

ℓ + 1

[log(𝑁 /2𝐹𝐺) − log(3𝛽)] . (6)



Remark 16. Our setting allows decoding up to a distance𝑑 ≤ 𝑑max

that, for ℓ > 1, can be greater than our estimation log

(√︃
𝑁

2𝐹𝐺

)
of the

unique decoding capability of 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) codes.

When fixing the decoding bound 𝑑 close to 𝑑max, we are likely to

correct beyond the unique decoding radius, so we must deal with

decoding failure for some received word. Note that this remains true

even if ASVP∞ ( ¯L) gives us the exact short vector (i.e. 𝛽 = 1).

Here is our first result (whose proof will be given at the end of

Subsection 3.3.1) relative to the failure probability of the decoding

algorithm with respect to the error model ERR1.

Theorem 17. Decoding Algorithm 1 on input a random received
word 𝑹 ∈ D𝐸𝑅𝑅1

𝑪,𝜉
, for some code word 𝑪 ∈ 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) and error

support 𝜉 such that logΛ ≤ 𝑑 ≤ 𝑑max, and distance parameter 𝑑 ,
outputs the center code word 𝑪 of the distribution D𝐸𝑅𝑅1

𝑪,𝜉
, with a

probability of failure P𝑓𝑎𝑖𝑙 ≤ 2
−(ℓ+1) (𝑑max−𝑑 )

exp(𝑛/𝑝ℓ
1
).

Here is our second result (whose proof will be given at the end

of Subsection 3.3.3) relative to the failure probability with respect

to the error model ERR2.

Theorem 18. Decoding Algorithm 1 on input a random received
word 𝑹 ∈ D𝐸𝑅𝑅2

𝑪,𝜉𝑟
, for some code word 𝑪 ∈ 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) and error

support 𝜉𝑟 such that logΛ𝑟 ≤ 𝑑 ≤ 𝑑max, and distance parameter
𝑑 , outputs the center code word 𝑪 of the distribution D𝐸𝑅𝑅2

𝑪,𝜉𝑟
, with a

probability of failure P𝑓𝑎𝑖𝑙 ≤ 2
−(ℓ+1) (𝑑max−𝑑 ) .

This failure probability bound improves the one of decoding

interleaved Chinese remainder codes P𝑓𝑎𝑖𝑙 ≤ 2
−(ℓ+1) (𝑑max−𝑑 ) +

(exp(𝑛/𝑝ℓ−1

1
) − 1) which was only available in the special case of

non-negative (0 ≤ 𝑓𝑖 ) integer code words (𝐺 = 2) [1, Theorem 3.5].

3.3 Analysis of the decoding failure probability
For any 𝑹 ∈ D𝐸𝑅𝑅1

𝑪,𝜉
(as in Theorem 17), Constraint 10 is satisfied.

Thus, thanks to Lemma 11, we can assume that 𝑣𝑠 ∈ 𝑆𝑹 = 𝑆𝑹,𝜏
where 𝜏 = 𝑑 + log(𝛽).

3.3.1 P𝑓𝑎𝑖𝑙 under ERR1. If Algorithm 1 fails, then 𝑣𝑠 ∉ 𝑣𝑪Z (see

Lemma 15). Note that the converse is not necessarily true, for

example if there exists another close code word 𝑪 ′ ≠ 𝑪 with

𝑑 (𝑪 ′, 𝑹) ≤ 𝑑 and if the SVP solver outputs 𝑣𝑠 = 𝑣𝑪 ′ . Neverthe-

less, we can upper bound the failure probability of the algorithm as

P𝑓𝑎𝑖𝑙 ≤ P(𝑆𝑹 ⊈ 𝑣𝑪Z). We introduce some notations: for 𝐶 ∈ R>0

we let Z𝑚,𝐶 := {𝑎 ∈ Z𝑚 : |𝑎 crem 𝑚 | ≤ 𝐶}, where 𝑎 crem𝑚 is the

central remainder of 𝑎 modulo 𝑚, that is the unique representa-

tive of 𝑎 modulo𝑚 within the interval [−⌈𝑚/2⌉ + 1, ⌊𝑚/2⌋]. Note
that this set has cardinality #Z𝑚,𝐶 ≤ 2⌊𝐶⌋ + 1. Let 𝑆𝑬 be the set

𝑆𝑬 :=
{
𝜑 ∈ ZΛ : ∀𝑖, 𝑔𝜑𝐸′

𝑖
∈ ZΛ,𝐵

}
for 𝐵 := 2

𝜏+1𝐹𝐺
𝑁

Λ. We need a

new constraint to prove the following lemma.

Constraint 19. Algorithm 1 parameters satisfy 2
𝜏+1𝐹𝐺
𝑁

< 1.

Lemma 20. If Constraint 19 is satisfied, 𝑆𝑬 = {0} ⇒ 𝑆𝑹 ⊆ 𝑣𝑪Z.

Proof. Let (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ 𝑆𝑹 . We know that for all 1 ≤ 𝑖 ≤ ℓ ,

𝑔𝜑𝐸𝑖 = 𝑔𝜑

(
𝑅𝑖 − 𝑓𝑖

𝑔

)
= 𝑔𝜓𝑖−𝑓𝑖𝜑 mod 𝑁 . Since𝑌 |𝐸𝑖 and𝑌 |𝑁 , thanks

to the above, we have that 𝑌 | (𝑔𝜓𝑖 − 𝑓𝑖𝜑), and we define the integer

𝜓 ′
𝑖
=

𝑔𝜓𝑖−𝑓𝑖𝜑
𝑌

. Dividing the above modular equation by 𝑌 we obtain

𝑔𝜑𝐸′
𝑖
= 𝜓 ′

𝑖
mod Λ. Therefore

|𝑔𝜑𝐸′𝑖 crem Λ| ≤ |𝜓 ′𝑖 | ≤
|𝑔𝜓𝑖 | + |𝑓𝑖𝜑 |

𝑌
<

2
𝜏+1𝐹𝐺
𝑁

Λ

which means that 𝜑 ∈ 𝑆𝑬 , thus thanks to the hypothesis 𝑆𝑬 = {0},
we get Λ|𝜑 , thus 𝜓 ′

𝑖
= 0 mod Λ. Thanks to Constraint 19 and the

above inequality we can conclude that |𝜓 ′
𝑖
| < Λ, therefore𝜓 ′

𝑖
= 0

in Z. Which means that

∀𝑖 = 1, . . . , ℓ, 𝑔𝜓𝑖 = 𝑓𝑖𝜑. (7)

Since gcd(𝑓1, . . . , 𝑓ℓ , 𝑔) = 1, Equations (7) imply that 𝑔|𝜑 . We have

already seen that Λ|𝜑 , so 𝑔Λ|𝜑 because 𝑔 and Λ are coprime. Plug-

ging 𝜑 = 𝑎𝑔Λ for some 𝑎 ∈ Z into Equations (7), we deduce

𝑔𝜓𝑖 = 𝑓𝑖𝜑 = 𝑓𝑖𝑎𝑔Λ, so 𝜓𝑖 = 𝑎Λ𝑓𝑖 for all 𝑖 . We have shown

(𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ (Λ𝑔,Λ𝑓1, . . . ,Λ𝑓ℓ )Z. □

Thanks to the above lemma we can upper bound the failure

probability of Algorithm 1 with P𝑓𝑎𝑖𝑙 ≤ P(𝑆𝑬 ≠ {0}) . In order to

estimate the above, we need the following preliminary result:

Lemma 21. If 𝜑 ∈ Z is such that gcd(𝜑,Λ) = 𝜈 , then for the
probability distribution of error model ERR1, we have

P
(
∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ ZΛ,𝐵

)
≤

(
#ZΛ/𝜈,𝐵/𝜈

)ℓ∏
𝑝∈P( Λ

𝜈
) (𝑝ℓ − 1)

where P(𝑛) is the set of primes dividing 𝑛.
If we also suppose 𝐵 < 𝜈 < Λ, then P

(
∀𝑖, 𝑔𝜑𝐸′

𝑖
∈ ZΛ,𝐵

)
= 0.

Proof. Since gcd(𝑔, 𝑁 ) = 1, the distributions of the vectors

(𝜑𝐸′
1
, . . . , 𝜑𝐸′

ℓ
) and (𝑔𝜑𝐸′

1
, . . . , 𝑔𝜑𝐸′

ℓ
) are identical. Thus, we have

P(∀𝑖, 𝑔𝜑𝐸′
𝑖
∈ ZΛ,𝐵) = P(∀𝑖, 𝜑𝐸′𝑖 ∈ ZΛ,𝐵). Let us now show that

𝜑𝐸′
𝑖
∈ ZΛ,𝐵 ⇔ (𝜑/𝜈)𝐸′

𝑖
∈ ZΛ/𝜈,𝐵/𝜈 : The first condition can be

rephrased as 𝜑𝐸′
𝑖
= 𝑎𝑖Λ + 𝑐𝑖 with 𝑎𝑖 , 𝑐𝑖 ∈ Z and |𝑐𝑖 | ≤ 𝐵. But

then we must have that 𝜈 |𝑐𝑖 . Thus we can divide the above by

𝜈 and obtain (𝜑/𝜈)𝐸′
𝑖
= 𝑎𝑖Λ/𝜈 + 𝑐𝑖/𝜈 with |𝑐𝑖/𝜈 | ≤ 𝐵/𝜈 , which

is equivalent to (𝜑/𝜈)𝐸′
𝑖
∈ ZΛ/𝜈,𝐵/𝜈 . When 𝐵 < 𝜈 , the previous

condition implies that (𝜑/𝜈)𝐸′
𝑖
= 0 mod Λ/𝜈 for all 𝑖 . Since (𝜑/𝜈)

is coprime with Λ/𝜈 , we have 𝐸′
𝑖
= 0 mod Λ/𝜈 for all 𝑖 . If 𝜈 < Λ,

this is in contradiction with gcd(𝐸′
1
, . . . , 𝐸′

ℓ
,Λ) = 1 for all random

matrix 𝑬 . Therefore, the associated probability P(∀𝑖, 𝑔𝜑𝐸′
𝑖
∈ ZΛ,𝐵)

is zero. We have seen that our probability P(∀𝑖, 𝑔𝜑𝐸′
𝑖
∈ ZΛ,𝐵) is

equal to P({𝑬 = (®𝑒 𝑗 )1≤ 𝑗≤𝑛 : ∀𝑖, (𝜑/𝜈)𝐸′
𝑖
∈ ZΛ/𝜈,𝐵/𝜈 }).

Now, the condition (𝜑/𝜈)𝐸′
𝑖
∈ ZΛ/𝜈,𝐵/𝜈 only depends on the

columns (®𝑒 𝑗 ) of the random matrix for 𝑗 ∈ 𝜉Λ/𝜈 := { 𝑗 : 𝑝 𝑗 ∈
P(Λ/𝜈)}. These columns are uniformly distributed in the sample

space Ω := {(®𝑒 𝑗 ) 𝑗∈𝜉Λ/𝜈 : ∀𝑗 ∈ 𝜉Λ/𝜈 , ®𝑒 𝑗 ≠ ®0 ∈ (Z𝑝 𝑗
)ℓ }. Therefore, if

we write the condition as

E :=

{
(®𝑒 𝑗 ) 𝑗∈𝜉Λ/𝜈 ∈

∏
𝑗∈𝜉Λ/𝜈

(Z𝑝 𝑗
)ℓ : ∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ ZΛ,𝐵

}
,

we can deduce that our probability equals

P({(®𝑒 𝑗 ) 𝑗∈𝜉Λ/𝜈 : ∀𝑖, (𝜑/𝜈)𝐸′𝑖 ∈ ZΛ/𝜈,𝐵/𝜈 }) =
#(Ω ∩ E)

#Ω
≤ #E

#Ω
.

Note that #Ω =
∏

𝑝∈P( Λ
𝜈
) (𝑝

ℓ − 1). When the (®𝑒 𝑗 ) 𝑗∈𝜉Λ/𝜈 are inde-

pendent and uniformly distributed in

∏
𝑗∈𝜉Λ/𝜈 (Z𝑝 𝑗

)ℓ , as it is the
case in E, the random variables 𝐸′

𝑖
are uniformly distributed in



ZΛ/𝜈 . Moreover, since 𝜑/𝜈 is coprime to Λ/𝜈 , the multiplication

by 𝜑/𝜈 is a bijection of ZΛ/𝜈 . Therefore, the cardinality of E is

#E = (#ZΛ/𝜈,𝐵/𝜈 )ℓ . □

We now have the ingredients to prove our upper bound on the

failure probability.

Lemma 22. Given 𝐸′
1
, . . . , 𝐸′

ℓ
, distributed according to the error

model ERR1, we have that

P(𝑆𝑬 ≠ {0}) ≤
(
6

2
𝜏𝐹𝐺

𝑁

)ℓ
Λ exp

(
𝑛

𝑝ℓ
1

)
.

Proof. Rewriting {𝑬 : 𝑆𝑬 ≠ {0}} as ∪Λ−1

𝜑=1
{𝑬 : 𝜑 ∈ 𝑆𝑬 }, we get

P(𝑆𝑬 ≠ {0}) ≤
Λ−1∑︁
𝜑=1

P
(
∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ ZΛ,𝐵

)
(8)

We can use Lemma 21 and upper bound the terms in the sum with

P
(
∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ ZΛ,𝐵

)
≤

(
#ZΛ/𝜈,𝐵/𝜈

)ℓ∏
𝑝∈P( Λ

𝜈
)
(𝑝ℓ − 1)

where 𝜈 = gcd(𝜑,Λ). Thanks to the second point in Lemma 21, we

can restrict the sum only to the elements 𝜑 such that 𝜈 ≤ 𝐵, which

in turn allows us to deduce that #ZΛ/𝜈,𝐵/𝜈 ≤ 2⌊𝐵/𝜈⌋ + 1 ≤ 3𝐵/𝜈.
Since this expression depends only on 𝜈 , we regroup the 𝜑 in the

sum by their gcd with Λ. Note that the number of elements 𝜑 ∈ ZΛ
such that gcd(𝜑,Λ) = 𝜈 , is equal to 𝜙

(
Λ
𝜈

)
with 𝜙 being the Euler

totient function. Therefore

Λ−1∑︁
𝜑=1

𝜈=gcd(𝜑,Λ)≤𝐵

(
#ZΛ/𝜈,𝐵/𝜈

)ℓ∏
𝑝∈P( Λ

𝜈
)
(𝑝ℓ − 1)

≤
∑︁
𝜈 |Λ
𝜈≤𝐵

𝜙

(
Λ
𝜈

) (
3𝐵
𝜈

)ℓ∏
𝑝∈P( Λ

𝜈
)
(𝑝ℓ − 1)

.

Plugging in the definition of 𝐵 we can collect a common term(
6

2
𝜏 𝐹𝐺
𝑁

)ℓ
. Thus, extending the sum over all the divisors 𝜈 , we can

upper bound the quotient P(𝑆𝑬 ≠ {0})/
(
6

2
𝜏 𝐹𝐺
𝑁

)ℓ
with

∑︁
𝜈 |Λ

𝜙

(
Λ
𝜈

) (
Λ
𝜈

)ℓ∏
𝑝∈P( Λ

𝜈
)
(𝑝ℓ − 1)

=
∑︁
𝜈 |Λ

∏
𝑝∈P( Λ

𝜈
)

(𝑝 − 1)𝑝ℓ

𝑝ℓ − 1

=
∏

𝑝∈P(Λ)

(
(𝑝 − 1)𝑝ℓ

𝑝ℓ − 1

+ 1

)
where in the last equality we used the distributive property to ex-

press a product of the form

∏
𝑝∈P(Λ) [𝑓 (𝑝) +1], with 𝑓 an arbitrary

function, as a sum

∑
𝜈 |Λ

∏
𝑝∈P( Λ

𝜈
) 𝑓 (𝑝). Bringing each term to its

common denominator, the above product can be rewritten as∏
𝑝∈P(Λ)

(
𝑝ℓ+1 − 1

𝑝ℓ − 1

)
= Λ

∏
𝑝∈P(Λ)

(
𝑝ℓ − 1

𝑝

𝑝ℓ − 1

)
= Λ

∏
𝑝∈P(Λ)

©«
1 − 1

𝑝ℓ+1

1 − 1

𝑝ℓ

ª®¬
≤ Λ

∏
𝑝∈P(Λ)

(
1 + 1

𝑝ℓ

)
≤ Λ exp

(
𝑛

𝑝ℓ
1

)
.

Where the first inequality above is true since

1 − 1

𝑝ℓ+1

1 − 1

𝑝ℓ

≤
(
1 + 1

𝑝ℓ

)
⇔ 1 − 1

𝑝ℓ+1
≤ 1 − 1

𝑝2ℓ
⇔ 2ℓ ≥ ℓ + 1,

while for the second one we used that 𝑝1 = min𝑝 𝑗 to get∏
𝑝∈P(Λ)

(
1 + 1

𝑝ℓ

)
≤

(
1 + 1

𝑝ℓ
1

)𝑛
≤ exp

(
𝑛

𝑝ℓ
1

)
□

3.3.2 Proof of Theorem 17. We start by proving that with 𝜏 =

𝑑 + log(𝛽) and with the hypothesis of Theorem 17, Constraint 19

holds, thus we can apply all the previous lemmas and upper bound

the failure probability of Algorithm 1 with the quantity given by

Lemma 22. Let us start by verifying that our choice of parameters

satisfy Constraint 19:

2

2
𝜏𝐹𝐺

𝑁
= 2𝛽

2
𝑑𝐹𝐺

𝑁
≤ 2𝛽

2
𝑑max𝐹𝐺

𝑁
=

2𝛽𝐹𝐺

𝑁

(
𝑁

6𝐹𝐺𝛽

) ℓ
ℓ+1

=

(
2𝛽𝐹𝐺

3
ℓ𝑁

) 1

ℓ+1

We already noticed when defining the 𝑆𝑅𝑁ℓ (𝑁 ; 𝐹,𝐺) code that

2𝐹𝐺 < 𝑁 . We said in Section 2.3 that we can assume 𝛽 ≤
√

2

ℓ√
ℓ + 1.

Since

√
2

ℓ√
ℓ + 1 ≤ 3

ℓ
for every ℓ ∈ Z>0, the above quantity is

smaller than 1 and Constraint 19 is satisfied. Hence, we can upper

bound the failure probability using Lemma 22. Thanks to the hy-

pothesis of Theorem 17 we know that Λ ≤ 2
𝑑
, and since 2

𝜏 = 𝛽2
𝑑
,

and using 2
𝑑max (ℓ+1) = (𝑁 /(6𝐹𝐺𝛽))ℓ , we have proved Theorem 17.

□

3.3.3 P𝑓𝑎𝑖𝑙 under ERR2. In the second error model, we need to

make a distinction between the maximal error support 𝜉𝑟 (over

which there are uniform random errors) and the actual error support

𝜉 , which is included in 𝜉𝑟 but may be different if a zero column is

drawn. We will denote P𝐸𝑅𝑅2

𝜉𝑟
(resp. P𝐸𝑅𝑅1

𝜉
) the probability function

under the error model 2 with error support 𝜉𝑟 (resp. the error

model 1 with 𝜉). Let F be the event of decoding failure, i.e. the

set of random matrices 𝑬 such that Algorithm 1 returns "decoding

failure". Using the law of total probability, we have

P𝐸𝑅𝑅2

𝜉𝑟
(F ) =

∑︁
𝜉⊆𝜉𝑟
P𝐸𝑅𝑅2

𝜉𝑟
(F | 𝜉𝑬 = 𝜉) P𝐸𝑅𝑅2

𝜉𝑟
(𝜉𝑬 = 𝜉). (9)

where 𝜉𝑬 := 𝜉𝑹,𝑪 (see Definition 1). The conditional probabilities

P𝐸𝑅𝑅2

𝜉𝑟
(F | 𝜉𝑬 = 𝜉) in the sum are equal to P𝐸𝑅𝑅1

𝜉
(F ), which are

upper bounded within the proof of Lemma 22 by

P𝐸𝑅𝑅1

𝜉
(F ) ≤

(
6

2
𝜏𝐹𝐺

𝑁

)ℓ
Λ

∏
𝑝∈P(Λ)

(
𝑝ℓ − 1

𝑝

𝑝ℓ − 1

)
(10)

where Λ =
∏

𝑗∈𝜉 𝑝 𝑗 . Moreover,

P𝐸𝑅𝑅2

𝜉𝑟
(𝜉𝑬 = 𝜉) =

∏
𝑗∈𝜉 (𝑝ℓ𝑗 − 1)∏

𝑗∈𝜉𝑟 𝑝
ℓ
𝑗

=

∏
𝑝∈P(Λ) (𝑝ℓ − 1)

Λℓ
𝑟

(11)

where Λ𝑟 =
∏

𝑗∈𝜉𝑟 𝑝 𝑗 . Using these facts we can prove Theorem 18.

3.3.4 Proof of Theorem 18. Plug Equations (11) and (10) in Equa-

tion (9) to obtain that P𝐸𝑅𝑅2

𝜉𝑟
(F )/(6 2

𝜏 𝐹𝐺
𝑁
)ℓ is less than or equal to∑︁

Λ |Λ𝑟

Λ
∏

𝑝∈P(Λ)

(
𝑝ℓ − 1

𝑝

𝑝ℓ − 1

) ∏
𝑝∈P(Λ) (𝑝ℓ − 1)

Λℓ
𝑟

=
1

Λℓ
𝑟

∑︁
Λ |Λ𝑟

∏
𝑝∈P(Λ)

(
𝑝ℓ+1 − 1

)
=

1

Λℓ
𝑟

∏
𝑝∈P(Λ𝑟 )

(
(𝑝ℓ+1 − 1) + 1

)
= Λ𝑟 .



Now, thanks to the hypothesis of the theorem, we know that Λ𝑟 ≤
2
𝑑
, and since 2

𝜏 = 2
𝑑𝛽 , we can write

P𝐸𝑅𝑅2

𝜉𝑟
(F ) ≤

(
6

2
𝜏𝐹𝐺

𝑁

)ℓ
Λ𝑟 ≤

(
6

2
𝑑𝛽𝐹𝐺

𝑁

)ℓ
2
𝑑 = 2

𝑑 (ℓ+1)
(
6

𝛽𝐹𝐺

𝑁

)ℓ
.

Using 2
𝑑max (ℓ+1) = (𝑁 /(6𝐹𝐺𝛽))ℓ , we have proved Theorem 18. □

4 THE RATIONAL FUNCTION CASE
In this section we show how the previous analysis fits the decoding

of simultaneous rational functions codes, for the resolution of Prob-

lem 3. This improves the result of [19], generalizing the best known

analysis of the decoding failure for interleaved Reed-Solomon codes

to the rational function case [7]. We relate Problem 3 with the de-

coding problem for the rational extension of Reed-Solomon codes,

defined as follows

Definition 23. Given 𝑛 distinct evaluation points 𝛼1, . . . , 𝛼𝑛 ∈
F𝑞 , let 𝑀 (𝑥) :=

∏𝑛
𝑖=1
(𝑥 − 𝛼𝑖 ) ∈ F𝑞 [𝑥], two degree bounds 𝑑𝑓 , 𝑑𝑔 ∈

Z>0 such that 𝑑𝑓 + 𝑑𝑔 ≤ 𝑛 + 1 and a parameter ℓ > 0, we define the
simultaneous rational function code as the set of matrices

𝑆𝑅𝐹ℓ (𝑀 ;𝑑𝑓 , 𝑑𝑔) :=


(
𝑓𝑖
𝑔 (𝛼 𝑗 )

)
1≤𝑖≤ℓ
1≤ 𝑗≤𝑛

:

𝜕(𝑓𝑖 ) < 𝑑𝑓 , 𝜕(𝑔) < 𝑑𝑔,

gcd(𝑓1, . . . , 𝑓ℓ , 𝑔) = 1

gcd(𝑀,𝑔) = 1

 .

Recall that we denote 𝜕(𝑝) the degree of a polynomial 𝑝 ∈ F𝑞 [𝑥].
Let 𝑹 := (𝑟𝑖, 𝑗 ) 1≤𝑖≤ℓ

1≤ 𝑗≤𝑛
be the received matrix. For any code word 𝑪 ∈

𝑆𝑅𝐹ℓ (𝑀 ;𝑑𝑓 , 𝑑𝑔), we canwrite 𝑹 = 𝑪+𝑬 for some errormatrix 𝑬 . We

can associate an interpolation polynomial to every row, which we

write𝑅𝑖 = 𝐶𝑖+𝐸𝑖 .We set 𝜉𝑹,𝑪 := { 𝑗 : ∃𝑖, 𝑟𝑖 𝑗 ≠ 𝑐𝑖 𝑗 },𝑑 (𝑹, 𝑪) = #𝜉𝑹,𝑪
and Λ𝑹,𝑪 =

∏
𝑗∈𝜉𝑹,𝑪 (𝑥 − 𝛼 𝑗 ). We refer to Λ and 𝜉 instead of Λ𝑹,𝑪

and 𝜉𝑹,𝑪 for short. We know that Λ𝑓𝑖 = Λ𝑔𝑅𝑖 mod 𝑀 (𝑥) holds for
any 1 ≤ 𝑖 ≤ ℓ [16]. Making the substitutions 𝜑 ← Λ𝑔,𝜓𝑖 ← Λ𝑓𝑖 we
linearize the previous equations, obtaining the key equations

𝜓𝑖 = 𝜑𝑅𝑖 mod 𝑀 (𝑥) for 𝑖 = 1, . . . , ℓ

which are F𝑞-linear. In particular if 𝜕(Λ) ≤ 𝑡 for some distance

parameter 𝑡 , the solution vector 𝑣𝑪 := (Λ𝑔,Λ𝑓1, . . . ,Λ𝑓ℓ ) belongs
to the F𝑞-linear subspace

𝑆𝑹 :=

{
(𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ F𝑞 [𝑥 ]ℓ+1 :

𝜓𝑖 = 𝜑𝑅𝑖 mod 𝑀 (𝑥 )
𝜕 (𝜑 ) < 𝑑𝑔 + 𝑡, 𝜕 (𝜓𝑖 ) < 𝑑𝑓 + 𝑡

}
.

In this context the decoding is a linear problem. Indeed we know

that 𝑣𝑪 ∈ 𝑆𝑹 , and we can compute an element (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈
𝑆𝑹 by solving the linear equations 𝜓𝑖 = 𝜑𝑅𝑖 mod 𝑀 (𝑥) for the
ℓ (𝑑𝑓 + 𝑡) + 𝑑𝑔 + 𝑡 coefficients of the polynomials 𝜑,𝜓1, . . . ,𝜓ℓ . The

idea of the algorithm is to find a non-zero element (𝜑,𝜓1, . . . ,𝜓ℓ )
in 𝑆𝑹 , then compute 𝜆 = gcd(𝜑,𝜓1, . . . ,𝜓ℓ ), 𝜑 ′ := 𝜑/𝜆, 𝜓 ′

𝑖
:= 𝜓𝑖/𝜆

and check if 𝜕(𝜆) ≤ 𝑡 , 𝜕(𝜑 ′) < 𝑑𝑔 and 𝜕(𝜓 ′
𝑖
) < 𝑑𝑓 (see for example

[10, Algorithm 2.1]). If this holds, then we can state an equivalent

of Lemma 14 that guarantees the correctness of the algorithm.

Regarding the distributions of the received word 𝑹, in analogy with

Subsection 3.1, we define the two distributions as follows.

Error Model 1. Let 𝜉 be a fixed error support, and let the columns

of the error matrix 𝑬 be distributed as follows

®𝑒 𝑗 = ®0 if 𝑗 ∉ 𝜉, ®𝑒 𝑗 ∼ U
(
Fℓ𝑞 \ {®0}

)
if 𝑗 ∈ 𝜉 . (12)

For any given code word 𝑪 and error support 𝜉 , we obtain the

distributionD𝐸𝑅𝑅1

𝑪,𝜉
:= {𝑹 = 𝑪 +𝑬 : 𝑬 as in Eq. (12)} of the random

received words 𝑹 around the central code word 𝑪 .

Error Model 2. Let 𝜉𝑟 be a fixed maximal error support, and let

the columns of the error matrix 𝑬 be distributed as follows

®𝑒 𝑗 = ®0 if 𝑗 ∉ 𝜉𝑟 , ®𝑒 𝑗 ∼ U
(
Fℓ𝑞

)
if 𝑗 ∈ 𝜉𝑟 . (13)

For any given code word 𝑪 and maximal error support 𝜉𝑟 , we obtain

the distribution D𝐸𝑅𝑅2

𝑪,𝜉𝑟
:= {𝑹 = 𝑪 + 𝑬 : 𝑬 as in Eq. (13)} of the

random received words 𝑹 around the central code word 𝑪 .

4.1 Our Results
Under these two error models, we can correct up to

𝑡max :=
ℓ

ℓ + 1

(𝑛 − 𝑑𝑓 − 𝑑𝑔 + 1) (14)

errors, with the probability of failure of the decoding algorithm

given respectively by the following theorems.

Theorem 24. Given a random received word 𝑹 ∈ D𝐸𝑅𝑅1

𝑪,𝜉
for

some code word 𝑪 ∈ 𝑆𝑅𝐹ℓ (𝑀 ;𝑑𝑓 , 𝑑𝑔) and error support 𝜉 such that
𝑡 := #𝜉 ≤ 𝑡max, the decoding algorithm returns the center 𝑪 of the
distribution with a probability of failure P𝑓𝑎𝑖𝑙 upper-bounded by

P𝑓𝑎𝑖𝑙 ≤
(
𝑞ℓ − 1

𝑞

𝑞ℓ − 1

)𝑡
𝑞−(ℓ+1) (𝑡max−𝑡 )

𝑞 − 1

.

This result generalizes the best known bound [19, Theorem 7]

for Interleaved Reed-Solomon codes to rational functions.

Theorem 25. Given a random received word 𝑹 ∈ D𝐸𝑅𝑅2

𝑪,𝜉𝑟
for some

code word 𝑪 ∈ 𝑆𝑅𝐹ℓ (𝑀 ;𝑑𝑓 , 𝑑𝑔) and maximal error support 𝜉𝑟 such
that 𝑡 := #𝜉𝑟 ≤ 𝑡max, the decoding algorithm returns the center 𝑪 of
the distribution with a probability of failure P𝑓𝑎𝑖𝑙 upper-bounded by
P𝑓𝑎𝑖𝑙 ≤ 𝑞−(ℓ+1) (𝑡max−𝑡 )/(𝑞 − 1).

This failure probability bound improves the previous known

bound for SRFRwE: P𝑓𝑎𝑖𝑙 ≤ (𝑑𝑔 + 𝑡)/𝑞 (see [8, Theorem 4]). We

stress out that this result also applies to Interleaved Reed-Solomon

codes (𝑑𝑔 = 1), and this gives a new best bound in the context of

error model 2, to the best of our knowledge.

4.2 Analysis of the failure probability
As we did in Section 3.3, we start with the proof of the result in

the error model ERR1, and then we use the total law of probability

to reduce this result to an estimate for the probability in the er-

ror model ERR2 (see Subsection 4.2.2). Given the random received

word 𝑹 ∈ D𝐸𝑅𝑅1

𝑪,𝜉
as in Theorem 24, we know that we can write

𝑹 = 𝑪 + 𝑬 with 𝜉𝑹,𝑪 = 𝜉 , #𝜉 = 𝑡 and 𝑪 = (𝑓𝑖 (𝛼 𝑗 )/𝑔(𝛼 𝑗 )) 𝑖=1,...,ℓ
𝑗=1,...,𝑛

,

thus the solution vector 𝑣𝑪 := (Λ𝑔,Λ𝑓1, . . . ,Λ𝑓ℓ ) ∈ 𝑆𝑹 . The lin-

ear algebra decoding approach of [4, 9, 10] allows computing an

element (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ 𝑆𝑹 , thus if 𝑆𝑹 ⊆ 𝑣𝑪F𝑞 [𝑥] then the de-

coding succeeds; which means that P𝑓𝑎𝑖𝑙 ≤ P(𝑆𝑹 ⊈ 𝑣𝑪F𝑞 [𝑥]) .
Letting 𝐸𝑖 ∈ F𝑞 [𝑥] be the interpolation polynomial associated to

the 𝑖-th row of the error matrix 𝑬 , we still have the equations

Λ𝐸𝑖 = 0 mod 𝑀 (𝑥), thus defining 𝑌 := 𝑀/Λ ∈ F𝑞 [𝑥] we have that
𝐸𝑖 = 0 mod 𝑌 and we can define 𝐸′

𝑖
:= 𝐸𝑖/𝑌 ∈ F𝑞 [𝑥].



We let 𝐵 := 𝑑𝑓 + 𝑑𝑔 + 2𝑡 − 𝑛 − 2 and for𝑚 ∈ F𝑞 [𝑥] and 𝐶 ∈ Z>0

such that 𝐶 ≤ 𝜕(𝑚), we introduce the sets

F𝑞 [𝑥]𝑚,𝐶 :=

{
𝑝 (𝑥) ∈ F𝑞 [𝑥]⧸𝑚 : 𝜕(𝑝 rem𝑚) ≤ 𝐶

}
, #F𝑞 [𝑥]𝑚,𝐶 = 𝑞𝐶+1

𝑆𝑬 :=

{
𝜑 ∈ F𝑞 [𝑥]⧸Λ : 𝑔𝜑𝐸′𝑖 ∈ F𝑞 [𝑥]Λ,𝐵

}
where 𝑝 rem 𝑚 is the usual remainder of the Euclidean division

between 𝑝 and 𝑚. We can now state the polynomial version of

Lemma 20, which requires the

Constraint 26. The parameters satisfy 𝑡 < 𝑛 − 𝑑𝑓 − 𝑑𝑔 + 2.

Lemma 27. Assuming Constraint 26, 𝑆𝑬 = {0} ⇒ 𝑆𝑹 ⊆ 𝑣𝑪F𝑞 [𝑥].

Proof. Let (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈ 𝑆𝑅 . We know that 𝑔𝜑𝐸𝑖 = 𝑔𝜑𝑅𝑖 −
𝑓𝑖𝜑 = 𝑔𝜓𝑖 − 𝑓𝑖𝜑 mod 𝑀 and since 𝑌 divides𝑀 and 𝐸𝑖 , we can define

the polynomial 𝜓 ′
𝑖
= (𝑔𝜓𝑖 − 𝑓𝑖𝜑)/𝑌 such that 𝑔𝜑𝐸′

𝑖
= 𝜓 ′

𝑖
mod Λ

and whose degree is bounded by 𝜕(𝜓 ′
𝑖
) = 𝜕(𝑔𝜓𝑖 − 𝑓𝑖𝜑) − 𝜕(𝑌 ) ≤

(𝑑𝑓 +𝑑𝑔 +𝑡 −2) − (𝑛−𝑡) which is less than 𝑡 thanks to Constraint 26.

Thus 𝜑 mod Λ ∈ 𝑆𝑬 therefore by hypothesis Λ|𝜑 in F𝑞 [𝑥], and
thanks to the above Λ|𝜓 ′

𝑖
. Since we proved that 𝜕(𝜓 ′

𝑖
) < 𝑡 = 𝜕(Λ)

we can conclude that 𝑔𝜓𝑖 = 𝑓𝑖𝜑 for all 𝑖 . Since gcd(𝑓1, . . . , 𝑓ℓ , 𝑔) = 1,

as in the proof of Lemma 20 we conclude that (𝜑,𝜓1, . . . ,𝜓ℓ ) ∈
(Λ𝑔,Λ𝑓1, . . . ,Λ𝑓ℓ )F𝑞 [𝑥]. □

Thanks to the above lemma we can upper bound the failure prob-

ability of the decoding algorithm as P𝑓𝑎𝑖𝑙 ≤ P(𝑆𝑬 ≠ {0}). A stan-

dard argument of probability shows that E[#𝑆𝑬 ] =
∑
𝑚≥1
P(#𝑆𝑬 ≥

𝑚) ≥ 1 + (𝑞 − 1)P(𝑆𝑬 ≠ {0}), because P(#𝑆𝑬 ≥ 1) = 1 and,

for 2 ≤ 𝑚 ≤ 𝑞, P(#𝑆𝑬 ≥ 𝑚) = P(𝑆𝑬 ≠ {0}) since the cardi-

nality of the F𝑞-vector space 𝑆𝑬 is a power of 𝑞. Therefore, we

have P(𝑆𝑬 ≠ {0}) ≤ (E[#𝑆𝑬 ] − 1)/(𝑞 − 1). Using the expression

E[#𝑆𝑬 ] =
∑
𝜑∈F𝑞 [𝑥 ]/Λ P (𝜑 ∈ 𝑆𝑬 ) and P(0 ∈ 𝑆𝑬 ) = 1, we can write

P(𝑆𝑬 ≠ {0}) ≤ 1

𝑞 − 1

∑︁
𝜑∈ (F𝑞 [𝑥 ]/Λ)\{0}

P (𝜑 ∈ 𝑆𝑬 )

=
1

𝑞 − 1

∑︁
𝜑∈ (F𝑞 [𝑥 ]/Λ)\{0}

P
(
∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ F𝑞 [𝑥]Λ,𝐵

)
. (15)

We can now prove the polynomial version of Lemma 21.

Lemma 28. Given 𝜑 ∈ F𝑞 [𝑥]/Λ, let 𝜈 := gcd(𝜑,Λ), then

P
(
∀𝑖, 𝑔𝜑𝐸′𝑖 ∈ F𝑞 [𝑥]Λ,𝐵

)
≤

(
#F𝑞 [𝑥]Λ/𝜈,𝐵−𝜕 (𝜈 )

)ℓ
(
𝑞ℓ − 1

)𝜕 (Λ/𝜈 ) .

If also 𝐵 < 𝜕(𝜈) < 𝜕(Λ), then P
(
∀𝑖, 𝑔𝜑𝐸′

𝑖
∈ F𝑞 [𝑥]Λ,𝐵

)
= 0.

Proof. Since gcd(𝑔,𝑀) = 1, the distributions of the vectors

(𝑔𝜑𝐸′
1
, . . . , 𝑔𝜑𝐸′

ℓ
) and (𝜑𝐸′

1
, . . . , 𝜑𝐸′

ℓ
) are identical. Thus, we have

P
(
∀𝑖, 𝑔𝜑𝐸′

𝑖
∈ F𝑞 [𝑥]Λ,𝐵

)
= P

(
∀𝑖, 𝜑𝐸′

𝑖
∈ F𝑞 [𝑥]Λ,𝐵

)
. We now show

that 𝜑𝐸′
𝑖
∈ F𝑞 [𝑥]Λ,𝐵 ⇔ (𝜑/𝜈)𝐸′𝑖 ∈ F𝑞 [𝑥] Λ

𝜈
,𝐵−𝜕 (𝜈 ) : The first con-

dition can be rephrased as 𝜑𝐸′
𝑖
= 𝑎𝑖Λ + 𝑐𝑖 with 𝑎𝑖 , 𝑐𝑖 ∈ F𝑞 [𝑥]

and 𝜕(𝑐𝑖 ) ≤ 𝐵, but then we must have that 𝜈 |𝑐𝑖 . Thus we can

divide the above by 𝜈 and obtain (𝜑/𝜈)𝐸′
𝑖
= 𝑎𝑖Λ/𝜈 + 𝑐𝑖/𝜈 with

𝜕(𝑐𝑖/𝜈) ≤ 𝐵−𝜕(𝜈) which is equivalent to (𝜑/𝜈)𝐸′
𝑖
∈ F𝑞 [𝑥] Λ

𝜈
,𝐵−𝜕 (𝜈 ) .

When 𝐵 < 𝜕(𝜈) < 𝜕(Λ), the previous condition implies that

(𝜑/𝜈)𝐸′
𝑖
= 0 mod Λ/𝜈 for all 𝑖 . Since (𝜑/𝜈) is coprime with Λ/𝜈 , we

have 𝐸′
𝑖
= 0 mod Λ/𝜈 for all 𝑖 . If 𝜕(𝜈) < 𝜕(Λ), this is in contradiction

with gcd(𝐸′
1
, . . . , 𝐸′

ℓ
,Λ) = 1 for all random matrix 𝑬 . Therefore, the

associated probability P(∀𝑖, 𝑔𝜑𝐸′
𝑖
∈ F𝑞 [𝑥]Λ,𝐵) is zero. To conclude,

thanks to the coprimality between Λ/𝜈 and 𝜑/𝜈 the distributions

of the vectors

(
(𝜑/𝜈)𝐸′

𝑖

)ℓ
𝑖=1

and

(
𝐸′
𝑖

)ℓ
𝑖=1

are the same. So, we need

to compute the probability P
(
∀𝑖, 𝐸′

𝑖
∈ F𝑞 [𝑥]Λ/𝜈,𝐵−𝜕 (𝜈 )

)
. The con-

dition 𝐸′
𝑖
∈ F𝑞 [𝑥] Λ

𝜈
,𝐵−𝜕 (𝜈 ) only depends on the columns (®𝑒 𝑗 ) of

the random matrix 𝑬 for 𝑗 ∈ 𝜉Λ/𝜈 := { 𝑗 : (Λ/𝜈) (𝛼 𝑗 ) = 0} with
#𝜉Λ/𝜈 = 𝜕(Λ/𝜈). These columns are uniformly distributed in the

sample space Ω := (Fℓ𝑞 \ {®0})𝜕 (Λ/𝜈 ) . Therefore, if we write the

condition as E :=

{
(®𝑒 𝑗 ) 𝑗∈𝜉Λ/𝜈 ∈ F

ℓ×𝜕 (Λ/𝜈 )
𝑞 : ∀𝑖, 𝑔𝜑𝐸′

𝑖
∈ F𝑞 [𝑥]Λ,𝐵

}
,

our probability is

#(Ω ∩ E)
#Ω

≤ #E
#Ω

=

(
#F𝑞 [𝑥]Λ/𝜈,𝐵−𝜕 (𝜈 )

)ℓ(
𝑞ℓ − 1

)𝜕 (Λ/𝜈 ) . □

4.2.1 Proof of Theorem 24. Using the bound of Eq. (15) and the

previous Lemma 28 we have

P(𝑆𝑬 ≠ {0}) ≤ 1

𝑞 − 1

∑︁
𝜑∈ (F𝑞 [𝑥 ]/Λ)\{0}
𝜕 (gcd(𝜑,Λ) )≤𝐵

(
𝑞𝐵−𝜕 (gcd(𝜑,Λ) )+1

)ℓ
(
𝑞ℓ − 1

)𝜕 (Λ/gcd(𝜑,Λ) ) .

Since the generic term in the sum depends only on the degree of

gcd(𝜑,Λ), we can regroup the sum by 𝜑 such that 𝜕(gcd(𝜑,Λ)) = 𝑟 .

There are

( 𝑡
𝑡−𝑟

)
(𝑞 − 1)𝑡−𝑟 such 𝜑 . Thus we can write

P(𝑆𝑬 ≠ {0}) ≤ 1

𝑞 − 1

𝑡∑︁
𝑟=0

(
𝑡

𝑡 − 𝑟

)
(𝑞 − 1)𝑡−𝑟

(
𝑞𝐵−𝑟+1

)ℓ(
𝑞ℓ − 1

)𝑡−𝑟 .
Using the binomial identity, we obtain

P(𝑆𝑬 ≠ {0}) ≤ 𝑞ℓ (𝐵+1−𝑡 )

𝑞 − 1

𝑞𝑡

(
𝑞ℓ − 1

𝑞

𝑞ℓ − 1

)𝑡
.

Using the relation ℓ (𝐵 + 1 − 𝑡) + 𝑡 = −(ℓ + 1) (𝑡max − 𝑡) which
results from the definitions of 𝐵 before Constraint 26, and of 𝑡max

in Eq. (14), we conclude the proof:

P𝑓𝑎𝑖𝑙 ≤ P(𝑆𝑬 ≠ {0}) ≤
(
𝑞ℓ − 1

𝑞

𝑞ℓ − 1

)𝑡
𝑞−(ℓ+1) (𝑡max−𝑡 )

𝑞 − 1

.

4.2.2 Proof of Theorem 25. Along the same lines of what we have

done in Subsection 3.3.3, we fix a maximal error support 𝜉𝑟 with 𝑡 :=

#𝜉𝑟 , andwe use the law of total probability (see Eq. (9)) to express the

failure probability over the error support 𝜉𝑟 as aweighted sum of the

failure probabilities over all the sub error supports 𝜉 ⊆ 𝜉𝑟 according

to the error model ERR1. Since P𝐸𝑅𝑅2

𝜉𝑟

(
𝜉𝑹,𝑪 = 𝜉

)
=
(𝑞ℓ−1)#𝜉

𝑞ℓ𝑡
, using

the law of total probability of Eq. (9), we obtain

P𝐸𝑅𝑅2

𝜉𝑟
(F ) ≤

∑︁
𝜉⊆𝜉𝑟

(
𝑞ℓ − 1

𝑞

𝑞ℓ − 1

)#𝜉
𝑞−(ℓ+1) (𝑡max−#𝜉 )

𝑞 − 1

(𝑞ℓ − 1)#𝜉

𝑞ℓ𝑡
.

Regrouping all the

(𝑡
𝑠

)
supports 𝜉 ⊆ 𝜉𝑟 such that #𝜉 = 𝑠 , and using

the binomial identity, we conclude the proof:

P𝐸𝑅𝑅2

𝜉𝑟
(F ) ≤

(
𝑞2ℓ+1 − 𝑞ℓ + 1

)𝑡
𝑞ℓ𝑡𝑞 (ℓ+1)𝑡max (𝑞 − 1)

≤ 𝑞−(ℓ+1) (𝑡max−𝑡 )

𝑞 − 1

. □
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