
HAL Id: lirmm-04628663
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04628663

Submitted on 28 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power Analysis Attack Against post-SAT Logic Locking
schemes

Nassim Riadi, Florent Bruguier, Pascal Benoit, Sophie Dupuis, Marie-Lise
Flottes

To cite this version:
Nassim Riadi, Florent Bruguier, Pascal Benoit, Sophie Dupuis, Marie-Lise Flottes. Power Analysis
Attack Against post-SAT Logic Locking schemes. ETS 2024 - 29th IEEE European Test Symposium,
May 2024, The Hague, Netherlands. pp.1-6, �10.1109/ETS61313.2024.10567311�. �lirmm-04628663�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04628663
https://hal.archives-ouvertes.fr

Power Analysis Attack Against post-SAT Logic
Locking schemes

Nassim Riadi, Florent Bruguier, Pascal Benoit, Sophie Dupuis, Marie-Lise Flottes

LIRMM, Univ. Montpellier/CNRS
Montpellier, France

first-name.last-name@lirmm.fr

Abstract—Due to the globalization of the semiconductor
industry, Integrated Circuits (ICs) and Intellectual Properties
(IPs) are susceptible to specific threats. IP piracy,
overproduction, and introduction of hardware Trojans can
indeed compromise valuable design information and trust in the
design flow. Logic Locking (LL) is one of the most popular
Design-for-Trust techniques that aims to thwart these threats
because of the wide range of risks it can prevent. This approach
evolves from year to year in order to make it resistant to ever
more advanced attacks. While most advanced LL solutions are
assumed to be resistant against differential power analysis
(DPA), we propose a new attack framework for challenging
these approaches and show on several benchmarks that it is
possible to reveal more than 88% of the key bits used for locking
the designs thanks to DPA.

Index Terms—Design-for-Trust, Logic Locking, Differential
Power Analysis.

I. INTRODUCTION

Numerous frauds in the integrated circuit production have

been made possible as the semiconductor industry has

evolved over the decades from a vertical to a horizontal

model with many entities involved in the design, integration,

manufacturing, assembly and testing of a chip. Security and

trust have since received particular attention for preventing
piracy, copy, cloning, hardware Trojan insertion.

Design-for-Trust (DfTr) solutions [1] have thus emerged to

thwart the theft of intellectual property during production,

prevent any malicious modification during manufacturing

and avoid copying after deployment on the market. Passive

watermarking and fingerprinting techniques at the end of the

90’s consist of embedding designer’s signature and end-

user’s one, respectively. They can be used to detect piracy but

cannot prevent it. Split manufacturing [2] consists in

manufacturing two parts of a design, front-end and back-end-

of-line, in separate foundries. It prevents piracy by an

untrusted foundry. Camouflaging [3] replaces gates with

camouflaged counterparts which look alike from the top but

where the true functionality remains unknown. It aims at

preventing reverse engineering by end-users. Logic Locking

(LL) [4][5] consists in inserting extra logic into the design so

that it becomes functional upon activation with a secret key

defined by the designer. This approach received the most

attention because it prevents piracy, overbuilding and reverse

engineering and thus

This work was funded by the French National Research
Agency (ANR) under the ARSENE project (ANR-22-PECY-
0004)

provides protection against the largest set of untrusted

entities, SoC integrators, foundries, test facilities and end-

users.

Since the end of the 2000s, Logic Locking solutions have

however been challenged by new attacks. In 2015, a Boolean

Satisfiability based attack (SAT attack) [6] has been presented

that broke all the combinational logic locking techniques

proposed so far. The attack aims at gradually pruning the key

search space. SARLock [7] and Anti-SAT [8] are examples of

countermeasures against the SAT attack. They aim at

minimizing the number of keys gradually discarded,

rendering the attack effort exponential in the number of secret

key bits. These countermeasures are however vulnerable to

structural attacks [9] consisting in removing the locking logic

from the attacked design for retrieving the original function.

In most advanced solutions such as TTLock [10], SFLL-HD

[11] and SFLL-Flex [11], the original function is modified to

hide the correct implementation and thwart structural attacks.

Another physical weakness that can be exploited for key

recovering is the data-related power consumption. To the best

of our knowledge, the only works that focus on differential

power analysis (DPA) for key recovery on LL schemes are

those mentioned in [12] where authors propose a framework

to perform DPA on pre- and post-SAT LL techniques. They

argue that a logic-locked circuit has the same resilience

against the SAT attack and the DPA attack (with the proposed

framework), and conclude on the provable security of post-

SAT schemes against DPA.

In this paper we propose a new framework to perform DPA

on the SAT resilient technique SFFL-HD0/TTLock and

validate the proposed attack on benchmark circuits.

Experiments show that more than 88% of key bits can be

retrieved on this LL technique with the proposed framework.

The remainder of this paper is organized as follows.

Section II provides a background on logic locking and power

analysis attacks with particular attention to the SFFL-HD

technique. Section III presents a new framework to perform

DPA on SFFL-HD0. Section IV describes experiment and

results on simulated benchmark circuits. The paper is

concluded in Section V.

II. BACKGROUND

A. Logic Locking
Logic Locking is a DfTr technique that aims to prevent

many ICs and IPs threats such as Reverse Engineering,

Overproduction or IP Piracy. LL adds logic into an original

design so that the resulting IC after manufacturing cannot

2024 29th IEEE European Test Symposium (ETS)

	

		

	

20
24

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
49

32
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S6

13
13

.2
02

4.
10

56
73

11

iPad de Gouat

iPad de Gouat

perform the expected function until the designer has unlocked

it with her/his secret key after manufacturing.

 Formally, I being the n-bits circuit input, Ks the m-bits

designer secret key, Fi(I) the true and initial function of the

design before the introduction of the locking logic (i.e.

original design), F(I, K) the function after the introduction of

the logic locking elements:

- The true function is executed after LL when the correct

key is provided,

F(I, Ks) = Fi(I), I (0, 1)n

- Output corruption occurs at least for some inputs when

any incorrect key is provided,

I (0, 1)n | F(I, K ≠ Ks) ≠ Fi(I), K ≠ Ks

First LL techniques were based on the insertion of key-

gates into the original netlist, typically XOR/XNOR gates.

The insertion strategy has evolved from a purely random

approach to optimized approaches for output corruption

improvement and resistance to sensitization attack [13].

Optimal corruption corresponds to 50% of erroneous outputs

over all the output bits and the processed input data.

The SAT attack [6] was successful against all these former

LL schemes. The threat model for this attack assumes that the

attacker has access to: i., a functional integrated circuit

obtained from the market, the ‘oracle’ already programmed

with the correct key by the designer, and ii., a locked netlist,

stolen or legally acquired from the IP provider, or obtained

from reverse engineering. The SAT attack consists in pruning

out incorrect keys iteratively. It relies on a miter circuit

including two copies of the locked netlist whose primary

inputs are interconnected but key-inputs are different. The

attack formalizes this miter circuit into a Conjunctive Normal

Form (CNF), the set of constraints is initially empty and all

the potential key values are included in the list of candidates

for being the secret key. Two keys Ki, Kj are randomly

selected and the SAT solver searches for an input data I such

that the two keys lead to different outputs, i.e. it solves the

Boolean satisfiability problem: Find I such that F(I, Ki) !=

F(I, Kj). The I found is called a Distinguish Input Pattern

(DIP). Then the oracle is exercised with the DIP for

discovering the expected “golden” output value. This

iteration allows to discard either Ki or Kj from the list of

potential secret keys. The new constraint F(DIP, K) = Fi(DIP)

for any K is added to the solver. Any key that does not satisfy

this new constraint is thus discarded from the list of

candidates for the following iterations. The process iterates

while the solver can find DIPs for key differentiations. By the

end of the process, the list of candidates includes only the

correct secret key.

 In order to thwart this attack, more recent LL approaches

rely on the limitation of output corruption in case of an

incorrect key. This strategy prevents key discarding in each

iteration and thus increases the number of iterations

performed by the SAT solver. Anti-SAT for instance [8]

integrates a point function with the original netlist in such a

way that for any incorrect key, the output differs from the

excepted one for only one input vector and this input value is

different for every incorrect key. This property prevents

discarding more than one key per iteration (only one incorrect

key produces a corrupted output for a given DIP). Thanks to

the point functions, the number of iterations of the SAT solver

is maximal (2^key-bits), resuming the SAT attack to a brute

force attack. However, the locking logic in Anti-SAT is

implemented apart from the original function, which remains

implemented as is. After identification and removal of the

locking logic, an attacker accesses the original netlist that no

longer requires any key to be unlocked. Because of removal

attacks, most advanced LL solutions hide their true

implementation by modifying the original logic cones. Fig. 1

depicts the concept used in SFLL-HD. The Functionality-

Stripped Circuit (FSC) is obtained by resynthesizing the

original circuit together with a perturb unit. This first extra

unit is in charge of corrupting the output but only for a given

number of protected inputs vectors that satisfy the designer-

defined Hamming distance condition: HD(I,K) = h. The

restore unit restores the correct output for protected input

vectors when the correct key is provided. With increased h,

the number of protected vectors increases, removal attack

resilience increases and the SAT attack resilience decreases.

For h=0 (TTLock/SFLL-HD0), only one input vector is

protected, providing very low output corruption but also the

best SAT attack resilience. Finally, SFLL-flex, the most

complex SFLL-like scheme, allows to protect a specified set

of input vectors. For SFLL-HD0, HD(I,K) = 0, in other words

the secret key is the protected input vector. The FSC is

minimally different from the original function, it produces a

corrupted response when the input equals the secret key while

the restore unit cancels this error if controlled with the correct

key (no primary output corruption). There is no corruption on

FSC output when the input is different from the key, but the

restore unit introduces an error on the primary output for an

incorrect key equal to the processed input. To sum up, only

two inputs vectors can lead an incorrect key to produce an

error on output, the input vector equal to this key and the input

vector corresponding to the correct key. In comparison, for

any incorrect key, only one input vector can lead to an

erroneous output with the Anti-SAT technique. However,

SFLL-HD0 is still very resilient to the SAT attack because

discarding more than one incorrect key in one iteration is not

possible, except when one of the two randomly selected keys

corresponds to the correct key. The probability of finding this

correct key is thus equal to q/2^key-bits where q is the

number of queries to the oracle (i.e. the number of SAT

iterations). SFLL-HD0 is thus k-secure against the SAT attack

as demonstrated in [11].

 Fig. 1. SFLL-HD [11]

B. DPA Attack
Power channel attacks exploit the fact that power

consumption of CMOS ICs is correlated with the data being

processed. The DPA attack [14] statistically correlates this

consumption and the processed data. As for the SAT attack,

the threat model assumes an attacker with access to an oracle

(functional integrated circuit) and a locked netlist. A DPA

attack starts with the collection of numerous power traces Ti

on the oracle with random data on its inputs. Then a statistical

analysis of these samples with the inputs processed during

power trace collection is performed to determine the

unknown processed data, i.e. the secret key. For this, a DPA

selection function D is defined by computing an intermediate

bit logic value according to the value of all possible key

guesses and all the input data processed during power trace

collection. The logic value 0 (resp. 1) of this bit dictates the

classification of the corresponding power trace Tij into bin T0

or T1.

T0 = Tij | D(Ii,Kj) = 0

T1 = Tij | D(Ii,Kj) = 1

Next steps consist in computing mean power values for

these two bins, respectively M0 and M1, and their absolute

difference of means (DoM): DoM = |M1−M0|. When the

correct key guess happens, the selection function correctly

classifies power traces into bins T0 (intermediate bit actually

equals 0) and T1 (intermediate bit actually equals 1), M1 >>

M0 and DoM is high. For an incorrect key guess, the selection

function does not match with actual data, power traces Tij are

randomly classified into T0 and T1 since the target bit logic

value is not correctly predicted, M0and M1 have similar

values and their DoM tends to 0.

DPA attack on an entire netlist requires most of the time a

divide-and-conquer approach for decreasing the number of

key bits to handle at a time. If the target intermediate bit used

in the selection function D depends on all the key bits, the

DPA indeed resumes to a brute force attack. Using

intermediate bits for the selection functions, which depends

on a reduced number of key bits, allows exhaustivity on a

lower number of key bits.

In the experiments presented in [12], the divide-and-

conquer strategy consists in targeting logic cone outputs, one

at a time. The sub-keys exhaustive analysis is thus limited by

the number of key bits involved in the logic cone. In addition,

authors recommend to begin the attack on logic cones for

which the key size is the smallest, then to deal with largest

ones and key bits still unresolved from previous steps since

same key bits can feed several cones. As pointed in [12], the

weak output corruption on cone outputs in case of incorrect

keys with SFLL-HD0 makes differential power analysis very

difficult because incorrect keys lead most of the time to the

same behavior and outputs than the correct one. For the same

reason, the SAT attack may need to exhaustively prune all the

incorrect keys before to discover the correct one.

In the following sections, we present a new DPA

framework for key recovery on LL schemes. The target bits

for the decision function are not the output bits of logic cones

but intermediate nodes in the restore units. These units are

also dependent on the secret key, their consumption is thus

related to the key. This new selection of target bits for

decision functions D allows to limit the number of key bits to

deal with in every iteration of the DPA attack.

III. DPA ATTACK AGAINST SFLL-HD0

This section details the proposed framework for DPA

attacks on the LL technique SFLL-HD0. In SFLL-HDh, a

Restore Unit (RU) returns 1 when HD(I,K) = h, i.e. when

protected input patterns have a Hamming Distance h with the

secret key. In SFLL-HD0, the restore unit returns 1 when

HD(I,K) = 0, so when the input data I corresponds to the

secret key K. SFLL-HD is equivalent to TTLock in this case.

SFLL-HD0 is selected among the different versions of the

SFLL-HD approach because it provides the best resistance to

the SAT attack.

A. Targeted intermediate bits and framework
The RU in SFLL-HD0 can be implemented with a simple

comparator as in TTLock, instead of a Hamming Distance

checker [15]. In order to limit the number of key bits to deal

with during one DPA attack, our divide-and-conquer strategy

defines selection functions D by computing intermediate RU

bit logic values. This strategy limits the number of key bits to

deal with for each targeted intermediate bit, and thus the

number of possible guesses about sub-keys.

Compared to previous work, we infer the DPA decision

function by partitioning the RU and not the FSC. With logic

cone partitioning on the FSC, the number of key bits in each

partition depends on the protection provided to the cone, i.e.

the number of protected vectors. It has been shown that logic

cones with more than 32 key bits are difficult to break with

DPA, it is thus recommended to concentrate most of the key

bits in a single logic cone of the original circuit for better

protection.

With the proposed strategy, we can choose the size of the

partitions on the RU, i.e. the number of key bits involved in

the comparison performed at the intermediate RU bit.

Subsequently, we present a DPA framework for intermediate

RU bits corresponding to the comparison of 4 input bits with

4 key bits, limiting the exhaustive key list analysis to 2^4=16

iterations.

Fig. 2 shows an example of a sub-part of the RU where the

target intermediate bit X switches to logic 1 when the key bits

values K0-K3 match with the input bits values I0-I3,

respectively. During DPA, the selection function allows to

classify power traces into bins T0 and T1 according to the

value of this intermediate bit. The process iterates for every

4-bit sub-key.

The attacker first partitions the netlist into logic cones from

the primary outputs. Then he/she recovers the RU from each

partition. This RU is controlled for one part, from a tamper-

proof memory storing the secret key, and for the other part,

from the primary inputs. The RU ends up on the last XOR

gate driving the output of the current logic cone. The attacker

then parses the RU for identification of smallest comparators

(cf. Algorithm 1). These sub-comparators correspond to a

logic cone ending at a node X as depicted in Fig. 2, i.e. an

intermediate bit of the RU controlled from 4 key bits and 4

input bits. The logic cone for bit X is defined as a single-

output Boolean function Dc(Ip, Kp), c being the sub-

comparator number, Ip and Kp the p-bits data input and p-bits

key input respectively, with p=4 in following experiments.

The divide-and-conquer DPA attack targets one sub-

comparator at a time.

Fig. 2. Sub-part of the restore unit.

Algorithm 1 Partioning and decision functions inferring

INPUT: Locked Netlist (Lns)

OUTPUT: Decision functions for each

n: number of key bits and input bits

involved p: number of bits concerned by the

partition

c ← 1 {number of partitions}
Kpar ← 0 {bits sorted}
r bits ← n {remaining bits}
while r bits ≠ 0 do
 Dc(Ip,Kp) ← NetlistParsing(Lns, r_bits)
 Kpar ← p
 r_bits ← r_bits – Kpar

 c ← c+1
end while

B. Locking and Power Traces Acquisition
The technique used for LL is the one detailed in [11].

Cadence Genus is used for logic synthesis on STM 28nm FD-

SOI process node.

Input vectors for power trace acquisition are randomly

generated. Potentially, inputs corresponding to RUs not

involved in the current DPA attack can be kept constant for

improving SNR for the RU under attack, as an attacker could

do.

For power trace acquisition, we simulate the design with

Cadence Xcelium for logic simulation, and Joules for power

estimations (Fig. 3). For each simulated vector, Xcelium

provides information on switching activity during a time

frame set according to the RU’s critical path. Joules estimates

the corresponding power consumption, all contributions

Leakage, Internal and Switching are selected for estimation

of the total power consumption related to the processed

vector.

For information, CPU time for power estimation on 1k

vectors is a few seconds on 32 Intel Xeon Skylake CPU with

128 Gb of ram.

The Python script details in Algorithm 2 performs the

statistical analysis on power traces (DPA attack).

Fig. 3. Power acquisition flow.

Algorithm 2 DPA attack algorithm

INPUT: Set of power consumptions

INPUT: Set of input vectors

INPUT: Dc(Ip,Kp) for each sub-comparator

OUTPUT: Kr {key bits recovered}

t0,t1 {sum of power measurements when Dc=0 (resp. 1)}

nt0,nt1 {number of vectors in each set}

while there is a new sub-comparator not yet analyzed do

for every key guess do

for every vector do // binning

 if Dc(Ip,Kp) = 0 then

nt0 = nt0+1

t0 = t0+power estimated for the

trace

else
nt1 = nt1 + 1

t1 = t1+estimated power for the

trace

end if
end for

 // for the current key guess

; nt0=nt1=0

end for
Records key bits recovered

end

C. Preliminary DPA results on a Restore Unit
We first conducted a DPA attack against a single 16 bits RU

as a standalone component. No other power consumption

than the one induced by the RU is recorded, providing

artificially a high SNR for the RU w.r.t other contributions in

the circuit such as the one of the FSC.

Netlist parsing is performed with Algorithm 1. Four sub-

comparators of 2x4 input bits each (4 key bits, 4 primary

input bits) are identified. Their outputs correspond to the 4

target intermediate bits used for binning during DPA.

The DPA attack is iterated on the 4 sub-comparators using

4k random patterns at each iteration. Fig. 4 shows the result

of the attack against the first sub-comparator in the RU. DoM

values for every key guess have been normalized on the

graph. The maximal DoM actually corresponds to the correct

key i.e. (11)10. Similar results are obtained on other sub-

comparators, the DPA attacks against this restore unit succeed

to retrieve 100% of the secret key bits on every sub-

comparator and thus 100% of the key bits for the RU

considered as a standalone function. Next section presents

experimental results on benchmark circuits where RU and

FSC consumptions participate to the total power consumption

of the circuit.

Fig.4. Normalized DoM values for the 16 4-bits key guesses on one sub-comparator

IV. DPA ATTACK ON LL BENCHMARKS CIRCUITS

The proposed DPA framework was performed on 4

ISCAS’85 benchmark circuits, c432, c880, c6288, c3540 and

one 16-bits adder 16ADD. The SFLL-HD0 strategy is

implemented on each circuit using as many key bits as the

number of inputs (TABLE I).

TABLE I
LOCKED BENCHMARC CIRCUITS

Circuits Input size

(#bits)
Key size

(#bits)
c432 36 36
c880 60 60
c6288 32 32
c3540 50 50

16ADD 32 32

TABLES II and III present attack results on these circuits.

TABLE II is based on the number of correct sub-keys

retrieved over the total number of sub-keys (i.e. the number

of sub-comparators). The 2nd column reports the total number

of power traces used during the attack whatever the outcome.

A maximum of 16k vectors have been simulated when a sub-

key has not been totally recovered. The recorded number of

vectors exercised when the correct sub-key has been totally

recovered is the minimum number of vectors for recovering

the key. A minimum of 75% of the sub-keys have been

correctly guessed by the DPA attack on the experimented

benchmark. TABLE III reports DPA attacks in terms of total

number of key bits correctly guessed by the attack. More than

84% of these key bits have been correctly guessed in the

worst case.

TABLE II

SUB-KEYS RETREIVED

Circuits Power traces RU area ratio

Sub-key

correctly

guessed

(%)
c432 42k 39.04 82

c880 80k 38.76 80

c6288 46k 4.76 75

c3540 64k 17.39 82

16 ADD 34k 46.84 87.5

TABLE III

KEY BITS RETRIEVED (%)
Circuits c432 c880 c6288 c3540 16 ADD
Key bits

correctly

guessed

(%)

88.88 95 84.375 90 96.875

The attack success rate is mainly dependent on the useful

information embedded in the captured power traces. One

important parameter is the area ratio (and related power

consumption) of the attacked unit compared to the area of the

whole design. The 3rd column in TABLE II presents the

restore unit area ratio compared to the entire circuit. RU in

c6288 presents the smallest area ratio compared to other

benchmark circuits with only 5% of the total area. This is also

the circuit for which the lowest percentage of sub-keys and

the smallest percentage of key bits have been correctly

guessed by the DPA attack. Conversely in 16ADD where the

RU presents the highest area ratio, more than 87% of sub-

keys and more than 96% of the key bits have been correctly

guessed despite the expected resistance to the SAT attack.

Guessing entropy (GE) is a widely adopted metric that

measures the average computational cost needed for a

successful side-channel analysis (SCA). GE relates to the

number of trials that the attacker has to make before finding

the actual secret key, it is defined as the average rank of the

correct key among all key candidates after analysis of a given

number of power traces. Fig. 5 reports GE for each of the 15

correct sub-key guesses on the c880 benchmark circuit

including 15 2x4-inputs sub-comparators. As the number of

analyzed power traces increases, GE of correct key guesses

evolves, most of the time to be finally ranked at the first

position among all possible key guesses in each sub-

comparator.

Because some power traces are less relevant than others to

provide information on the actual secret keys, these keys may

still be incorrectly ranked even after a large number of power

traces analysis. Dashed orange, red and purple curves in Fig.

5 are examples of correct sub-key guesses not correctly

ranked by GE metric even after 16k power traces acquisition

and analysis. They are respectively ranked in 14th, 9th and 8th

positions by the end of the time-limited analysis. Other curves

show that correct key guesses are ranked to the first position

for the 12 remaining sub-comparators, leading to 80% (12

over 15) of sub-key recovery. The brown dashed curve shows

for instance that the correct sub-key is rapidly identified as

the best hypothesis for the corresponding sub-comparator

after only 300 traces acquisition, and this ranking is

maintained through the end of the experiments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
keys

0.0

0.2

0.4

0.6

0.8

1.0

0

incorrect t key guesses
correct t key guess

V. CONCLUSION

 We propose a new framework to run DPA attacks against

circuits locked with one of the most efficient logic locking

technique, SFLL-HD0. This technique is reputed resistant to

SAT and DPA attacks for the same reason, that is the low

corruption of the circuit behavior when controlled from a

wrong key. If equivalence of both attacks remains true when

attacking the same part of the circuit (logic cones of primary

outputs in both cases), we demonstrate that targeting a sub-

part of the design also related to the secret key (intermediate

RU bits) allows to retrieve a majority of logic locking key

bits thanks to DPA. Future works will focus on other LL

schemes such as SFLL-HDh and other most advanced LL

techniques in order to evaluate the proposed framework on

LL designs where the SAT attack is more or less effective.

REFERENCES

[1] H. M. Kamali, K. Z. Azar, F. Farahmandi, et M. Tehranipoor,
Advances in Logic Locking: Past, Present, and Prospects, p. 39.

[2] Jarvis R, McIntyre M, Split manufacturing method for advanced
semiconductor circuits, US Patent 7,195,931

[3] M. Li et al., Provably Secure Camouflaging Strategy for IC
Protection, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 8, pp. 1399-1412, Aug.
2019.

[4] J. A. Roy, F. Koushanfar and I. L. Markov, EPIC: Ending Piracy of
Integrated Circuits, 2008 Design, Automation and Test in Europe,
Munich, Germany, 2008, pp. 1069-1074

[5] M. Yasin, J. Rajendran, et O. Sinanoglu, Trustworthy Hardware
Design: Combinational Logic Locking Techniques. in Analog
Circuits and Signal Processing. Cham: Springer International
Publishing, 2020.

[6] P. Subramanyan, S. Ray, et S. Malik, Evaluating the security of logic
encryption algorithms, in 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), Washington, DC,
USA: IEEE, mai 2015, p. 137-143..

[7] M. Yasin, B. Mazumdar, J. J. V. Rajendran, et O. Sinanoglu,
SARLock: SAT attack resistant logic locking, in 2016 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), mai 2016, p. 236-241.

[8] Y. Xie and A. Srivastava, "Anti-SAT: Mitigating SAT Attack on Logic
Locking," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 2, pp. 199-207, Feb.
2019

[9] M. Yasin, B. Mazumdar, O. Sinanoglu, et J. Rajendran, Removal
Attacks on Logic Locking and Camouflaging Techniques, IEEE
Trans. Emerg. Topics Comput., vol. 8, n 2, p. 517-532, avr. 2020, doi:
10.1109/TETC.2017.2740364.

[10] M. Yasin, B. Mazumdar, J. J. V. Rajendran and O. Sinanoglu,
"TTLock: Tenacious and traceless logic locking," 2017 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), Mclean, VA, USA, 2017, pp 166-166.

[11] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. V. Rajendran, O.
Sinanoglu, Provably-Secure Logic Locking: From Theory To
Practice, in ACM SIGSAC Conference on Computer and
Communications Security, Dallas Texas USA: ACM, oct. 2017, p.
1601-1618.

[12] A. Sengupta, B. Mazumdar, M. Yasin, et O. Sinanoglu, Logic Locking
With Provable Security Against Power Analysis Attacks, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 39, n 4, p. 766-778,
avr. 2020

[13] Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
et R. Leupers, « Challenging the Security of Logic Locking Schemes
in the Era of Deep Learning: A Neuroevolutionary Approach », J.
Emerg. Technol. Comput. Syst., vol. 17, no 3, p. 1-26, juill. 2021, doi:
10.1145/3431389.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology CRYPTO. Heidelberg, Germany: Springer,
1999, pp. 388–397

[15] M. Yasin, A. Sengupta, B.C. Schafer, Y. Makris, O. Sinanoglu, and J.
Rajendran, What to Lock?: Functional and Parametric Locking. In
Great Lakes Symposium on VLSI, 2017, pp.351–3

Fig. 5. Evolving GE of the 15 correct sub-key guesses for c880 circuit over 16k traces.

0 2000 4000 6000 8000 10000 12000 14000 16000
traces

2

4

6

8

10

12

14

16

GE

