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Abstract—Due to the globalization of the semiconductor 
industry, Integrated Circuits (ICs) and Intellectual Properties 
(IPs) are susceptible to specific threats. IP piracy, 
overproduction, and introduction of hardware Trojans can 
indeed compromise valuable design information and trust in the 
design flow. Logic Locking (LL) is one of the most popular 
Design-for-Trust techniques that aims to thwart these threats 
because of the wide range of risks it can prevent. This approach 
evolves from year to year in order to make it resistant to ever 
more advanced attacks. While most advanced LL solutions are 
assumed to be resistant against differential power analysis 
(DPA), we propose a new attack framework for challenging 
these approaches and show on several benchmarks that it is 
possible to reveal more than 88% of the key bits used for locking 
the designs thanks to DPA.  
 

Index Terms—Design-for-Trust, Logic Locking, Differential 
Power Analysis. 

I. INTRODUCTION 

Numerous frauds in the integrated circuit production have 

been made possible as the semiconductor industry has 

evolved over the decades from a vertical to a horizontal 

model with many entities involved in the design, integration, 

manufacturing, assembly and testing of a chip. Security and 

trust have since received particular attention for preventing 
piracy, copy, cloning, hardware Trojan insertion. 

Design-for-Trust (DfTr) solutions [1] have thus emerged to 

thwart the theft of intellectual property during production, 

prevent any malicious modification during manufacturing 

and avoid copying after deployment on the market. Passive 

watermarking and fingerprinting techniques at the end of the 

90’s consist of embedding designer’s signature and end-

user’s one, respectively. They can be used to detect piracy but 

cannot prevent it. Split manufacturing [2] consists in 

manufacturing two parts of a design, front-end and back-end-

of-line, in separate foundries. It prevents piracy by an 

untrusted foundry. Camouflaging [3] replaces gates with 

camouflaged counterparts which look alike from the top but 

where the true functionality remains unknown. It aims at 

preventing reverse engineering by end-users. Logic Locking 

(LL) [4][5] consists in inserting extra logic into the design so 

that it becomes functional upon activation with a secret key 

defined by the designer. This approach received the most 

attention because it prevents piracy, overbuilding and reverse 

engineering and thus 

This work was funded by the French National Research 
Agency (ANR) under the ARSENE project (ANR-22-PECY-
0004) 

provides protection against the largest set of untrusted 

entities, SoC integrators, foundries, test facilities and end-

users. 

Since the end of the 2000s, Logic Locking solutions have 

however been challenged by new attacks. In 2015, a Boolean 

Satisfiability based attack (SAT attack) [6] has been presented 

that broke all the combinational logic locking techniques 

proposed so far. The attack aims at gradually pruning the key 

search space. SARLock [7] and Anti-SAT [8] are examples of 

countermeasures against the SAT attack. They aim at 

minimizing the number of keys gradually discarded, 

rendering the attack effort exponential in the number of secret 

key bits. These countermeasures are however vulnerable to 

structural attacks [9] consisting in removing the locking logic 

from the attacked design for retrieving the original function. 

In most advanced solutions such as TTLock [10], SFLL-HD 

[11] and SFLL-Flex [11], the original function is modified to 

hide the correct implementation and thwart structural attacks. 

Another physical weakness that can be exploited for key 

recovering is the data-related power consumption. To the best 

of our knowledge, the only works that focus on differential 

power analysis (DPA) for key recovery on LL schemes are 

those mentioned in [12] where authors propose a framework 

to perform DPA on pre- and post-SAT LL techniques. They 

argue that a logic-locked circuit has the same resilience 

against the SAT attack and the DPA attack (with the proposed 

framework), and conclude on the provable security of post-

SAT schemes against DPA. 

In this paper we propose a new framework to perform DPA 

on the SAT resilient technique SFFL-HD0/TTLock and 

validate the proposed attack on benchmark circuits. 

Experiments show that more than 88% of key bits can be 

retrieved on this LL technique with the proposed framework. 

The remainder of this paper is organized as follows. 

Section II provides a background on logic locking and power 

analysis attacks with particular attention to the SFFL-HD 

technique. Section III presents a new framework to perform 

DPA on SFFL-HD0. Section IV describes experiment and 

results on simulated benchmark circuits. The paper is 

concluded in Section V. 

 

II. BACKGROUND 

A. Logic Locking 
Logic Locking is a DfTr technique that aims to prevent 

many ICs and IPs threats such as Reverse Engineering, 

Overproduction or IP Piracy. LL adds logic into an original 

design so that the resulting IC after manufacturing cannot 
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perform the expected function until the designer has unlocked 

it with her/his secret key after manufacturing. 

 Formally, I being the n-bits circuit input, Ks the m-bits 

designer secret key, Fi(I) the true and initial function of the 

design before the introduction of the locking logic (i.e. 

original design), F(I, K) the function after the introduction of 

the logic locking elements: 

- The true function is executed after LL when the correct 

key is provided, 

F(I, Ks) = Fi(I), I  (0, 1)n 

- Output corruption occurs at least for some inputs when 

any incorrect key is provided, 

I  (0, 1)n | F(I, K ≠ Ks) ≠ Fi(I), K ≠ Ks 

First LL techniques were based on the insertion of key-

gates into the original netlist, typically XOR/XNOR gates. 

The insertion strategy has evolved from a purely random 

approach to optimized approaches for output corruption 

improvement and resistance to sensitization attack [13]. 

Optimal corruption corresponds to 50% of erroneous outputs 

over all the output bits and the processed input data. 

The SAT attack [6] was successful against all these former 

LL schemes. The threat model for this attack assumes that the 

attacker has access to: i., a functional integrated circuit 

obtained from the market, the ‘oracle’ already programmed 

with the correct key by the designer, and ii., a locked netlist, 

stolen or legally acquired from the IP provider, or obtained 

from reverse engineering. The SAT attack consists in pruning 

out incorrect keys iteratively. It relies on a miter circuit 

including two copies of the locked netlist whose primary 

inputs are interconnected but key-inputs are different. The 

attack formalizes this miter circuit into a Conjunctive Normal 

Form (CNF), the set of constraints is initially empty and all 

the potential key values are included in the list of candidates 

for being the secret key. Two keys Ki, Kj are randomly 

selected and the SAT solver searches for an input data I such 

that the two keys lead to different outputs, i.e. it solves the 

Boolean satisfiability problem: Find I such that F(I, Ki) != 

F(I, Kj). The I found is called a Distinguish Input Pattern 

(DIP). Then the oracle is exercised with the DIP for 

discovering the expected “golden” output value. This 

iteration allows to discard either Ki or Kj from the list of 

potential secret keys. The new constraint F(DIP, K) = Fi(DIP) 

for any K is added to the solver. Any key that does not satisfy 

this new constraint is thus discarded from the list of 

candidates for the following iterations. The process iterates 

while the solver can find DIPs for key differentiations. By the 

end of the process, the list of candidates includes only the 

correct secret key. 

 In order to thwart this attack, more recent LL approaches 

rely on the limitation of output corruption in case of an 

incorrect key. This strategy prevents key discarding in each 

iteration and thus increases the number of iterations 

performed by the SAT solver. Anti-SAT for instance [8] 

integrates a point function with the original netlist in such a 

way that for any incorrect key, the output differs from the 

excepted one for only one input vector and this input value is 

different for every incorrect key. This property prevents 

discarding more than one key per iteration (only one incorrect 

key produces a corrupted output for a given DIP). Thanks to 

the point functions, the number of iterations of the SAT solver 

is maximal (2^key-bits), resuming the SAT attack to a brute 

force attack. However, the locking logic in Anti-SAT is 

implemented apart from the original function, which remains 

implemented as is. After identification and removal of the 

locking logic, an attacker accesses the original netlist that no 

longer requires any key to be unlocked. Because of removal 

attacks, most advanced LL solutions hide their true 

implementation by modifying the original logic cones. Fig. 1 

depicts the concept used in SFLL-HD. The Functionality-

Stripped Circuit (FSC) is obtained by resynthesizing the 

original circuit together with a perturb unit. This first extra 

unit is in charge of corrupting the output but only for a given 

number of protected inputs vectors that satisfy the designer-

defined Hamming distance condition: HD(I,K) = h. The 

restore unit restores the correct output for protected input 

vectors when the correct key is provided. With increased h, 

the number of protected vectors increases, removal attack 

resilience increases and the SAT attack resilience decreases. 

For h=0 (TTLock/SFLL-HD0), only one input vector is 

protected, providing very low output corruption but also the 

best SAT attack resilience. Finally, SFLL-flex, the most 

complex SFLL-like scheme, allows to protect a specified set 

of input vectors. For SFLL-HD0, HD(I,K) = 0, in other words 

the secret key is the protected input vector. The FSC is 

minimally different from the original function, it produces a 

corrupted response when the input equals the secret key while 

the restore unit cancels this error if controlled with the correct 

key (no primary output corruption). There is no corruption on 

FSC output when the input is different from the key, but the 

restore unit introduces an error on the primary output for an 

incorrect key equal to the processed input. To sum up, only 

two inputs vectors can lead an incorrect key to produce an 

error on output, the input vector equal to this key and the input 

vector corresponding to the correct key. In comparison, for 

any incorrect key, only one input vector can lead to an 

erroneous output with the Anti-SAT technique. However, 

SFLL-HD0 is still very resilient to the SAT attack because 

discarding more than one incorrect key in one iteration is not 

possible, except when one of the two randomly selected keys 

corresponds to the correct key. The probability of finding this 

correct key is thus equal to q/2^key-bits where q is the 

number of queries to the oracle (i.e. the number of SAT 

iterations). SFLL-HD0 is thus k-secure against the SAT attack 

as demonstrated in [11]. 

 

 

 
 

 

                                        Fig. 1. SFLL-HD [11] 

 



 

B. DPA Attack 
Power channel attacks exploit the fact that power 

consumption of CMOS ICs is correlated with the data being 

processed. The DPA attack [14] statistically correlates this 

consumption and the processed data. As for the SAT attack, 

the threat model assumes an attacker with access to an oracle 

(functional integrated circuit) and a locked netlist. A DPA 

attack starts with the collection of numerous power traces Ti 

on the oracle with random data on its inputs. Then a statistical 

analysis of these samples with the inputs processed during 

power trace collection is performed to determine the 

unknown processed data, i.e. the secret key. For this, a DPA 

selection function D is defined by computing an intermediate 

bit logic value according to the value of all possible key 

guesses and all the input data processed during power trace 

collection. The logic value 0 (resp. 1) of this bit dictates the 

classification of the corresponding power trace Tij into bin T0 

or T1.  

T0 = Tij | D(Ii,Kj) = 0 

T1 = Tij | D(Ii,Kj) = 1 

Next steps consist in computing mean power values for 

these two bins, respectively M0 and M1, and their absolute 

difference of means (DoM): DoM = |M1−M0|. When the 

correct key guess happens, the selection function correctly 

classifies power traces into bins T0 (intermediate bit actually 

equals 0) and T1 (intermediate bit actually equals 1), M1 >> 

M0 and DoM is high. For an incorrect key guess, the selection 

function does not match with actual data, power traces Tij are 

randomly classified into T0 and T1 since the target bit logic 

value is not correctly predicted, M0and M1 have similar 

values and their DoM tends to 0. 

DPA attack on an entire netlist requires most of the time a 

divide-and-conquer approach for decreasing the number of 

key bits to handle at a time. If the target intermediate bit used 

in the selection function D depends on all the key bits, the 

DPA indeed resumes to a brute force attack. Using 

intermediate bits for the selection functions, which depends 

on a reduced number of key bits, allows exhaustivity on a 

lower number of key bits.  

In the experiments presented in [12], the divide-and-

conquer strategy consists in targeting logic cone outputs, one 

at a time. The sub-keys exhaustive analysis is thus limited by 

the number of key bits involved in the logic cone. In addition, 

authors recommend to begin the attack on logic cones for 

which the key size is the smallest, then to deal with largest 

ones and key bits still unresolved from previous steps since 

same key bits can feed several cones. As pointed in [12], the 

weak output corruption on cone outputs in case of incorrect 

keys with SFLL-HD0 makes differential power analysis very 

difficult because incorrect keys lead most of the time to the 

same behavior and outputs than the correct one. For the same 

reason, the SAT attack may need to exhaustively prune all the 

incorrect keys before to discover the correct one. 

In the following sections, we present a new DPA 

framework for key recovery on LL schemes. The target bits 

for the decision function are not the output bits of logic cones 

but intermediate nodes in the restore units. These units are 

also dependent on the secret key, their consumption is thus 

related to the key. This new selection of target bits for 

decision functions D allows to limit the number of key bits to 

deal with in every iteration of the DPA attack. 

III. DPA ATTACK AGAINST SFLL-HD0 

This section details the proposed framework for DPA 

attacks on the LL technique SFLL-HD0. In SFLL-HDh, a 

Restore Unit (RU) returns 1 when HD(I,K) = h, i.e. when 

protected input patterns have a Hamming Distance h with the 

secret key. In SFLL-HD0, the restore unit returns 1 when 

HD(I,K) = 0, so when the input data I corresponds to the 

secret key K. SFLL-HD is equivalent to TTLock in this case. 

SFLL-HD0 is selected among the different versions of the 

SFLL-HD approach because it provides the best resistance to 

the SAT attack. 

A. Targeted intermediate bits and framework 
The RU in SFLL-HD0 can be implemented with a simple 

comparator as in TTLock, instead of a Hamming Distance 

checker [15]. In order to limit the number of key bits to deal 

with during one DPA attack, our divide-and-conquer strategy 

defines selection functions D by computing intermediate RU 

bit logic values. This strategy limits the number of key bits to 

deal with for each targeted intermediate bit, and thus the 

number of possible guesses about sub-keys. 

Compared to previous work, we infer the DPA decision 

function by partitioning the RU and not the FSC. With logic 

cone partitioning on the FSC, the number of key bits in each 

partition depends on the protection provided to the cone, i.e. 

the number of protected vectors. It has been shown that logic 

cones with more than 32 key bits are difficult to break with 

DPA, it is thus recommended to concentrate most of the key 

bits in a single logic cone of the original circuit for better 

protection. 

With the proposed strategy, we can choose the size of the 

partitions on the RU, i.e. the number of key bits involved in 

the comparison performed at the intermediate RU bit. 

Subsequently, we present a DPA framework for intermediate 

RU bits corresponding to the comparison of 4 input bits with 

4 key bits, limiting the exhaustive key list analysis to 2^4=16 

iterations. 

Fig. 2 shows an example of a sub-part of the RU where the 

target intermediate bit X switches to logic 1 when the key bits 

values K0-K3 match with the input bits values I0-I3, 

respectively. During DPA, the selection function allows to 

classify power traces into bins T0 and T1 according to the 

value of this intermediate bit. The process iterates for every 

4-bit sub-key. 

The attacker first partitions the netlist into logic cones from 

the primary outputs. Then he/she recovers the RU from each 

partition. This RU is controlled for one part, from a tamper-

proof memory storing the secret key, and for the other part, 

from the primary inputs. The RU ends up on the last XOR 

gate driving the output of the current logic cone. The attacker 

then parses the RU for identification of smallest comparators 

(cf. Algorithm 1). These sub-comparators correspond to a 

logic cone ending at a node X as depicted in Fig. 2, i.e. an 

intermediate bit of the RU controlled from 4 key bits and 4 

input bits. The logic cone for bit X is defined as a single-

output Boolean function Dc(Ip, Kp), c being the sub-

comparator number, Ip and Kp the p-bits data input and p-bits 

key input respectively, with p=4 in following experiments. 

 



 

The divide-and-conquer DPA attack targets one sub-

comparator at a time. 

 

 

Fig. 2. Sub-part of the restore unit. 

 

Algorithm 1 Partioning and decision functions inferring 

INPUT: Locked Netlist (Lns) 

OUTPUT: Decision functions for each  

n: number of key bits and input bits 

involved p: number of bits concerned by the 

partition 

c ← 1 {number of partitions}  
Kpar ← 0 {bits sorted}  
r bits ← n {remaining bits}  
while r bits ≠ 0 do 
    Dc(Ip,Kp) ← NetlistParsing(Lns, r_bits) 
     Kpar ← p 
     r_bits ← r_bits – Kpar 

     c ← c+1 
end while 

 
 

B. Locking and Power Traces Acquisition 
The technique used for LL is the one detailed in [11]. 

Cadence Genus is used for logic synthesis on STM 28nm FD-

SOI process node. 

Input vectors for power trace acquisition are randomly 

generated. Potentially, inputs corresponding to RUs not 

involved in the current DPA attack can be kept constant for 

improving SNR for the RU under attack, as an attacker could 

do. 

For power trace acquisition, we simulate the design with 

Cadence Xcelium for logic simulation, and Joules for power 

estimations (Fig. 3). For each simulated vector, Xcelium 

provides information on switching activity during a time 

frame set according to the RU’s critical path. Joules estimates 

the corresponding power consumption, all contributions 

Leakage, Internal and Switching are selected for estimation 

of the total power consumption related to the processed 

vector. 

For information, CPU time for power estimation on 1k 

vectors is a few seconds on 32 Intel Xeon Skylake CPU with 

128 Gb of ram. 

The Python script details in Algorithm 2 performs the 

statistical analysis on power traces (DPA attack). 

 

Fig. 3. Power acquisition flow. 

 

Algorithm 2 DPA attack algorithm 

INPUT: Set of power consumptions 

INPUT: Set of input vectors 

INPUT: Dc(Ip,Kp) for each sub-comparator 

OUTPUT: Kr {key bits recovered} 

t0,t1 {sum of power measurements when Dc=0 (resp. 1)} 

nt0,nt1 {number of vectors in each set}  

while there is a new sub-comparator not yet analyzed do 

for every key guess do 

for every vector do // binning 

             if Dc(Ip,Kp) = 0 then  

nt0 = nt0+1  

t0 = t0+power estimated for the 

trace  

else 
nt1 = nt1 + 1 

t1 = t1+estimated power for the 

trace 

end if 
end for 

 // for the current key guess 

; nt0=nt1=0 

end for 
Records key bits recovered 

end 
 

C. Preliminary DPA results on a Restore Unit 
We first conducted a DPA attack against a single 16 bits RU 

as a standalone component. No other power consumption 

than the one induced by the RU is recorded, providing 

artificially a high SNR for the RU w.r.t other contributions in 

the circuit such as the one of the FSC. 

Netlist parsing is performed with Algorithm 1. Four sub-

comparators of 2x4 input bits each (4 key bits, 4 primary 

input bits) are identified. Their outputs correspond to the 4 

target intermediate bits used for binning during DPA. 

The DPA attack is iterated on the 4 sub-comparators using 

4k random patterns at each iteration. Fig. 4 shows the result 

of the attack against the first sub-comparator in the RU. DoM 

values for every key guess have been normalized on the 

 



 

graph. The maximal DoM actually corresponds to the correct 

key i.e. (11)10. Similar results are obtained on other sub-

comparators, the DPA attacks against this restore unit succeed 

to retrieve 100% of the secret key bits on every sub-

comparator and thus 100% of the key bits for the RU 

considered as a standalone function. Next section presents 

experimental results on benchmark circuits where RU and 

FSC consumptions participate to the total power consumption 

of the circuit. 

 

 

Fig.4. Normalized DoM values for the 16 4-bits key guesses on one sub-comparator 

IV. DPA ATTACK ON LL BENCHMARKS CIRCUITS 

The proposed DPA framework was performed on 4 

ISCAS’85 benchmark circuits, c432, c880, c6288, c3540 and 

one 16-bits adder 16ADD. The SFLL-HD0 strategy is 

implemented on each circuit using as many key bits as the 

number of inputs (TABLE I). 

TABLE I 
LOCKED BENCHMARC CIRCUITS 

Circuits Input size 

(#bits) 
Key size 

(#bits) 
c432 36 36 
c880 60 60 
c6288 32 32 
c3540 50 50 

16ADD 32 32 

 
TABLES II and III present attack results on these circuits. 

TABLE II is based on the number of correct sub-keys 

retrieved over the total number of sub-keys (i.e. the number 

of sub-comparators). The 2nd column reports the total number 

of power traces used during the attack whatever the outcome. 

A maximum of 16k vectors have been simulated when a sub-

key has not been totally recovered. The recorded number of 

vectors exercised when the correct sub-key has been totally 

recovered is the minimum number of vectors for recovering 

the key. A minimum of 75% of the sub-keys have been 

correctly guessed by the DPA attack on the experimented 

benchmark. TABLE III reports DPA attacks in terms of total 

number of key bits correctly guessed by the attack. More than 

84% of these key bits have been correctly guessed in the 

worst case. 

 

 

 

 

 
TABLE II 

SUB-KEYS RETREIVED 

Circuits Power traces RU area ratio 

Sub-key 

correctly 

guessed 

(%) 
c432 42k 39.04 82

c880 80k 38.76 80

c6288 46k 4.76 75

c3540 64k 17.39 82

16 ADD 34k 46.84 87.5

 
TABLE III 

KEY BITS RETRIEVED (%) 
Circuits c432 c880 c6288 c3540 16 ADD 
Key bits 

correctly 

guessed 

(%) 

88.88 95 84.375 90 96.875 

 

The attack success rate is mainly dependent on the useful 

information embedded in the captured power traces. One 

important parameter is the area ratio (and related power 

consumption) of the attacked unit compared to the area of the 

whole design. The 3rd column in TABLE II presents the 

restore unit area ratio compared to the entire circuit. RU in 

c6288 presents the smallest area ratio compared to other 

benchmark circuits with only 5% of the total area. This is also 

the circuit for which the lowest percentage of sub-keys and 

the smallest percentage of key bits have been correctly 

guessed by the DPA attack. Conversely in 16ADD where the 

RU presents the highest area ratio, more than 87% of sub-

keys and more than 96% of the key bits have been correctly 

guessed despite the expected resistance to the SAT attack. 

Guessing entropy (GE) is a widely adopted metric that 

measures the average computational cost needed for a 

successful side-channel analysis (SCA). GE relates to the 

number of trials that the attacker has to make before finding 

the actual secret key, it is defined as the average rank of the 

correct key among all key candidates after analysis of a given 

number of power traces. Fig. 5 reports GE for each of the 15 

correct sub-key guesses on the c880 benchmark circuit 

including 15 2x4-inputs sub-comparators. As the number of 

analyzed power traces increases, GE of correct key guesses 

evolves, most of the time to be finally ranked at the first 

position among all possible key guesses in each sub-

comparator. 

Because some power traces are less relevant than others to 

provide information on the actual secret keys, these keys may 

still be incorrectly ranked even after a large number of power 

traces analysis. Dashed orange, red and purple curves in Fig. 

5 are examples of correct sub-key guesses not correctly 

ranked by GE metric even after 16k power traces acquisition 

and analysis. They are respectively ranked in 14th, 9th and 8th 

positions by the end of the time-limited analysis. Other curves 

show that correct key guesses are ranked to the first position 

for the 12 remaining sub-comparators, leading to 80% (12 

over 15) of sub-key recovery. The brown dashed curve shows 

for instance that the correct sub-key is rapidly identified as 

the best hypothesis for the corresponding sub-comparator 

after only 300 traces acquisition, and this ranking is 

maintained through the end of the experiments. 
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V. CONCLUSION 

 We propose a new framework to run DPA attacks against 

circuits locked with one of the most efficient logic locking 

technique, SFLL-HD0. This technique is reputed resistant to 

SAT and DPA attacks for the same reason, that is the low 

corruption of the circuit behavior when controlled from a 

wrong key. If equivalence of both attacks remains true when 

attacking the same part of the circuit (logic cones of primary 

outputs in both cases), we demonstrate that targeting a sub-

part of the design also related to the secret key (intermediate 

RU bits) allows to retrieve a majority of logic locking key 

bits thanks to DPA. Future works will focus on other LL 

schemes such as SFLL-HDh and other most advanced LL 

techniques in order to evaluate the proposed framework on 

LL designs where the SAT attack is more or less effective.  
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Fig. 5. Evolving GE of the 15 correct sub-key guesses for c880 circuit over 16k traces. 
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